北师大版八年级数学上册2.2平方根练习试题
八年级数学北师大版上册课时练第2章《2.2平方根》(含答案解析)(1)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练2.2平方根一.选择题(共8小题,满分40分)1.25的算术平方根是()A.﹣5B.5C.±5D.2.化简的结果是()A.2B.1C.﹣2D.﹣13.若|x﹣5|+=0,则x+y=()A.﹣5B.6C.0D.54.下列计算正确的是()A.B.C.±D.5.的平方根是()A.4B.2C.4或﹣4D.2或﹣26.81的算术平方根是()A.9B.﹣9C.±9D.37.一个正数的平方根分别为:2a+6与a﹣3,则这个正数是()A.1B.4C.9D.168.如图,用边长为3的两个小正方形拼成一个大正方形,则大正方形的边长最接近的整数是()A.3B.4C.5D.6二.填空题(共6小题,满分30分)9.2的算术平方根是;2是的算术平方根.10.若a、b为实数,且满足,则b﹣a的值为.11.已知2a﹣1的平方根是±3,a+2b+3的算术平方根是4.则a﹣2b的值为.12.已知:≈1.421267…,≈4.494441…,则(精确到0.1)≈.13.的平方根是,的算术平方根是.14.如图,一个长方形被分割成四部分,其中图形①,②,③都是正方形,且正方形①,③的面积分别为16和3,则图中阴影部分的面积为.三.解答题(共6小题,满分50分)15.已知a+3与2a﹣15是一个正数的平方根,求这个正数.16.已知实数与互为相反数,y的算术平方根是14,z的绝对值为,且m和n互为倒数,求2mn+x﹣z2的平方根.17.求下列各式中x的值:(1)49x2=25;(2)(x﹣2)2=9.18.已知实数a,b,c满足(a﹣2)2+|2b+6|+=0.(1)求实数a,b,c的值;(2)求的平方根.19.(1)观察各式:≈0.1732,≈1.732,≈17.32…发现规律:被开方数的小数点每向右移动位,其算术平方根的小数点向移动位;(2)应用:已知≈2.236,则≈,≈;(3)拓展:已知≈2.449,≈7.746,计算和的值.20.小强同学用两个小正方形纸片做拼剪构造大正方形游戏:(他选用的两个小正方形的面积分别为S1,S2).(1)如图1,S1=1,S2=1,拼成的大正方形A1B1C1D1边长为;如图2,S1=1,S2=4,拼成的大正方形A2B2C2D2边长为;如图3,S1=1,S2=16,拼成的大正方形A3B3C3D3边长为.(2)若将(1)中的图3沿正方形A3B3C3D3边的方向剪裁,能否剪出一个面积为14.52且长宽之比为4:3的长方形?若能,求它的长、宽;若不能,请说明理由.参考答案一.选择题(共8小题,满分40分)1.B.2.A.3.D.4.C.5.D.6.A.7.D.8.B.二.填空题(共6小题,满分30分)9.;4.10.1.11.﹣3.12.44.9.13.±,2.14..三.解答题(共6小题,满分50分)15.解:(1)如果a+3与2a﹣15相等时,有a+3=2a﹣15,解得a=18,此时a+3=2a﹣15=21,所以这个正数为441;(2)当a+3与2a﹣15不等时,有a+3+2a﹣15=0,解得a=4,此时a+3=7,2a﹣15=﹣7,所以这个正数为49,答:这个正数是49或441.16.解:∵实数与互为相反数,∴7﹣2x=0,∴x=,∵y的算术平方根是14,z的绝对值为,且m和n互为倒数,∴=14,z=,mn=1,∴2mn+x﹣z2=2×1+14﹣()2=2+49﹣2=49,∵49的平方根为±7,∴2mn+x﹣z2的平方根为±7.17.解:(1)49x2=25,x2=,x=;(2)(x﹣2)2=9,x﹣2=±3,x﹣2=3或x﹣2=﹣3,解得x=5或x=﹣1.18.解:(1)∵(a﹣2)2+|2b+6|+=0,∴a﹣2=0,2b+6=0,5﹣c=0,解得:a=2,b=﹣3,c=5;(2)由(1)知a=2,b=﹣3,c=5,则==4,故的平方根为:±2.19.解:(1)观察各式:≈0.1732,≈1.732,≈17.32…发现规律:被开方数的小数点每向右移动2位,其算术平方根的小数点向右移动1位;故答案为:2,右,1;(2)应用:已知≈2.236,则≈0.2236,≈22.36;故答案为:0.2236,22.36;(3)==≈2×7.746≈15.492,==×≈3×0.2449≈0.7347.20.解:(1)如图1,当S1=1,S2=1,拼成的大正方形A1B1C1D1的面积为1+1=2,因此其边长为;如图2,当S1=1,S2=4,拼成的大正方形A2B2C2D2的面积为1+4=5,因此其边长为;如图3,当S1=1,S2=16,拼成的大正方形A3B3C3D3的面积为1+16=17,因此其边长为;故答案为:,,;(2)不能,理由如下:设长方形的长为4x,宽为3x,则有4x•3x=14.52,所以x2=1.21,即x=1.1(x>0),因此长方形的长为4x=4.4,宽为3x=3.3,因为(4.4)2=19.36>17,所以不能用正方形A3B3C3D3剪出一个面积为14.52且长宽之比为4:3的长方形.。
2023-2024学年新版北师大版八年级数学上册第2章《实数》同步练习及答案—2.2平方根(1)
验证: = = = = .
(2) =1+ =1+ (n为正整数).
专题二探究题
4.研究下列算式,你会发现有什么规律?
= =2; = =3; = =4; = =5;…
请你找出规律,并用公式表示出来.
5.先观察下列等式,再回答下列问题:
① =1+ - = ;
② =1+ = ;
③ =1+ = .
(1)请你根据上面三个等式提供的信息,猜想 的结果,并验证;
(2)请你按照上面各等式反映的规律,试写出用含n的式子表示的等式(n为正整数).
答案:
1.D【解析】∵ 与|b+1|互为相反数,
∴ +|b+1|=0,
∴ =0且b+1=0,
∴a= ,b=﹣1, = ,故选D.
2.解:由题意8=0.
∴a=2,c=-8,b=4.
∴2x2+4x-8=0.
∴x2+2x=4.
∴式子x2+2x的算术平方根为2.
3.解:将题中等式移项并将等号两边同乘以4得x-4 +y-4 +z-4 +9=0,
∴(x-4 +4)+(y-1-4 +4)+(z-2-4 +4)=0,
∴( -2)2+( -2)2+( -2)2=0,
∴ -2=0且 -2=0且 -2=0,
∴ =2 =2 =2,
∴x=4,y-1=4,z-2=4,∴x=4,y=5,z=6.
∴xyz=120.
4.解:第n项an= = =n+1,即an=n+1.
新版北师大版八年级数学上册第2章《实数》同步练习及答案—2.2平方根(1)
北师大版八年级上2.2平方根同步练习含答案解析
北师大新版八年级数学上册同步练习:2.2 平方根一、选择题(共18小题)1.16的平方根是()A.4 B.±4 C.8 D.±82.25的算术平方根是()A.5 B.﹣5 C.±5 D.3.4的算术平方根是()A.﹣2 B.2 C.﹣D.4.4的算术平方根是()A.±2 B.2 C.﹣2 D.5.9的平方根是()A.±3 B.±C.3 D.﹣36.下列说法正确的是()A.|﹣2|=﹣2 B.0的倒数是0C.4的平方根是2 D.﹣3的相反数是37.±2是4的()A.平方根B.相反数C.绝对值D.算术平方根8.(﹣3)2的平方根是()A.3 B.﹣3 C.±3 D.99.a2的算术平方根一定是()A.a B.|a|C.D.﹣a10.数5的算术平方根为()A.B.25 C.±25 D.±11.已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①②B.①③C.③D.①②④12.的算术平方根是()A.﹣2 B.±2 C.D.213.己知一个表面积为12dm2的正方体,则这个正方体的棱长为()A.1dm B.dm C.dm D.3dm14.9的算术平方根是()A.﹣3 B.±3 C.3 D.15.下列各式正确的是()A.﹣22=4 B.20=0 C.=±2 D.|﹣|=16.的算术平方根是()A.2 B.±2 C.D.±17.8的平方根是()A.4 B.±4 C.2D.18.)的平方根是()A.±3 B.3 C.±9 D.9二、填空题(共12小题)19.81的平方根为.20.4是的算术平方根.21.实数4的平方根是.22.的算术平方根是.23.4的平方根是;4的算术平方根是.24.4的平方根是.25.16的平方根是.26.9的平方根是.27.计算:25的平方根是.28.求9的平方根的值为.29.9的算术平方根是.30.的平方根是.北师大新版八年级数学上册同步练习:2.2 平方根参考答案与试题解析一、选择题(共18小题)1.16的平方根是()A.4 B.±4 C.8 D.±8【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故选:B.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.25的算术平方根是()A.5 B.﹣5 C.±5 D.【考点】算术平方根.【专题】计算题.【分析】根据算术平方根的定义进行解答即可.【解答】解:∵(5)2=25,∴25的算术平方根是5.故选A.【点评】本题考查的是算术平方根的概念,即如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.3.4的算术平方根是()A.﹣2 B.2 C.﹣D.【考点】算术平方根.【专题】计算题.【分析】根据算术平方根的定义进行解答即可.【解答】解:∵22=4,∴4的算术平方根是2.故选:B.【点评】本题考查了算术平方根的定义,熟记定义是解题的关键.4.4的算术平方根是()A.±2 B.2 C.﹣2 D.【考点】算术平方根.【分析】根据开方运算,可得一个数的算术平方根.【解答】解:4的算术平方根是2,故选:B.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根.5.9的平方根是()A.±3 B.±C.3 D.﹣3【考点】平方根.【分析】根据平方根的含义和求法,可得9的平方根是:±=±3,据此解答即可.【解答】解:9的平方根是:±=±3.故选:A.【点评】此题主要考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.6.下列说法正确的是()A.|﹣2|=﹣2 B.0的倒数是0C.4的平方根是2 D.﹣3的相反数是3【考点】平方根;相反数;绝对值;倒数.【专题】计算题.【分析】利用绝对值的代数意义,倒数的定义,平方根及相反数的定义判断即可.【解答】解:A、|﹣2|=2,错误;B、0没有倒数,错误;C、4的平方根为±2,错误;D、﹣3的相反数为3,正确,故选D【点评】此题考查了平方根,相反数,绝对值以及倒数,熟练掌握各自的定义是解本题的关键.7.±2是4的()A.平方根B.相反数C.绝对值D.算术平方根【考点】平方根.【分析】根据平方根的定义解答即可.【解答】解:±2是4的平方根.故选:A.【点评】本题考查了平方根的定义,是基础题,熟记概念是解题的关键.8.(﹣3)2的平方根是()A.3 B.﹣3 C.±3 D.9【考点】平方根;有理数的乘方.【分析】首先根据平方的定义求出(﹣3)2,然后利用平方根的定义即可求出结果.【解答】解:∵(﹣3)2=9,而9的平方根是±3,∴(﹣3)2的平方根是±3.故选:C.【点评】本题考查了平方根的意义,有理数的乘方.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.9.a2的算术平方根一定是()A.a B.|a|C.D.﹣a【考点】算术平方根.【分析】根据算术平方根定义,即可解答.【解答】解:=|a|.故选:B.【点评】本题考查了对算术平方根定义的应用,能理解定义并应用定义进行计算是解此题的关键,难度不是很大.10.数5的算术平方根为()A.B.25 C.±25 D.±【考点】算术平方根.【分析】根据算术平方根的含义和求法,可得:数5的算术平方根为,据此解答即可.【解答】解:数5的算术平方根为.故选:A.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.11.已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①②B.①③C.③D.①②④【考点】算术平方根;平方根;无理数;不等式的解集.【分析】①根据边长为m的正方形面积为12,可得m2=12,所以m=2,然后根据是一个无理数,可得m是无理数,据此判断即可.②根据m2=12,可得m是方程m2﹣12=0的解,据此判断即可.③首先求出不等式组的解集是4<m<5,然后根据m=2<2×2=4,可得m不满足不等式组,据此判断即可.④根据m2=12,而且m>0,可得m是12的算术平方根,据此判断即可.【解答】解:∵边长为m的正方形面积为12,∴m2=12,∴m=2,∵是一个无理数,∴m是无理数,∴结论①正确;∵m2=12,∴m是方程m2﹣12=0的解,∴结论②正确;∵不等式组的解集是4<m<5,m=2<2×2=4,∴m不满足不等式组,∴结论③不正确;∵m2=12,而且m>0,∴m是12的算术平方根,∴结论④正确.综上,可得关于m的说法中,错误的是③.故选:C.【点评】(1)此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.(2)此题还考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.(3)此题还考查了不等式的解集的求法,以及正方形的面积的求法,要熟练掌握.12.的算术平方根是()A.﹣2 B.±2 C.D.2【考点】算术平方根.【分析】首先求出的值是2;然后根据算术平方根的求法,求出2的算术平方根,即可求出的算术平方根是多少.【解答】解:∵,2的算术平方根是,∴的算术平方根是.故选:C.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.13.己知一个表面积为12dm2的正方体,则这个正方体的棱长为()A.1dm B.dm C.dm D.3dm【考点】算术平方根.【分析】根据正方体的表面积公式:s=6a2,解答即可.【解答】解:因为正方体的表面积公式:s=6a2,可得:6a2=12,解得:a=.故选B.【点评】此题主要考查正方体的表面积公式的灵活运用,关键是根据公式进行计算.14.9的算术平方根是()A.﹣3 B.±3 C.3 D.【考点】算术平方根.【分析】算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.依此即可求解.【解答】解:9的算术平方根是3.故选:C.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.15.下列各式正确的是()A.﹣22=4 B.20=0 C.=±2 D.|﹣|=【考点】算术平方根;有理数的乘方;实数的性质;零指数幂.【分析】根据有理数的乘方,任何非零数的零次幂等于1,算术平方根的定义,绝对值的性质对各选项分析判断即可得解.【解答】解:A、﹣22=﹣4,故本选项错误;B、20=1,故本选项错误;C、=2,故本选项错误;D、|﹣|=,故本选项正确.故选D.【点评】本题考查了算术平方根的定义,有理数的乘方,实数的性质,零指数幂的定义,是基础题,熟记概念与性质是解题的关键.16.的算术平方根是()A.2 B.±2 C.D.±【考点】算术平方根.【专题】计算题.【分析】先求得的值,再继续求所求数的算术平方根即可.【解答】解:∵=2,而2的算术平方根是,∴的算术平方根是,故选:C.【点评】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.17.8的平方根是()A.4 B.±4 C.2D.【考点】平方根.【分析】直接根据平方根的定义进行解答即可解决问题.【解答】解:∵,∴8的平方根是.故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18.的平方根是()A.±3 B.3 C.±9 D.9【考点】平方根;算术平方根.【专题】计算题.【分析】根据平方运算,可得平方根、算术平方根.【解答】解:∵,9的平方根是±3,故选:A.【点评】本题考查了算术平方根,平方运算是求平方根的关键.二、填空题(共12小题)19.81的平方根为±9.【考点】平方根.【分析】根据平方根的定义即可得出答案.【解答】解:8l的平方根为±9.故答案为:±9.【点评】此题考查了平方根的知识,属于基础题,掌握定义是关键.20.4是16的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.