福建省福州市第一中学2020-2021学年高一上学期期末考试数学试题

合集下载

福建省2021-2022学年高一数学上学期期末模拟试卷汇编(含解析)

福建省2021-2022学年高一数学上学期期末模拟试卷汇编(含解析)

福建省高一数学上册期末模拟试卷(含答案)考试日期: 年 月 日 完卷时间:120分钟 满分:150分参考公式: 锥体体积公式:13V Sh =;球的体积公式:343V R π=;圆锥侧面积公式:S rl π=;球的表面积公式:24S R π=***** 祝 考 试 顺 利 *****第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一个项选是符合题意要求的)(1)设{3,}M a =,{1,2}N =,{}2=N M ,=N M ( )(A ){}2,1 (B ){}3,1 (C ){1,2,3} (D ){1,2,3,}a (2)经过点),2(m P -和)4,(m Q 两点的直线与直线012=--y x l :平行,则实数m 的值是( )(A )2(B )10 (C )0 (D )-8(3)同学们,当你任意摆放手中笔的时候,那么桌面所在的平面一定存在直线..与笔所在的直.线.( ) (A )平行 (B )相交 (C )异面 (D )垂直(4)直线1l 与直线0122=+-y x l :的交点在x 轴上,且21l l ⊥,则直线1l 在y 轴上的截距是( )(A )2 (B )-2 (C )1 (D )-1 (5)设,m n 为两条不同的直线,α为平面,则下列结论正确的是( ) (A ),//m n m n αα⊥⇒⊥ (B ),//m n m n αα⊥⊥⇒(C )//,////m n m n αα⇒ (D )//,m n m n αα⊥⇒⊥(6)已知直线0=-+m y x l :与圆4)1()1(22=++-y x C :交于A ,B 两点,若AB C ∆ 为直角三角形,则=m ( )(A )2 (B )2± (C )22 (D )22± (7)已知奇函数)(x f 在R上是减函数,若)51(log 2f a -=,)6(log 2f b =,(A )c b a << (B ) c a b << (C )a b c << (D )b a c <<(8)已知直线l 的方程为:0123)2(=++++m y x m ,圆622=+y x C :,则直线l 与圆C 的位置关系一定是( )(A )相离 (B )相切 (C )相交 (D )不确定 (9)如图,网格纸上小正方形的边长为2,粗线画出的是某几何体的三视图,则该几何体的体积是( )(A )π6 (B )π7 (C )π12 (D )π14(10)如图,在三棱柱111C B A ABC -中,底面ABC 是等边三角形,1AA ⊥底面ABC ,且1,21==AA AB ,则直线1BC 与平面11A ABB 所成角的正弦值为( )(A )515 (B ) 510 (C ) 552 (D ) 55 (11)已知函数()()log 21x a f x b =+-()0,1a a >≠的图象如图所示,则,a b 满足的关系是( ) (A )1101b a --<<< (B )101b a -<<< (C )101b a -<<< (D )101a b -<<<(12)已知圆C :9)2()3(22=++-y x ,点)0,2(-A ,)2,0(B ,设点P 是圆C 上一个动点,定义:一个动点到两个定点的距离的平方和叫做“离差平方和”,记作2D ,令(A )6 (B )8 (C )12 (D )16第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.请将答案填在答题卡的相应位置)13. 已知函数(),03,0xlnx x f x x >⎧=⎨≤⎩,则1f f e ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦的值是 . 14.在如图所示的长方体1111D D C B A ABC -中,已知1B (1,0,3),D (0,2,0),则点1C 的坐标为_________________.15.长度为4的线段AB 的两个端点A 和B 分别在x 轴和y 轴上滑动,则线段AB 的中点的轨迹方程为 ________________________16.一个半径为2的实心木球加工(进行切割)成一个圆柱,那么加工后的圆柱侧面积...的最大值为____________三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本题满分10分)如图,在三棱柱ABC-A 1B 1C 1中,已知1CC ⊥底面ABC ,AC⊥BC,四边形BB 1C 1C 为正方形。

福建省福州市第一中学2023-2024学年高一上学期期末考试语文试题

福建省福州市第一中学2023-2024学年高一上学期期末考试语文试题

福州一中2023-2024学年第一学期期末考试高一语文(必修上)模块考试(试题卷)(时间150分钟满分150分)一、现代文阅读(共28分)(一)阅读以下散文,完成1—3题。

(共12分)鱼和书木心渔民的目的物是鱼,门前的沙滩上,铺晒着巨网,阳光直照,生活清闲得多了,用机动船作业,英国的渔民都这样。

东南部苏佛克郡(Suffolk),位于北海的奥尔德堡之滨,是渔民村。

行不多时,就进城了,那些神色不定的游客,见之心烦,全靠本地居民的蔼蔼晏晏,使这里显得可以小住一周。

空气似乎特别清新,夏天的傍晚……黄昏……静谧的氛围层层深去。

倘若置身酒吧,烟雾醇气弥漫,好像要快乐就得这个样子。

中国的“哈尔滨”,这个名字的意译是“晒网场”,也多渔网,也流行抽烟饮酒。

中国的北方大都吃粗粮,怎么办呢,啤酒是液体面包,反正我停不了几天。

推门,一进入便想回身——里面暗,乱,那沉甸甸的闷热更其摈人——我是退出来了。

如此三进三退,除非不欲以啤酒充饥,否则就得在第四家进而不退。

在第四家找了一张临窗的小板桌,后窗,窗外污黑的杂物堆得只露一块手掌般大的天空。

夏日正午,这酒店好比蒸笼烤箱——我也许会死在哈尔滨。

要了一公升啤酒,一碟炸青蛙,别的就只有超乎想像的烙饼,铁饼。

青蛙本来瘠小,油炸后,无肉可啃——又想走了。

除非立即离开哈尔滨,而要办的事没办完。

看别人,另一角的少妇,碗中想必是白干,轻轻端起,啜呷有声……扯点儿烙饼,孜孜咀嚼,却已咽落——确实是绝妙的示范,大意是:您也应当如此。

奇怪的是我竟徐徐顺从她的无声之谏,开始喝啤酒,啃青蛙腿——感觉自己在履行一项德行。

哈尔滨还有些灰色的楼房,屏风般列在一起,前面便是空空的黄沙地,楼房的外墙上,宛如鹰架,构着黑铁的露天扶梯,曲曲折折,好像很幸福,晾满衣裳,飘得很厉害。

半公升啤酒入肚,饥饿已止,蓦然惊喜,木窗外,堆着杂物,毕竟有空隙,风吹进来,小的,碎的凉风,也一丝丝,一阵阵,坐在这里是可以的,风这样吹我,有风这样吹,我能坐下去,喝下去,刚来时就是这样的,感觉不到罢了,幸亏听顺那女人的谏言,饿已止,汗将收尽,青蛙的腿连骨嚼就是,有威的肉味,油炸的焦香,杂物的空隙,不止一块手掌般大的蓝天,另有更小的三角、菱形、好几块蓝天,风是这样吹进来——所以我坐在苏佛克郡的酒吧中,烟雾醇气弥漫,我能比三十年前沦落哈尔滨时要老练镇定得多了,可以取代那个中国北方的少妇而为别人示范、进谏。

福州四校联盟2020-2021学年上期末联考高一数学科参考答案

福州四校联盟2020-2021学年上期末联考高一数学科参考答案

福州四校联盟2020-2021第一学期期末联考高一数学参考答案一、单项选择题1.【答案】C2.【答案】B3.【答案】A4.【答案】C【详解】设2()log 5f x x x =+−,202(2)log 252f =+−=−<,204(4)log 451f =+−=> 根据零点存在性定理可知方程2log 5x x =−的解所在的区间是()3,4.故选:C5.【答案】D6.【答案】A7、【答案】B8.【答案】C二、多项选择题9.【答案】AB10.【答案】AC11.【答案】BD12.【答案】ACD三、填空题13、【答案】32π14.【解析】命题等价于2220x mx m +++≥恒成立,故只需要()2=44201 2.m m m ∆−+≤⇒−≤≤ 15.【答案】7,12⎡⎤−⎢⎥⎣⎦16.【答案】()10,12四、解答题17.【解析】(1)由三角函数定义可知: 4tan 3α=−.4sin 5α,3cos 5α=− ………………3分cos cos sin 422101010πααα−⎛⎫+=−=−=− ⎪⎝⎭………………………………5分 (2)原式sin cos sin cos αααα+=−+tan 1tan 1αα+=−+ ………………………………8分因为4tan 3α=−,原式43431171−+==−+.…………………………………………10分 18.【解析】(1)因为 11211(1)213a f ⋅−==+ …………………………………………1分 解得1a =, …………………………………………3分所以()22log 52log 5215142log 5215163f −−====++ ………………………………………………6分 (2) 由(1)可得21()21x x f x −=+.因为函数()f x 的定义域为R ,关于原点对称……………………8分且()()21122112x x x x f x f x −−−−−===−++,所以()f x 是奇函数……………………………………12分 19.【解析】(Ⅰ)由22cos 2cos sin x x x =−与sin 22sin cos x x x =得()cos 23sin 22sin(2)6f x x x x π=−−=−+………………3分 所以()f x 的最小正周期是π;……………………………………………………4分 对称轴方程262x k k Z πππ+=+∈即32k x k Z ππ=+∈………………6分(Ⅱ)当π0,2x ⎡⎤∈⎢⎥⎣⎦时,7(2),666x πππ⎡⎤+∈⎢⎥⎣⎦………………………………8分 所以,当262x ππ+=,即6x π=时,函数()f x 取得最小值,最小值为-2 ……10分当7266x ππ+=,即2x π=时,函数()f x 取得最大值,最大值为1。

福建省福州市福清市高中联合体2020-2021学年高一上学期期末考试数学试题(含解析)

福建省福州市福清市高中联合体2020-2021学年高一上学期期末考试数学试题(含解析)

福清市高中联合体2020—12021学年第一学期高一年期末考试数学试卷(完卷时间:120分钟;满分:150分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.3.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}1,0,1,2,3A =-,{}31B x x =-<,则A B =( )A. {}3B. {}1,0,1-C.1,0,1,2D. {}1,0,1,2,3-2. 命题“0x ∀≥,sin x x ≤”的否定是( ) A. 0x ∀≥,sin x x > B. 00x ∃<,00sin x x > C. 00x ∃≥,00sin x x >D. 00x ∃≥,00sin x x ≤3. 函数()f x x =是( ) A. 奇函数,且在R 上单调递减 B. 奇函数,且在R 上单调递增 C. 偶函数,且在R 上单调递减D. 偶函数,且在R 上单调递增4. 若角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点(1,-,则sin 2α=( )A. B. 12-C.12D.25. 函数()38ln f x x x =-+的零点所在区间应是( )A. ()1,2B. ()2,3C. ()3,4D. ()4,56. 要得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 24y x π⎛⎫=-⎪⎝⎭图象上所有点的横坐标( ) A. 向左平移12π个单位长度B. 向右平移12π个单位长度C. 向左平移24π个单位长度D. 向右平移24π个单位长度7. 已知51log 4a =,1514b ⎛⎫= ⎪⎝⎭,41log 5c =,则a ,b ,c 的大小关系为( )A. a b c >>B. b c a >>C. b a c >>D. c b a >>8. 月均温全称月平均气温,气象学术语,指一月所有日气温的平均气温.某城市一年中12个月的月均温y (单位:C )与月份x (单位:月)的关系可近似地用函数()sin 36y A x a π⎡⎤=-+⎢⎥⎣⎦(1,2,3,,12x =)来表示,已知6月份的月均温为29C ,12月份的月均温为17C ,则10月份的月均温为( ) A. 20CB. 20.5CC. 21CD. 21.5C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9. 下列函数中,最小值是2的有( )A. 1y xx=+B. y =C. 223y x x =++D. e e x x y -=+10. 命题“x R ∀∈,210x ax -+≥”为真命题的一个必要不充分条件可以是( ) A. 22a -≤≤B. 2a ≥-C. 2a ≤D. 22a -<<11. 关于函数()sin cos f x x x =+有下述四个结论,其中正确的是:( ) A. ()f x 的图象关于原点对称 B. ()f x 在区间,4ππ⎛⎫⎪⎝⎭单调递减 C. ()f x 在[],ππ-有2个零点D. ()f x 的最大值为212. 已知定义在R 上的函数()f x 满足()()4f x f x +=,若()1y f x =-的图象关于直线1x =对称,且对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,则下列结论正确的是( ) A. ()f x 是偶函数B. ()f x 在()2018,2020上单调递增C. 4是函数()f x 的周期D. ()f x 在()2018,2020上单调递减第Ⅱ卷注意事项: 用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13. 已知函数()1,12,1x f x x x <⎧=⎨≥⎩则()()0f f =________.14. 已知22tan 31tan αα=--,且α为锐角,则α=________.15. 如图,Rt ABC 的三个顶点A ,B ,C 恰好分别落在函数()21xy x =>,y x =,12log y x =的图象上,且B ,C 两点关于x 轴对称,则点A 的横坐标为________.16. 已知定义在R 上的偶函数()f x ,当0x ≥时,函数()cos ,01,,1,x x f x x x π≤<⎧=⎨-≥⎩则满足()()12f x f x +<的x 的取值范围是________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 求下列各式的值: (1)(0312932224-⎛⎫--⨯ ⎪⎝⎭;(2)55251log 3log log 25log 215++⨯. 18. 已知全集U =R ,集合{}20A x x a =+>,()(){}140B x x x =+-≤. (1)当2a =时,求()UA B ;(2)若B A ⊆,求实数a 的取值范围.19. 在①1k =-,②1k =这两个条件中任选一个,补充在下面问题中. 已知函数()kf x kx x=-,且_______, (1)求()f x 的定义域,并判断()f x 的奇偶性;(2)判断()f x 的单调性,并用定义给予证明.20. 已知,2παπ⎛⎫∈ ⎪⎝⎭,且2sin cos 222αα-= (1)求cos α的值; (2)若()4sin 5αβ-=,,2πβπ⎛⎫∈ ⎪⎝⎭,求cos β的值. 21. 某儿童活动中心,为儿童修建一个面积为100平方米的矩形游泳池,为保障儿童生命安全,在其四周都留有宽2米的路面,问所选场地的长和宽各为多少时,才能使占用场地的面积S 最小,并求出该最小值? 22. 已知函数()2sin 36f x x ππ⎛⎫=+⎪⎝⎭.(1)用“五点作图法”在给定的坐标系中,画出函数()f x 在[]0,6上的图象; (2)求()f x 图象的对称轴与单调递增区间; (3)当[]0,x m ∈时,()12f x ≤≤,求实数m 取值范围.福清市高中联合体2020—12021学年第一学期高一年期末考试数学试卷(解析版)(完卷时间:120分钟;满分:150分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.3.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}1,0,1,2,3A =-,{}31B x x =-<,则A B =( )A. {}3B. {}1,0,1-C.1,0,1,2D. {}1,0,1,2,3-【答案】A 【解析】 【分析】先求得集合B ,再根据交集定义直接得结果.【详解】因为{}()312B x x =-<=+∞,,又{}1,0,1,2,3A =-,所以{}3A B ⋂=, 故选:A.2. 命题“0x ∀≥,sin x x ≤”的否定是( ) A. 0x ∀≥,sin x x > B. 00x ∃<,00sin x x > C. 00x ∃≥,00sin x x > D. 00x ∃≥,00sin x x ≤【答案】C 【解析】 【分析】由全称命题的否定变换形式即可得出结果. 【详解】命题“0x ∀≥,sin x x ≤” 的否定是00x ∃≥,00sin x x >.故选:C3. 函数()f x x =是( ) A. 奇函数,且在R 上单调递减 B. 奇函数,且在R 上单调递增 C. 偶函数,且在R 上单调递减 D. 偶函数,且在R 上单调递增【答案】B 【解析】 【分析】利用函数的奇偶性定义判断奇偶性,根据函数的解析式判断单调性. 【详解】函数的定义域为R ,关于原点对称,又()(()f x x x f x -=-+=-+=-,所以()f x是奇函数,又,y x y ==R 上的增函数,所以()f x 是R 上的增函数, 故选:B4. 若角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点(1,-,则sin 2α=( )A. B. 12-C.12D.【答案】D 【解析】 【分析】根据任意角的三角函数的定义,求出sin α和cos α,再由二倍角的正弦公式,即可求出结果.【详解】因为角α的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,终边经过点(1,-,所以sin 2α==-,1cos 2α==-,因此1sin 22sin cos 22ααα⎛⎛⎫==⨯⨯-= ⎪ ⎝⎭⎝⎭.故选:D.5. 函数()38ln f x x x =-+的零点所在区间应是( )A. ()1,2B. ()2,3C. ()3,4D. ()4,5【答案】B 【解析】 【分析】利用函数的零点存在定理求解.【详解】由函数()38ln f x x x =-+, 因为()()2ln 220,3ln310f f =-<=+>, 所以函数的零点所在区间应是()2,3 故选:B6. 要得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 24y x π⎛⎫=-⎪⎝⎭图象上所有点的横坐标( ) A. 向左平移12π个单位长度B. 向右平移12π个单位长度C. 向左平移24π个单位长度 D. 向右平移24π个单位长度【答案】D 【解析】 【分析】根据sin 2sin 23244y x x πππ⎡⎤⎛⎫⎛⎫=-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,利用平移变换求解. 【详解】因为sin 2sin 23244y x x πππ⎡⎤⎛⎫⎛⎫=-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以要得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需由sin 24y x π⎛⎫=- ⎪⎝⎭图象上所有点横坐标向右平移24π个单位长度,故选:D 7. 已知51log 4a =,1514b ⎛⎫= ⎪⎝⎭,41log 5c =,则a ,b ,c 的大小关系为( )A. a b c >>B. b c a >>C. b a c >>D. c b a >>【答案】C 【解析】 【分析】利用指数函数和对数函数的单调性判断.【详解】因为55510log log 4log 514a >==->-=-,15110144b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭, 4441log log 5log 415c ==-<-=-,所以b a c >> 故选:C8. 月均温全称月平均气温,气象学术语,指一月所有日气温的平均气温.某城市一年中12个月的月均温y (单位:C )与月份x (单位:月)的关系可近似地用函数()sin 36y A x a π⎡⎤=-+⎢⎥⎣⎦(1,2,3,,12x =)来表示,已知6月份的月均温为29C ,12月份的月均温为17C ,则10月份的月均温为( ) A. 20C B. 20.5CC. 21CD. 21.5C【答案】A 【解析】 【分析】由题意得出关于A 、a 的方程组,可得出函数解析式,在函数解析式中令10x =可得结果.【详解】由题意可得sin 2923sin 172A a A a A a a A ππ⎧+=+=⎪⎪⎨⎪+=-=⎪⎩,解得623A a =⎧⎨=⎩,所以,函数解析式为()6sin 3236y x π⎡⎤=-+⎢⎥⎣⎦, 在函数解析式中,令10x =,可得716sin236232062y π⎛⎫=+=⨯-+= ⎪⎝⎭. 因此,10月份的月均温为20C . 故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9. 下列函数中,最小值是2的有( )A. 1y xx=+B. y =C. 223y x x =++D. e e x x y -=+【答案】BCD 【解析】 【分析】根据基本不等式逐一判断即可.【详解】对于A ,1y x x =+,当0x >时,12y x x =+≥=,当且仅当1x =时取等号;当0x <时,12y x x ⎛⎫=--+≤-=- ⎪-⎝⎭, 当且仅当1x =-时取等号,故A 不正确;对于B ,2y=≥=,当且仅当1x =时取等号. 对于C ,()2223122y x x x =++=++≥,当1x =-时,取最小值;对于D ,e e 2x x y -=+≥=,当且仅当0x =时取等号; 故选:BCD【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方10. 命题“x R ∀∈,210x ax -+≥”为真命题的一个必要不充分条件可以是( ) A. 22a -≤≤ B. 2a ≥- C. 2a ≤ D. 22a -<<【答案】BC 【解析】 【分析】根据题意,命题为真可得()240a ∆=--≤,求出a 的取值范围,再根据必要不充分条件即可求解. 【详解】由命题“x R ∀∈,210x ax -+≥”为真命题,可得()240a ∆=--≤,解得22a -≤≤, 对于A ,22a -≤≤是命题为真的充要条件; 对于B ,由2a ≥-不能推出22a -≤≤,反之成立, 所以2a ≥-是命题为真的一个必要不充分条件; 对于C ,2a ≤不能推出22a -≤≤,反之成立, 所以2a ≤也是命题为真的一个必要不充分条件; 对于D ,22a -<<能推出22a -≤≤,反之不成立, 22a -<<是命题为真的一个充分不必要条件.故选:BC11. 关于函数()sin cos f x x x =+有下述四个结论,其中正确的是:( ) A. ()f x 的图象关于原点对称 B. ()f x 在区间,4ππ⎛⎫⎪⎝⎭单调递减C. ()f x在[],ππ-有2个零点 D. ()f x 的最大值为2【答案】BC 【解析】 【分析】分sin 0x ≥,sin 0x <,将函数转化(),224sin cos ,2224x k x k f x x x x k x k πππππππππ⎛⎫+≤≤+ ⎪⎝⎭=+=⎛⎫++<<+ ⎪⎝⎭,再逐项求解判断.【详解】当sin 0x ≥,即22k x k πππ≤≤+时,()sin cos 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,当sin 0x <,即222ππππ+<<+k x k 时,()sin cos 4f x x x x π⎛⎫=-+=+ ⎪⎝⎭,所以(),224sin cos ,2224x k x k f x x x x k x k πππππππππ⎛⎫+≤≤+ ⎪⎝⎭=+=⎛⎫++<<+ ⎪⎝⎭,A.因为函数定义域为R ,关于原点对称,又()()()()sin cos sin cos f x x x x x f x -=-+-=+=,所以()f x 是偶函数,其图象关于y 轴对称,故错误;B.当,4x ππ⎛⎫∈⎪⎝⎭时, 53,,42422x πππππ⎛⎫⎛⎫+∈⊆ ⎪ ⎪⎝⎭⎝⎭,因为sin y x =在3,22ππ⎡⎤⎢⎥⎣⎦上单调递减,所以()f x 在区间,4ππ⎛⎫⎪⎝⎭单调递减,故正确; C. 令()04f x x π⎛⎫=+= ⎪⎝⎭,则4x k ππ+=,因为[]0,x π∈,解得34x π=,又因为()f x 是偶函数,所以函数()f x 在[],ππ-有2个零点,故正确; D. ()f x,故错误; 故选:BC【点睛】关键点点睛:将函数变形为(),224,2224x k x k f x x k x k πππππππππ⎛⎫+≤≤+ ⎪⎝⎭=⎛⎫++<<+ ⎪⎝⎭是本题求解的关键.12. 已知定义在R 上的函数()f x 满足()()4f x f x +=,若()1y f x =-的图象关于直线1x =对称,且对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,则下列结论正确的是( ) A. ()f x 是偶函数 B. ()f x 在()2018,2020上单调递增 C. 4是函数()f x 的周期 D. ()f x 在()2018,2020上单调递减【答案】ACD 【解析】 【分析】A. 由()1y f x =-的图象与()y f x =的图象关系判断;C.由()f x 满足()()4f x f x +=判断;BD.由对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,得到()f x 在[]0,2上递增,再结合函数的周期性判断.【详解】因为()1y f x =-的图象关于直线1x =对称,所以()y f x =的图象关于直线0x =对称,所以()f x 是偶函数,故A 正确;()f x 满足()()4f x f x +=,所以4是函数()f x 的周期,故C 正确;因为对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,所以()f x 在[]0,2上递增,又()()()()20182,20200f f f f == ,所以()f x 在()2018,2020上单调递减,故D 正确B 错误; 故选:ACD第Ⅱ卷注意事项:用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效. 三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13. 已知函数()1,12,1x f x x x <⎧=⎨≥⎩则()()0f f =________.【答案】2 【解析】 【分析】根据分段函数每段的定义域求解.【详解】因为函数()1,12,1x f x x x <⎧=⎨≥⎩所以()01f =, 所以()()()012ff f ==,故答案为:214. 已知22tan 1tan αα=-α为锐角,则α=________. 【答案】3π 【解析】 【分析】根据二倍角的正切公式,求出tan2α,再由α为锐角,即可求出α.【详解】因为22tan tan 21tan ααα==-α为锐角,所以02απ<<, 因此223πα=, 所以3πα=.故答案为:3π.15. 如图,Rt ABC 的三个顶点A ,B ,C 恰好分别落在函数()21xy x =>,y x =,12log y x =的图象上,且B ,C 两点关于x 轴对称,则点A 的横坐标为________.【答案】2 【解析】 【分析】设出点(),2tA t ,根据题意可知//AB x 轴,从而可得出点B ,进而可得点C ,代入对数函数的解析式即可求解.【详解】设出点(),2tA t ,ABC 是直角三角形,且B ,C 两点关于x 轴对称,∴//AB x 轴,A 和B 纵坐标相同,2t x ∴=4t x ∴=,()4,2t t B ∴,则()4,2t t C -,C 在12log y x =的图象上,则12log 42t t=-,整理可得22t t -=-,()1t >,解得2t =. 故答案为:216. 已知定义在R 上的偶函数()f x ,当0x ≥时,函数()cos ,01,,1,x x f x x x π≤<⎧=⎨-≥⎩则满足()()12f x f x +<的x 的取值范围是________. 【答案】113-<<x【解析】 【分析】根据cos y x =和y x =-的单调性,又 cos 1π=-,得到()f x 在 [0,)+∞上递减,再根据()f x 是偶函数,将不等式()()12f x f x +<转化为()()12fx f x +<求解.【详解】当0x ≥时,函数()cos ,01,,1,x x f x x x π≤<⎧=⎨-≥⎩当01x ≤<时, 0x ππ≤<,因为 cos y x =在 []0,π上递减,所以 ()f x 在 [0,1)上递减,当1≥x 时,y x =-递减,又 cos 1π=-,所以()f x 在 [0,)+∞上递减, 又因为()f x 是定义在R 上的偶函数, 则不等式()()12f x f x +<可化为:()()12f x f x +<,所以12x x +>, 解得113-<<x , 故答案为:113-<<x四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 求下列各式的值: (1)(03129324-⎛⎫--⨯ ⎪⎝⎭;(2)55251log 3log log 25log 215++⨯. 【答案】(1)3;(2)1. 【解析】 【分析】(1)根据指数的运算性质即可求解. (2)利用对数的运算性质即可求解. 【详解】(1)原式=33=+=(2)原式51lg 25lg 2log (3)15lg 2lg5=⨯+⨯ 152lg5lg 2log 5lg 2lg5-=+⨯ 12=-+ 1=.18. 已知全集U =R ,集合{}20A x x a =+>,()(){}140B x x x =+-≤. (1)当2a =时,求()UA B ;(2)若B A ⊆,求实数a 的取值范围. 【答案】(1){}|4x x ;(2)()2,+∞. 【解析】 【分析】(1)由2a =得到{}|1A x x =>-,再利用集合的补集和并集运算求解. (2)化简|2a A x x ⎧⎫=>-⎨⎬⎩⎭,{}|14B x x=-,再由B A ⊆求解.【详解】(1)当2a =时,集合{}|1A x x =>-,{}|1UxA x -=,因为()(){}|140B x x x =+-,所以{}|14B x x=-, 所以{}()|4U A B x x=.(2)因为{}|20A x x a =+>, 所以|2a A x x ⎧⎫=>-⎨⎬⎩⎭, 由(1)知,{}|14B x x=-,又因为B A ⊆,所以12a-<-, 解得2a >,所以实数a 的取值范围()2,+∞.19. 在①1k =-,②1k =这两个条件中任选一个,补充在下面问题中. 已知函数()kf x kx x=-,且_______,(1)求()f x 的定义域,并判断()f x 的奇偶性; (2)判断()f x 的单调性,并用定义给予证明. 【答案】(1)答案见解析;(2)答案见解析. 【解析】 【分析】选择①1k =-,可得1()f x x x =-,选择②1k =,可得1()f x x x=-. (1)使函数()f x 有意义,只需0x ≠;再求出()f x -与()f x 的关系即可求解. (2)根据证明函数单调性的步骤:取值、作差、变形、定号即可证明. 【详解】选择①1k =-,因为()kf x kx x =-,所以1()f x x x=-. (1)要使函数()f x 有意义,只需0x ≠, 所以函数()f x 的定义域为(,0)(0,)-∞+∞.因为11()()()f x x x f x x x-=--=--=--, 所以()f x 为奇函数.⑵ 函数()f x 在区间(,0)-∞和(0,)+∞均为增函数. 证明如下: 12,(0,)x x ∀∈+∞,且12x x <, 则12121211()()()f x f x x x x x -=--- 121212()x x x x x x -=-+12121()1)x x x x =-+( ()121212()1x x x x x x -+=,因为120x x <<,所以120x x -<,120x x >,1210x x +>, 所以12())0(f x f x -<,即12()()f x f x <, 故函数()f x 在区间(0,)+∞为增函数; 同理可证,函数()f x 在区间(,0)-∞为增函数;所以函数()f x 在区间(,0)-∞和(0,)+∞均为增函数. 选择②1k =,因为()kf x kx x =-,所以1()f x x x=-. (1)要使函数()f x 有意义,只需0x ≠, 所以函数()f x 的定义域为(,0)(0,)-∞+∞.因为11()()()()f x x x f x x x-=--=--=--, 所以()f x 奇函数.⑵ 函数()f x 在区间(,0)-∞和(0,)+∞均为减函数. 证明如下:12,(0,)x x ∀∈+∞,且12x x <, 则12121211()()()f x f x x x x x -=--- 212112()x x x x x x -=+- 21121()1x x x x ⎛⎫=-+ ⎪⎝⎭()211212()1x x x x x x -+=,因为120x x <<,所以210x x ->,120x x >,1210x x +>, 所以12())0(f x f x ->,即12()()f x f x >, 故函数()f x 在区间(0,)+∞为减函数; 同理可证,函数()f x 在区间(,0)-∞为减函数; 所以函数()f x 在区间(,0)-∞和(0,)+∞均为减函数.20. 已知,2παπ⎛⎫∈ ⎪⎝⎭,且sin cos 222αα-=. (1)求cos α的值; (2)若()4sin 5αβ-=,,2πβπ⎛⎫∈ ⎪⎝⎭,求cos β的值. 【答案】(1);(2. 【解析】 【分析】(1)将已知条件两边平方,求得sin α的值,进而求得cos α的值.(2)先求得()cos αβ-的值,然后利用cos cos[()]βααβ=--,结合两角差的余弦公式,求得cos β的值.【详解】(1)将sincos222αα-=两边同时平方,得11sin 2α-=,则1sin 2α=,又2παπ∈(,),所以cos 2α==-.(2)由(1)知,1sin ,cos 2αα==, 因为2παπ∈(,),2βπ∈π(,),所以22ππαβ-<-<.又因为4sin()5αβ-=,所以3cos()5αβ-,所以cos cos[)]βααβ=--( cos cos()sin sin()ααβααβ=-+-314525=+⨯, 【点睛】关键点点睛:对于三角函数给值求值的问题,关键在于运用已知角的和,差,二倍的运算表示待求的角,再选择相关公式得以求值.21. 某儿童活动中心,为儿童修建一个面积为100平方米的矩形游泳池,为保障儿童生命安全,在其四周都留有宽2米的路面,问所选场地的长和宽各为多少时,才能使占用场地的面积S 最小,并求出该最小值? 【答案】长为14米,宽为14米;196平方米. 【解析】 【分析】先设泳池的长为x 米,宽为y 米,列出式子,再利用基本不等式即可求解.【详解】解:设游泳池的长为x 米,宽为y 米,则场地长为(4)x +米,宽为(4)y +米,()1000,0xy x y =>>,(4)(4)S x y =++ 4()16xy x y =+++ 100164()x y =+++ 1164()x y =++1168xy ≥+11680=+196=,当且仅当“10x y ==”时取等号.∴当10x y ==时,S 取得最小值为196平方米,此时场地长为14米,宽为14米.22. 已知函数()2sin 36f x x ππ⎛⎫=+⎪⎝⎭.(1)用“五点作图法”在给定的坐标系中,画出函数()f x 在[]0,6上的图象; (2)求()f x 图象的对称轴与单调递增区间;(3)当[]0,x m ∈时,()12f x ≤≤,求实数m 的取值范围.【答案】(1)答案见解析;(2)对称轴方程为()31x k k Z =+∈,递增区间为[]()62,61k k k -+∈Z ;(3)[1,2].【解析】 【分析】(1)由[]0,6x ∈,计算出36x ππ+的取值范围,通过列表、描点、连线,可作出函数()f x 在[]0,6上的图象; (2)解方程()362x k k Z ππππ+=+∈可得出函数()f x 的对称轴方程,解不等式()222362k x k k Z ππππππ-≤+≤+∈可得函数()f x 的单调递增区间;(3)利用(1)中的图象结合()12f x ≤≤可得出实数m 的取值范围. 【详解】(1)因为()2sin 36f x x ππ⎛⎫=+ ⎪⎝⎭,当[]0,6x ∈时,13,3666x ππππ⎡⎤+∈⎢⎥⎣⎦, 列表如下:x0 1 524112636xππ+6π2ππ32π2π136πy 1 2 0 2-0 1作图如下:(2)因为()2sin36f x xππ⎛⎫=+⎪⎝⎭,令()362x k k Zππππ+=+∈,解得()31x k k Z=+∈,令()222362k x k k Zππππππ-≤+≤+∈,解得()6261k x k k Z-≤≤+∈,所以()f x的对称轴方程为()31x k k Z=+∈,递增区间为[]()62,61k k k-+∈Z;(3)[]0,x m∈,,36636mxπππππ⎡⎤∴+∈+⎢⎥⎣⎦,又()12f x≤≤,由(1)的图象可知,12m≤≤,m∴的取值范围是[]1,2.【点睛】方法点睛:函数()()sin0y A x Aωϕω=+>>0,的图象的两种作法是五点作图法和图象变换法:(1)五点法:用“五点法”作()()sin0y A x Aωϕω=+>>0,的简图,主要是通过变量代换,设z xωϕ=+,由z取0、2π、π、32π、2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图象;(2)三角函数图象进行平移变换时注意提取x的系数,进行周期变换时,需要将x的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同.。