【点评】此题主要考查了算术平方根的概念,牢记概念是关键.21.实数4的平方根是±2.【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.22.的算术平方根是.【考点】算术平方根.【分析】直接根据算术平方根的定义求解即可.【解答】解:∵()2=,∴的算术平方根是,即=.故答案为.【点评】本题考查了算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.23.4的平方根是±2;4的算术平方根是2.【考点】算术平方根;平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:4的平方根是±2;4的算术平方根是2.故答案为:±2;2.【点评】此题主要考查了平方根和算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.24.4的平方根是±2.【考点】平方根.【专题】计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.25.16的平方根是±4.【考点】平方根.【专题】计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.26.9的平方根是±3.【考点】平方根.【专题】计算题.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.27.计算:25的平方根是±5.【考点】平方根.【专题】计算题.【分析】根据平方根的定义,结合(±5)2=25即可得出答案.【解答】解:∵(±5)2=25∴25的平方根±5.故答案为:±5.【点评】本题考查了平方根的知识,属于基础题,解答本题的关键是掌握平方根的定义,注意一个正数的平方根有两个且互为相反数.28.求9的平方根的值为±3.【考点】平方根.【分析】根据平方根的定义解答.【解答】解:∵(±3)2=9,∴9的平方根的值为±3.故答案为:±3.【点评】本题考查了平方根的定义,是基础题,熟记概念是解题的关键.29.9的算术平方根是3.【考点】算术平方根.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.30.的平方根是±2.【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.。
北师大版初中数学八年级上册《2.2 平方根》同步练习卷(含答案解析
北师大新版八年级上学期《2.2 平方根》同步练习卷一.选择题(共15小题)1.一个数的算术平方根是0.01,则这个数是()A.0.1B.0.01C.0.001D.0.00012.下列说法正确的是()A.(﹣3)2的平方根是3B.=±4C.1的平方根是1D.4的算术平方根是23.下列各式表示正确的是()A.=±2B.=﹣2C.±=2D.﹣=﹣2 4.下列说法中正确的是()A.的算术平方根是±4B.12是144的平方根C.的平方根是±5D.a2的算术平方根是a5.若x2=9,则x的取值是()A.x=3B.x=﹣3C.x=±3D.x=±4.56.下列说法正确的是()A.因为(﹣3)2=9所以9的平方根为﹣3B.的算术平方根是2C.=±5D.±36的平方根是±67.若一个数的平方根等于它本身,则这个数是()A.0B.1C.0 或1D.0 或±1 8.某整数的两个不同平方根是2a﹣1与﹣a+2,则这个数是()A.1B.3C.﹣3D.99.数学课上,李老师出示了下列4道计算题:①|﹣4|;②﹣22;③±;④8÷(﹣2),其中运算结果相同的题目是()A.①②B.①③C.②④D.③④10.的平方根是,用式子表示正确的是()A.B.C.D.11.下列判断正确的是()A.0.25的平方根是0.5B.﹣7是﹣49的平方根C.只有正数才有平方根D.a2的平方根为±a12.爸爸为颖颖买了一个密码箱,并告诉其密码(密码为自然数)是1、2、4、6、8、9六个数中的三个数的算术平方根,则这个密码箱的密码可能是()A.123B.189C.169D.24813.的平方根是()A.B.C.D.14.矩形ABCD的面积是15,它的长与宽的比为3:1,则该矩形的宽为()A.1B.C.D.15.若x使(x﹣1)2=4成立,则x的值是()A.3B.﹣1C.3或﹣1D.±2二.填空题(共15小题)16.已知一个正数的两个平方根分别是4a+1和a﹣11,则这个正数是.17.若=0,则xy=.18.若=1,则﹣(2x﹣3)=.19.如果x2=5,那么x=.20.下列说法正确的是(只需填写编号)①的算术平方根是5②25的算术平方根是±5③的平方根是5④25的平方根是±521.已知|a|=2,且ab<0,则a+b=.22.已知正方形A的面积是正方形B面积的3倍,正方形B的面积是3cm2,则正方形A的边长是cm.23.观察:=1+﹣=1=1+﹣=1=1+﹣=1试猜想:=24.如图,用两个边长分别为1的小正方形,拼成一个大正方形,则该大正方形的边长为.25.已知是整数,则n是自然数的值是.26.的算术平方根是.27.金园小区有一块长为18m,宽为8m的长方形草坪,计划在草坪面积不变的情况下,把它改造成正方形,则这个正方形的边长是m.28.的算术平方根是.29.观察下列各式:,=3,=4…,用含自然数n(n ≥1)的等式表示上述规律:.30.已知:若≈1.910,≈6.042,则≈.三.解答题(共5小题)31.求下列代数式的值(1)如果a2=4,b的算术平方根为3,求a+b的值.(2)已知x是25的平方根,y是16的算术平方根,且x<y,求x﹣y的值.32.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求的值?33.已知一个正数的两个不同平方根是a+6与2a﹣9.(1)求a的值;(2)求关于x的方程ax2﹣16=0的解.34.(1)先完成下列表格:(2)由上表你发现什么规律?(3)根据你发现的规律填空:①已知=1.732 则==②已知=0.056,则=35.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:≈1.414,≈1.732)北师大新版八年级上学期《2.2 平方根》同步练习卷参考答案与试题解析一.选择题(共15小题)1.一个数的算术平方根是0.01,则这个数是()A.0.1B.0.01C.0.001D.0.0001【分析】根据算术平方根的定义即可求解.【解答】解:∵一个数的算术平方根是0.01,∴这个数是0.012=0.0001.故选:D.【点评】本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.2.下列说法正确的是()A.(﹣3)2的平方根是3B.=±4C.1的平方根是1D.4的算术平方根是2【分析】直接利用算术平方根以及平方根的定义分析得出答案.【解答】解:A、(﹣3)2=9的平方根是±3,故此选项错误;B、=4,故此选项错误;C、1的平方根是±1,故此选项错误;D、4的算术平方根是2,正确.故选:D.【点评】此题主要考查了算术平方根以及平方根的定义,正确把握定义是解题关键.3.下列各式表示正确的是()A.=±2B.=﹣2C.±=2D.﹣=﹣2【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:A、=2,故此选项错误;B、=2,故此选项错误;C、±=±2,故此选项错误;D、﹣=﹣2.正确.故选:D.【点评】此题主要考查了算术平方根,正确化简二次根式是解题关键.4.下列说法中正确的是()A.的算术平方根是±4B.12是144的平方根C.的平方根是±5D.a2的算术平方根是a【分析】直接利用算术平方根以及平方根的定义分别分析得出答案.【解答】解:A、=4,4的算术平方根是2,故此选项错误;B、12是144的平方根,正确;C、=5,5的平方根是±,故此选项错误;D、a2的算术平方根是|a|,故此选项错误.故选:B.【点评】此题主要考查了算术平方根以及平方根的定义,正确把握相关定义是解题关键.5.若x2=9,则x的取值是()A.x=3B.x=﹣3C.x=±3D.x=±4.5【分析】根据一个正数有两个平方根,这两个平方根互为相反数,求出x的取值是多少即可.【解答】解:∵x2=9,∴x=±3.故选:C.【点评】此题主要考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.6.下列说法正确的是()A.因为(﹣3)2=9所以9的平方根为﹣3B.的算术平方根是2C.=±5D.±36的平方根是±6【分析】直接利用算术平方根以及平方根的定义化简得出答案.【解答】解:A、因为(﹣3)2=9,所以9的平方根为±3,故此选项错误;B、=4,则4的算术平方根是2,故此选项正确;C、=5,故此选项错误;D、36的平方根是±6,﹣36没有平方根.故选:B.【点评】此题主要考查了算术平方根以及平方根的定义,正确把握定义是解题关键.7.若一个数的平方根等于它本身,则这个数是()A.0B.1C.0 或1D.0 或±1【分析】根据平方根的定义计算可得.【解答】解:0的平方根是它本身0,1的平方根是±1,﹣1没有平方根,故选:A.【点评】本题主要考查平方根,解题的关键是熟练掌握平方根的定义.8.某整数的两个不同平方根是2a﹣1与﹣a+2,则这个数是()A.1B.3C.﹣3D.9【分析】直接利用平方根的定义得出a的值,进而得出答案.【解答】解:由题意可得:2a﹣1﹣a+2=0,解得:a=﹣1,故2a﹣1=﹣3,则这个数是:(﹣3)2=9.故选:D.【点评】此题主要考查了平方根,正确把握平方根的定义是解题关键.9.数学课上,李老师出示了下列4道计算题:①|﹣4|;②﹣22;③±;④8÷(﹣2),其中运算结果相同的题目是()A.①②B.①③C.②④D.③④【分析】根据绝对值性质、乘方的定义及算术平方根、有理数的除法逐一计算即可得.【解答】解:①|﹣4|=4;②﹣22=﹣4;③±=±4;④8÷(﹣2)=﹣4,所以其中运算结果相同的题目是②④,故选:C.【点评】本题主要考查平方根,解题的关键是掌握绝对值性质、乘方的定义及算术平方根、有理数的除法法则.10.的平方根是,用式子表示正确的是()A.B.C.D.【分析】依据一个正数有两个平方根解答即可.【解答】解:的平方根是,用式子表示为±=±.故选:B.【点评】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.11.下列判断正确的是()A.0.25的平方根是0.5B.﹣7是﹣49的平方根C.只有正数才有平方根D.a2的平方根为±a【分析】直接利用平方根的定义进而分析得出答案.【解答】解:A、0.25的平方根是±0.5,故此选项错误;B、﹣7是49的平方根,故此选项错误;C、正数和0都有平方根,故此选项错误;D、a2的平方根为±a,正确.故选:D.【点评】此题主要考查了平方根,正确把握平方根的定义是解题关键.12.爸爸为颖颖买了一个密码箱,并告诉其密码(密码为自然数)是1、2、4、6、8、9六个数中的三个数的算术平方根,则这个密码箱的密码可能是()A.123B.189C.169D.248【分析】根据算术平方根的定义确定出这三个数,然后求解即可.【解答】解:∵密码是1、2、4、6、8、9六个数中的三个数的算术平方根,∴这三个数为1、4、9,∴它们的算术平方根分别为1、2、3,∴这个密码箱的密码可能是123.故选:A.【点评】本题考查了算术平方根的定义,熟记概念并判断出这三个数是解题的关键.13.的平方根是()A.B.C.D.【分析】首先化简二次根式,进而利用平方根的定义得出答案.【解答】解:=,它的平方根是:±.故选:D.【点评】此题主要考查了平方根以及算术平方根,正确把握相关定义是解题关键.14.矩形ABCD的面积是15,它的长与宽的比为3:1,则该矩形的宽为()A.1B.C.D.【分析】设矩形的宽为x,则长为3x,然后依据矩形的面积为15,列出方程,最后依据算术平方根的性质求解即可.【解答】解:设矩形的宽为x,则长为3x.根据题意得:3x2=15,所以x2=5.所以x=.故选:D.【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.15.若x使(x﹣1)2=4成立,则x的值是()A.3B.﹣1C.3或﹣1D.±2【分析】直接利用平方根的定义得出x﹣1=±2,进而得出答案.【解答】解:∵(x﹣1)2=4成立,∴x﹣1=±2,解得:x1=3,x2=﹣1.故选:C.【点评】此题主要考查了平方根,正确把握平方根的定义是解题关键.二.填空题(共15小题)16.已知一个正数的两个平方根分别是4a+1和a﹣11,则这个正数是81.【分析】根据正数的两个平方根互为相反数,即可列方程求得x的值,进而求解.【解答】解:根据题意得:4a+1+a﹣11=0,解得:a=2,则这个数是(4a+1)2=92=81;故答案是:81.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.17.若=0,则xy=﹣6.【分析】先根据非负数性质得出x,y的值,再代入计算可得.【解答】解:∵=0,∴x+3=0且y﹣2=0,则x=﹣3,y=2,所以xy=﹣3×2=﹣6,故答案为:﹣6.【点评】本题主要考查非负数的性质,解题的关键是掌握二次根式的非负性,及几个二次根式的和为零时,这几个二次根式均等于零.18.若=1,则﹣(2x﹣3)=3.【分析】直接利用算术平方根的定义得出x的值,进而得出答案.【解答】解:∵=1,∴x+1=1,解得:x=0,则﹣(2x﹣3)=3.故答案为:3.【点评】此题主要考查了算术平方根,正确把握定义是解题关键.19.如果x2=5,那么x=±.【分析】根据平方根的定义进行填空即可.【解答】解:∵x2=5,∴x=±,故答案为±.【点评】本题考查了平方根,掌握平方根的定义是解题的关键.20.下列说法正确的是④(只需填写编号)①的算术平方根是5②25的算术平方根是±5③的平方根是5④25的平方根是±5【分析】直接利用算术平方根以及平方根的定义分别判断得出答案.【解答】解:①=5的算术平方根是,故此选项错误;②25的算术平方根是5,故此选项错误;③=5的平方根是±,故此选项错误;,④25的平方根是±5,正确.故答案为:④.【点评】此题主要考查了算术平方根以及平方根,正确把握相关定义是解题关键.21.已知|a|=2,且ab<0,则a+b=7.【分析】由ab<0可知a,b异号,然后求出a,b的值,最后相加即可.【解答】解:因为ab<0,所以a,b异号,又|a|=2,,所以a=﹣2,b=9.所以a+b=7.故答案为:7.【点评】本题主要考查的是算术平方根的定义,求得a、b的值是解题的关键.22.已知正方形A的面积是正方形B面积的3倍,正方形B的面积是3cm2,则正方形A的边长是3cm.【分析】根据题意得出正方形A的面积,再根据算术平方根的定义即可得.【解答】解:∵正方形B的面积是3cm2,∴正方形A的面积为9cm2,则正方形A的边长为3cm,故答案为:3.【点评】本题主要考查算术平方根,解题的关键是掌握算术平方根的定义.23.观察:=1+﹣=1=1+﹣=1=1+﹣=1试猜想:=1【分析】根据题中等式归纳总结得到一般性规律,作出猜想即可.【解答】解:根据题意猜想得:=1+﹣=1,故答案为:1【点评】此题考查了算术平方根,弄清题中的规律是解本题的关键.24.如图,用两个边长分别为1的小正方形,拼成一个大正方形,则该大正方形的边长为.【分析】由小正方形的边长可求出小正方形的面积,因为剪拼成一个大正方形后面积等于两个小正方形的面积和即为2,进而求出大正方形的边长.【解答】解:∵两个正方形的边长都是1,∴两个小正方形的面积都为1,∴剪拼成一个大正方形后面积等于两个小正方形的面积和即为2,∴此大正方形的边长为,故答案为:.【点评】本题主要考查算术平方根,解题的关键是掌握剪拼成一个大正方形后面积等于两个小正方形的面积和.25.已知是整数,则n是自然数的值是4或7或8.【分析】求出n的范围,再根据是整数得出8﹣n=0或8﹣n=1或8﹣n=4,求出即可.【解答】解:∵是整数,∴8﹣n>0,∴n<8,∵n是自然数,∴8﹣n=0或8﹣n=1或8﹣n=4,解得:n=8或7或4,故答案为:4或7或8.【点评】本题考查了算术平方根,能求出符合的所有情况是解此题的关键.26.的算术平方根是.【分析】先根据算术平方根的定义求出,再根据算术平方根的定义求解.【解答】解:∵=3,∴的算术平方根是.故答案为:.【点评】本题考查了算术平方根的定义,熟记概念是解题的关键,要注意先求出的值.27.金园小区有一块长为18m,宽为8m的长方形草坪,计划在草坪面积不变的情况下,把它改造成正方形,则这个正方形的边长是12m.【分析】设这个正方形的边长是xm,根据题意列出方程,利用平方根定义开方即可得到结果.【解答】解:设这个正方形的边长是xm,根据题意得:x2=18×8=144,开方得:x=12(负值舍去),则这个正方形的边长是12m,故答案为:12【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.28.的算术平方根是9.【分析】先化简然后再求得它的算术平方根即可.【解答】解:=|﹣81|=81,81的算术平方根是9.故答案为:9.【点评】本题主要考查的是二次根式的性质、算术平方根的定义,将化简为81是解题的关键.29.观察下列各式:,=3,=4…,用含自然数n(n ≥1)的等式表示上述规律:.【分析】根据式子的特点,式子左边被开方数中第一个数与分数的分母相差2,而等式的右边,根号外的式子与等号左边,被开方数中第一个数的差是1,右边,被开方数中的分母与左边根号内左边的数相差2,据此即可写出.【解答】解:用含自然数n(n≥1)的等式表示为:(n≥1).故答案是:(n≥1).【点评】本题考查了二次根式,正确理解式子各部分之间的关系是关键.30.已知:若≈1.910,≈6.042,则≈604.2.【分析】根据被开方数扩大100倍,算术平方根扩大10倍,可得答案.【解答】解:若≈1.910,≈6.042,则≈604.2,故答案为:604.2.【点评】本题考查了算术平方根,利用被开方数与算术平方根的关系是解题关键.三.解答题(共5小题)31.求下列代数式的值(1)如果a2=4,b的算术平方根为3,求a+b的值.(2)已知x是25的平方根,y是16的算术平方根,且x<y,求x﹣y的值.【分析】(1)首先依据平方根和算术平方根的定义求出a、b,再代入计算即可求解;(2)首先依据平方根和算术平方根的定义求出x、y,再代入计算即可求解.【解答】解:(1)∵a2=4,∴a=±2,∵b的算术平方根为3,∴b=9,∴a+b=﹣2+9=7或a+b=2+9=11.(2)∵x是25的平方根,∴x=±5,∵y是16的算术平方根,∴y=4,∵x<y,∴x=﹣5,∴x﹣y=﹣5﹣4=﹣9.【点评】本题主要考查的是平方根、算术平方根的定义,依据定义求出a、b和x、y是解题的关键.32.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求的值?【分析】根据平方根与算术平方根的定义即可求出答案.【解答】解:由题意可知:2a﹣1=9,3a+b﹣1=16,解得:a=5,b=2,∴==3.【点评】本题考查算术平方根,解题的关键是正确理解算术平方根,本题属于基础题型.33.已知一个正数的两个不同平方根是a+6与2a﹣9.(1)求a的值;(2)求关于x的方程ax2﹣16=0的解.【分析】(1)、(2)根据一个正数有两个平方根,这两个平方根互为相反数解答.【解答】解:(1)由题意得,a+6+2a﹣9=0,解得,a=1;(2)x2﹣16=0x2=16x=±4.【点评】本题考查的是平方根的概念,掌握一个正数有两个平方根,这两个平方根互为相反数是解题的关键,34.(1)先完成下列表格:(2)由上表你发现什么规律?(3)根据你发现的规律填空:①已知=1.732 则=17.32=0.1732②已知=0.056,则=560【分析】(1)直接利用已知数据开平方得出答案;(2)利用原数据与开平方后的数据变化得出一般性规律;(3)利用(2)中发现的规律进而分别得出各数据答案.【解答】解:(1)(2)规律是:被开方数的小数点向左或向右每移动两位开方后所得的结果相应的也向左或向右移动1位;(3)①∵=1.732,∴=17.32;=0.1732;②∵=0.056,∴=560.故答案为:①17.32;0.1732;②560.【点评】此题主要考查了算术平方根,正确发现数据开平方后的变化规律是解题关键.35.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:≈1.414,≈1.732)【分析】(1)求出的值即可;(2)设长方形的长宽分别为4a分米、3a分米,得出方程4a•3a=24,求出a=,求出长方形的长和宽和6比较即可.【解答】解:(1)正方形工料的边长为=6分米;(2)设长方形的长为4a分米,则宽为3a分米.则4a•3a=24,解得:a=,∴长为4a≈5.656<6,宽为3a≈4.242<6.满足要求.【点评】本题考查了算术平方根,长方形,正方形的性质的应用,用了转化思想,即把实际问题转化成数学问题.。
北师大版数学八年级上册《2.2平方根》课时练习含答案
北师大版数学八年级上册2.2平方根课时练习一、选择题(共15题) 1.2)3(-的值是( ).A .3-B .3C .9-D .9答案:B解析:解答:二次根号下的是9,所以题目表示的是9的算数平方根,即为3. 分析:考察算术平方根的计算.2.下列各数没有平方根的是( ).A .-﹙-2﹚B .3)3(-C .2)1(-D .11.1答案:B解析:解答:负数没有平方根,所以选项当中只有B 选项的数是—27,所以答案为B. 分析:注意负数没有平方根.3.若a x =2,则( )A.x >0B.x ≥0 C .a >0 D.a ≥0答案:D解析:解答:任何数的平方都是非负数,所以a 大于等于0,选D 选项.分析:任何数的平方都是非负的,即大于等于0.4.个数若有两个不同的平方根,则这两个平方根的和为( )A.大于0B.等于0C.小于0D.不能确定答案:B解析:解答:当一个数有两个不同平方根时候,这两个平方根互为相反数,所以相加之和等于0.分析:考察算术平方根的定义.5.一个正方形的边长为a ,面积为b ,则( )A.a 是b 的平方根B.a 是b 的的算术平方根C.b a ±= D.a b =答案:B解析:解答:有正方形的面积公式可知边长的平方从等于面积,所以对面积进行开平方可以得到边长,但是边长不能为负数,所以a 是b 的算术平方根.分析:考察算术平方根的计算.6.若a ≥0,则24a 的算术平方根是( )A.2aB.±2aC.a 2D.| 2a |答案:A解析:解答:24a 的算数平方根表示为242a a =,又因为a ≥0,所以算术平方根为2a. 分析:算术平方根是非负数,根据二次根式的性质进行化简.7.若正数a 的算术平方根比它本身大,则( )A.0<a <1 B .a >0 C.a <1 D .a >1答案:A解析:解答:因为a 是正数,所以a 大于0,又因为它的算数平方根.比它本身大,所以a 小于1,综合来看应选择A.分析:熟练掌握算术平方根的定义是解决本题的关键. 8.()21-的值等于( )A.-1B.1C.±1D.2n+1答案:B解析:解答:()21-表示的是1的算术平方根,所以答案为B 选项.分析:考察算术平方根的计算.9.若a <0,则aa 22等于( ) A.21 B.21- C.±21 D.0 答案:B解析:解答:因为a 小于0,所以分子化简后2a a a ==-,和分母约分后答案为B 选项. 分析:考察算术平方根的计算,注意求负数的平方的算术平方根的问题.10若x-5能开偶次方,则x 的取值范围是( )A.x≥0 B .x>5 C.x≥5 D .x≤5答案:C解析:解答:因为能开偶次方,说明被开方数是非负的,所以x 应该大于等于5,故答案为C 选项.分析:考察算术平方根的计算,掌握算数平方根的定义.二、填空题(共10题)11.144的算术平方根是答案:12解析:解答:因为12的平方等于144,所以144的算术平方根是12.分析:考察算术平方根的定义,一个正数的算术平方根是正数.12.16的平方根是答案:2±解析:解答:16表示为16的算术平方根是4,4的平方根为正负2.分析:注意本题中所求的是4的平方根,而不是16的平方根.13. 7的平方根为答案: 7±解析:解答:7的平方根有两个一正一负互为相反数,.分析:考察平方根的定义. 14. 21.1=答案:1.1解析:解答: 1.21 1.1=.分析:考察算术平方根的定义.15. 当x 时,13-x 有意义答案:≥13解析:解答:因为被开方数是非负的,所以得到3x-1≥0,即x≥13. 分析:考察算数平方根的定义.16. 若0|2|1=-++y x ,则x+y=答案:1.解析:解答:因为1x +≥0,2y -≥0,所以两个非负代数式相加之和等于0时,只能是两个代数式同时等于0,我们得到x+1=0,y-2=0,即x=—1,y=2,x+y=1.分析:考察算术平方根和绝对值. 17. 2(4)-的平方根是答案:2±解析:解答:因为—4的平方等于16,所以16的算术平方根为4,4的平方根为2±. 分析:考察平方根和算术平方根,注意要分清到底求的是谁的平方根. 18. 35±是 的平方根 答案:925解析:解答:239525⎛⎫±= ⎪⎝⎭. 分析:考察平方根的定义.19. 代数式3a b --+的最大值为答案:—3解析:解答:因为a b +大于等于0,—3减去一个大于等于0的数时,最大值为—3. 分析:注意有算术平方根的最值问题.20. 若m 的平方根是51a +和19a -,则a = .答案:3解析:解答:根据平方根的定义我们知道一个数的平方根有两个,并且互为相反数,即5a +1+a —19=0,解得a =3.分析:考察平方根的定义.三、解答题(共5题)21.若22442x x y x -+-=+,求2x y +的值 答案:2解析:解答:因为被开方数应为非的,所以24x -≥0,24x -≥0,所以我们得到240x -=,解得x=2或x =—2,当x =—2时,分母为0,所以x =—2(舍去),当x =2时,y =0,即2x +y =4.分析:注意算术平方根的非负性. 22. 21++a 的最小值是?,此时a 的取值是?答案:—1解析:解答:a +1的算数平方根是非负的,所以当a +1的算术平方根加2时最小值为2,此时a +1=0,即a =—1.分析:注意算术平方根的非负性23. 若一个正数的平方根是21a -和2a -+,这个正数是?答案:9解析:解答:因为一个正数的平方根有两个,并且互为相反数.所以2a —1—a +2=0,解得a =—1,所以这两个平方根分别为—3和3,即这个正数是9.分析:考察平方根的定义.24. 如果x 的一个平方根是7.12,那么另一个平方根是?答案:—7.12解析:解答:根据平方根的定义可知一个数的平方根互为相反数,当一个平方根是7.12时候,另一个平方根是—7.12.分析:考察平方根的定义. 25. m -3有意义,求m 的取值范围?答案:m ⩽3解析:解答:因为被开方数应该为非负的,所以3—m≥0,所以得到m≤3.分析:考察算数平方根的定义.。
2022-2023学年八年级数学上学期课后分级练(北师大版)2-2 平方根(含详解)
2.2 平方根算术平方根:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=. 平方根:若x 2=a ,则x 叫a 的平方根,x =±a.平方根的性质:正数有两个平方根,且它们互为相反数;0的平方根是0;负数没有平方根.开平方及相关运算:求一个数a 的平方根的运算叫做开平方,其中a 叫做被开方数.开平方与平方互为逆运算.培优第一阶——基础过关练1.4的算术平方根是( )A .2B .2-C .2D .2±2.下列各式中,正确的是( )A .255=±B .255±=C .255±=±D .()255-=- 3.若一个数的平方根等于它本身,则这个数是( )A .0B .1C .0和1D .±14.6的平方根是( )A .6B .6±C .6D .±65.一个自然数的一个平方根是a ,则与它相邻的上一个自然数的平方根是( ) A .1a ±- B .1a - C .21a - D .21a ±-6.下列说法正确的是( )A .-4的平方根是2±B .4-的算术平方根是2-C .16的平方根是4±D .0的平方根与算术平方根都是0课后培优练课堂知识梳理7.若一个正数m 的平方根为36a -和104a -,则m 的值是( )A .4 B .6C .16D .368m 的最小正整数值为( )A .5B .6C .7D .8 9.229⎛⎫- ⎪⎝⎭的平方根是_______.10.计算:2=__________=________.11.已知a ,b (b +3)2=0,则(a +b )2022的值为 _____.12.已知x 、y 都是实数,且3y =,则xy =______________.13.下列各数的平方根:(1)64;(2)49121; (3)0.0004;(4)()225-;(5)11.14.解方程:(1)2x =9;(2)162(2)x +-25=015.(1)已知2(1)4x -=,求x 的值.(2)已知21a -与2a -+是正数m 的平方根,求m 的值.16.己知13,43x a y a =-=-.(1)如果x 的算术平方根为4,求a 的值;(2)如果x ,y 是同一个正数的两个不同的平方根,求这个正数.17.我们以前学过完全平方公式()2222a b a ab b ±=±+,现在,又学习了二次根式,那么所有的非负数都可以看作是一个数的平方,如223,5==,下面我们观察:)2221211213=-⨯=-=-反之,)23211--=,∵()232221-=- ∴32221-=-仿上例,求:(1)423-;(2)计算:322526*********-+-+-++-;(3)若121a ,则求324921a a a --+的值. 培优第二阶——拓展培优练18.求下列式子中的x :(1)25(x ﹣35)2=49;(2)12(x +1)2=32. 19.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,他们总结了一个经验公式:16=v df 其中v 表示车速(单位:千米时),d 表示刹车后车轮滑过的距离(单位:米),f 表示摩擦因数.在某次交通事故调查中,测得25d =米, 1.44f =,而该路段的限速为80千米时,肇事汽车当时的车速大约是多少?此车是否超速行驶?20.(1)填写下表:a 0.0001 0.01 1100 10000 1000000 a(2)由上表你发现了什么规律?请用文字语言叙述你发现的这一规律;(3)根据你发现的规律填空.2 1.414,20 4.472≈,200≈ ______,2000≈ ______,0.2≈ ______,0.02≈______; 141.4a ≈,则=a ______.0.04472b ≈,则b = ______.21.你能找出规律吗?(1)49= ,49⨯ ,1625= ,1625⨯ ;(2)327;(3)若2a =10b =a ,b 20.22.【初步感知】(1)直接写出计算结果. ①31=___________; ②3312+=_______; ③333123++=________;④34331234+++=________;…【深入探究】观察下列等式.①(12)2122+⨯+=; ②(13)31232+⨯++=; ③(14)412342+⨯+++=; ④(15)5123452+⨯++++=; …根据以上等式的规律,在下列横线上填写适当内容.(2)_________(12022)20222+⨯=; (3)123(1)++++++=n n _______,【拓展应用】计算:(4)3333312399100+++++; (5)333331112131920+++++.培优第三阶——中考沙场点兵23.(2022·四川凉山·22)(- )A .±2B .-2C .4D .224.(2022·四川泸州·中考真题)4-=( )A .2-B .12-C .12 D .225.(2021·四川凉山·81 )A .3±B .3C .9D .9±26.(2020·广西·0,则x 的值是( )A .﹣1B .0C .1D .227.(2021·四川南充·中考真题)若24x =,则x =______.28.(2022·广西贺州·中考真题)若实数m ,n 满足50m n --∣∣,则3m n +=__________.29.(2022·浙江台州·2|5|2--.2.3 立方根立方根:一般地,如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根(cube root, 也叫做三次方根).如:0是0的立方根.正数的立方根是正数;0的立方根是0;负数的立方根是负数.求一个数a 的立方根的运算叫做开立方,其中a 叫做被开方数.开立方与立方互为逆运算.培优第一阶——基础过关练1.27-的立方根是( )A .3B .3-C .3+D .13 【答案】 B 【解析】【分析】 根据立方根的定义进行计算即可.【详解】解:因为(-3)3=-27,所以-27的立方根是-3,故选:B .【点睛】本题考查立方根,理解立方根的定义是正确解答的关键.2.