福州四校联盟2020-2021学年上期末联考高一数学科试卷

福州四校联盟2020-2021学年上期末联考高一数学科试卷

福州四校联盟2020-2021第一学期期末联考高一数学试卷班级 姓名 座号 成绩说明:1、本试卷分第I 、II 两卷,考试时间:120分钟 满分:150分2、Ⅰ卷的答案用2B 铅笔填涂到答题卡上;Ⅱ卷的答案用黑色签字笔填写在答题卡上。

第Ⅰ卷(选择题 共60分)一、单项选择题本题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.1. 下列集合与集合{2,3}A =相等的是( )A. {(2,3)}B. {(,})|2,3}x y x y ==C. {}2|560x x x -+=D.2{90}∈-≤x N x2. 下列函数中,是奇函数且在其定义域内单调递增的是 A. x y e =B. 3y x =C. sin y x =D. tan y x =3.设a ∈R ,则“1a >”是“2a a >”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 4. 函数2()log 5f x x x =-+的零点所在的区间是( )A. ()1,2B. ()2,3C. ()3,4D. ()4,55.为了得到函数sin(2)4y x π=-的图象,可以将函数sin 2y x =的图象( )A. 向左平移4π个单位长度 B. 向右平移4π个单位长度 C. 向左平移8π个单位长度 D. 向右平移8π个单位长度 6.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为( )A. c a b <<B. a b c <<C. b a c <<D. b c a <<7、设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=8. 基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( )A. 3.5天B. 2.5天C. 1.8天D. 1.2天二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知a ,b ,c 为非零实数,且0a b -≥,则下列结论正确的有( ) A. a c b c +≥+B. -≤-a bC. 22a b ≥D. 11a b≤10.下列函数中,最小值为2的是( )A.223y x x =++ B. 1πsin ,0,sin 2y x x x ⎛⎫=+∈ ⎪⎝⎭C. e e x x y -=+D. 1ln (01)ln y x x x x=+>≠且 11. 在ABC ∆中,下列关系恒成立的是( ) A. ()tan tan A B C +=B. ()cos 22cos2A B C +=C. sin sin 22A B C +⎛⎫=⎪⎝⎭D. sin cos 22A B C +⎛⎫=⎪⎝⎭12. 函数()()sin 0,0,0y A x A ωϕωϕπ=+>><<在一个周期内的图象如图所示,则( )A. 该函数的解析式为2π2sin 33y x ⎛⎫=+⎪⎝⎭B. 该函数的对称中心为ππ,0,3k k ⎛⎫-∈ ⎪⎝⎭Z C. 该函数的单调递增区间是5ππ3π,3π,44k k k ⎡⎤-+∈⎢⎥⎣⎦Z D. 把函数π2sin 3y x ⎛⎫=+⎪⎝⎭的图象上所有点的横坐标变为原来的32,纵坐标不变,可得到该函数图象 三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13、若圆心角为3π的扇形的弧长为π,则该扇形面积为14. 若命题“2,220x R x mx m ∀∈+++≥”为真命题,则m 的取值范围是15. 已知函数()cos (0)f x a x b a =+>的最大值为3,最小值为1,则函数(2)2()([,]3y f x f x x ππ=-∈的值域为_________.16. 已知函数()lg ,010,16,02x x f x x x ⎧≤⎪=⎨-+⎪⎩<>1若a ,b ,c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是 。

福建省福州市高一上学期数学期末考试试卷

福建省福州市高一上学期数学期末考试试卷

福建省福州市高一上学期数学期末考试试卷姓名:________班级:________成绩:________一、 选择题 (共 12 题;共 24 分)1. (2 分) (2017·延边模拟) 已知集合 A={a,4},B={2,a2},且 A∩B={4},则 A∪B=( )A . {2,4}B . {﹣2,4}C . {﹣2,2,4}D . {﹣4,2,4}2. (2 分) 定义在区间上的奇函数 f(x)为增函数,偶函数 g(x)在象重合.设 a>b>0,给出下列不等式,其中成立的是( )上图象与 f(x)的图①②③④A . ①④B . ②③C . ①③D . ②④3.(2 分)(2017 高一下·沈阳期末) 已知 2 弧度的圆心角所对的弦长为 2,则这个圆心角所对的弧长是( )A.2B.C.第 1 页 共 12 页D.4. (2 分) (2017 高一上·孝感期末) 如图,A,B 是以点 C 为圆心,R 为半径的圆上的任意两个点,且|AB|=4, 则 • =( )A . 16 B.8 C.4 D . 与 R 有关的值5. (2 分) 已知 A . ﹣2,那么 tanα 的值为( )B. C.2D.6. (2 分) 已知函数 f(x)=(m2﹣m﹣1)x 的值为( )是幂函数,且当 x∈(0,+∞)时,f(x)是增加的,则 mA . ﹣1B.2C . ﹣1 或 2D.37. (2 分) (2017·舒城模拟) 设函数 f(x)=x3+3x2+6x+14 且 f(a)=1,f(b)=19.则 a+b=( )A.2第 2 页 共 12 页B.1 C.0 D . ﹣28. (2 分) 定义行列式运算:=a1a4﹣a2a3 , 函数 f(x)=图象,只需将 y=2cos2x 的图象( )A . 向左平移 个单位B . 向左平移 个单位C . 向右平移 个单位 D . 向右平移 个单位, 则要得到函数 f(x)的9. (2 分) (2018 高一上·湘东月考) 已知函数,函数数恰好有 2 个不同的零点,则实数 的取值范围是 ( )A.B.C. D..若函10. (2 分) 设 f(x)= A . -12 B . ±3, 若 f(x)=9,则 x=( )第 3 页 共 12 页C . ﹣12 或±3 D . ﹣12 或 3 11. (2 分) sin(﹣600°)的值是( ) A. B.-C.D.12. (2 分) 下列各式正确的是( ) A . | • |=| || |B . ( • )2= •C . 若 ⊥( ﹣ )则 • = • D.若 • = • 则 =二、 填空题 (共 4 题;共 4 分)13. (1 分) 已知向量 于________.=(2,1), =(2,﹣3),且(k ﹣ )∥(+3 ),则实数 k 等14. (1 分) (2019 高一上·平罗期中) 已知 ________.的定义域为,则函数的定义域为15. (1 分) 振动量的初相和频率分别为和 ,则它的相位是________.16. (1 分) 函数 f(x)=|x2﹣2x+ |﹣ x+1 的零点个数为________三、 解答题 (共 6 题;共 60 分)17. (10 分) (2017 高一下·晋中期末) 已知向量第 4 页 共 12 页,函数. (1) 求函数 f(x)的单调递减区间;(2) 若,且 α 为第一象限角,求 cosα 的值.18. (10 分) 已知 tanα=2,求下列各式的值.(1);(2) 4sin2α﹣3sinαcosα﹣5cos2α.19. (5 分) (2017 高二下·高淳期末) 锐角△ABC 中,角 A、B、C 所对的边分别为 a、b、c,且 tanA﹣tanB=(1+tanAtanB). (Ⅰ)若 c2=a2+b2﹣ab,求角 A、B、C 的大小;(Ⅱ)已知向量 =(sinA,cosA), =(cosB,sinB),求|3 ﹣2 |的取值范围.20. (10 分) (2020 高二上·徐州期末) 近年来,某企业每年消耗电费约 24 万元,为了节能减排,决定安装 一个可使用 15 年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的 面积(单位:平方米)成正比,比例系数约为 0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假 设在此模式下,安装后该企业每年消耗的电费 C(单位:万元)与安装的这种太阳能电池板的面积 x(单位:平方米)之间的函数关系是 将消耗的电费之和.k 为常数).记 F 为该村安装这种太阳能供电设备的费用与该村 15 年共(1) 试解释的实际意义,并建立 F 关于 x 的函数关系式;(2) 当 x 为多少平方米时,F 取得最小值?最小值是多少万元?21. (10 分) (2016 高一上·温州期末) 已知函数,(a 为常数且 a>0).(1) 若函数的定义域为,值域为,求 a 的值;(2) 在(1)的条件下,定义区间(m,n),[m,n],(m,n],[m,n)的长度为 n﹣m,其中 n>m,若不等式f(x)+b>0,x∈[0,π]的解集构成的各区间的长度和超过 ,求 b 的取值范围.第 5 页 共 12 页22. (15 分) (2017 高一下·苏州期末) 已知函数 f(x)=x|x﹣a|+2x(a∈R) (1) 当 a=4 时,解不等式 f(x)≥8; (2) 当 a∈[0,4]时,求 f(x)在区间[3,4]上的最小值; (3) 若存在 a∈[0,4],使得关于 x 的方程 f(x)=tf(a)有 3 个不相等的实数根,求实数 t 的取值范围.第 6 页 共 12 页一、 选择题 (共 12 题;共 24 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8、答案:略 9-1、 10-1、 11-1、 12-1、二、 填空题 (共 4 题;共 4 分)13-1、 14-1、 15-1、参考答案第 7 页 共 12 页16-1、三、 解答题 (共 6 题;共 60 分)17-1、17-2、 18-1、 18-2、第 8 页 共 12 页19-1、20-1、第 9 页 共 12 页20-2、21-1、 21-2、第 10 页 共 12 页22-1、22-2、22-3、。