下列结论正确的是( ) A .18-没有平方根 B .立方根等于本身的数只有0 C .4的立方根是2±D .3644-=【答案】A【解析】【分析】 根据平方根和立方根的性质逐项判断即可得.课后培优练课堂知识梳理【详解】解:A、负数没有平方根,则18-没有平方根,此项正确,符合题意;B、立方根等于本身的数有0和±1,则此项错误,不符题意;C、4的平方根是2±D4=-,则此项错误,不符题意;故选:A.【点睛】本题考查了平方根和立方根,熟练掌握平方根和立方根的性质是解题关键.3.-8的立方根是()A.2 B.-2 C.-4 D.8【答案】B【解析】【分析】【详解】∵()328-=,2-,故选:B.【点睛】本题考查了立方根的定义,注意将求立方根转化为求一个数的立方的形式是解题的关键.4.下列说法正确的是()A.一个正数的立方根有两个,它们互为相反数B.负数没有立方根C.任何一个数的立方根都是非负数D.正数有一个正的立方根,负数有一个负的立方根【答案】D【解析】【分析】根据一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,零的立方根是零,结合选项即可作出判断.【详解】A .一个数的立方根只有1个,故A 错误;B .负数有立方根,故B 错误;CD .正数的立方根是正数,负数的立方根是负数,零的立方根是零,故C 错误,D 正确.故选:D .【点睛】本题主要考查了立方根的概念,解决本题的关键是熟练掌握正数的立方根是正数,负数的立方根是负数,零的立方根是零.5.如果a 是64的算术平方根,则a 的立方根是________.【答案】2【解析】【分析】先求出64的算术平方根a ,再求出8的立方根即可.【详解】a 是64的算术平方根,8a ∴==,82=,2a ∴=,故答案为:2.【点睛】本题考查了求一个数的算术平方根和立方根,熟练掌握知识点是解题的关键.613-. 【答案】<【解析】12=-,再根据1123-<-,得出答案. 【详解】12=-,∵1123-<-,13-, 故答案为:<.【点睛】本题考查立方根,比较朋理数大小,熟练掌握求一个数的立方根和比较有理数大小法则是解题的关键. 7.(2022·北京·人大附中七年级期中)己知3111331=,3121728=,3132197=,3142744=.若n 为整数且1n n <<+,则n 的值为____________________.【答案】12【解析】【分析】由已知可得,172820222197<<<件可知,1213<,即12n =.【详解】解:∵172820222197<<,<∵3121728=,3132197=,∴12=,13=<∴1213<,∵n 为整数且1n n <+,∴12n =.故答案为:12.【点睛】本题考查了立方根的定义及估值,准确理解相关概念掌握估值的方法是解题的关键.83, 【答案】2,14,3-,125-,3-. 【解析】【分析】利用立方根定义开立方即可.【详解】14,3=-125,【点睛】本题主要考查了立方根,任何数都有立方根,且只有1个,正数的立方根是正数,负数的立方根是负数,0的立方根是0. 9.求下列各数的立方根:0.001,1-,1216-,8000,827,512-. 【答案】0.1,1-,16-,20,23,8-. 【解析】【分析】根据立方根的概念进行计算即可. 【详解】0.1=,1-,16-,20=,23=,8=-.【点睛】本题主要考查了立方根的计算,如果一个数x 的立方等于a ,即x 的三次方等于a (x 3=a ),那么这个数x 就叫做a 的立方根,注意一个数的立方根与原数的性质符号相同.10.(2022·湖北·黄石八中七年级期中)求下列各式中x 的值:(1)21322x = (2)3(x ﹣5)3+24=0【答案】(1)x =±8 (2)x =3【分析】(1)根据平方根的定义,即可求解; (2)根据立方根的定义,即可求解. (1)解:21322x =,264x =,∴x =±8; (2)3(x ﹣5)3+24=0, (x ﹣5)3=-8, x ﹣5=-2, ∴x =3. 【点睛】本题主要考查解方程,掌握平方根和立方根的定义是解题的关键. 11.已知1a -的平方根是2±,2a b -的算术平方根是3. (1)求a 与b 的值; (2)求3a b +的立方根. 【答案】(1)5a =,1b = (2)2 【解析】 【分析】(1)由平方根、立方根的定义得出含有a 、b 的二元一次方程组,解这个方程组即可; (2)求出3a b +的值,再求出其立方根即可.(1) 解:由题意,得14a -=,29a b -=, 解得:5a =,1b =. (2)解:∵35318a b +=+⨯=,∴3a b +2=.本题考查平方根、立方根、算术平方根,掌握平方根、算术平方根、立方根的定义是正确解答的前提,列出含有a、b的二元一次方程组是解决问题的关键.y+是a的立方根.12.己知:6x-和314x+是a的两个不同的平方根,22(1)求x,y,a的值;-的平方根.(2)求14x【答案】(1)x=-2,y=1,a=64;(2)1-4x的平方根为3±.【解析】【分析】(1)根据正数的两个平方根互为相反数列方程求出x的值,再求出a,然后根据立方根的定义求出y即可;(2)先求出1-4x,再根据平方根的定义解答.(1)解:由题意得:(x-6)+(3x+14)=0,解得,x=-2,所以,a=(x-6)2=64;又∵2y+2是a的立方根,∴2y,∴y=1,即x=-2,y=1,a=64;(2)由(1)知:x=-2,所以,1-4x=1-4×(-2)=9,所以,1493x,即:1-4x的平方根为3±.【点睛】本题考查了立方根,平方根,算术平方根的定义,是基础题,熟记概念是解题的关键,要注意准确计算.13.填写下表,并回答问题:(1)数a与它的立方根3a的小数点的移动有何规律?(2)根据这个规律,若已知33==,,求a的值.a0.005250.1738 1.738【答案】填表见解析;(1)见解析;(2)5.25【解析】【分析】(1)根据被开方数a的小数点每向右或向左移动三位,立方根3a的小数点相应地向右或向左移动一位解答;(2)根据(1)总结的规律解答.【详解】a …0.000001 0.001 1 1000 1000000 …3a…0.01 0.1 1 10 100 …(1)由题可知,被开方数a的小数点每向右或向左移动三位,立方根3a的小数点相应地向右或向左移动一位;(2)由(1)总结的规律可知:0.1738的小数点向右移动了一位,a=.∴0.00525的小数点应向右移动三位,得到 5.25【点睛】本题考查实数的开方与被开方数之间的关系,注意引导学生仔细分析表格.培优第二阶——拓展培优练14.(2021·湖北·武汉外国语学校(武汉实验外国语学校)七年级期中)已知x m y3m-x的相反数,求x2+y2的平方根与立方根.【答案】平方根为0或±2,立方根是032【解析】【分析】利用算术平方根和立方根定义可得m的值,进而可得x、y的值,然后计算出x2+y2的平方根与立方根.【详解】解:∵x m y3m-x的相反数,∴m =0或1,当m =0时,y =0,x =0, x 2+y 2=0,0的平方根是0,立方根也是0; 当m =1时,x =1,y =﹣1, 则x 2+y 2=2,2的平方根是∴x 2+y 2的平方根为0或0 【点睛】本题考查平方根与立方根,熟练掌握平方根与立方根定义是解题的关键.15.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.)【答案】3cm . 【解析】 【分析】设球的半径为r ,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可. 【详解】解:设球的半径为r ,小水桶的直径为12cm ,水面下降了1cm ,∴小水桶的半径为6cm ,∴下降的水的体积是π×62×1=36π(cm 3),即34363r ππ=, 解得:327r =,3r =, 答:铅球的半径是3cm . 【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r 的方程.16.已知m A =3m n ++算术平方根,2m n B -=4620m n +-的立方根,的值.1- 【解析】 【分析】由算术平方根与立方根的含义可得方程组2{233m n m n -=-+=,再解方程组求解,m n 的值,从而可得答案. 【详解】解:根据题意得:2{233m n m n -=-+=,解得:42m n ⎧=⎨=⎩,∴39m n ++=,46208m n +-=, ∴3A =;2B =, ∴1B A -=-,1=- 【点睛】本题考查的是算术平方根与立方根的含义,二元一次方程组的解法,理解题意,求解42m n ⎧=⎨=⎩是解本题的关键.17.根据下表回答问题:(1)272.25的平方根是______;4251.528的立方根是______.______=______=______.(3)a ,求4a -的立方根. 【答案】(1)16.5±;16.2 (2)167;1.62;168 (3)4- 【解析】(1)根据表格中的数据可求出结果;(2)根据图表,结合算术平方根和立方根的移位规律即可得出答案;(3)根据题意先求出a 的值,再求出-4a 的值,然后根据立方根的定义即可得出答案. (1)272.25的平方根是:±16.5; 4251.528的立方根是:16.2; 故答案为:±16.5,16.2; (2)∵278.8916.7=, ∴27889167=, ∵262.4416.2=, ∴ 2.6244 1.62=, ∵34741.63216.8=, ∴34741632168=, 故答案为:167,1.62,168; (3)∵256270289<<,∴1627017<<, ∴a =16,-4a =-64, ∴-4a 的立方根为-4. 【点睛】此题考查了算术平方根和立方根,观察表格发现规律是解题的关键.培优第三阶——中考沙场点兵18.(2022·黑龙江绥化·中考真题)下列计算中,结果正确的是( ) A .22423x x x += B .()325x x =C 3322-=-D 42±【答案】C 【解析】根据合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根,即可一一判定.【详解】解:A.222+=,故该选项不正确,不符合题意;x x x23B.()326=,故该选项不正确,不符合题意;x x2-,故该选项正确,符合题意;=,故该选项不正确,不符合题意;2故选:C.【点睛】本题考查了合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根,熟练掌握和运用各运算法则是解决本题的关键.19.(2020·四川攀枝花·中考真题)下列说法中正确的是().A.0.09的平方根是0.3 B4=±C.0的立方根是0 D.1的立方根是±1【答案】C【解析】【分析】根据平方根,算术平方根和立方根的定义分别判断即可.【详解】解:A、0.09的平方根是±0.3,故选项错误;B4,故选项错误;C、0的立方根是0,故选项正确;D、1的立方根是1,故选项错误;故选:C.【点睛】本题考查了平方根,算术平方根和立方根,熟练掌握平方根、算术平方根和立方根的定义是解题的关键.n>),那么x叫做a的n次方根,20.(2021·江苏南京·中考真题)一般地,如果n x a=(n为正整数,且1下列结论中正确的是()A.16的4次方根是2 B.32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n 为奇数时,2的n 次方根随n 的增大而增大【答案】C 【解析】 【分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案. 【详解】A.42=16 4(2)=16-,∴16的4次方根是2±,故不符合题意;B.5232=,5(2)32-=-,∴32的5次方根是2,故不符合题意;C.设x y == 则155153232,28,x y ==== 1515,x y ∴> 且1,1,x y >>,x y ∴>∴当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意. 故选C .【点睛】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.21.(2021·湖南益阳·中考真题)若实数a 的立方等于27,则=a ________. 【答案】3 【解析】 【分析】根据立方根的定义即可得. 【详解】解:由题意得:3a ==, 故答案为:3. 【点睛】本题考查了立方根,熟练掌握立方根的运算是解题关键.22.(2021·内蒙古·中考真题)一个正数a 的两个平方根是21b -和4b +,则a b +的立方根为_______. 【答案】2【解析】 【分析】根据一个正数的平方根互为相反数,将21b -和4b +相加等于0,列出方程,解出b ,再将b 代入任意一个平方根中,进行平方运算求出这个正数a ,将a b +算出后,求立方根即可. 【详解】∵21b -和4b +是正数a 的平方根, ∴2140b b -++=, 解得1b =- , 将b 代入212(1)13b ,∴正数2(3)9a,∴198a b +=-+=, ∴a b +382a b,故填:2.【点睛】本题考查正数的平方根的性质,求一个数的立方根,解题关键是知道一个正数的两个平方根互为相反数.。
_2、2《平方根》一课一练 21-22学年北师大版 八年级数学上册
2.2 《平方根 》习题2一、选择题1.4的算术平方根是( )A .-2B .2C .±2D .√22.81的算术平方根是() A .3B .3-C .9-D .93.25的算术平方根是( )A .5B .5-C .12.5D .12.5-4( )A .7B .﹣1C .1D .﹣75( )A .4B .±4C .2D .±26.16的平方根是( )A .4B .-4C .±4D .±2 7.16的平方根是( )A .16B .4-C .4±D .没有平方根 8.()2-8的平方根是( )A .8-B .8C .8±D .64±( )A .4B .﹣4C .±2D .210.平方根等于它自己的数是( )A .0B .1C .1-D .411.一个正数的两个平方根分别是21a -与2a -+,则a 的值为( )A .-1B .1C .-2D .212.一个正数的两个不同的平方根是 a +3和2 a -6,则这个正数是( )A .1.B .4.C .9.D .16.二、填空题1.已知一个正数的两个平方根分别是32a +和14a -,则这个正数为_____.2.正数的两个平方根分别是21a +和43a -,则这个正数是___________.3.若一个正数x 的平方根是2a -和25a +,则a =__________,x =__________.4.若 2a-1和a-1是一个正数m的两个平方根,则m =_____.5.一个正数的平方根是21x -和2x -,则x 的值为_______.6.2(1)0y +=,则x y -=______.7.2=0,则(x+y)2019等于_____.8.210a b -+=,则()2020b a - 的值为_____.9.已知x ,y 为实数,其中()220y +=,则x =__________,y =________,x y 的算术平方根是_________.10.若x ,y 2(3)0y +=,则 2020()x y +的值为____________11.b 2﹣1|=0,则ab =_____.12.若()229x -=,则x =________.三、计算1.求下列各式中x 的值:4(x +1)2-9=0; 25x 2﹣36=0.(x +2)2-36=0; (x ﹣1)2﹣25=0四、解答题1.已知|2a +b |与互为相反数,(1)求a 、b 的值;(2)解关于x 的方程:ax 2+4b ﹣2=0.2.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16√df ,其中v 表示车速(单位:km/h),d 表示刹车后车轮滑过的距离(单位:m),f 表示摩擦因数.在某次交通事故中,测得d=6m ,f=1.5,求肇事汽车的车速.3.已知足球场的形状是一个长方形,而国际标准球场的长度a 和宽度b (单位:米)的取值范围分别是100110a ≤≤,6475b ≤≤.若某球场的宽与长的比是1:1.5,面积为7350平方米,请判断该球场是否符合国际标准球场的长宽标准,并说明理由.4.如图,一根细线上端固定,下端系一个小球,让这个小球来回自由摆动,来回摆动一次所用的时间t (单位:s )与细线的长度l (单位:m )之间满足关系2t =0.4m 时,小球来回摆动一次所用的时间是多少?(结果保留小数点后一位)5.宇宙飞船离开轨道正常运行时,它的速度要大于第一宇宙谏度1v (单位:m/s)小于第二宇宙速度2v (单位:m/s),其中1v 的大小满足21v gr =,其中g 是物理中的一个常数(重力加速度),210/g m s ≈,R 是地球半径,6400000R m ≈,请你求出1v 的近似值.答案一、选择题1.B. 2.D. 3.A 4.A 5.C 6.C.7.C.8.C. 9.C. 10.A. 11.A. 12.D.二、填空题1.121.2.121.3.-1;9.4.1 95.-1.6.3.7.-1.8.1.9.4;-2,4.10.1.11.2 .12.5或−1.三、计算1.解:(1)4(x+1)2-9=0, 4(x+1)2=9,(x+1)2=94,x+1=±32,x=12或x=-52.(2)整理得,x2=36 25,∴x=±65.故答案为x=±65.(3)解:∵2(2)360x +-=,∴26x +=±,∴14x =,28x =-;(4)(x ﹣1)2﹣25=0,(x ﹣1)2=25,x-1=±5,所以x=6或 x=﹣4.四、解答题1.(1)∵|2a +b |∴|2a +b 0,又知|2a +b |≥00,∴|2a +b |=00,即203100a b a b +=⎧⎨++=⎩, 解得:24a b =⎧⎨=-⎩; (2)由(1)a =2,b =﹣4可知:2x 2﹣16﹣2=0,即x 2=9, 解得:x =±3.2.∵d=6,f=1.5,∴v=16√6×1.5=16×3=48(千米/时),答:肇事汽车的车速为48千米/时.3.解:符合,理由如下:设宽为b 米,则长为1.5b 米,由题意得,1.5b ×b=7350,∴b=70,或b=-70(舍去),即宽为70米,长为1.5×70=105米,∵100≤105≤110,64≤70≤75,∴符合国际标准球场的长宽标准.4.把l=0.4m 代入关系式2t =∴12=0.45t πππ=⨯=1.3(秒).5.∵v 12=gr ,g ≈10m/s 2,R ≈6400000m ,∴v 1=8×103m/s .。