福建省福州市第一中学2020-2021学年高一上学期期末数学试题 答案和解析

福建省福州市第一中学2020-2021学年高一上学期期末数学试题 答案和解析

福建省福州市第一中学【最新】高一上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知角α的终边与单位圆的交点为P ⎛ ⎝⎭,则sin cos αα-=( )A .BC .5D . 2.一钟表的秒针长12cm ,经过25s ,秒针的端点所走的路线长为( ) A .10cmB .14cmC .10cm πD .14cm π3.函数cos 23y x π⎛⎫=-⎪⎝⎭的单调递减区间是( ) A .()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()27,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z 4.已知平面直角坐标系中,ABC ∆的顶点坐标分别为()4,6A 、()2,1B -、()4,1C -,G 为ABC ∆所在平面内的一点,且满足()13AG AB AC =+,则G 点的坐标为( ) A .()2,2B .()1,2C .()2,1D .()2,45.sin4,4cos ,tan4的大小关系是( ) A .sin4tan4cos4<< B .tan4sin4cos4<< C .cos4sin4tan4<<D .sin4cos4tan4<<6.将函数sin 2y x =的图象向左平移()0ϕϕ>个单位长度,再向下平移1个单位长度,得到函数22sin y x =-的图象,那么ϕ可以取的值为( )A .6πB .4π C .3π D .2π 7.已知定义在R 上的奇函数()f x 满足()()0f x f x π++=,且当()0,x π∈时,()sin f x x =,则233f π⎛⎫=⎪⎝⎭( )A .12-B .12C . D二、多选题8.下列关于函数()tan 24f x x π⎛⎫=+⎪⎝⎭的相关性质的命题,正确的有( ) A .()f x 的定义域是,82k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭B .()f x 的最小正周期是πC .()f x 的单调递增区间是()3,2828k k k Z ππππ⎛⎫-+∈⎪⎝⎭ D .()f x 的对称中心是(),028k k Z ππ⎛⎫-∈⎪⎝⎭ 9.ABC ∆是边长为3的等边三角形,已知向量a 、b 满足3AB a =,3AC a b =+,则下列结论中正确的有( ) A .a 为单位向量 B .//b BC C .a b⊥D .()6a b BC +⊥10.以下函数在区间0,2π⎛⎫⎪⎝⎭上为单调增函数的有( )A .sin cos y x x =+B .sin cos y x x =-C .sin cos y x x =D .sin cos xy x=11.下列命题中,正确的有( )A .向量AB 与CD 是共线向量,则点A 、B 、C 、D 必在同一条直线上 B .若sin tan 0αα⋅>且cos tan 0αα⋅<,则角2α为第二或第四象限角 C .函数1cos 2y x =+是周期函数,最小正周期是2π D .ABC ∆中,若tan tan 1A B ⋅<,则ABC ∆为钝角三角形三、填空题12.已知()()sin 2cos 0παπα-++=,则1sin cos αα=________.13.已知tan 2α=,()tan αβ+=tan β=_________. 14.已知非零向量a 、b 满足2a =,24a b -=,a 在b 方向上的投影为1,则()2b a b ⋅+=_______.四、双空题15.已知O 为ABC ∆的外心,6AB =,10AC =,AO x AB y AC =+,且263x y +=;当0x =时,cos BAC ∠=______;当0x ≠时,cos BAC ∠=_______.五、解答题16.在平面直角坐标系中,已知()1,2a =-,()3,4b =.(Ⅰ)若()()3//a b a kb -+,求实数k 的值;(Ⅱ)若()a tb b -⊥,求实数t 的值.17.已知函数2sin 23y x π⎛⎫=+⎪⎝⎭.(Ⅰ)用“五点法”作出该函数在一个周期内的图象简图;(Ⅱ)请描述如何由函数sin y x =的图象通过变换得到2sin 23y x π⎛⎫=+⎪⎝⎭的图象. 18.某实验室一天的温度(单位:C )随时间t (单位:h )的变化近似满足函数关系:()16cos1212f t t t ππ=-,[)0,24t ∈.(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于17C ,则在哪个时间段实验室需要降温? 19.已知函数()()2sin 10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭,()f x 图象上两相邻对称轴之间的距离为2π;_______________; (Ⅰ)在①()f x 的一条对称轴3x π=-;②()f x 的一个对称中心5,112π⎛⎫⎪⎝⎭;③()f x 的图象经过点5,06π⎛⎫⎪⎝⎭这三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;(Ⅱ)若动直线[]()0,x t t π=∈与()f x 和()cos g x x x =的图象分别交于P 、Q 两点,求线段PQ 长度的最大值及此时t 的值.注:如果选择多个条件分别解答,按第一个解答计分.20.在等腰梯形ABCD 中,已知//AB DC ,4AB =,2BC =,60ABC ∠=,动点E 和F 分别在线段BC 和DC 上(含端点),且BE mBC =,DF nDC =且(m 、n 为常数),设AB a =,BC b =.(Ⅰ)试用a 、b 表示AE 和AF ; (Ⅱ)若1m n +=,求AE AF ⋅的最小值. 21.已知函数()()()()22f x x m x m R =-+∈.(Ⅰ)对任意的实数α,恒有()sin 10f α-≤成立,求实数m 的取值范围; (Ⅱ)在(Ⅰ)的条件下,当实数m 取最小值时,讨论函数()()2cos 15F x f x a =+-在[)0,2x π∈时的零点个数.参考答案1.A 【解析】 【分析】利用三角函数的定义得出sin α和cos α的值,由此可计算出sin cos αα-的值. 【详解】由三角函数的定义得cos α=,sin α=,因此,sin cos αα-=故选:A. 【点睛】本题考查三角函数的定义,考查计算能力,属于基础题. 2.C 【分析】计算出秒针的端点旋转所形成的扇形的圆心角的弧度数,然后利用扇形的弧长公式可计算出答案. 【详解】秒针的端点旋转所形成的扇形的圆心角的弧度数为2552606ππ⨯=, 因此,秒针的端点所走的路线长()512106cm ππ⨯=. 故选:C. 【点睛】本题考查扇形弧长的计算,计算时应将扇形的圆心角化为弧度数,考查计算能力,属于基础题. 3.D 【分析】解不等式()2223k x k k Z ππππ≤-≤+∈,即可得出函数cos 23y x π⎛⎫=- ⎪⎝⎭的单调递减区间. 【详解】解不等式()2223k x k k Z ππππ≤-≤+∈,得()263k x k k Z ππππ+≤≤+∈,因此,函数cos 23y x π⎛⎫=- ⎪⎝⎭的单调递减区间为()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . 故选:D. 【点睛】本题考查余弦型函数单调区间的求解,考查计算能力,属于基础题. 4.A 【分析】设点G 的坐标为(),x y ,根据向量的坐标运算得出关于x 、y 的方程组,解出这两个未知数,可得出点G 的坐标. 【详解】设点G 的坐标为(),x y ,()6,5AB =--,()0,7AC =-,()4,6AG x y =--,()()()1160,572,433AG AB AC =+=-+--=--,即4264x y -=-⎧⎨-=-⎩,解得22x y =⎧⎨=⎩,因此,点G 的坐标为()2,2. 故选:A. 【点睛】本题考查向量的坐标运算,考查计算能力,属于基础题. 5.D 【分析】作出4弧度角的正弦线、余弦线和正切线,利用三角函数线来得出sin4、4cos 、tan4的大小关系. 【详解】作出4弧度角的正弦线、余弦线和正切线如下图所示,则sin MP α=,cos OM α=,tan AT α=,其中虚线表示的是角54π的终边, 544π>,则0MP OM AT <<<,即sin4cos4tan4<<. 故选:D.【点睛】本题考查同角三角函数值的大小比较,一般利用三角函数线来比较,考查数形结合思想的应用,属于基础题. 6.B 【分析】写出平移变换后的函数解析式,将函数22sin y x =-的解析式利用二倍角公式降幂,化为正弦型函数,进而可得出ϕ的表达式,利用赋特殊值可得出结果. 【详解】将函数sin 2y x =的图象向左平移()0ϕϕ>个单位长度,再向下平移1个单位长度,所得图象对应的函数的解析式为()sin 221y x ϕ=+-,22sin cos 21sin 212y x x x π⎛⎫=-=-=+- ⎪⎝⎭,()222k k Z πϕπ∴=+∈,解得()4k k Z πϕπ=+∈,当0k =时,4πϕ=.故选:B. 【点睛】本题考查利用三角函数图象变换求参数,解题的关键就是结合图象变换求出变换后所得函数的解析式,考查计算能力,属于中等题. 7.C 【分析】先推导出函数()y f x =的周期为2π,可得出2333f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,然后利用函数()y f x =的奇偶性结合函数的解析式可计算出结果.【详解】函数()y f x =是R 上的奇函数,且()()0f x f x π++=,()()f x f x π∴+=-,()()()2f x f x f x ππ∴+=-+=,所以,函数()y f x =的周期为2π,则23sin 33332f f f ππππ⎛⎫⎛⎫⎛⎫=-=-=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:C. 【点睛】本题考查利用函数的奇偶性和周期求函数值,解题的关键就是推导出函数的周期,考查计算能力,属于中等题. 8.AC 【分析】分别求出函数()y f x =的定义域、最小正周期、单调递增区间和对称中心坐标,即可判断出四个选项的正误. 【详解】对于A 选项,令()242x k k Z πππ+≠+∈,解得()28k x k Z ππ≠+∈, 则函数()y f x =的定义域是,82k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,A 选项正确; 对于B 选项,函数()y f x =的最小正周期为2π,B 选项错误; 对于C 选项,令()2242k x k k Z πππππ-<+<+∈,解得()32828k k x k Z ππππ-<<+∈, 则函数()y f x =的单调递增区间是()3,2828k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,C 选项正确; 对于D 选项,令()242k x k Z ππ+=∈,解得()48k x k Z ππ=-∈, 则函数()y f x =的对称中心为(),048k k Z ππ⎛⎫-∈ ⎪⎝⎭,D 选项错误. 故选:AC. 【点睛】本题考查正切型函数的基本性质,考查计算能力,属于基础题. 9.ABD 【分析】求出a 可判断A 选项的正误;利用向量的减法法则求出b ,利用共线向量的基本定理可判断B 选项的正误;计算出a b ⋅,可判断C 选项的正误;计算出()6a b BC +⋅,可判断D 选项的正误.综合可得出结论. 【详解】 对于A 选项,3AB a =,13a AB ∴=,则113a AB ==,A 选项正确; 对于B 选项,3AC a b AB b =+=+,b AC AB BC ∴=-=,//b BC ∴,B 选项正确;对于C 选项,21123cos 0333a b AB BC π⋅=⋅=⨯⨯≠,所以a 与b 不垂直,C 选项错误; 对于D 选项,()()()2260a b BC AB AC AC AB AC AB +⋅=+⋅-=-=,所以,()6a b BC +⊥,D 选项正确.故选:ABD. 【点睛】本题考查向量有关命题真假的判断,涉及单位向量、共线向量的概念的理解以及垂直向量的判断,考查推理能力,属于中等题. 10.BD 【分析】先利用辅助角、二倍角以及同角三角函数的商数关系化简各选项中的函数解析式,然后利用正弦函数和正切函数的单调性判断各选项中函数在区间0,2π⎛⎫⎪⎝⎭上的单调性,由此可得出结论. 【详解】对于A 选项,sin cos 4y x x x π⎛⎫=+=+ ⎪⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,3,444x πππ⎛⎫+∈ ⎪⎝⎭, 所以,函数sin cos y x x =+在区间0,2π⎛⎫⎪⎝⎭上不单调;对于B 选项,sin cos 4y x x x π⎛⎫=-=- ⎪⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,,444x πππ⎛⎫-∈- ⎪⎝⎭,所以,函数sin cos y x x =-在区间0,2π⎛⎫⎪⎝⎭上单调递增; 对于C 选项,1sin cos sin 22y x x x ==,当0,2x π⎛⎫∈ ⎪⎝⎭时,()20,x π∈, 所以,函数sin cos y x x =在区间0,2π⎛⎫⎪⎝⎭上不单调; 对于D 选项,当0,2x π⎛⎫∈ ⎪⎝⎭时,sin tan cos x y x x ==,所以,函数sin cos x y x =在区间0,2π⎛⎫⎪⎝⎭上单调递增. 故选:BD. 【点睛】本题考查三角函数单调性的判断,解题的关键就是将三角函数解析式化简,并利用正弦、余弦和正切函数的单调性进行判断,考查推理能力,属于中等题. 11.BCD 【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角α的终边的位置,然后利用等分象限法可判断出角2α的终边的位置,进而判断B 选项的正误;利用图象法求出函数1cos 2y x =+的最小正周期,可判断C 选项的正误;利用切化弦思想化简不等式tan tan 1A B ⋅<得出cos cos cos 0A B C <,进而可判断出选项D 的正误.综合可得出结论.【详解】对于A 选项,向量AB 与CD 共线,则//AB CD 或点A 、B 、C 、D 在同一条直线上,A 选项错误;对于B 选项,2sin sin tan 0cos αααα⋅=>,cos tan sin 0ααα⋅=<,所以sin 0cos 0αα<⎧⎨>⎩, 则角α为第四象限角,如下图所示:则2α为第二或第四象限角,B 选项正确; 对于C 选项,作出函数1cos 2y x =+的图象如下图所示:由图象可知,函数1cos 2y x =+是周期函数,且最小正周期为2π,C 选项正确; 对于D 选项,tan tan 1A B <,()()cos cos sin sin cos cos sin sin 1tan tan 1cos cos cos cos cos cos cos cos A B C A B A B A B A B A B A B A B A Bπ+--∴-=-===cos 0cos cos CA B=->,cos cos cos 0A B C ∴<,对于任意三角形,必有两个角为锐角,则ABC ∆的三个内角余弦值必有一个为负数, 则ABC ∆为钝角三角形,D 选项正确. 故选:BCD. 【点睛】本题考查三角函数、三角恒等变换与向量相关命题真假的判断,考查共线向量的定义、角的终边位置、三角函数的周期以及三角形形状的判断,考查推理能力,属于中等题. 12.52【分析】利用诱导公式化简等式()()sin 2cos 0παπα-++=,可求出tan α的值,将所求分式变形为221sin cos sin cos sin cos αααααα+=,在所得分式的分子和分母中同时除以2cos α,将所求分式转化为只含tan α的代数式,代值计算即可. 【详解】()()sin 2cos 0παπα-++=,sin 2cos 0αα∴-=,tan 2α∴=,因此,22221sin cos tan 1215sin cos sin cos tan 22αααααααα+++====.故答案为:52. 【点睛】本题考查利用诱导公式和弦化切思想求值,解题的关键就是求出tan α的值,考查计算能力,属于基础题. 13.4【分析】利用两角差的正切公式可计算出()tan tan βαβα=+-⎡⎤⎣⎦的值. 【详解】由两角差的正切公式得()()()tan tan tan tan 1tan tan αβαβαβααβα+-=+-==⎡⎤⎣⎦++=. 【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.14.18 【分析】利用向量数量积的几何意义得出2a b ⋅=,在等式24a b -=两边平方可求出b 的值,然后利用平面向量数量积的运算律可计算出()2b a b ⋅+的值. 【详解】2a =,a 在b 方向上的投影为1,212a b ⋅=⨯=,24a b -=,222222216244444242a b a a b b a a b b b =-=-⋅+=-⋅+=⨯-⨯+,可得22b =,因此,()22222818b a b a b b ⋅+=⋅+=+⨯=. 故答案为:18. 【点睛】本题考查平面向量数量积的计算,涉及利用向量的模求数量积,同时也考查了向量数量积几何意义的应用,考查计算能力,属于基础题. 15.35 59【分析】(1)由0x =可得出O 为AC 的中点,可知AC 为ABC ∆外接圆的直径,利用锐角三角函数的定义可求出cos BAC ∠;(2)推导出外心的数量积性质212AO AB AB ⋅=,212AO AC AC ⋅=,由题意得出关于x 、y 和AB AC ⋅的方程组,求出AB AC ⋅的值,再利用向量夹角的余弦公式可求出cos BAC ∠的值. 【详解】当0x =时,由263x y +=可得12y =,12AO xAB y AC AC ∴=+=, 所以,AC 为ABC ∆外接圆的直径,则2ABC π∠=,此时3cos 5AB BAC AC ∠==; 如下图所示:取AB 的中点D ,连接OD ,则⊥OD AB ,所0DO AB ⋅=,()212AO AB AD DO AB AD AB AB ∴⋅=+⋅=⋅=,同理可得212AO AC AC ⋅=. 所以,()()221212263AO AB xAB y AC AB AB AO AC xAB y AC AC AC x y ⎧⋅=+⋅=⎪⎪⎪⋅=+⋅=⎨⎪+=⎪⎪⎩,整理得361810050263x y AB AC xAB AC y x y ⎧+⋅=⎪⋅+=⎨⎪+=⎩,解得356x =,2756y =,1003AB AC ⋅=,因此,5cos 9AB AC BAC AB AC ⋅∠==⋅. 故答案为:35;59. 【点睛】本题考查三角的外心的向量数量积性质的应用,解题的关键就是推导出212AO AB AB ⋅=,212AO AC AC ⋅=,并以此建立方程组求解,计算量大,属于难题.16.(Ⅰ)13-;(Ⅱ)15-.【分析】(Ⅰ)求出向量3a b -和a kb +的坐标,然后利用共线向量的坐标表示得出关于k 的方程,解出即可;(Ⅱ)由()a tb b -⊥得出()0a tb b -⋅=,利用向量数量积的坐标运算可得出关于实数t 的方程,解出即可. 【详解】 (Ⅰ)()1,2a =-,()3,4b =,()()()331,23,40,10a b ∴-=--=-,()()()1,23,431,42a kb k k k +=-+=+-,()()3//a b a kb -+,()10310k ∴-+=,解得13k =-; (Ⅱ)()()()1,23,413,24a tb t t t -=--=---,()a tb b -⊥,()()()3134242550a tb b t t t ∴-⋅=⨯-+⨯--=--=,解得15t =-. 【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.17.(Ⅰ)图象见解析;(Ⅱ)答案不唯一,见解析. 【分析】 (Ⅰ)分别令23x π+取0、2π、π、32π、2π,列表、描点、连线可作出函数2sin 23y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图象简图;(Ⅱ)根据三角函数图象的变换原则可得出函数sin y x =的图象通过变换得到2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象的变换过程.【详解】(Ⅰ)列表如下:函数2sin 23y x π⎛⎫=+⎪⎝⎭在一个周期内的图象简图如下图所示:(Ⅱ)总共有6种变换方式,如下所示: 方法一:先将函数sin y x =的图象向左平移3π个单位,将所得图象上每个点的横坐标缩短为原来的12倍,再将所得图象上每个点的纵坐标伸长为原来的2倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法二:先将函数sin y x =的图象向左平移3π个单位,将所得图象上每个点的纵坐标伸长为原来的2倍,再将所得图象上每个点的横坐标缩短为原来的12倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法三:先将函数sin y x =的图象上每个点的横坐标缩短为原来的12倍,将所得图象向左平移6π个单位,再将所得图象上每个点的纵坐标伸长为原来的2倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法四:先将函数sin y x =的图象上每个点的横坐标缩短为原来的12倍,将所得图象上每个点的纵坐标伸长为原来的2倍,再将所得图象向左平移6π个单位,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法五:先将函数sin y x =的图象上每个点的纵坐标伸长为原来的2倍,将所得图象上每个点的横坐标缩短为原来的12倍,再将所得图象向左平移6π个单位,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法六:先将函数sin y x =的图象上每个点的纵坐标伸长为原来的2倍,将所得图象向左平移3π个单位,再将所得图象上每个点的横坐标缩短为原来的12倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象.【点睛】本题考查利用五点作图法作出正弦型函数在一个周期内的简图,同时也考查了三角函数图象变换,考查推理能力,属于基础题.18.(Ⅰ)4C ;(Ⅱ)从中午12点到晚上20点. 【分析】(Ⅰ)利用辅助角公式化简函数()y f t =的解析式为()162sin 126f t t ππ⎛⎫=-+ ⎪⎝⎭,由此可得出实验室这一天的最大温差; (Ⅱ)由[)0,24t ∈,得出13,12666t ππππ⎡⎫+∈⎪⎢⎣⎭,令()17f t >,得到1sin 1262t ππ⎛⎫+<- ⎪⎝⎭,解此不等式即可得出结论. 【详解】(Ⅰ)()16cos162sin 1261212f t t t t ππππ⎛⎫+ ⎪-=-⎝=-⎭,[)0,24t ∈. 因此,实验室这一天的最大温差为4C ; (Ⅱ)当[)0,24t ∈时,13,12666t ππππ⎡⎫+∈⎪⎢⎣⎭, 令()162sin 17126f t t ππ⎛⎫=-+> ⎪⎝⎭,得1sin 1262t ππ⎛⎫+<- ⎪⎝⎭,所以71161266t ππππ<+<,解得1220t <<,因此,实验室从中午12点到晚上20点需要降温. 【点睛】本题考查三角函数模型在生活中的应用,涉及正弦不等式的求解,考查运算求解能力,属于中等题.19.(Ⅰ)选①或②或③,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭;(Ⅱ)当0t =或t π=时,线段PQ 的长取到最大值2. 【分析】(Ⅰ)先根据题中信息求出函数()y f x =的最小正周期,进而得出2ω=. 选①,根据题意得出()232k k Z ππϕπ-+=+∈,结合ϕ的取值范围可求出ϕ的值,进而得出函数()y f x =的解析式; 选②,根据题意得出()56k k Z πϕπ+=∈,结合ϕ的取值范围可求出ϕ的值,进而得出函数()y f x =的解析式; 选③,根据题意得出51sin 32πϕ⎛⎫+=-⎪⎝⎭,结合ϕ的取值范围可求出ϕ的值,进而得出函数()y f x =的解析式;(Ⅱ)令()()()h x f x g x =-,利用三角恒等变换思想化简函数()y h x =的解析式,利用正弦型函数的基本性质求出()h t 在[]0,t π∈上的最大值和最小值,由此可求得线段PQ 长度的最大值及此时t 的值. 【详解】(Ⅰ)由于函数()y f x =图象上两相邻对称轴之间的距离为2π,则该函数的最小正周期为22T ππ=⨯=,222T ππωπ∴===,此时()()2sin 21f x x ϕ=++. 若选①,则函数()y f x =的一条对称轴3x π=-,则()232k k Z ππϕπ-+=+∈,得()76k k Z πϕπ=+∈,22ππϕ-<<,当1k =-时,6π=ϕ,此时,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭; 若选②,则函数()y f x =的一个对称中心5,112π⎛⎫⎪⎝⎭,则()56k k Z πϕπ+=∈, 得()56k k Z πϕπ=-∈,22ππϕ-<<,当1k =时,6π=ϕ, 此时,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭;若选③,则函数()y f x =的图象过点5,06π⎛⎫⎪⎝⎭,则552sin 1063f ππϕ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭,得51sin 32πϕ⎛⎫+=- ⎪⎝⎭,22ππϕ-<<,7513636πππϕ∴<+<, 51136ππϕ∴+=,解得6π=ϕ,此时,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭.综上所述,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭;(Ⅱ)令()()()2sin 21cos 6h x f x g x x x x π⎛⎫=-=++- ⎪⎝⎭122cos 212cos 21022x x x x ⎛⎫=++=+≥ ⎪ ⎪⎝⎭,()cos21PQ h t t ∴==+, []0,t π∈,[]20,2t π∴∈,当20t =或22t π=时,即当0t =或t π=时,线段PQ 的长取到最大值2. 【点睛】本题考查利用三角函数的基本性质求解析式,同时也考查了余弦型三角函数在区间上最值的计算,考查计算能力,属于中等题. 20.(Ⅰ)AE a mb =+,12n AF a b +=+;(Ⅱ)6. 【分析】(Ⅰ)过点D 作//DM BC ,交AB 于点M ,证明出2AM BM CD ===,从而得出2AB CD =,然后利用向量加法的三角形法则可将AE 和AF 用a 、b 表示;(Ⅱ)计算出2a 、a b ⋅和2b 的值,由1m n +=得出1n m =-,且有01m ≤≤,然后利用向量数量积的运算律将AE AF ⋅表示为以m 为自变量的二次函数,利用二次函数的基本性质可求出AE AF ⋅的最小值. 【详解】(Ⅰ)如下图所示,过点D 作//DM BC ,交AB 于点M ,由于ABCD 为等腰梯形,则2AD BC ==,且60BAD ABC ∠=∠=,//AB DC ,即//CD BM ,又//DM BC ,所以,四边形BCDM 为平行四边形,则2DM BC AD ===,所以,ADM ∆为等边三角形,且2AM =,2CD BM AB AM ∴==-=,2AB CD ∴=, AE AB BE AB mBC a mb =+=+=+,()()111122n AF AB BC CF AB BC n CD a b n a a b +=++=++-=+--=+; (Ⅱ)2216a AB ==,1cos1204242a b AB BC ⎛⎫⋅=⋅=⨯⨯-=- ⎪⎝⎭,224b BC ==, 由题意可知,01m ≤≤,由1m n +=得出1n m =-, 所以,1112222n m mAF a b a b a b +-+-=+=+=+, ()()22222222m m m m AE AF a mb a b a a b a b mb---⎛⎫∴⋅=+⋅+=+⋅+⋅+ ⎪⎝⎭()222812224m m m =-+=-+,令()()2224f m m =-+,则函数()y f m =在区间[]0,1上单调递减,所以,()()min 16f m f ==,因此,AE AF ⋅的最小值为6. 【点睛】本题考查利用基底表示向量,同时也考查了平面向量数量积最值的计算,考查运算求解能力,属于中等题.21.(Ⅰ)[)0,+∞;(Ⅱ)见解析.【分析】(Ⅰ)由[]sin 12,0α-∈-可知,区间[]2,0-是不等式()0f x ≤解集的子集,由此可得出实数m 的不等式,解出即可;(Ⅱ)由题意可知,0m =,则()224f x x x =+,令()0F x =,可得出()152cos a f x -=,令[]2cos 2,2t x =∈-,对实数a 的取值范围进行分类讨论,先讨论方程()15a f t -=的根的个数及根的范围,进而得出方程2cos t x =的根个数,由此可得出结论.【详解】(Ⅰ)1sin 1α-≤≤,2sin 10α∴-≤-≤,对任意的实数α,恒有()sin 10f α-≤成立,则区间[]2,0-是不等式()0f x ≤解集的子集,02m ∴≥,解得0m ≥, 因此,实数m 的取值范围是[)0,+∞;(Ⅱ)0m ≥,由题意可知,0m =,()()22224f x x x x x =+=+, 令()0F x =,得()152cos a f x -=,令[]2cos 2,2t x =∈-,则()15a f t -=,作出函数15y a =-和函数()y f t =在[]2,2t ∈-时的图象如下图所示:作出函数2cos t x =在[)0,2x π∈时的图象如下图所示:①当152a -<-或1516a ->时,即当1a <-或17a >时,方程()15a f t -=无实根, 此时,函数()y F x =无零点;②当152a -=-时,即当17a =时,方程()15a f t -=的根为1t =-,而方程2cos 1x =-在区间[)0,2π上有两个实根,此时,函数()y F x =有两个零点; ③当2150a -<-<时,即当1517a <<时,方程()15a f t -=有两根1t 、2t ,且()12,1t ∈--,()21,0t ∈-,方程12cos x t =在区间[)0,2π上有两个实根,方程22cos x t =在区间[)0,2π上有两个实根,此时,函数()y F x =有四个零点;④当150a -=时,即当15a =时,方程()15a f t -=有两根分别为2-、0,方程2cos 2x =-在区间[)0,2π上只有一个实根,方程2cos 0x =在区间[)0,2π上有两个实根,此时,函数()y F x =有三个零点;⑤当01516a <-<时,即当115a -<<时,方程()15a f t -=只有一个实根1t ,且()10,2t ∈,方程12cos x t =在区间[)0,2π上有两个实根,此时,函数()y F x =有两个零点; ⑥当1516a -=时,即当1a =-时,方程()15a f t -=只有一个实根2,方程2cos 2x =在区间[)0,2π上只有一个实根,此时,函数()y F x =只有一个零点. 综上所述,当1a <-或17a >时,函数()y F x =无零点;当1a =-时,函数()y F x =只有一个零点;当115a -<<或17a =时,函数()y F x =有两个零点;当15a =时,函数()y F x =有三个零点;当1517a <<时,函数()y F x =有四个零点.【点睛】本题考查利用二次不等式求参数,同时也考查了复合型二次函数的零点个数的分类讨论,解题时要将函数分解为内层函数和外层函数来分析,考查数形结合思想与分类讨论思想的应用,属于难题.。

2020-2021学年高一上学期期末考试数学卷及答案

2020-2021学年高一上学期期末考试数学卷及答案

2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。

答案:A={(-∞,1]}。

B={2}。

A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。

答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。

3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。

答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。

答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。

答案:选项A是正确的。

因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。

6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。

答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。

根据题意,πrl=6π,所以l=6/r。

而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。

将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。

我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。

答案:点P的坐标为(1,2)。

因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。

福建省福州第一中学2020-2021学年下学期高一数学期末试题

福建省福州第一中学2020-2021学年下学期高一数学期末试题
13.
【分析】
将原评分按照从小到大的顺序排列,再根据第60百分位数的要求,即可求出结果.
【详解】
将原评分按照从小到大的顺序排列77、77、78、79、80、80、83、84、85、85
则评分的第60百分位数是 .
故答案为: .
14.72
【分析】
设出球的半径,求出球的体积和表面积,利用相等关系求出球的半径,利用此球的内接正方体的体对角线为球的直径,求得正方体的边长,从而求得其表面积.
D中,由 , 知, 或 ,而 ,故 ,即选项D正确.
故选:AD.
10.ABC
【分析】
根据相互独立事件的概率乘法公式结合对立事件的概率求解即可.
【详解】
目标甲、乙、丙三人都没有击中目标的概率,故目标未被击中的概率是 ,故A正确;
目标恰好被命中一次的概率为 ,故B正确;
目标恰好被命中两次的概率为 ,故C正确;
所以圆台的体积 .
故选:C.
3.A
【分析】
分别利用独立事件概率的乘法公式求解即可.
【详解】
从三个白球和一个黑球中任意抽取两球,采用有放回简单随机抽样抽到的两球都是白球的概率是 ;
从三个白球和一个黑球中任意抽取两球,采用不放回简单随机抽样,抽到的两球都是白球的概率是 .
故选:A.
4.D
【分析】
利用诱导公式以及二倍角的正弦余弦公式化简即可.
【详解】
设圆锥的底面圆的半径为 ,因为底面圆的周长等于展开图扇形的弧长,
, ,
由题意可知 为底面圆的直径, 为 的中点,连接 ,
设底面圆的圆心为 ,连接 ,过点 作 交 于 点,连接 ,
作出圆锥如下图所示:
因为 平面 , 平面 ,所以 ,