北师大版八年级上册数学习题练习及参考答案2.2《平方根》
北师大版八年级上册数学习题练习及参考答案2.2《平方根》2.2 平方根一.填空题 (1)1214的平方根是_________;(2)(-41)2的算术平方根是_________;(3)一个正数的平方根是2a -1与-a +2,则a =_________,这个正数是_________; (4)25的算术平方根是_________;(5)9-2的算术平方根是_________;(6)4的值等于_____,4的平方根为_____;(7)(-4)2的平方根是____,算术平方根是_____.二.选择题 (1)2)2(-的化简结果是()A.2B.-2C.2或-2D.4(2)9的算术平方根是()A.±3B.3C.±3D. 3(3)(-11)2的平方根是A.121B.11C.±11D.没有平方根(4)下列式子中,正确的是() A.55-=- B.-6.3=-0.6 C.2)13(-=13 D.36=±6(5)7-2的算术平方根是() A.71 B.7 C.41D.4(6)16的平方根是()A.±4B.24C.±2D.±2(7)一个数的算术平方根为a ,比这个数大2的数是() A.a +2 B.a -2 C.a +2 D.a 2+2(8)下列说法正确的是()A.-2是-4的平方根B.2是(-2)2的算术平方根C.(-2)2的平方根是2D.8的平方根是4(9)16的平方根是()A.4B.-4C.±4D.±29 的值是()(10)16A.7B.-1C.1D.-7三、要切一块面积为36 m2的正方形铁板,它的边长应是多少?四、小华和小明在一起做叠纸游戏,小华需要两张面积分别为3平方分米和9平方分米的正方形纸片,小明需要两张面积分别为4平方分米和5平方分米的纸片,他们两人手中都有一张足够大的纸片,很快他们两人各自做出了其中的一张,而另一张却一下子被难住了.(1)他们各自很快做出了哪一张,是如何做出来的?(2)另两个正方形该如何做,你能帮帮他们吗?(3)这几个正方形的边长是有理数还是无理数?参考答案一:(1)±112 (2) 41 (3)-1 9 (4)5 (5)91 (6)2 ±2 (7)±4 4 二:(1)A (2)B (3)C (4)C (5)A (6)A (7)D (8)B (9)D(10)A 三、6 m四、(1)很快做出了面积分别为9平方分米和4平方分米的一张.(2)首先确定要做的正方形的边长.3平方分米的正方形的边长为3.5平方分米的正方形的边长为5.分别以1分米为边长作正方形,以其对角线长和1分米为边长作矩形所得矩形的对角线长为3分米.以3分米和2分米为边长作矩形得对角线长为5.(3)显然,面积为4平方分米和9平方分米的正方形边长为有理数,面积为3平方分米和5平方分米的正方形边长为无理数.。
北师大版八年级数学上册2.2平方根练习试题
2.2 平方根知识点回顾1、算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a ≥0,a ≥02、平方根的概念:若x 2=a ,则x 叫a 的平方根,x =± a.3、平方根的性质:正数有两个平方根,且它们互为相反数;0的平方根是0;负数没有平方根.4、开平方及相关运算:求一个数a 的平方根的运算叫做开平方,其中a 叫做被开方数.开平方与平方互为逆运算.【对应练习】算术平方根1.数5的算术平方根为( ) A. 5 B .25 C .±25 D .± 52.如果a -3是一个数的算术平方根,那么a 的值可能为( )A .0B .1C .2D .43.下列有关说法正确的是( )A .0.16的算术平方根是±0.4B .(-6)2的算术平方根是-6 C.81的算术平方根是±9 D.4916的算术平方根是744.要切一块面积为0.81m 2的正方形钢板,则它的边长是________. 5.若|a -2|+b +3+(c -5)2=0,则a -b +c =________.6.求下列各数的算术平方根:(1)0.25; (2)13; (3)⎝ ⎛⎭⎪⎫-382; (4)179.7.如图,某玩具厂要制作一批体积为100000cm 3的长方体包装盒,其高为40cm.按设计需要,底面应做成正方形,则底面边长应是多少?平方根1.81的平方根是( )A .9B .-9C .±9D .272.关于平方根,下列说法正确的是( )A .任何一个数都有两个平方根,并且它们互为相反数B .负数没有平方根C .任何一个数都只有一个算术平方根D .以上都不对3.如果一个数的一个平方根是-16,那么这个数是________.4.计算: (1)( 3.1)2=________; (2)(-8)2=________.5.求下列各数的平方根:(1)25; (2)1681; (3)0.16; (4)(-2)2.6.若一个正数的平方根为2x +1和x -7,求x 和这个正数.参考答案算术平方根1.A 2.D 3.D 4.0.9m 5.10 6.解:(1)0.25=0.5. (2)13. (3)⎝ ⎛⎭⎪⎫-382=38. (4)179=43. 7.解:100000÷40=2500(cm 2),2500=50(cm),故底面边长应是50cm.平方根1.C 2.B 3.256 4.(1)3.1 (2)8 5.解:(1)25的平方根是±5. (2)1681的平方根是±49. (3)0.16的平方根是±0.4. (4)(-2)2的平方根是±2.7.解:由题意得2x +1+x -7=0,解得x =2,∴2x +1=5,x -7=-5,∴这个正数为25.【课后作业】算术平方根一、选择题 1.下列各式中,正确的是( ) A.-49- =-(-7)=7 B.412 =121C.1694+ =2+43=243D.25.0 =±0.52.下列说法正确的是( )A.5是25的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根 3.36的算术平方根是( )A.±6B.6C.±6D. 64.一个正偶数的算术平方根是m ,则和这个正偶数相邻的下一个正偶数的算术平方根是( )A.m +2B.m +2C.22+mD.2+m5.当1<x <4时,化简221x x +--1682+-x x 结果是( )A.-3B.3C.2x -5D.5二、填空题 6.x 2=(-7)2,则x =______. 7.若2+x =2,则2x +5的平方根是______.8.若14+a 有意义,则a 能取的最小整数为____.9.已知0≤x ≤3,化简2x +2)3(-x =______.10.若|x -2|+3-y =0,则x ·y =______.三、解答题 11.已知某数有两个平方根分别是a +3与2a -15,求这个数.12. 已知:2m +2的平方根是±4,3m +n +1的平方根是±5,求m +2n 的值.13. 已知a <0,b <0,求4a 2+12ab +9b 2的算术平方根.14. 要切一块面积为36 m 2的正方形铁板,它的边长应是多少?15.甲乙二人计算a +221a a +-的值,当a =3的时候,得到下面不同的答案:甲的解答:a +221a a +-=a +2)1(a -=a +1-a =1.乙的解答:a +221a a +-=a +2)1(-a =a +a -1=2a -1=5.哪一个解答是正确的?错误的解答错在哪里?为什么?平方根1.已知()0232212=++++-z y x ,求x+y+z 的值.2.若x ,y 满足52112=+-+-y x x ,求xy 的值.3.求55=-+x x 中的x .4.若115+的小数部分为a ,115-的小数部分为b ,求a +b 的值.5.△ABC 的三边长分别为a ,b ,c ,且a ,b 满足04412=+-+-b b a ,求c 的取值范围.参考答案算术平方根一、1.B 2.A 3.D 4.C 5.C二、6.±7 7.±3 8.0 9.3 10.6三、11.49 12.13 13.-2a -3b 14.6 m 15.乙的解答是正确的 略平方根1.因为21-x ≥0,()22+y ≥0,23+z ≥0,且()0232212=++++-z y x ,所以21-x =0,()22+y =0,23+z =0,解得21=x ,2-=y ,23-=z ,所以x +y +z = 3-.2.因为2x -1≥0,1-2x ≥0,所以 2x -1=0,解得 x =21 ,当 x =21时,y =5,所以 x y =21×5=25. 3.解:因为x -5≥0,x x -=-55≥0 ,所以 x =5 .4.解:因为4113<< ,所以115+的整数部分为8,115-的整数部分为1,所以115+的小数部分3118115-=-+=a ,115-的小数部分1141115-=--=b ,所以1114311=-+-=+b a .5.解:由04412=+-+-b b a ,可得0)2(12=-+-b a ,因为 1-a ≥0,2)2(-b ≥0, 所以1-a =0,2)2(-b =0,所以a = 1,b = 2,由三角形三边关系定理有:b- a < c < b +a ,即1 < c < 3.。
北师大版八年级数学上册 2.2 平方根 同步测试题
(满分 120 分;时间:120 分钟)
真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!
题号
一
二
三
总分
得分
一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计 30 分 , )
1. 16的平方根是( )
A.4
B. ± 4
C.8
D. ± 8
2. ( ‒ 5)2的值是( )
16. 36的平方根是________,81的算术平方根是________.
1= 17. 计算: 16 ________.
18.
已知有理数������,������,������满足 ������ +
������ ‒ 1 +
������
‒
2
=
1(������
2
+
������
+
������),那么(������
12. 若(������ + 1)2 = 9,则������ = ________.
49
13. 36的平方根是________;121的算术平方根是________.
14. 81的算术平方根的平方根是________.
15. 一个数的平方等于它本身,这个数是________;一个数的平方根等于它本身,这个 数是________,一个数的算术平方根等于它本身,这个数是________.
25. 一个正数������的两个不同的平方根分别是2������ ‒ 1和 ‒ ������ + 2. (1)求������和������的值; (2)化简:2|������ + 2| + |������ ‒ 2 2| ‒ |3������ + ������|
北师大版八年级数学上册2.2平方根(第二课时)
(1 )9 ;
16 (4 ) 9
; (3)0.36;
1 (6) 2 4
;
(5) 81
注意:(1)带分数作被开方数ቤተ መጻሕፍቲ ባይዱ化成假分数; (2)个别式子须计算或化简后再求平方根; (3)正数的平方根是正负两个值,不能漏写
2014年9月11日11时58分
填一填
-7 7
x2
49 ? 256 ?
16 -16 5? -5 ?
2014年9月11日11时58分
说出 9, - 9, 9各自的意 义.
2014年9月11日11时58分
求下列各式的值:
(1) 144 12
(2) 0.81 -0.9 121 11 (3) 14 196
2014年9月11日11时58分
例题解析
例
求下列各数的平方根:
1 (2 ) 4
A.正数
2014年9月11日11时58分
B.
负数
C. 非负数
D. 非正数
判断题 1. 2.
16
的平方根是±16. a 一定是正数.
(a) 2 5 ,
(× ) (×) (× )
3.a2的算术平方根是a.
4.若 则a=-5. 5. 9 3 6.-6是(-6)2的平方根. 7.若x2=36,则x= 36 6
2
2 3、求下列各式的 x
(1) x 25
2014年9月11日11时58分
2014年9月11日11时58分
2014年9月11日11时58分
巩固练习 5、求下列各式的值:
(1) ( 9 ) 2 (3) ( 7 ) 2 ; ; ( 2) ( 16 ) 2 ( 4) ( 15 )
北师大版数学八年级上册 2.2《平方根》测试(含答案及解析)
平方根测试时间:60分钟总分:100一、选择题(本大题共10小题,共30.0分)1.实数9的平方根()A. 3B. −3C. ±3D. ±32.一个正数的两个平方根分别是2a−1与−a+2,则a的值为()A. 1B. −1C. 2D. −23.若一个正数的平方根分别是2m−2与m−4,则m为()A. −2B. 1C. 2D. −2或24.下列运算正确的是()A. =±2B. (−5)2=−5C. (−7)2=7D. (−3)2=−35.下列说法正确的是()A. 116的平方根是14B. −16的算术平方根是4C. (−4)2的平方根是−4D. 0的平方根和算术平方根都是06.一个数的平方根等于它本身的数是()A. −1B. 0C. ±1D. ±1或07.若(a−2)2=2−a,则a的取值范围是()A. a=2B. a>2C. a≥2D. a≤28.0.0001的算术平方根是()A. 0.1B. 0.01C. ±0.1D. ±0.019.64的算术平方根是()A. ±8B. 8C. −8D. 810.已知等腰三角形的两边长分別为a、b,且a、b满足2a−3b+5+(2a+3b−13)2=0,则此等腰三角形的周长为()A. 7或8B. 6或10C. 6或7D. 7或10二、填空题(本大题共10小题,共30.0分)11.已知y=1+2x−1+1−2x,则2x+3y的平方根为______ .12.16的平方根是______.13.81的平方根为______.14.16的平方根是______.15.36的平方根是______,(−5)2=______.16.若一正数a的两个平方根分别是2m−3和5−m,则a=______ .17.643的平方根为______.18.观察下列各式:1+13=213,2+14=314,3+15=415,…请你找出其中规律,并将第n(n≥1)个等式写出来______ .19.已知|a−6|+(2b−16)2+10−c=0,则以a、b、c为三边的三角形的形状是______.20.若a,b,c表示△ABC的三边,且(a−3)2+b−4+|c−5|=0,则△ABC是______三角形.三、计算题(本大题共4小题,共24.0分)21.已知a、b满足2a+10+|b−5|=0,解关于x的方程(a+4)x+b2=a−1.22.已知直角三角形两边x,y的长满足 x2−4+|y2−5y+6|=0,求第三边的长.23.已知2a+1的平方根是±3,5a+2b−2的算术平方根是4,求:3a−4b的平方根.24.已知一个数的平方根是3a+2和a+10,求a的值.四、解答题(本大题共2小题,共16.0分)+2−x,求x+y的平方根.25.已知x是正整数,且满足y=4x−126.已知:2m+2的平方根是±4;3m+n的立方根是−1,求:2m−n的算术平方根.答案和解析【答案】1. D2. B3. C4. C5. D6. B7. D8. A9. B10. A11. ±212. ±213. ±314. ±415. ±6;516. 4917. ±218. n+1n+2=(n+1)1n+219. 直角三角形20. 直角21. 解:根据题意得,2a+10=0,b−=0,解得a=−5,b=,所以,方程为(−5+4)x+5=−5−1,即−x+5=−6,解得x=11.22. 解:由题意得,x2−4=0,y2−5y+6=0,解得,x=±2,y=2或3,当2、3是两条直角边时,第三边=22+32=13,当2、2是两条直角边时,第三边=2+22=22,当2是直角边,3是斜边时,第三边=2−22=5.23. 解:根据题意得:2a+1=32=9,5a+2b−2=16,即a=4,b=−1,∴3a−4b=16,∴3a−4b的平方根是±16=±4.24. 解:根据题意得:3a+2+a+10=0,移项合并得:4a=−12,解得:a=−3.25. 解:由题意得,2−x≥0且x−1≠0,解得x≤2且x≠1,∵x是正整数,∴x=2,∴y=4,x+y=2+4=6,x+y的平方根是±6.26. 解:因为2m+2的平方根是±4所以2m+2=(±4)2,解得:m=7.因为3m+n的立方根是−1所以3m+n=(−1)3,解得:n=−22.所以2m−n==36=6.所以2m−n的算术平方根是6.【解析】1. 解:∵9=3,∴3的平方根是±3,故选:D.先将原数化简,然后根据平方根的性质即可求出答案.本题考查平方根的概念,解题的关键是将原数进行化简,本题属于基础题型.2. 【分析】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.由于一个正数的两个平方根应该互为相反数,由此即可列方程解出a.【解答】解:由题意得:2a−1−a+2=0,解得:a=−1.故选B.3. 解:2m−2+m−4=0,3m−6=0,解得m=2.故选:C.根据一个正数的两个平方根互为相反数即可列方程求得m的值.本题考查了平方根的定义,理解一个正数的平方根有两个,这两个根互为相反数是关键.4. 解:A、4=2,故本选项错误;B、(−5)2=5,故本选项错误;C、(−7)2=7,故本选项正确;D、−3没有意义,故本选项错误.故选:C.根据实数的算术平方根和平方运算法则计算,注意一个数的平方必是非负数.主要考查了实数的算术平方根和平方运算,一个实数的算术平方根为非负数,一个实数的平方为一个非负数.5. 解:A、116的平方根为±14,故本选项错误;B、−16没有算术平方根,故本选项错误;C、(−4)2=16,16的平方根是±4,故本选项错误;D、0的平方根和算术平方根都是0,故本选项正确.故选D.根据一个正数有两个平方根,且这两个平方根互为相反数及平方根的定义即可判断各选项.此题考查了平方根及算术平方根的知识,属于基础题,解答本题关键是掌握一个正数有两个平方根,且这两个平方根互为相反数,难度一般.6. 解:∵02=0,∴0的平方根是0.∴平方根等于它本身的数是0.故选B.根据平方根的定义即可求出平方根等于它本身的数.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7. 【分析】本题主要考查了算数平方根的定义.如果一个非负数数x的平方等于a,那么这个数x,就叫做a的算数平方根.注意0的算数平方根是0,一个数的算数平方根≥0.【解答】解:∵(a−2)2=|a−2|=2−a,∴2−a≥0,a≤2.故选D.8. 解:0.0001=0.01,0.01的算术平方根是0.1.故选:A.根据算术平方根的定义求解即可求得答案.此题考查了算术平方根的定义,关键是熟练掌握计算法则正确进行计算.9. 解:64的算术平方根是8.故选:B.依据算术平方根的定义求解即可.本题主要考查的是算术平方根的定义,熟练掌握相关概念是解题的关键.10. 解:∵+(2a+3b−13)2=0,2a−3b+5=0,∴2a+3b−13=0a=2 ,解得b=3当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.11. 解:∵2x−1≥01−2x≥0,∴x=1,2∴y=1,∴2x+3y=2×1+3×1=4,2∴2x+3y的平方根为±2.故答案为:±2.先根据二次根式有意义的条件求出x的值,进而得出y的值,根据平方根的定义即可得出结论.本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.12. 解:16的平方根是±2.故答案为:±2根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.13. 解:8l的平方根为±3.故答案为:±3.根据平方根的定义即可得出答案.此题考查了平方根的知识,属于基础题,掌握定义是关键.14. 解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15. 解:36=6,6的平方根是±6,(−5)2=25=5,故答案为:±6,5.根据平方根、算术平方根,即可解答.本题考查了平方根、算术平方根,解决本题的关键是熟记平方根、算术平方根的定义.16. 解:∵一正数a的两个平方根分别是2m−3和5−m,∴(2m−3)+(5−m)=0,解得m=−2,∴2m−3=−7∴a=(−7)2=49,故答案为:49.根据一个正数的两个平方根互为相反数,可得平方根的关系,可得答案.本题考查了平方根,先求出m的值,再求出a的值.17. 解:∵4的立方等于64,∴64的立方根等于4.4的平方根是±2,故答案为:±2.根据立方根的定义可知64的立方根是4,而4的平方根是±2,由此就求出了这个数的平方根.本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.18. 解:1+13=(1+1)11+2=213,2+14=(2+1)12+2=314,3+15=(3+1)13+2=415,…n+1n+2=(n+1)1n+2,故答案为: n+1n+2=(n+1)1n+2.根据所给例子,找到规律,即可解答.本题考查了实数平方根,解决本题的关键是找到规律.19. 解:由题意得:a−6=0,2b−16=0,10−c=0,解得:a=6,b=8,c=10,∵62+82=102,∴三角形为直角三角形,故答案为:直角三角形.根据非负数的性质可得a−6=0,2b−16=0,10−c=0,再解方程可得a、b、c的值,再利用勾股定理逆定理可得三角形的形状.此题主要考查了非负数的性质,以及勾股定理逆定理,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.20. 解:由题意得:a−3=0 b−4=0 c−5=0,解得:a=3 b=4 c=5,∵32+42=25,52=25,∴a2+b2=c2,∴△ABC是直角三角形,故答案为:直角.由平方的非负性得:a−3=0,由算术平方根的非负性得:b−4=0,由绝对值的非负性得:c−5=0,计算求出a、b、c的值,并计算较小边的平方和与大边的平方对比,发现是直角三角形.本题考查了非负性的性质和勾股定理的逆定理,明确任意一个数的绝对值都是非负数,任意一个数的偶次方都是非负数,任意一个数的算术平方根都是非负数;因此,如果一组非负数的和为0时,则每一个非负数都等于0;并熟记勾股定理的逆定理.21. 根据非负数的性质列式求出a、b的值,然后代入代数式得到关于x的一元一次方程,求解即可.本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.22. 根据非负数的性质分别求出x、y,分2、3是两条直角边、2、2是两条直角边、2是直角边,3是斜边三种情况,根据勾股定理计算.本题考查的是勾股定理、非负数的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.23. 根据已知得出2a+1=9,5a+2b−2=16,求出a、b,代入求出即可.本题考查了平方根和算术平方根的应用,关键是根据题意列出算式.24. 根据正数的平方根有2个,且互为相反数列出方程,求出方程的解即可得到a的值.此题考查了平方根,相反数,以及一元一次方程的解法,熟练掌握平方根定义是解本题的关键.25. 根据被开方数大于等于0,分母不等于0列式计算求出x的值,再求出y的值,然后根据平方根的定义解答即可.本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.26. 依据平方根和立方根的定义得到关于m和n的方程,然后再求得代数式2m−n的值,最后在求得2m−n的算术平方根即可.本题主要考查的是立方根、平方根、算术平方根的定义,熟练掌握相关定义是解题的关键.。
2平方根 练习题 北师大版八年级数学上册
2.2 平方根(练习题)-北师大版八年级上册一.选择题1.化简的结果是()A.±2B.2C.±4D.42.已知一个正数的两个平方根分别是a+3与3a﹣11,那么这个数是()A.4B.±5C.﹣5D.253.下列式子正确的是()A.B.C.D.4.若与|b+|互为相反数,则a+b的绝对值为()A.1﹣B.﹣1C.+1D.5.若|x+2|+(y﹣3)2+=0,则z(x+y)的值为()A.﹣4B.4C.4或﹣4D.20或﹣20 6.若,则a﹣b的值为()A.3B.﹣3C.1D.﹣17.有一个数值转换器原理如图,当输入的x的值为256时,输出的y的值为()A.B.C.D.168.一个自然数的一个平方根是a,则与它相邻的下一个自然数的平方根是()A.±B.a+1C.a2+1D.±9.设m是9的平方根,,则m、n的关系是()A.m=±n B.m=n C.m=﹣n D.|m|≠|n|10.已知a﹣2与b+3都是非负实数,且它们的算术平方根互为相反数,则(a+b)2021的值为()A.1B.﹣1C.0D.二.填空题11.若(m﹣1)2与互为相反数,则m+n=.12.若=.13.若+|b﹣2022|=0,则a b=.14.化简的正确结果是.15.将1,,,按如图方式排列.若规定(m,n)表示第m排从左向右第n个数,则(10,4)所表示的数是.三.解答题16.阅读下面对话,然后解答问题:你同意小明的说法吗?小丽能否用这块纸片裁出符合要求的纸片呢?请你通过计算说明.17.某小区为了促进全民健身活动的开展,决定在一块面积为1100m2的正方形空地上建一个篮球场.已知篮球场的面积为540m2,其中长是宽的倍,篮球场的四周必须留出1m宽的空地,请你通过计算说明能否按规定在这块空地上建一个篮球场?18.我们规定用(a,b)表示一对数对,给出如下定义:记m=,n=(a>0,b>0),将(m,n)与(n,m)称为数对(a,b)的对“对称数对”.例如:(4,1)的一对“对称数对”为(,1)与(1,).(1)数对(25,4)的一对“对称数对”是和;(2)若数对(x,2)的一对“对称数对”的一个数对是(,1),求x的值;(3)若数对(a,b)的一对“对称数对”的一个数对是(,3),求ab的值.19.如图为一个数值转换器.(1)当输入的x值为4时,输出的y值为;当输入的x值为16时,输出的y 值为;(2)输入x值后,经过两次取算术平方根运算,输出的y值为,求输入的x值;(3)嘉淇发现输入x值后要取其算术平方根,因此他输入的x为非负数.但是当他输入x值后,却始终输不出y值,请你分析,他输入的x值是多少?20.某小区有一个由实木栅栏围成的400m2的正方形室外阅读场地,现在要将其改建成300m2的长方形场地,且长和宽之比为3:2.(1)求这个长方形场地的长宽分别是多少m?(2)如果要把原来围成正方形场地的实木栅栏利用起来,围成这个长方形场地,那么这些实木栅栏是否够用?并说明理由.参考答案与试题解析一.选择题1.【解答】解:==4.故选:D.2.【解答】解:∵一个正数的两个平方根分别是a+3和3a﹣11,∴a+3+3a﹣11=0,解得:a=2,a+3=5,则这个正数为25.故选:D.3.【解答】解:A、=0.2,原计算错误,故此选项不符合题意;B、±=±10,原计算正确,故此选项符合题意;C、=0.1,原计算错误,故此选项不符合题意;D、==,原计算错误,故此选项不符合题意.故选:B.4.【解答】解:由题意得:+|b+|=0,∴a﹣1=0,b+=0,∴a=1,b=﹣,∴|a+b|=|1﹣|=﹣1,故选:B.5.【解答】解:由题意得:x+2=0,y﹣3=0,z2﹣16=0,解得:x=﹣2,y=3,z=±4,则z(x+y)=4(﹣2+3)=4或z(x+y)=﹣4(﹣2+3)=﹣4,故选:C.6.【解答】解:∵+b2﹣4b+4=0,∴+(b﹣2)2=0,∴a+1=0,b﹣2=0,解得a=﹣1,b=2,所以a﹣b=﹣1﹣2=﹣3.故选:B.7.【解答】解:∵=16,=4,=2,是无理数,∴最后结果为,故选:A.8.【解答】解:由题意可知:该自然数为a2,∴该自然数相邻的下一个自然数为a2+1,∴a2+1的平方根为±.故选:D.9.【解答】解:∵m是9的平方根,∴m=±3,n=()2=3,∴m=±n.故选:A.10.【解答】解:∵a﹣2与b+3都是非负实数,且它们的算术平方根互为相反数,∴+=0,解得a+b=﹣1,则(a+b)2021=(﹣1)2021=﹣1.故选:B.二.填空题11.【解答】解:∵(m﹣1)2与互为相反数,且(m﹣1)2≥0,≥0,∴(m﹣1)2=0,=0.解得m=1,n=﹣2.∴m+n=﹣1.故答案为:﹣1.12.【解答】解:∵+|b﹣1|=0,∴a+2=0,b﹣1=0,即a=﹣2,b=1,∴(a+b)2022=(﹣2+1)2022=1,故答案为:1.13.【解答】解:∵+|b﹣2022|=0,∴a+1=0,b﹣2022=0,即a=﹣1,b=2022,∴a b=(﹣1)2022=1,故答案为:1.14.【解答】解:=,故答案为:.15.【解答】解:∵1+2+3+4+5+6+7+8+9+4=49,∴第10排第4个数为整个排列中的第49个数,而49÷4=12......1,而1、、、每四个数一循环,∴第49个数为1,即(10,4)表示的数是1;故答案为:1.三.解答题16.【解答】解:不同意,小丽不能用这块纸片裁出符合要求的纸片.理由:设长方形纸片的长为3xcm,宽为2xcm,依题意得:3x•2x=300,解得x=±,∵x>0,∴x=,∴宽为2x=10cm,又∵面积为225cm2的正方形的边长为=15cm,∴10<15,∴沿着边的方向不能用这块纸片裁出符合要求的正方形纸片.17.【解答】解:设篮球场的宽为x m,那么长为x m,根据题意,得x•x=540,所以x2=324,因为x为正数,所以:x=18,又因为(==1024<1100,所以能按规定在这块空地上建一个篮球场.18.【解答】解:(1)∵=,=2,∴数对(25,3)的一对“一对称数对”是(,2)与(2,),故答案为:(,2)与(2,);(2)∵数对(x,2)的一个“一对称数对”是(,1),∴=1,∴x=1;(3)∵数对(a,b)的一个“一对称数对”是(,3),∴或,解得或,∴ab=9或.19.【解答】解:(1)当x=4时,=2,则y=;当x=16时,=4,=2,则y=;故答案为:,;(2)当y=时,()2=3,32=9,则x=9;(3)当x=0,1时,始终输不出y值,∵0,1的算术平方根是0,1,一定是有理数,∴他输入的x值是0或1.20.【解答】解:(1)设这个长方形场地宽为2am,则长为3am.由题意有:3a×2a=300,解得:a=±5,∵3a表示长度,∴a>0,∴a=5,∴a=3a=15,2a=10,答:这个长方形场地的长为15m,宽为10m;(2)=20(m),原正方形周长为4×20=80(m),这个长方形场地的周长为2(15+10)=50(m),∵80=>50=,∴这些实木栅栏够用.答:这些实木栅栏够用.。
第二章实数2.2平方根同步练习 2021——2022学年北师大版八年数学上册