2020-2021福州市高中必修一数学上期末模拟试卷附答案

2020-2021福州市高中必修一数学上期末模拟试卷附答案

2020-2021福州市高中必修一数学上期末模拟试卷附答案一、选择题1.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( )A .1,110⎛⎫ ⎪⎝⎭B .()10,10,10骣琪??琪桫C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞2.若函数()f x =的定义域为R ,则实数m 取值范围是( )A .[0,8)B .(8,)+∞C .(0,8)D .(,0)(8,)-∞⋃+∞3.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车,酒精含量达到20~79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg /mL .如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶汽车?( )(参考数据:lg 0.2≈﹣0.7,1g 0.3≈﹣0.5,1g 0.7≈﹣0.15,1g 0.8≈﹣0.1) A .1B .3C .5D .74.已知定义域R 的奇函数()f x 的图像关于直线1x =对称,且当01x ≤≤时,3()f x x =,则212f ⎛⎫= ⎪⎝⎭( )A .278-B .18-C .18D .2785.已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则,m n 的值分别为A .12,2 B .2C .14,2 D .14,4 6.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6B .1.7C .1.8D .1.97.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( )A .(1)(2)(0)f f f -<<B .(1)(0)(2)f f f -<<C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<8.函数21y x x =-++的定义域是( ) A .(-1,2]B .[-1,2]C .(-1 ,2)D .[-1,2)9.已知函数()ln f x x =,2()3g x x =-+,则()?()f x g x 的图象大致为( )A .B .C .D .10.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =xB .y =lg xC .y =2xD .y x11.已知函数f (x )=x (e x +ae ﹣x )(x ∈R ),若函数f (x )是偶函数,记a=m ,若函数f (x )为奇函数,记a=n ,则m+2n 的值为( ) A .0B .1C .2D .﹣112.若不等式210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 的取值范围为( ) A .0a ≥B .2a ≥-C .52a ≥-D .3a ≥-二、填空题13.已知函数241,(4)()log ,(04)x f x xx x ⎧+≥⎪=⎨⎪<<⎩.若关于x 的方程,()f x k =有两个不同的实根,则实数k 的取值范围是____________. 14.已知()|1||1|f x x x =+--,()ag x x x=+,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则实数a 的取值范围是____________.15.已知函数()f x 满足对任意的x ∈R 都有11222⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭f x f x 成立,则 127...888f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= .16.函数()()4log 5f x x =-+________.17.已知偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,则不等式()0xf x >的解集为______.18.若集合{||1|2}A x x =-<,2|04x B x x -⎧⎫=<⎨⎬+⎩⎭,则A B =I ______. 19.若函数()22xf x b =--有两个零点,则实数b 的取值范围是_____. 20.()()sin cos f x x π=在区间[]0,2π上的零点的个数是______.三、解答题21.已知函数f (x )=2x的定义域是[0,3],设g (x )=f (2x )-f (x +2), (1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.已知函数2()(8)f x ax b x a ab =+--- 的零点是-3和2 (1)求函数()f x 的解析式.(2)当函数()f x 的定义域是[]0,1时求函数()f x 的值域.23.已知函数()(lg x f x =.(1)判断函数()f x 的奇偶性;(2)若()()1210f m f m -++≤,求实数m 的取值范围. 24.已知()1log 1axf x x-=+(0a >,且1a ≠). (1)当(],x t t ∈-(其中()1,1t ∈-,且t 为常数)时,()f x 是否存在最小值,如果存在,求出最小值;如果不存在,请说明理由;(2)当1a >时,求满足不等式()()2430f x f x -+-≥的实数x 的取值范围.25.已知函数()f x 是定义在R 上的奇函数,当()0,x ∈+∞时,()232f x x ax a =++-.(1)求()f x 的解析式;(2)若()f x 是R 上的单调函数,求实数a 的取值范围.26.为弘扬中华传统文化,学校课外阅读兴趣小组进行每日一小时的“经典名著”和“古诗词”的阅读活动. 根据调查,小明同学阅读两类读物的阅读量统计如下:小明阅读“经典名著”的阅读量()f t (单位:字)与时间t (单位:分钟)满足二次函数关系,部分数据如下表所示; t0 10 20 30 ()f t 0270052007500阅读“古诗词”的阅读量()g t (单位:字)与时间t (单位:分钟)满足如图1所示的关系.(1)请分别写出函数()f t 和()g t 的解析式;(2)在每天的一小时课外阅读活动中,小明如何分配“经典名著”和“古诗词”的阅读时间,使每天的阅读量最大,最大值是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果. 【详解】由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <, 又Q 函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.2.A解析:A 【解析】 【分析】根据题意可得出,不等式mx 2-mx +2>0的解集为R ,从而可看出m =0时,满足题意,m ≠0时,可得出280m m m ⎧⎨=-<⎩V >,解出m 的范围即可. 【详解】∵函数f (x )的定义域为R ;∴不等式mx 2-mx +2>0的解集为R ; ①m =0时,2>0恒成立,满足题意; ②m ≠0时,则280m m m ⎧⎨=-<⎩V >; 解得0<m <8;综上得,实数m 的取值范围是[0,8) 故选:A . 【点睛】考查函数定义域的概念及求法,以及一元二次不等式的解集为R 时,判别式△需满足的条件.3.C解析:C 【解析】 【分析】根据题意先探究出酒精含量的递减规律,再根据能驾车的要求,列出模型0.70.2x ≤ 求解. 【详解】因为1小时后血液中酒精含量为(1-30%)mg /mL , x 小时后血液中酒精含量为(1-30%)x mg /mL 的,由题意知100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车, 所以()3002%1.x-<,0.70.2x <,两边取对数得,lg 0.7lg 0.2x < ,lg 0.214lg 0.73x >= ,所以至少经过5个小时才能驾驶汽车. 故选:C 【点睛】本题主要考查了指数不等式与对数不等式的解法,还考查了转化化归的思想及运算求解的能力,属于基础题.4.B解析:B 【解析】 【分析】利用题意得到,()()f x f x -=-和2421D kx k =+,再利用换元法得到()()4f x f x =+,进而得到()f x 的周期,最后利用赋值法得到1322f f 骣骣琪琪=琪琪桫桫18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,最后利用周期性求解即可. 【详解】()f x 为定义域R 的奇函数,得到()()f x f x -=-①;又由()f x 的图像关于直线1x =对称,得到2421D kx k =+②; 在②式中,用1x -替代x 得到()()2f x f x -=,又由②得()()22f x f x -=--; 再利用①式,()()()213f x f x -=+-()()()134f x f x =--=-()4f x =--()()()24f x f x f x ∴=-=-③对③式,用4x +替代x 得到()()4f x f x =+,则()f x 是周期为4的周期函数;当01x ≤≤时,3()f x x =,得1128f ⎛⎫=⎪⎝⎭ 11122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭Q 13122f f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭, 由于()f x 是周期为4的周期函数,331222f f ⎛⎫⎛⎫∴-=-+ ⎪ ⎪⎝⎭⎝⎭21128f ⎛⎫==- ⎪⎝⎭, 答案选B 【点睛】本题考查函数的奇偶性,单调性和周期性,以及考查函数的赋值求解问题,属于中档题5.A解析:A试题分析:画出函数图像,因为正实数,m n 满足m n <且()()f m f n =,且()f x 在区间2[,]m n 上的最大值为2,所以()()f m f n ==2,由2()log 2f x x ==解得12,2x =,即,m n 的值分别为12,2.故选A .考点:本题主要考查对数函数的图象和性质.点评:基础题,数形结合,画出函数图像,分析建立m,n 的方程.6.C解析:C 【解析】 【分析】利用零点存在定理和精确度可判断出方程的近似解. 【详解】根据表中数据可知()1.750.140f =-<,()1.81250.57930f =>,由精确度为0.1可知1.75 1.8≈,1.8125 1.8≈,故方程的一个近似解为1.8,选C. 【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.7.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-Q 在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数Q 函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数 ()()11f f -=Q ,则()()()012f f f <-< 故选C本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.8.A解析:A 【解析】 【分析】根据二次根式的性质求出函数的定义域即可. 【详解】 由题意得:2010x x -≥⎧⎨+>⎩解得:﹣1<x≤2,故函数的定义域是(﹣1,2], 故选A . 【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.9.C解析:C 【解析】 【分析】 【详解】因为函数()ln f x x =,()23g x x =-+,可得()()•f x g x 是偶函数,图象关于y 轴对称,排除,A D ;又()0,1x ∈时,()()0,0f x g x <>,所以()()•0f x g x <,排除B , 故选C. 【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.10.D解析:D 【解析】试题分析:因函数lg 10xy =的定义域和值域分别为,故应选D .考点:对数函数幂函数的定义域和值域等知识的综合运用.11.B解析:B【解析】试题分析:利用函数f(x)=x(e x+ae﹣x)是偶函数,得到g(x)=e x+ae﹣x为奇函数,然后利用g(0)=0,可以解得m.函数f(x)=x(e x+ae﹣x)是奇函数,所以g(x)=e x+ae﹣x为偶函数,可得n,即可得出结论.解:设g(x)=e x+ae﹣x,因为函数f(x)=x(e x+ae﹣x)是偶函数,所以g(x)=e x+ae﹣x为奇函数.又因为函数f(x)的定义域为R,所以g(0)=0,即g(0)=1+a=0,解得a=﹣1,所以m=﹣1.因为函数f(x)=x(e x+ae﹣x)是奇函数,所以g(x)=e x+ae﹣x为偶函数所以(e﹣x+ae x)=e x+ae﹣x即(1﹣a)(e﹣x﹣e x)=0对任意的x都成立所以a=1,所以n=1,所以m+2n=1故选B.考点:函数奇偶性的性质.12.C解析:C【解析】【分析】【详解】210x ax++≥对于一切10,2x⎛⎫∈ ⎪⎝⎭成立,则等价为a⩾21xx--对于一切x∈(0,12)成立,即a⩾−x−1x对于一切x∈(0,12)成立,设y=−x−1x,则函数在区间(0,12〕上是增函数∴−x−1x<−12−2=52-,∴a⩾5 2 -.故选C.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x>就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x >,若()0f x <恒成立,转化为max ()0f x <;(3)若()()f x g x >恒成立,可转化为min max ()()f x g x >.二、填空题13.【解析】作出函数的图象如图所示当时单调递减且当时单调递增且所以函数的图象与直线有两个交点时有 解析:(1,2)【解析】作出函数()f x 的图象,如图所示,当4x ≥时,4()1f x x =+单调递减,且4112x<+≤,当04x <<时,2()log f x x =单调递增,且2()log 2f x x =<,所以函数()f x 的图象与直线y k =有两个交点时,有12k <<.14.【解析】【分析】通过去掉绝对值符号得到分段函数的解析式求出值域然后求解的值域结合已知条件推出的范围即可【详解】由题意对于任意的总存在使得或则与的值域的并集为又结合分段函数的性质可得的值域为当时可知的 解析:(,1]-∞【解析】 【分析】通过去掉绝对值符号,得到分段函数的解析式,求出值域,然后求解()ag x x x=+的值域,结合已知条件推出a 的范围即可. 【详解】由题意,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则()f x 与()g x 的值域的并集为R ,又()2,1112,112,1x f x x x x x x ≥⎧⎪=+--=-<<⎨⎪-≤-⎩,结合分段函数的性质可得,()f x 的值域为[]22-,,当0a ≥时,可知()a g x x x =+的值域为(),22,a a ⎤⎡-∞-+∞⎦⎣U , 所以,此时有22a ≤,解得01a ≤≤,当0a <时,()a g x x x=+的值域为R ,满足题意, 综上所述,实数a 的范围为(],1-∞.故答案为:(],1-∞.【点睛】本题考查函数恒成立条件的转化,考查转化思想的应用,注意题意的理解是解题的关键,属于基础题.15.7【解析】【分析】【详解】设则因为所以故答案为7解析:7【解析】【分析】【详解】设, 则, 因为11222⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭f x f x , 所以,,故答案为7. 16.【解析】【分析】根据题意列出不等式组解出即可【详解】要使函数有意义需满足解得即函数的定义域为故答案为【点睛】本题主要考查了具体函数的定义域问题属于基础题;常见的形式有:1分式函数分母不能为0;2偶次 解析:[)0,5【解析】【分析】根据题意,列出不等式组50210x x ->⎧⎨-≥⎩,解出即可. 【详解】要使函数()()4log 521x f x x =-+-有意义,需满足50210x x ->⎧⎨-≥⎩,解得05x <≤,即函数的定义域为[)0,5, 故答案为[)0,5.【点睛】本题主要考查了具体函数的定义域问题,属于基础题;常见的形式有:1、分式函数分母不能为0;2、偶次根式下大于等于0;3、对数函数的真数部分大于0;4、0的0次方无意义;5、对于正切函数tan y x =,需满足,2x k k Z ππ≠+∈等等,当同时出现时,取其交集. 17.【解析】【分析】根据函数奇偶性和单调性的性质作出的图象利用数形结合进行求解即可【详解】偶函数的图象过点且在区间上单调递减函数的图象过点且在区间上单调递增作出函数的图象大致如图:则不等式等价为或即或即 解析:()(),20,2-∞-⋃【解析】【分析】根据函数奇偶性和单调性的性质作出()f x 的图象,利用数形结合进行求解即可.【详解】Q 偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,∴函数()f x 的图象过点()2,0-,且在区间(),0-∞上单调递增,作出函数()f x 的图象大致如图:则不等式()0xf x >等价为()00x f x >⎧>⎨⎩或()00x f x <⎧<⎨⎩, 即02x <<或2x <-,即不等式的解集为()(),20,2-∞-⋃,故答案为()(),20,2-∞-⋃【点睛】本题主要考查不等式的解集的计算,根据函数奇偶性和单调性的性质作出()f x 的图象是解决本题的关键.18.【解析】【分析】先分别求解出绝对值不等式分式不等式的解集作为集合然后根据交集概念求解的结果【详解】因为所以所以;又因为所以所以所以;则故答案为:【点睛】解分式不等式的方法:首先将分式不等式转化为整式 解析:()1,2-【解析】【分析】先分别求解出绝对值不等式、分式不等式的解集作为集合,A B ,然后根据交集概念求解A B I 的结果.【详解】 因为12x -<,所以13x -<<,所以()1,3A =-;又因为204x x -<+,所以()()4204x x x ⎧+-<⎨≠-⎩,所以42x -<<,所以()4,2B =-; 则()1,2A B =-I .故答案为:()1,2-.【点睛】解分式不等式的方法:首先将分式不等式转化为整式不等式,若对应的整式不等式为高次可因式分解的不等式,可采用数轴穿根法求解集.19.【解析】【分析】【详解】函数有两个零点和的图象有两个交点画出和的图象如图要有两个交点那么解析:02b <<【解析】【分析】【详解】函数()22x f x b =--有两个零点,和的图象有两个交点, 画出和的图象,如图,要有两个交点,那么20.5【解析】【分析】由求出的范围根据正弦函数为零确定的值再由三角函数值确定角即可【详解】时当时的解有的解有的解有故共有5个零点故答案为:5【点睛】本题主要考查了正弦函数余弦函数的三角函数值属于中档题 解析:5【解析】【分析】由[]0,2x π∈,求出cos x π的范围,根据正弦函数为零,确定cos x 的值,再由三角函数值确定角即可.【详解】cos x πππ-≤≤Q ,()()sin cos 0f x x π∴==时, cos 0x =,1,1-,当[]0,2x π∈时,cos 0x =的解有3,22ππ, cos 1x =-的解有π,cos 1x =的解有0,2π,故共有30,,,,222ππππ5个零点, 故答案为:5【点睛】本题主要考查了正弦函数、余弦函数的三角函数值,属于中档题.三、解答题21.(1)g (x )=22x -2x +2,{x |0≤x ≤1}.(2)最小值-4;最大值-3.【解析】【分析】【详解】(1)f (x )=2x 的定义域是[0,3],设g (x )=f (2x )-f (x +2),因为f(x)的定义域是[0,3],所以,解之得0≤x≤1.于是 g(x)的定义域为{x|0≤x≤1}.(2)设. ∵x ∈[0,1],即2x ∈[1,2],∴当2x=2即x=1时,g(x)取得最小值-4; 当2x=1即x=0时,g(x)取得最大值-3.22.(1)2()3318f x x x =--+(2)[12,18]【解析】【分析】【详解】(1)832,323,5b a ab a b a a----+=--⨯=∴=-=Q ,()23318f x x x =--+ (2)因为()23318f x x x =--+开口向下,对称轴12x =- ,在[]0,1单调递减, 所以()()max min 0,18,1,12x f x x f x ====当当所以函数()f x 的值域为[12,18]【点睛】本题将函数的零点、解析式、最大小值等有关知识与性质有机整合在一起,旨在考查函数的表示、零点、最大小值等基础知识及综合运用.求解时先依据函数零点与方程的根之间的关系,求出函数解析式中的参数的值;解答第二问时,借助二次函数的图像和性质,运用数形结合的数学思想求出最大小值从而使得问题获解.23.(1)奇函数;(2)(],2-∞-【解析】【分析】(1)根据函数奇偶性的定义,求出函数的定义域及()f x 与()f x -的关系,可得答案; (2)由(1)知函数()f x 是奇函数,将原不等式化简为()()121f m f m -≤--,判断出()f x 的单调性,可得关于m 的不等式,可得m 的取值范围.【详解】解:(1)函数()f x 的定义域是R ,因为()(2lg 1f x x x-=-++, 所以()()((22lg 1lg 1lg10x x x x f x f x =++-+=-=+, 即()()f x f x -=-,所以函数()f x 是奇函数.(2)由(1)知函数()f x 是奇函数,所以()()()12121f m f m f m -≤-+=--,设lg y u =,21u x x =+,x ∈R .因为lg y u =是增函数,由定义法可证21u x x =+在R 上是增函数,则函数()f x 是R 上的增函数.所以121m m -≤--,解得2m ≤-,故实数m 的取值范围是(],2-∞-.【点睛】本题主要考查函数的单调性、奇偶性的综合应用,属于中档题.24.(1)见解析(2)51,3⎛⎫ ⎪⎝⎭【解析】【分析】(1)先判定函数的单调性,结合单调性来进行求解()f x 是否存在最小值;(2)先判断函数的奇偶性及单调性,结合奇偶性和单调性把()()2430f x f x -+-≥进行转化求解.【详解】 (1)由101x x ->+可得1010x x ->⎧⎨+>⎩或1010x x -<⎧⎨+<⎩,解得11x -<<,即函数()f x 的定义域为()1,1-,设1211x x -<<<,则()()()211212122111111x x x x x x x x ----=++++,∵1211x x -<<<,∴210x x ->,()()12110x x ++>,∴12121111x x x x -->++, ①当1a >时()()12f x f x >,则()f x 在()1,1-上是减函数,又()1,1t ∈-,∴(],x t t ∈-时,()f x 有最小值,且最小值为()1log 1a t f t t-=+; ②当01a <<时,()()12f x f x <,则()f x 在()1,1-上是增函数,又()1,1t ∈-, ∴(],x t t ∈-时,()f x 无最小值.(2)由于()f x 的定义域为()1,1-,定义域关于原点对称,且()()111log log 11a a x x f x f x x x -+-⎛⎫-===- ⎪-+⎝⎭,所以函数()f x 为奇函数.由(1)可知,当1a >时,函数()f x 为减函数,由此,不等式()()2430f x f x -+-≥等价于()()234f x f x -≥-,即有2341211431x x x x -≤-⎧⎪-<-<⎨⎪-<-<⎩,解得513x <<,所以x 的取值范围是51,3⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查函数性质的综合应用,奇偶性和单调性常结合求解抽象不等式问题,注意不要忽视了函数定义域,侧重考查数学抽象和逻辑推理的核心素养.25.(1)()2232,00,032,0x ax a x f x x x ax a x ⎧++->⎪==⎨⎪-+-+<⎩;(2)30,2⎡⎤⎢⎥⎣⎦ 【解析】【分析】(1)由奇函数的定义可求得解析式;(2)由分段函数解析式知,函数在R 上单调,则为单调增函数,结合二次函数对称轴和最值可得参数范围.即0x >时要是增函数,且端点处函数值不小于0.【详解】解:(1)因为函数()f x 是定义在R 上的奇函数,所以()00f =,当0x <时,0x ->,则()()()232f x x a x a -=-+-+-()232x ax a f x =-+-=-, 所以()()2320x ax a f x x =-+-+<, 所以()2232,00,032,0x ax a x f x x x ax a x ⎧++->⎪==⎨⎪-+-+<⎩. (2)若()f x 是R 上的单调函数,且()00f =,则实数a 满足02320a a ⎧-≤⎪⎨⎪-≥⎩, 解得302a ≤≤, 故实数a 的取值范围是30,2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查函数的奇偶性与单调性,分段函数在整个定义域上单调,则每一段的单调性相同,相邻端点处函数值满足相应的不等关系.26.(1)见解析;(2)见解析【解析】【分析】(1)设f (t )=2a ?t bt +,代入(10,2700)与(30,7500),解得a 与b. 令()g t =kt ,(040)t ≤<,代入(40,8000),解得k,再令()g t =mt +b ,()4060t ≤≤,代入(40,8000),(60,11000),解得m ,b 的值.即可得到()f t 和()g t 的解析式;(2)由题意知每天的阅读量为()()()h t f t g t =+=28012000t t -++,分020t ≤≤和2060t <≤两种情况,分别求得最大值,比较可得结论.【详解】(1)因为f (0)=0,所以可设f (t )=2a ?t bt +,代入(10,2700)与(30,7500),解得a=-1,b=280.所以()2280f t t t =-+ ,又令()g t =kt ,(040)t ≤<,代入(40,8000),解得k=200,令()g t =mt +b ,()4060t ≤≤,代入(40,8000),(60,11000),解得m=150,b=2000,所以 ()()200(040)150********t t g t t t ≤<⎧=⎨+≤≤⎩. (2)设小明对“经典名著”的阅读时间为()060t t ≤≤,则对“古诗词”的阅读时间为60t -,① 当06040t ≤-<,即2060t <≤时,()()()()228020060h t f t g t t t t =+=-++- =28012000t t -++=()24013600t --+,所以当40t =时,()h t 有最大值13600.当406060t ≤-≤,即020t ≤≤时,h ()()()()2280150602000t f t g t t t t =+=-++-+ =213011000t t -++,因为()h t 的对称轴方程为65t =,所以 当020t ≤≤时,()h t 是增函数,所以 当20t =时,()h t 有最大值为13200.因为 13600>13200,所以阅读总字数()h t 的最大值为13600,此时对“经典名著”的阅读时间为40分钟,对“古诗词”的阅读时间为20分钟.【点睛】本题考查了分段函数解析式的求法及应用,二次函数的图象和性质,难度中档.。

2020-2021学年福建省福州市闽侯一中高一上学期期末数学试卷(含解析)

2020-2021学年福建省福州市闽侯一中高一上学期期末数学试卷(含解析)