2.2平方根同步练习一.平方根(共12小题)1.16的平方根是()A.±8B.±4C.4D.﹣4 2.已知3m﹣1和﹣2m﹣2是某正数a的平方根,则a的值是()A.3B.64C.3或﹣D.64或3.已知2a+1和5是正数b的两个平方根,则a+b的值是()A.25B.30C.20D.22 4.若﹣2x a y与5x3y b的和是单项式,则(a+b)2的平方根是()A.2B.±2C.4D.±4 5.42的平方根为()A.±2B.2C.±4D.46.已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C.D.7.若9x2﹣16=0,则x=.8.如果|a﹣1|+(b+2)2=0,则(a+b)2018的平方根是.9.已知:(x2+y2+1)2﹣4=0,则x2+y2=.10.已知3a+1的平方根是±2,2a﹣b+3的平方根是±3,求a﹣2b.11.求x的值(1)121x2﹣49=0(2)(x+2)2=16.12.若=2,正数b的两个平方根分别是2c﹣1和﹣c+2,求2a+b+c平方根.二.算术平方根(共15小题)13.=()A.﹣2B.4C.D.2 14.当a=25时,的值是()A.5B.﹣5C.±5D.25 15.若|a﹣17|+(b﹣1)2=0,则的算术平方根为()A.4B.2C.±4D.±216.已知,则()A.B.2x﹣1﹣y=0C.D.x﹣y=217.的平方根是()A.9B.9或﹣9C.3D.3或﹣318.已知a2+=4a﹣4,则的平方根是.19.一列有规律的数:…,则第36个数是.20.若=6.172,=19.517,则=.21.若=1.732,=5.477,则=.22.若a、b均为整数,当x=﹣1时,代数式x2+ax+b的值为0,则a b的算术平方根为.23.已知实数a,b,c满足:b=+4,c的平方根等于它本身.求的值.24.已知x=1﹣2a,y=3a﹣4.(1)已知x的算术平方根为3,求a的值;(2)如果x,y都是同一个数的平方根,求这个数.25.小明打算用如图一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为768cm2的桌面,桌面的长宽之比为4:3,你认为他能做到吗?如果能,计算出桌面的长和宽;如果不能,说明理由.26.某地气象资料表明:某地雷雨持续的时间t(h)可以用下面的公式来估计:,其中d(km)是雷雨区域的直径.(1)雷雨区域的直径为8km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了2h,那么这场雷雨区域的直径大约是多少?27.一个数值转换器,如图所示:(1)当输入的x为16时.输出的y值是;(2)若输入有效的x值后,始终输不出y值,请写出所有满足要求的x的值,并说明你的理由;(3)若输出的y是,请写出两个满足要求的x值:.三.非负数的性质:算术平方根(共8小题)28.若直角三角形的两边长分别为a,b,且满足+|b﹣4|=0,则该直角三角形的第三边长为()A.5B.C.4D.5或29.若a,b为实数,且|a+1|+=0,则﹣(﹣ab)2018的值是()A.1B.2018C.﹣1D.﹣201830.若a、b、c为△ABC的三边长,且满足|c﹣3|+=0,则a的值不可以为()A.2B.3C.4D.531.已知三角形三边长为a,b,c,如果+|b﹣8|+(c﹣10)2=0,则△ABC是三角形.32.当x取时,的值最小,最小值是;当x取时,2﹣的值最大,最大值是.33.已知x,y为实数,且满足﹣(y﹣1)=0,那么x2011﹣y2011.34.已知实数a,b满足+b2+2b+1=0,求a2+﹣|b|的值.35.已知:a、b、c满足求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.2.2平方根同步练习参考答案与试题解析一.平方根(共12小题)1.16的平方根是()A.±8B.±4C.4D.﹣4【解答】解:因为(±4)2=16,所以16的平方根是±4,故选:B.2.已知3m﹣1和﹣2m﹣2是某正数a的平方根,则a的值是()A.3B.64C.3或﹣D.64或【解答】解:根据题意得:3m﹣1=﹣2m﹣2或3m﹣1+(﹣2m﹣2)=0,解得:m=﹣或3,当m=﹣时,3m﹣1=﹣,∴a=;当m=3时,3m﹣1=8,∴a=64;故选:D.3.已知2a+1和5是正数b的两个平方根,则a+b的值是()A.25B.30C.20D.22【解答】解:由题意得,b=25,a=﹣3,∴a+b=﹣3+25=22.故选:D.4.若﹣2x a y与5x3y b的和是单项式,则(a+b)2的平方根是()A.2B.±2C.4D.±4【解答】解:由题意可知:﹣2x a y与5x3y b是同类项,∴a=3,b=1,∴(a+b)2=(3+1)2=16,16的平方根是±4.故选:D.5.42的平方根为()A.±2B.2C.±4D.4【解答】解:∵42=16,16的平方根是±4,∴42的平方根为±4,故选:C.6.已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C.D.【解答】解:根据题意得,b﹣4=0,a﹣1=0,解得a=1,b=4,所以,=,∵(±)2=,∴的平方根是±.故选:A.7.若9x2﹣16=0,则x=.【解答】解:9x2﹣16=0,9x2=16,x2=,x=±.故答案为:±.8.如果|a﹣1|+(b+2)2=0,则(a+b)2018的平方根是±1.【解答】解:∵|a﹣1|+(b+2)2=0,∴a﹣1=0,b+2=0,解得,a=1,b=﹣2,∴(a+b)2018=[1+(﹣2)]2018=(﹣1)2018=1,∴(a+b)2018的平方根是±1,故答案为:±1.9.已知:(x2+y2+1)2﹣4=0,则x2+y2=1.【解答】解:∵(x2+y2+1)2﹣4=0,∴(x2+y2+1)2=4,∵x2+y2+1>0,∴x2+y2+1=2,∴x2+y2=1.故答案为:1.10.已知3a+1的平方根是±2,2a﹣b+3的平方根是±3,求a﹣2b.【解答】解:∵3a+1的平方根是±2,2a﹣b+3的平方根是±3,∴3a+1=4,2a﹣b+3=9,解得:a=1,b=﹣4.∴a﹣2b=1﹣2×(﹣4)=1+8=9.11.求x的值(1)121x2﹣49=0(2)(x+2)2=16.【解答】解:(1)∵121x2﹣49=0,∴x2=,解得x=±.(2)∵(x+2)2=16,∴x+2=±4,解得x=2或x=﹣6.12.若=2,正数b的两个平方根分别是2c﹣1和﹣c+2,求2a+b+c平方根.【解答】解:∵正数b的两个平方根分别是2c﹣1和﹣c+2,∴2c﹣1﹣c+2=0,解得c=﹣1,∴b=(﹣2﹣1)2=9,∵=2,解得a=5,∴2a+b+c=10+9﹣1=18,∴18的平方根是±3.二.算术平方根(共15小题)13.=()A.﹣2B.4C.D.2【解答】解:==2.故选:D.14.当a=25时,的值是()A.5B.﹣5C.±5D.25【解答】解:当a=25时,则==5.故选:A.15.若|a﹣17|+(b﹣1)2=0,则的算术平方根为()A.4B.2C.±4D.±2【解答】解:因为|a﹣17|+(b﹣1)2=0,所以,解得,所以,所以的算术平方根为2.故选:B.16.已知,则()A.B.2x﹣1﹣y=0C.D.x﹣y=2【解答】解:根据题意可得:(2x﹣1)(1﹣2x)≥0,∴x=,∴y﹣2=0,解得:y=2,A、x y=2=;B、2x﹣1﹣y=2×﹣1﹣2=﹣2;C、==1;D、x﹣y=﹣2=﹣;故选:C.17.的平方根是()A.9B.9或﹣9C.3D.3或﹣3【解答】解:∵=9,∴的平方根为±=±3.故选:D.18.已知a2+=4a﹣4,则的平方根是.【解答】解:a2+=4a﹣4,,,a﹣2=0,b﹣2=0,解得a=2,b=2,∴,∴的平方根是.故答案为:.19.一列有规律的数:…,则第36个数是.【解答】解:这列数化为,,,,,...因此第n个数是.∴第36个数是.故答案为:.20.若=6.172,=19.517,则=617.2.【解答】解:∵=6.172,∴=617.2,故答案为:617.2.21.若=1.732,=5.477,则=54.77.【解答】解:∵=5.477,∴=10=54.77,故答案为:54.77.22.若a、b均为整数,当x=﹣1时,代数式x2+ax+b的值为0,则a b的算术平方根为.【解答】解:当x=﹣1时,代数式x2+ax+b的值为0,∴(﹣1)2+a(﹣1)+b=0,6﹣2+a﹣a+b=0,∵a、b均为整数,∴6﹣a+b=0,﹣2+a=0,∴a=2,b=﹣4,∴a b=2﹣4=,∴则a b的算术平方根为:=,故答案为:.23.已知实数a,b,c满足:b=+4,c的平方根等于它本身.求的值.【解答】解:∵﹣(a﹣3)2≥0,∴a=3把a代入b=+4得:∴b=4∵c的平方根等于它本身,∴c=0∴=.24.已知x=1﹣2a,y=3a﹣4.(1)已知x的算术平方根为3,求a的值;(2)如果x,y都是同一个数的平方根,求这个数.【解答】解:(1)∵x的算术平方根是3,∴1﹣2a=9,解得a=﹣4.故a的值是﹣4;(2)x,y都是同一个数的平方根,∴1﹣2a=3a﹣4,或1﹣2a+(3a﹣4)=0解得a=1,或a=3,(1﹣2a)=(1﹣2)2=1,(1﹣2a)=(1﹣6)2=25.答:这个数是1或25.25.小明打算用如图一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为768cm2的桌面,桌面的长宽之比为4:3,你认为他能做到吗?如果能,计算出桌面的长和宽;如果不能,说明理由.【解答】解:不能裁出长宽比为4:3的长方形桌面.理由如下:设桌面的长为4xcm,宽为3xcm,由题可得,4x•3x=768,整理得,x2=64,解得,x=±8,∵桌面的长和宽为正数,∴x=﹣8 不合题意,舍去,∴x=8,∴4×8=32 (cm),3×8=24 (cm),∵正方形木板的面积为900 cm2,∴正方形木板的边长为30cm,∵32>30,∴桌面的长为32cm不合题意,∴不能裁出长宽比为4:3的长方形桌面.26.某地气象资料表明:某地雷雨持续的时间t(h)可以用下面的公式来估计:,其中d(km)是雷雨区域的直径.(1)雷雨区域的直径为8km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了2h,那么这场雷雨区域的直径大约是多少?【解答】解:(1)根据,其中d=8(km),∴t2=,∵t>0,∴t=(h),答:这场雷雨大约能持续h;(2)根据,其中t=2h,∴d2=3600,∵d>0,∴d=60(km),答:这场雷雨区域的直径大约是60km.27.一个数值转换器,如图所示:(1)当输入的x为16时.输出的y值是;(2)若输入有效的x值后,始终输不出y值,请写出所有满足要求的x的值,并说明你的理由;(3)若输出的y是,请写出两个满足要求的x值:3和9.【解答】解:(1)∵16的算术平方根是4,4是有理数,4不能输出,∴4的算术平方根是2,2是有理数,2不能输出,∴2的算术平方根是,是无理数,输出,故答案为:(2)∵0和1的算术平方根是它们本身,0和1是有理数,∴当x=0和1时,始终输不出y的值;(3)9的算术平方根是3,3的算术平方根是,故答案为:3和9.三.非负数的性质:算术平方根(共8小题)28.若直角三角形的两边长分别为a,b,且满足+|b﹣4|=0,则该直角三角形的第三边长为()A.5B.C.4D.5或【解答】解:∵+|b﹣4|=0,∴a2﹣6a+9=0,b﹣4=0,∴a=3,b=4,∴直角三角形的第三边长==5,或直角三角形的第三边长==,∴直角三角形的第三边长为5或,故选:D.29.若a,b为实数,且|a+1|+=0,则﹣(﹣ab)2018的值是()A.1B.2018C.﹣1D.﹣2018【解答】解:∵|a+1|+=0,∴a+1=0,b﹣1=0,∴a=﹣1,b=1,∴﹣(﹣ab)2018=﹣[﹣(﹣1)×1)]2018=﹣1,故选:C.30.若a、b、c为△ABC的三边长,且满足|c﹣3|+=0,则a的值不可以为()A.2B.3C.4D.5【解答】解:根据题意得c﹣3=0且b﹣2=0,解得c=3,b=2.则a的范围是:3﹣2<a<3+2,即1<a<5.则不满足条件的只有5.故选:D.31.已知三角形三边长为a,b,c,如果+|b﹣8|+(c﹣10)2=0,则△ABC是直角三角形.【解答】解:由题意得,a﹣6=0,b﹣8=0,c﹣10=0,解得a=6,b=8,c=10,∵62+82=102=100,∴a2+b2=c2,∴△ABC是直角三角形.故答案为:直角.32.当x取﹣5时,的值最小,最小值是0;当x取5时,2﹣的值最大,最大值是2.【解答】解:当10+2x=0时,的值最小,解得x=﹣5,此时的最小值为0.当5﹣x=0时,即x=5时,=0,此时2﹣的值最大,最大值是2.故答案为:﹣5;0;5;2.33.已知x,y为实数,且满足﹣(y﹣1)=0,那么x2011﹣y2011.【解答】解:∵﹣(y﹣1)=0,∴+(1﹣y)=0,∴1+x=0,1﹣y=0,解得,x=﹣1,y=1,∴x2011﹣y2011=(﹣1)2011﹣12011=(﹣1)﹣1=﹣2.34.已知实数a,b满足+b2+2b+1=0,求a2+﹣|b|的值.【解答】解:∵实数a,b满足+b2+2b+1=0,∴a2﹣5a+1=0,b+1=0,∴a+=5,b=﹣1.∴a2+=23.∴原式=23﹣|﹣1|=23﹣1=22.35.已知:a、b、c满足求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.【解答】解:(1)根据题意得,a﹣=0,b﹣5=0,c﹣3=0,解得a=2,b=5,c=3;(2)能.∵2+3=5>5,∴能组成三角形,三角形的周长=2+5+3=5+5。
北师大新版八年级数学上册《2.2平方根》同步练习(解析版)
北师大新版八年级数学上册《2.2 平方根》同步练习一、选择题(共8小题,每小题0分,满分3分)1.下列说法正确的是()A.所有有理数都有算术平方根B.一个数的算术平方根总是正数C.当a<0时,没有意义D.可以是正数,也可以是负数2.在0.32,﹣52,(﹣4)2,,﹣|﹣4|,π这几个数中,有算术平方根的有()A.3个 B.4个 C.5个 D.6个3.“的算术平方根是”,用式子表示为()A.±=± B.=±C.=D.±=4.3的算术平方根是()A.9 B.C.﹣9 D.﹣5.(﹣2)2的算术平方根是()A.2 B.±2 C.﹣2 D.6.下列说法正确的是()A.的算术平方根是2B.﹣a2一定没有算术平方根C.﹣表示5的算术平方根的相反数D.0.9的算术平方根是0.37.一个自然数的平方根为a,则它的相邻的下一个自然数的算术平方根是()A.B.a+1 C.a2+1 D.8.有一个数值转换器,程序如图,当输入的x为25时,输出的y是()A.5 B.﹣5 C.D.﹣二、填空题(共5小题,每小题0分,满分0分)9.若是整数,则正整数n的最小值为.10.m是的算术平方根,n的算术平方根是5,则2m﹣3n=.11.已知a,b为两个连续的整数,且a<<b,则a+b=.12.若a的算术平方根是5,则a=.13.x是16的算术平方根,那么x的算术平方根是.三、解答题(共8小题,满分0分)14.求下列各数的算术平方根.(1)49(2)121(3)(﹣4)2(4)10﹣2.15.求下列各式的值.(1)(2)(3)(4)×.16.小刚同学的房间地板面积为16m2,恰好由64块正方形的地板砖铺成,求每块地板砖的边长是多少?17.有一个长方形的花坛,长是宽的4倍,其面积为25m2,求这个长方形花坛的长和宽.18.如图,用R表示足球的半径,球的表面积公式为S=4πR2.如果做一个足球需要的橡胶布的面积为1936π cm2,则足球的半径R为多少?19.已知实数x,y满足+(y+1)2=0,求x﹣y的值.20.如图所示,一直按此规律进行下去,试求第10个直角三角形的斜边长为多少?第n个直角三角形的斜边长又为多少?21.如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,求BD的长.北师大新版八年级数学上册《2.2 平方根》2016年同步练习(山东省济南市普通中学)参考答案与试题解析一、选择题(共8小题,每小题0分,满分3分)1.下列说法正确的是()A.所有有理数都有算术平方根B.一个数的算术平方根总是正数C.当a<0时,没有意义D.可以是正数,也可以是负数【考点】实数.【分析】根据算术平方根的性质和定义逐个判断即可.【解答】解:A、负数没有算术平方根,故本选项不符合题意;B、0的算术平方根是0,不是正数,故本选项不符合题意;C、当a<0时,没有意义,故本选项符合题意;D、可以是正数、但一定不是负数,故本选项不符合题意;故选C.2.在0.32,﹣52,(﹣4)2,,﹣|﹣4|,π这几个数中,有算术平方根的有()A.3个 B.4个 C.5个 D.6个【考点】算术平方根;绝对值.【分析】根据正数和0有算术平方根,负数没有算术平方根进行解答.