2020-2021学年福建省福州市闽侯一中高一上学期期末数学试卷一、单选题(本大题共8小题,共40.0分)1.△ABC为锐角三角形,若角终边上一点P的坐标为,则的值是()A. 1B.C. 3D.2.如图,已知OPQ是半径为r,圆心角为π4的扇形,点A,B,C分别是半径OP,OQ及扇形弧上的三个动点(不同于O,P,Q三点),则关于△ABC的周长说法正确的是()A. 有最大值,有最小值B. 有最大值,无最小值C. 无最大值,有最小值D. 无最大值,无最小值3.函数f(x)=cos22x−sin22x的最小正周期是()A. π2B. πC. 2πD. 4π4.在平面直角坐标系中,分别取与x轴、y轴正方向相同的两个单位向量i⃗、j⃗作为基底,若a⃗⃗=x i⃗+y j⃗,则向量a⃗⃗的坐标为()A. (−x,−y)B. (−x,y)C. (x,−y)D. (x,y)5.若0<x<π2,则4x与3sinx的大小关系是()A. 4x<3sinxB. 4x>3sinxC. 4x=3sinxD. 与x取值有关6.给定性质:①最小正周期为π,②图象关于直线x=π3对称,则下列函数中同时具有性质①、②的是().A. y=sin(x2+π6) B. y=sin(2x−π6)C. y=|sinx|D. y=sin(2x+π6)7.已知函数f(x)是奇函数,满足x>0时,f(x)=2x,则f(log213)=()A. 3B. 13C. −13D. −38.如图,在平行四边形ABCD 中,DE =12EC ,F 为BC 的中点,G 为EF 上的一点,且AG ⃗⃗⃗⃗⃗⃗=m AB ⃗⃗⃗⃗⃗⃗+23AD ⃗⃗⃗⃗⃗⃗⃗,则实数m 的值为( ) A. 79 B. −29 C. −19 D. 59二、多选题(本大题共4小题,共20.0分) 9.某城市为了解二手房成交价格的变化规律,更有效地调控房产经济,收集并整理了2019年1月至2019年12月期间二手房成交均价(单位:元/平方米)的数据(均价=销售总额÷销售总面积),绘制了下面的折线统计图,那么下列结论中正确的有( )A. 月均价的极差大于4000元/平方米B. 年均价一定小于18000元/平方米C. 月均价高峰期大致在9月份和10月份D. 上半年月均价变化相对下半年,波动性较小,变化比较平稳10. △ABC 是边长为2的等边三角形,已知向量a ⃗⃗,b ⃗⃗满足AB ⃗⃗⃗⃗⃗⃗=2a ⃗⃗,AC ⃗⃗⃗⃗⃗⃗=2a ⃗⃗+b ⃗⃗,则下列结论不正确的是( )A. |b ⃗⃗|=1B. a ⃗⃗⊥b ⃗⃗C. a ⃗⃗⋅b ⃗⃗=1D. (4a ⃗⃗+b ⃗⃗)⊥BC ⃗⃗⃗⃗⃗⃗11. 设函数f(x)=|cosx +a|+|cos2x +b|,a ,b ∈R ,则( )A. f(x)的最小正周期可能为π2 B. f(x)为偶函数C. 当a=b=0时,f(x)的最小值为√22D. 存a,b使f(x)在(0,π2)上单调递增12.已知定义在R上的函数f(x)同时满足下列三个条件:①f(x)是奇函数;②∀x∈R,f(x+π2)=−f(x);③当x∈(0,π4]时,f(x)=2x−1;则下列结论正确的是()A. f(x)的最小正周期T=πB. f(x)在[−π4,π4]上单调递增C. f(x)的图象关于直线x=−π2对称D. 当x=kπ2(k∈Z)时,f(x)=0三、单空题(本大题共3小题,共15.0分)13.sin15°⋅c15=______ .14.已知sinα=13,cos(β+π6)=12,α,β∈(0,5π4),则cos(α−β+π3)=______.15.已知向量a⃗⃗与b⃗⃗的夹角为60°,且a⃗⃗=(−2,−6),|b⃗⃗|=√10,则a⃗⃗·b⃗⃗=______.四、多空题(本大题共1小题,共5.0分)16.已知a⃗⃗+b⃗⃗+c⃗⃗=0⃗⃗,且|a⃗⃗|=3,|b⃗⃗|=4,|c⃗⃗|=5,则a⃗⃗⋅b⃗⃗+b⃗⃗⋅c⃗⃗+c⃗⃗⋅a⃗⃗=,a⃗⃗⋅b⃗⃗=.五、解答题(本大题共6小题,共72.0分)17.锐角三角形的三内角A,B,C所对边的长分别为a,b,c,设向量m⃗⃗⃗⃗=(2c,b−a),n⃗⃗=(2a+2b,c−a),若m⃗⃗⃗⃗//n⃗⃗.(1)求角B的大小;(2)求sinA+sinC的取值范围.18.如图是f(x)=Asin(ωx+ϕ),(ω>0,A>0,π2>|ϕ|)一段图象,求图象对应的f(x)的表达式.19.已知函数f(x)=|x−1|+|x−2|,记f(x)的最小值为k.(1)解不等式f(x)≤x+1;(2)是否存在正数a、b,同时满足:2a+b=k,1a +2b=4?并证明.20.已知向量a⃗⃗=(12sin2x,cos2x−12),b⃗⃗=(sinφ,cosφ),函数f(x)=a⃗⃗⋅b⃗⃗(0<φ<π),其图象过点(π8,1 2 )(1)求φ的值和f(x)的图象的对称中心;(2)将函数y=f(x)的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在[0,π4]上的最大值和最小值.21.如图,已知抛物线,直线与抛物线交于两点,,,与交于点.(Ⅰ)求点的轨迹方程;(Ⅱ)求四边形的面积的最小值.22. 已知函数f(x)=sin2(x2+π12)+√3sin(x2+π12)cos(x2+π12)−12.(Ⅰ)求f(x)的值域;(Ⅱ)若f(x)(x>0)的图象与直线y=1交点的横坐标由小到大依次是x1,x2…,x n,求数列{x n}的前2n2项的和.参考答案及解析1.答案:B解析:试题分析:∵△ABC为锐角三角形,∴A+B>90°,得A>90°−B,∴sinA>sin(90°−B)=cosB,即sinA>cosB,sinA−cosB>0,同理可得sinC>cosA,cosA−sinC<0,点P位于第四象限,所以=−1+1−1=−1,故选B。

2020-2021学年福建省福州市八县(市、区)一中高一上学期期末数学试卷(含解析)

2020-2021学年福建省福州市八县(市、区)一中高一上学期期末数学试卷(含解析)

2020-2021学年福建省福州市八县(市、区)一中高一上学期期末数学试卷一、单选题(本大题共12小题,共60.0分) 1.sin315°的值为( )A. −√32B. √32C. √22D. −√222.已知直线AB 与抛物线y 2=2x 交于A ,B 两点,M 是AB 的中点,C 是抛物线上的点,且使得CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ 取最小值,抛物线在点C 处的切线为l ,则( )A. CM ⊥ABB. CM ⊥lC. CA ⊥CBD. CM =12AB3.角π5和角6π5有相同的( )A. 正弦线B. 余弦线C. 正切线D. 不能确定4.已知α是第一象限角,tanα=34,则sinα等于( )A. 45B. 35C. −45D. −355.如果函数f(x)=2sinx +acosx 的图象关于直线x =π6对称,那么a =( )A. −2√3B. 2C. 2√3D. √36.函数f(x)=sinx 的图象向右平移3个单位长度,再将图象的横坐标和纵坐标同时扩大为原来的3倍,所得图象的函数解析式为( )A. y =3sin(3x −3)B. y =3sin(3x −9)C. y =13sin(13x −3)D. y =3sin(13x −3)7.若tanθ=−13,则cos2θ=( )A. −45B. −15C. 15D. 458.已知△ABC ,点G ,M 满足GA ⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0,AG ⃗⃗⃗⃗⃗ =3AM ⃗⃗⃗⃗⃗⃗ ,则( ) A. BM ⃗⃗⃗⃗⃗⃗ =−23BA ⃗⃗⃗⃗⃗ +16BC ⃗⃗⃗⃗⃗ B. BM ⃗⃗⃗⃗⃗⃗ =79BA ⃗⃗⃗⃗⃗ +29BC ⃗⃗⃗⃗⃗ C. BM ⃗⃗⃗⃗⃗⃗=23BA ⃗⃗⃗⃗⃗ +16BC ⃗⃗⃗⃗⃗ D. BM ⃗⃗⃗⃗⃗⃗=79BA ⃗⃗⃗⃗⃗ +19BC ⃗⃗⃗⃗⃗ 9.已知函数f(n)={n −3,n ≥10f(f(n +5)),n <10,其中n ∈N ,则f(8)=( )A. 5B. 6C. 7D. 810. 已知函数y =cos(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,则( )A. ω=1,φ=B. ω=1,φ=−C. ω=2,φ=D. ω=2,φ=−11. 已知a 是实数,则函数f(x)=acosax −1的图象不可能是( )A.B.C.D.12. P 、Q 、R 是等腰直角△ABC(A 为直角)内的点,且满足∠APB =∠BPC =∠CPA ,∠ACQ =∠CBQ =∠BAQ ,AR 和BR 分别平分∠A 和∠B ,则( ) A. PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ >QA ⃗⃗⃗⃗⃗ ⋅QB ⃗⃗⃗⃗⃗⃗ >RA ⃗⃗⃗⃗⃗ ⋅RB ⃗⃗⃗⃗⃗ B. QA ⃗⃗⃗⃗⃗ ⋅QB ⃗⃗⃗⃗⃗⃗ >PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ >RA ⃗⃗⃗⃗⃗ ⋅RB ⃗⃗⃗⃗⃗ C. RA⃗⃗⃗⃗⃗ ⋅RB ⃗⃗⃗⃗⃗ >PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ >QA ⃗⃗⃗⃗⃗ ⋅QB ⃗⃗⃗⃗⃗⃗ D. RA⃗⃗⃗⃗⃗ ⋅RB ⃗⃗⃗⃗⃗ >QA ⃗⃗⃗⃗⃗ ⋅QB ⃗⃗⃗⃗⃗⃗ >PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ 二、单空题(本大题共4小题,共20.0分)13. 如下图所示,在平面直角坐标系xoy 中,角α的终边与单位圆交于点A ,A 的纵坐标为,则cosα=________.14. 如图,在平面直角坐标系xOy 中,角α的始边与x 轴的非负半轴重合且与单位圆相交于A 点,它的终边与单位圆相交于x 轴上方一点B ,始边不动,终边在运动.若α∈[0,2π3],则弓形AB 的面积S 的最大值为______.15. 若a ⃗ =(cosx,sinx),b ⃗ =(√3,−1),且a ⃗ ⊥b ⃗ ,则tan2x =______. 16. 已知α∈(0,π2),且2cosα=cos(π2−α),则sin2α的值为______. 三、解答题(本大题共6小题,共70.0分)17. 在数轴x 上,点A ,B 的坐标分别为a ,b ,AC ⃗⃗⃗⃗⃗ 的坐标为a −2. (1)求BC ⃗⃗⃗⃗⃗ 的坐标;(2)若b =5,求|2AC ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ |.18. 已知函数f(x)=sinxcos(x −π2)−cosxsin(x +π2),x ∈R . (1)求f(π12)的值;(2)求函数f(x)的单调递增区间.19. 已知△ABC 的顶点分别为A(2,1),B(3,2),C(−3,−1),D 在直线BC 上. (Ⅰ)若BC ⃗⃗⃗⃗⃗ =2BD ⃗⃗⃗⃗⃗⃗ ,求点D 的坐标; (Ⅱ)若AD ⊥BC ,求点D 的坐标.20. 如图,一个铝合金窗分为上、下两栏,四周框架和中间隔栏的材料为铝合金,宽均为6cm ,上栏和下栏的框内高度(不含铝合金部分)的比为1:2,此铝合金窗占用的墙面面积为28800cm2,设该铝合金窗的宽和高分别为a(cm),b(cm),铝合金的透光部分的面积为S(cm2).(1)试用a,b表示S;(2)若要使S最大,则铝合金窗的宽和高分别为多少?21.已知函数f(x)=sin cos+sin2(其中ω>0,0<φ<).其图象的两个相邻对称中心的距离为,且过点.(1)函数f(x)的解析式;(2)在△ABC中,a,b,c分别是角A,B,C的对边,a=,S△ABC=2,角C为锐角.且满足f=,求c的值.22.已知函数f(x)=sin(ωx+φ)(其中ω>0,x=R,|φ|<π)的图象与x轴在原点右侧的第一个交点为N(6,0),又f(2+x)=f(2−x),f(0)<0.(1)求这个函数解析式;(2)设关于x的方程f(x)=k+1在[0,8]内有两个不同根a,β,求a+β的值及k的取值范围.参考答案及解析1.答案:D解析:解:sin315°=sin(360°−45°)=−sin45°=−√22.故选:D .直接利用诱导公式化简求解即可.本题考查诱导公式以及特殊角的三角函数值的求法,是基础题.2.答案:B解析:本题考查了向量的三角形法则和数量积运算、抛物线的性质,考查了推理能力和计算能力,属于难题.利用向量的三角形法则和数量积运算可得:CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ =(CM ⃗⃗⃗⃗⃗⃗ −AM ⃗⃗⃗⃗⃗⃗ )⋅(CM ⃗⃗⃗⃗⃗⃗ −BM ⃗⃗⃗⃗⃗⃗ )=CM ⃗⃗⃗⃗⃗⃗ 2−AM ⃗⃗⃗⃗⃗⃗ 2,当且仅当|CM ⃗⃗⃗⃗⃗⃗ |取得最小值时,CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ 取最小值,只有当CM ⊥l 时,|CM ⃗⃗⃗⃗⃗⃗ |取得最小值. 解:如图所示,CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ =(CM ⃗⃗⃗⃗⃗⃗ −AM ⃗⃗⃗⃗⃗⃗ )⋅(CM ⃗⃗⃗⃗⃗⃗ −BM ⃗⃗⃗⃗⃗⃗ ) =CM⃗⃗⃗⃗⃗⃗ 2−(BM ⃗⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ )⋅CM ⃗⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =CM ⃗⃗⃗⃗⃗⃗ 2−AM ⃗⃗⃗⃗⃗⃗ 2,当且仅当|CM ⃗⃗⃗⃗⃗⃗ |取得最小值时,CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ 取最小值, 只有当CM ⊥l 时,|CM ⃗⃗⃗⃗⃗⃗ |取得最小值, 故选:B .3.答案:C解析:本题给出两个角π5和6π5,求证它们有相同的正切线,着重考查了终边相同的角、三角函数线的作法等知识,属于基础题.根据角π5和角6π5的终边在一条直线上,结合正切线的作法可得两个角有相同的正切线,得到答案.解:∵6π5=π+π5,∴角π5和角6π5的终边互为反向延长线,即两个角的终边在同一条直线上,设为直线l,因此,过点A(1,0)作单位圆的切线,与直线l有且只有一个交点T,可得tanπ5=tan6π5,都等于有向线段AT的长,即两角有相同的正切线.故选C.4.答案:B解析:解:由因为α是第一象限角,所以α∈(0,π2),而根据同角三角函数间的基本关系得:tanα=sinαcosα=34①;sin2α+cos2α=1②;由①得到sinα=34cosα,因为α为锐角,将其代入②,得sinα=35.故选:B.根据同角的三角函数间的基本关系得到:tanα=sinαcosα=34;sin2α+cos2α=1;由于α是第一象限角,联立求出sinα大于0的值即可.考查学生会利用同角三角函数间的基本关系化简求值,以及会根据象限角判断其三角函数的取值.5.答案:C解析:解:∵函数f(x)=2sinx+acosx=√4+a2(√4+a2√4+a2=√4+a2sin(x+θ),其中,cosθ=√4+a2,sinθ=√4+a2,由于的图象关于直线x=π6对称,则π6+θ=π2,即θ=π3,sinθ=√4+a2=sinπ3,解得a=2√3,故选:C.由题意利用辅助角公式化简函数的解析式,再利用正弦函数的图象的对称性,求得a的值.本题主要考查辅助角公式,正弦函数的图象的对称性,属于基础题.6.答案:C解析:解:函数f(x)=sinx 的图象向右平移3个单位长度,得到:y =sin(x −3), 再将图象的横坐标和纵坐标同时扩大为原来的3倍,得到:y =3sin(13x −3), 故解析式为:y =3sin(13x −3). 故选:C .直接利用三角函数的关系式的平移和伸缩变换求出结果. 本题考查的知识要点:三角函数图象的平移和伸缩变换.7.答案:D解析:本题考查了同角三角函数的基本关系和二倍角的余弦公式,利用同角三角函数中的平方关系,完成弦与切的互化,属于基础题. 解:由tanθ=−13, 得cos2θ=cos 2θ−sin 2θ =cos 2θ−sin 2θcos 2θ+sin 2θ=1−tan 2θ1+tan 2θ=1−(−13)21+(−13)2=45,故选D .8.答案:D解析:解:G 满足GA ⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0, 所以G 为△ABC 的重心, 因为AG ⃗⃗⃗⃗⃗ =3AM ⃗⃗⃗⃗⃗⃗ ,则BM ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +13AG ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +13×23×12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=BA ⃗⃗⃗⃗⃗ +19AB ⃗⃗⃗⃗⃗ +19AC ⃗⃗⃗⃗⃗ =19AC ⃗⃗⃗⃗⃗ −89AB ⃗⃗⃗⃗⃗ =19AB ⃗⃗⃗⃗⃗ +19BC ⃗⃗⃗⃗⃗ −89AB ⃗⃗⃗⃗⃗ =19BC ⃗⃗⃗⃗⃗ −79AB ⃗⃗⃗⃗⃗ .故选:D .由已知可知G 为△ABC 的重心,然后结合向量的线性运算及三角形重心的性质可求. 本题主要考查了三角形的重心性质,还考查了向量的线性运算,属于基础题.9.答案:C解析:解:∵函数函数f(n)={n −3,n ≥10f(f(n +5)),n <10,∴f(8)=f[f(13)],则f(13)=13−3=10,∴f(8)=f[f(13)]=f(10)=10−3=7,故选:C.根据解析式先求出f(8)=f[f(13)],依次再求出f(13)和f[f(13)],即得到所求的函数值.本题是分段函数求值问题,对应多层求值按“由里到外”的顺序逐层求值,一定要注意自变量的值所在的范围,然后代入相应的解析式求解.10.答案:D解析:试题分析:由图像知:函数的周期为,所以,又点在图像上,代入得φ=−。