【解答】解:在0.32,﹣52,(﹣4)2,,﹣|﹣4|,π这几个数中,有算术平方根的有0.32,(﹣4)2,共4个,故选B.3.“的算术平方根是”,用式子表示为()A.±=± B.=±C.=D.±=【考点】算术平方根;平方根.【分析】依据“”的意义解答即可.【解答】解:“的算术平方根是”,用式子表示为=.故选:C.4.3的算术平方根是()A.9 B.C.﹣9 D.﹣【考点】算术平方根.【分析】根据开平方的意义,可得算术平方根.【解答】解:3的算术平方根.故选:B.5.(﹣2)2的算术平方根是()A.2 B.±2 C.﹣2 D.【考点】算术平方根;有理数的乘方.【分析】首先求得(﹣2)2的值,然后由4的算术平方根为2,即可求得答案.【解答】解:∵(﹣2)2=4,4的算术平方根为2,∴(﹣2)2的算术平方根是2.故选A.6.下列说法正确的是()A.的算术平方根是2B.﹣a2一定没有算术平方根C.﹣表示5的算术平方根的相反数D.0.9的算术平方根是0.3【考点】实数的性质;算术平方根.【分析】根据算术平方根的意义,相反数的意义,可得答案.【解答】A、的算术平方根是,故A错误;B、﹣a2有可能有算术平方根,故B错误;C、﹣表示5的算术平方根的相反数,故C正确;D、0.09的算术平方根是0.3,故D错误;故选:C.7.一个自然数的平方根为a,则它的相邻的下一个自然数的算术平方根是()A.B.a+1 C.a2+1 D.【考点】算术平方根;平方根.【分析】设这个自然数为x,则x=a2,故与之相邻的下一个自然数为a2+1,再根据算术平方根的定义进行解答即可.【解答】解:设这个自然数为x,∵x平方根为a,∴x=a2,∴与之相邻的下一个自然数为a2+1,其算术平方根为:.故选D.8.有一个数值转换器,程序如图,当输入的x为25时,输出的y是()A.5 B.﹣5 C.D.﹣【考点】算术平方根.【分析】令x=25,然后根据程序图判断是有理数还是无理数,若无理数即可输出y【解答】解:x=25时,其算术平方根为5,为有理数,x=5时,其算术平方根为,为无理数,输出y=故选(C)二、填空题(共5小题,每小题0分,满分0分)9.若是整数,则正整数n的最小值为5.【考点】二次根式的定义.【分析】是正整数,则20n一定是一个完全平方数,首先把20n分解因数,确定20n是完全平方数时,n的最小值即可.【解答】解:∵20n=22×5n.∴整数n的最小值为5.故答案是:5.10.m是的算术平方根,n的算术平方根是5,则2m﹣3n=﹣69.【考点】算术平方根.【分析】根据算术平方根的概念即可求出m、n的值.【解答】解:∵m是的算术平方根,∴m=3,∵n的算术平方根是5,∴n=25,∴2m﹣3n=2×3﹣3×25=﹣69,故答案为:﹣6911.已知a,b为两个连续的整数,且a<<b,则a+b=11.【考点】估算无理数的大小.【分析】首先得出<<,解得a ,b 的值,代入即可.【解答】解:∵<<,∴5<<6, ∴a=5,b=6,∴a +b=11,故答案为:11.12.若a 的算术平方根是5,则a= 25 .【考点】算术平方根.【分析】根据算术平方根的定义即可求出答案.【解答】解:∵52=25∴25的算术平方根是5故答案为:2513.x 是16的算术平方根,那么x 的算术平方根是 2 .【考点】算术平方根.【分析】根据算术平方根的定义求出x ,再根据算术平方根的定义解答即可.【解答】解:∵42=16,∴16的算术平方根是4,即x=4,∵22=4,∴x 的算术平方根是2.故答案为:2.三、解答题(共8小题,满分0分)14.求下列各数的算术平方根.(1)49(2)121(3)(﹣4)2(4)10﹣2.【考点】算术平方根;负整数指数幂.【分析】根据算术平方根的定义即可求出答案.【解答】解:(1)∵72=49,∴49的算术平方根是7;(2)∵112=121,∴121的算术平方根是11;(3)∵42=(﹣4)2=16,∴(﹣4)2的算术平方根是4;(4))∵()2=10﹣2=,∴10﹣2的算术平方根是;15.求下列各式的值.(1)(2)(3)(4)×.【考点】二次根式的乘除法;负整数指数幂.【分析】根据二次根式的性质、二次根式的乘除法法则计算即可.【解答】解:(1)原式==7;(2)原式==3;(3)原式==(4)原式==.16.小刚同学的房间地板面积为16m2,恰好由64块正方形的地板砖铺成,求每块地板砖的边长是多少?【考点】算术平方根.【分析】直接利用总面积÷正方形块数得出答案.【解答】解:由题意可得:==(m),答:每块地板砖的边长是m.17.有一个长方形的花坛,长是宽的4倍,其面积为25m2,求这个长方形花坛的长和宽.【考点】一元二次方程的应用.【分析】设花坛的宽为x米,然后表示出矩形的长,利用矩形的面积计算方法得到方程求解即可.【解答】解:设长方形花坛的宽为x米,根据题意得x•4x=25,整理得:4x2=25,解这个方程的x1=,x2=﹣(不合题意舍去),∴4x=10,答:长方形花坛的长为10米,宽为米.18.如图,用R表示足球的半径,球的表面积公式为S=4πR2.如果做一个足球需要的橡胶布的面积为1936π cm2,则足球的半径R为多少?【考点】算术平方根.【分析】根据足球需要的橡胶布的面积,可求出R.【解答】解:由题意得:4πR2=1936π,则R1=22,R2=﹣22(舍去).即足球的半径是22cm.19.已知实数x,y满足+(y+1)2=0,求x﹣y的值.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列方程求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:∵x﹣2=0且y+1=0,∴x=2,y=﹣1,∴x﹣y=3.20.如图所示,一直按此规律进行下去,试求第10个直角三角形的斜边长为多少?第n个直角三角形的斜边长又为多少?【考点】勾股定理.【分析】先求出第一个直角三角形的斜边长,再求出第二、三个斜边长,找出规律即可得出结论.【解答】解:解:∵在第一个直角三角形中,斜边长==;在第二个直角三角形中,斜边长==;在第三个直角三角形中,斜边长==,…,∴第10个直角三角形斜边长==,第n个直角三角形的斜边长==.第10个直角三角形的斜边长为,第n个直角三角形的斜边长为.21.如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,求BD的长.【考点】等边三角形的性质;勾股定理.【分析】根据等边三角形的性质可得CD=CB,再根据等边对等角的性质求出∠BDC=∠DBC=30°,然后求出∠BDE=90°,再根据勾股定理列式进行计算即可得解.【解答】解:∵△ABC和△DCE都是边长为4的等边三角形,∴CB=CD,∴∠BDC=∠DBC=30°,又∵∠CDE=60°,∴∠BDE=90°,在Rt△BDE中,DE=4,BE=8,∴BD===4.2017年3月21日。
2.2 同步素材 平方根(北师大版八年级上册)10
请大家根据勾股定理,结合图形完成填空:
E w
A 1 O 1 x B z y 1 1
x2=
2 , 3 ,
D
1 C
y2=
z2= w2=
4 ,
5 .
一般地,如果一个正数 x 的平方等于 a,即 x2 = a ,那么这个正数 x 就叫做 a 的算术平 方根,记为“ ”,读作“根号 a ”. 特别地,我们规定0的算术平方根是0,即
即
49 7 64 8 ;
(4)14的算术平方根是 14 .
即( )2 14 =14
非平方数的算术平方根只能用根号表示.
如图所示,右边的大正方形是由左边的两个 小正方形剪拼成的,请表示a= 2 .
1
1
a
1
1
a
请大家根据勾股定理,结合图形完成填空: E w A z y 1 D y2=3,y = x2=2,x=
5 0 5 0 (7) 因为 ( ) 1, 所以 ( ) 的算术平方根是1. 6 6
A
三、如图,从帐篷支撑竿 AB的顶部A向地面拉一根 绳子AC固定帐篷.若绳子 的长度为5.5米,地面固定 点C到帐篷支撑竿底部B的 距离是4.5米,则帐篷支撑 竿的高是多少米?
Zxx,k
B
C
A
解:由题意得 AC=5.5米, BC=4.5米, ∠ABC=90°,
2 2 ( ) 的算术平方根是 3. 3
3
2 3
(m 2) 2 =
; ;
4.若 m 2 2 ,则
16 .
二、求下列各数的算术平方根:
5 0 121 4 36, ,15,0.64,10 , 225 , ( 6 ). 144
解:(1) 因为62=36,所以36的算术平方根是6,即
八年级数学上册《2.2 平方根》同步测试 北师大版(2021学年)
八年级数学上册《2.2 平方根》同步测试(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册《2.2 平方根》同步测试(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册《2.2 平方根》同步测试(新版)北师大版的全部内容。
《2。
2 平方根》一、选择题1.的平方根是( )A.2ﻩB.±2ﻩC.ﻩD.±2.下列说法中正确的是()A.4是8的算术平方根B.16的平方根是4C.是6的平方根ﻩD.﹣a没有平方根3.如果a(a>0)的平方根是±m,那么()A.a2=±m B.a=±m2C.=±m D.a=m24.下列各式中错误的是( )A.ﻩB.ﻩC.ﻩD.5.若,则a的取值范围是( )A.a>3ﻩB.a≥3ﻩC.a<3ﻩD.a≤3二、填空题6.若a是(﹣4)2的算术平方根,的平方根是b,则=______.三、解答题(共4小题,满分28分)7.求下列各数的平方根:1.44,0,8,,441,196,10﹣4.8.(6分)解方程:(1)81x2=25;(2)81(x﹣1)2=25.9.若一个正数的两个平方根分别为a﹣2和2a﹣1,求a和这个正数.10.在交通事故的处理中,警察往往用公式v=16来判断该车辆是否超速,其中v表示车速(单位:km/h),d表示刹车后车轮滑过的距离(单位:m),f表示摩擦系数.某日,在一些段限速60km/h的公路上,发生了一起两车追尾的事故,警察赶到后经过测量,得出其中一辆车的d=18m,f=2.请问:该车超速了吗?ﻬ《2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 平方根
知识点回顾
1、算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作
a 性质:双重非负性⎩⎨⎧a ≥0,
a ≥0
2、平方根的概念:若x 2=a ,则x 叫a 的平方根,x =± a.
3、平方根的性质:正数有两个平方根,且它们互为相反数;0的平方根是0;负数没有平方根.
4、开平方及相关运算:求一个数a 的平方根的运算叫做开平方,其中a 叫做被开方数.开平方与平方互为逆运算.
【对应练习】
算术平方根
1.数5的算术平方根为( ) A. 5 B .25 C .±25 D .± 5
2.如果a -3是一个数的算术平方根,那么a 的值可能为( )
A .0
B .1
C .2
D .4
3.下列有关说法正确的是( )
A .0.16的算术平方根是±0.4
B .(-6)2
的算术平方根是-6 C.81的算术平方根是±9 D.4916的算术平方根是74
4.要切一块面积为0.81m 2的正方形钢板,则它的边长是________. 5.若|a -2|+b +3+(c -5)2=0,则a -b +c =________.
6.求下列各数的算术平方根:
(1)0.25; (2)13; (3)⎝ ⎛⎭
⎪⎫-382; (4)179.
7.如图,某玩具厂要制作一批体积为100000cm 3
的长方体包装盒,其高为40cm.按设计需要,底面应做成正方形,则底面边长应是多少?
平方根
1.81的平方根是( )
A .9
B .-9
C .±9
D .27
2.关于平方根,下列说法正确的是( )
A .任何一个数都有两个平方根,并且它们互为相反数
B .负数没有平方根
C .任何一个数都只有一个算术平方根
D .以上都不对
3.如果一个数的一个平方根是-16,那么这个数是________.
4.计算: (1)( 3.1)2
=________; (2)(-8)2=________.
5.求下列各数的平方根:
(1)25; (2)1681
; (3)0.16; (4)(-2)2.
6.若一个正数的平方根为2x +1和x -7,求x 和这个正数.
参考答案
算术平方根
1.A 2.D 3.D 4.0.9m 5.10 6.解:(1)0.25=0.5. (2)13. (3)⎝ ⎛⎭⎪⎫-382=38. (4)179=43
. 7.解:100000÷40=2500(cm 2),2500=50(cm),故底面边长应是50cm.
平方根
1.C 2.B 3.256 4.(1)3.1 (2)8 5.解:(1)25的平方根是±5. (2)1681
的平方根是±49
. (3)0.16的平方根是±0.4. (4)(-2)2
的平方根是±2.
7.解:由题意得2x +1+x -7=0,解得x =2,∴2x +1=5,x -7=-5,∴这个正数为25.
【课后作业】
算术平方根
一、选择题 1.下列各式中,正确的是( ) A.-49- =-(-7)=7 B.4
12 =121
C.1694+ =2+43=243
D.25.0 =±0.5
2.下列说法正确的是( )
A.5是25的算术平方根
B.±4是16的算术平方根
C.-6是(-6)2的算术平方根
D.0.01是0.1的算术平方根 3.36的算术平方根是( )
A.±6
B.6
C.±6
D. 6
4.一个正偶数的算术平方根是m ,则和这个正偶数相邻的下一个正偶数的算术平方根是( )
A.m +2
B.m +2
C.22+m
D.2+m
5.当1<x <4时,化简221x x +--1682+-x x 结果是( )
A.-3
B.3
C.2x -5
D.5
二、填空题 6.x 2=(-7)2
,则x =______. 7.若2+x =2,则2x +5的平方根是______.
8.若14+a 有意义,则a 能取的最小整数为____.
9.已知0≤x ≤3,化简2x +2)3(-x =______.
10.若|x -2|+
3-y =0,则x ·y =______.
三、解答题 11.已知某数有两个平方根分别是a +3与2a -15,求这个数.
12. 已知:2m +2的平方根是±4,3m +n +1的平方根是±5,求m +2n 的值.
13. 已知a <0,b <0,求4a 2+12ab +9b 2
的算术平方根.
14. 要切一块面积为36 m 2的正方形铁板,它的边长应是多少?
15.甲乙二人计算a +221a a +-的值,当a =3的时候,得到下面不同的答案:
甲的解答:a +221a a +-=a +2)1(a -=a +1-a =1.
乙的解答:a +221a a +-=a +2)1(-a =a +a -1=2a -1=5.
哪一个解答是正确的?错误的解答错在哪里?为什么?
平方根
1.已知()02
32212=++++-z y x ,求x+y+z 的值.
2.若x ,y 满足52112=+-+-y x x ,求xy 的值.
3.求55=-+
x x 中的x .
4.若115+的小数部分为a ,115-的小数部分为b ,求a +b 的值.
5.△ABC 的三边长分别为a ,b ,c ,且a ,b 满足04412=+-+-b b a ,求c 的取值范围.
参考答案
算术平方根
一、1.B 2.A 3.D 4.C 5.C
二、6.±7 7.±3 8.0 9.3 10.6
三、11.49 12.13 13.-2a -3b 14.6 m 15.乙的解答是正确的 略
平方根
1.因为21-
x ≥0,()22+y ≥0,23+z ≥0,且()0232212=++++-z y x ,
所以21-x =0,()22+y =0,2
3+z =0,解得21=x ,2-=y ,23-=z ,所以x +y +z = 3-.
2.因为2x -1≥0,1-2x ≥0,所以 2x -1=0,解得 x =21 ,当 x =21时,y =5,所以 x y =21×5=2
5. 3.解:因为x -5≥0,x x -=-55≥0 ,所以 x =5 .
4.解:因为4113<< ,所以115+的整数部分为8,115-的整数部分为1,所以115+的小数部分3118115-=-+=a ,115-的小数部分1141115-=--=b ,所以1114311=-+-=+b a .
5.解:由04412=+-+-b b a ,可得0)2(12=-+-b a ,因为 1-a ≥0,2)
2(-b ≥0, 所以1-a =0,2)2(-b =0,所以a = 1,b = 2,由三角形三边关系定理有:b- a < c < b +a ,
即1 < c < 3.。