福建省福州市八县市一中2020_2021学年高一数学上学期期末联考试题(含答案)

福建省福州市八县市一中2020_2021学年高一数学上学期期末联考试题(含答案)

福建省福州市八县(市)一中2020-2021学年高一数学上学期期末联考试题(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第II卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试范围:人教A版必修第一册。

第I卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知命题p:∃x∈(-∞,0),tan2021x>x3,则¬p为A.∀x∈[0,+∞),tan2021x>x3B.∀x∈[0,+∞),tan2021x≤x3C.∀x∈(-∞,0),tan2021x≤x3D.∀x∈(-∞,0),tan2021x<x32.已知集合A={x|-2<x<2},B={-2,0,1,2,3},则A∩B=A.{-2,0,1,2}B.{-2,0,1}C.{0,1,2}D.{0,1}3.函数f(x)+log2(3-x)的定义域为A.(0,3)B.(1,+∞)C.(1,3)D.[1,3)4.tan525°=A.-2-2 C.2 D.25.已知函数f(x)=(m2-m-1)2m m1x+-是幂函数,且在区间(0,+∞)内是减函数,则实数m =A.-1或2B.2C.-1D.16.“关于x的不等式x2-3mx+4≥0的解集为R”的一个必要不充分条件是A.-43≤m≤43B.-2<m≤43C.-43<m≤43D.-43≤m<07.2020年10月1日至8日,央视推出大型主题报道《坐着高铁看中国》,8天8条高铁主线,全景式展示“十三五”规划成就和中国之美。

2020-2021学年福建省福州第一中学高一下学期期末考试数学试题

2020-2021学年福建省福州第一中学高一下学期期末考试数学试题

2020-2021学年福建省福州第一中学高一下学期期末考试数学试题(用时:120分钟,满分:150分)2021.7.6一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.福州地铁二号线“福州大学站”的一个安保员,某日将负责的车箱从中午一点开始的十班下车的人数统计如下:3、6、7、3、10、4、6、7、6、8,则这组数据的众数为( ) A .3B .6C .7D .82.若一圆台的上底面半径为1,且上、下底面半径和高的比为1:2: )A.3B.C.3D.3.从三个白球和一个黑球中任意抽取两球,分别采用有放回简单随机抽样、不放回简单随机抽样,抽到的两球都是白球的概率分别是( ) A .916,12B .12,916C .58,23D .23,584.已知1tan25α=,则()cos 31cos 2αππα++=⎛⎫+ ⎪⎝⎭( )A .-5B .5C .15D .15-5.我国南北朝名著《张邱建算经》中记载:“今有方亭,下方三丈,上方一丈,高二丈五尺,预接筑为方锥,问:接筑高几何?”大致意思是:有一个正四棱台的上、下底面边长分别为一丈、三丈,高为二丈五尺,现从上面补上一段,使之成为正四棱锥,则所补的小四棱锥的高是多少?那么,此高和原四棱台的体积分别是(注:1丈等于10尺)( ) A .12.5尺、10833立方尺 B .12.5尺、32500立方尺 C .3.125尺、10833立方尺D .3.125尺、32500立方尺6.由12个数组成的一组数据,将其中一个数3改为5,另一个数8改为6,其余数不变,得到新的12个数,则新的12个数的方差相比原先12个数的方差的减少值为( ) A .1B .2C .3D .47.一个正方体的外接球的表面积为1S ,从正方体的八个顶点中任取四个两两距离相等的点,以其中一点为球心O ,另三点都在球O 的表面,球O 的表面积为2S ,则12S S =( )A .83B C .38D 8.已知函数()()sin f x x ωϕ=+,0ω>,若19f π⎛⎫ ⎪⎭=⎝,()4490f π=,()f x 在93,ππ⎛⎫⎪⎝⎭上单调递减,那么ω的取值个数是( ) A .2019B .2020C .2021D .2022二、选择题:本题共4小题,每小题5分,共20分。

福建省福州市福清市高中联合体2020-2021学年高一上学期期末考试数学试题(可编辑PDF版)

福建省福州市福清市高中联合体2020-2021学年高一上学期期末考试数学试题(可编辑PDF版)
福清市高中联合体 2020-2021 学年第一学期高一年期末考试
数学试卷
(完卷时间:120 分钟;满分:150 分) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 到 2 页,第Ⅱ卷 3 至 4 页. 注意事项: 1. 答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考
第Ⅰ卷
一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1. 已知集合 A 1,0,1,2,3 , B x | 3 x 1 ,则 A B
A. 3
B. 1, 0,1
C. 1, 0,1, 2
D. 1, 0,1, 2, 3
2. 命题“ x 0 , sin x x ”的否定是
安全,在其四周都留有宽 2 米的路面,问所选场地的长和宽各为多少时,才能使占用场地
的面积 S 最小,并求出该最小值? 22. (12 分)
已知函数 f (x) 2sin( x ) . 36
(1)用“五点作图法”在给定的坐标系中,画出函数 f (x) 在[0,6] 上的图象;
(2)求 f (x) 图象的对称轴与单调递增区间; y
(2)若 B A ,求实数 a 的取值范围.
19. (12 分)
在① k 1 , ② k 1这两个条件中任选一个,补充在下面问题中.
已知函数 f (x) k kx ,且_______, x
(1)求 f (x) 的定义域,并判断 f (x) 的奇偶性;
(2)判断 f (x) 的单调性,并用定义给予证明.
三、填空题:本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中的横线上.
13.
已知函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省福州市第一中学2020-2021学年高一上学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.将300°化为弧度是( )A .3π-B .76πC .116πD .53π 2.已知24sin 225α=-,(,0)4πα∈-,则sin cos αα+等于( ) A .15-B .15C .75-D .75 3.1tan 43πα⎛⎫-= ⎪⎝⎭,则tan α=( ) A .2 B .2- C .12 D .12- 4.若0.5a e =,ln 2b =,2log 0.2c =,则有( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>5.函数()33f x log x x 9=+-的零点所在区间是( )A .()0,1B .()1,2C .()2,3D .()3,4 6.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭( )A .2-B .CD .2 7.已知锐角α的终边上一点00(sin 40,1cos 40)P +,则锐角α=( ) A .080 B .020 C .070 D .010 8.将一条均匀柔软的链条两端固定,在重力的作用下它所呈现的形状叫悬链线,例如悬索桥等.建立适当的直角坐标系,可以写出悬链线的函数解析式为()cosh x f x a a=,其中a 为悬链线系数,cosh x 称为双曲余弦函数,其函数表达式为cosh 2x xe e x -+=,相应地双曲正弦函数的函数表达式为sinh 2x xe e x --=,则( ) A .sinh cosh y x x =+是奇函数B .sinh cosh y x x =是偶函数C .cosh()cosh cosh sinh sinh x y x y x y +=-D .sinh()sinh cosh sinh cosh x y x y y x +=+9.为了得到函数sin 23y x π⎛⎫=-⎪⎝⎭的图象,可以将函数cos 2y x =的图象( ) A .右移512π个单位 B .左移712π个单位 C .右移56π个单位 D .左移6π个单位二、多选题10.已知函数()ln(2)ln(6)f x x x =-+- 则( )A .()f x 在(2,6)上单调递减B .()f x 在(2,6)上的最大值为2ln 2C .()f x 在(2,6)上无最小值D .()f x 的图象关于直线4x =对称 11.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,关于()f x 有下述四个结论其中所有正确结论的是( )A .()f x 的一个周期是2πB .()f x 是偶函数C .()f x 在()0,π单调递减D .()f x 12.已知函数()()2cos 03f x x πωω⎛⎫=-> ⎪⎝⎭,1x 、2x 、[]30,x π∈,且[]0,x π∀∈都有()()12()f x f x f x ≤≤,满足()30f x =的实数3x 有且只有3个.则下述四个结论正确的是( )A .满足题目条件的实数1x 有且只有一个B .满足题目条件的实数2x 有且只有一个C .()f x 在0,10π⎛⎫ ⎪⎝⎭上单调递增D .ω的取值范围是1319,66⎡⎫⎪⎢⎣⎭三、填空题13.函数f (x )=sin 22x 的最小正周期是__________.14.函数()sin()0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,则函数()f x 的解析式为______.15.已知()351a bk k ==≠,且2a b ab +=,则k =______.四、双空题16.已知函数()2log ,02,x x a f x x a x<<⎧⎪=⎨≥⎪⎩. (1)当2a =时,函数()f x 的值域是______.(2)若存在实数b ,使函数()()g x f x b =-有两个零点,则实数a 的取值范围是______.五、解答题17.(1)计算:2lg 2lg3111lg 0.36lg823+++ (2)已知tan 1tan 1αα=--,计算35cos()cos sin cos 2223sin()sin(2)cos 2ππππααααπαππαα⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫--- ⎪⎝⎭的值.18.已知函数()24f x x π⎛⎫- ⎝=⎪⎭. (1)利用“五点法”完成以下表格,并在下图中画出函数()f x 在区间9,88ππ⎡⎤⎢⎥⎣⎦上的图象;(2)求出函数()f x 的单调减区间.19.已知函数()1tan ln 1tan x f x x-=+. (1)判断函数()f x 的奇偶性,并证明;(2)若()()()1tan tan f x a x g x e x-=-在,04π⎛⎫- ⎪⎝⎭上有零点,求实数a 的取值范围.20.已知函数()()sin f x A x =+ωϕ(0A >,0>ω)的图像是由3y x πω⎛⎫=+ ⎪⎝⎭的图像向右平移3π个单位得到的. (1)若()f x 的最小正周期为π,求()f x 的与y 轴距离最近的对称轴方程;(2)若()f x 在,2ππ⎡⎤⎢⎥⎣⎦上仅有一个零点,求ω的取值范围. 21.如图,在扇形OPQ 中,半径1OP =,圆心角3POQ π∠=,A 是半径OP 上的动点,矩形ABCD 内接于扇形OPQ ,且OA OD =.(1)若BOP α∠=,求线段AB 的长;(2)求矩形ABCD 面积的最大值.22.已知函数()()()2sin 0,f x x ωϕωϕπ=+><,()f x 图象上相邻的最高点与最低点的横坐标相差2π,______; (1)①()f x 的一条对称轴3x π=-且()16f f π⎛⎫> ⎪⎝⎭; ②()f x 的一个对称中心5,012π⎛⎫⎪⎝⎭,且在2,63ππ⎡⎤⎢⎥⎣⎦上单调递减; ③()f x 向左平移6π个单位得到的图象关于y 轴对称且(0)0f > 从以上三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;(2)在(1)的情况下,令()()1cos 22h x f x x =-,()()g x h h x =⎡⎤⎣⎦,若存在,123x ππ⎡⎤∈⎢⎥⎣⎦使得()()()2230g g x a x a +-+-≤成立,求实数a 的取值范围.参考答案1.D【分析】利用角度制与弧度制的互化即可求解.【详解】 53001803ππ⋅=, 故选:D2.B【详解】试题分析:(,0)sin cos 14πααα∈-⇒<<<<⇒sincos 0αα+> sin cos αα⇒+=15=,故选B . 考点:三角恒等变换.3.A 【分析】 利用两角和的正切公式可求得tan α的值.【详解】1tan 1143tan tan 214411tan 34παππααπα⎛⎫-++ ⎪⎡⎤⎛⎫⎝⎭=-+=== ⎪⎢⎥⎛⎫⎝⎭⎣⎦--- ⎪⎝⎭. 故选:A.4.A【分析】利用指数函数和对数函数的单调性比较a 、b 、c 三个数与0、1的大小关系,从而可得出这三个数的大小关系.【详解】指数函数xy e =为增函数,则0.501a e e =>=;对数函数ln y x =为增函数,则ln1ln 2ln e <<,即01b <<;对数函数2log y x =为增函数,则22log 0.2log 10c =<=.因此,a b c >>.故选:A.【点睛】本题考查指数式与对数式的大小比较,一般利用指数函数和对数函数的单调性得出各数与中间值0、1的大小关系,考查推理能力,属于基础题.5.C【分析】根据函数零点存在性定理进行判断即可.【详解】∵3(2)log 210f =-<,3(3)log 3279190f =+-=>,∴(2)(3)0<f f ,∴函数在区间(2,3)上存在零点.故选C .【点睛】求解函数零点存在性问题常用的办法有三种:一是用定理,二是解方程,三是用图象.值得说明的是,零点存在性定理是充分条件,而并非是必要条件.6.C【分析】只需根据函数性质逐步得出,,A ωϕ值即可.【详解】因为()f x 为奇函数,∴(0)sin 0=,0,f A k k ϕϕπ==∴=,0ϕ=; 又12()sin ,2,122g x A x T πωπω=∴== 2ω=,2A =,又()4g π=∴()2sin 2f x x =,3()8f π= 故选C .【点睛】本题考查函数的性质和函数的求值问题,解题关键是求出函数()g x .7.C【解析】∵锐角α的终边上一点()00sin40,1cos40P +, ∴0201cos402cos 20cos20tan αtan70sin402sin20cos20sin20y x +︒︒=====︒︒︒︒∴α=70°故选C8.D【分析】根据奇偶性的定义以及指数的运算性质逐一判断即可.【详解】 由cosh 2x x e e x -+=,sinh 2x xe e x --=, 对于A ,()sinh cosh 22x x x xe e e e yf x x x ---+==+=+,定义域为R , ()()2222x x x x x x x xx x e e e e e e e e f x f x e e ------+-++-=+++=+,故A 不正确; 对于B ,()22sinh cosh 4x x e e y f x x x --===,()()224x xe ef x f x ---==-, 所以函数为奇函数,故B 不正确.对于C ,()cosh()2x y x y e e x y -++++=, cosh cosh sinh sinh 2222x x y y x x y ye e e e e e e e x y x y ----++---=⋅-⋅ ()4x y x y x y x y x y x y x y x y e e e e e e e e +--+--+--+--+++---+=2x y x y e e --++=,故C 不正确;对于D ,()sinh()2x y x y e e x y -++-+=, sinh cosh sinh cosh 2222x x y y y y x xe e e e e e e e x y y x -----+-++=⋅+⋅ ()24x y x y x y x y x y x y x y x y x y x y e e e e e e e e e e +--+--+-+----++-+--++--==,故D 正确. 故选:D9.A【分析】 将目标函数解析式化为5cos 26y x π⎛⎫=-⎪⎝⎭,利用三角函数图象变换规律可得出结论. 【详解】 55sin 2cos 2cos 2cos 2332612y x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 所以,为了得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数cos 2y x =的图象右移512π个单位.故选:A.10.BCD【分析】化简函数的解析式,求解函数的定义域,利用对数函数的性质,以及复合函数单调性的判断条件,逐项判断,即可得出结果..【详解】[]()ln(2)ln(6)ln (2)(6)f x x x x x =-+-=--,由2060x x ->⎧⎨->⎩得,函数的定义域为(2,6); 令(2)(6)t x x =--,则ln y t =,二次函数2(2)(6)812t x x x x =--=-+-开口向下,其对称轴为直线4x =,所以(2)(6)t x x =--在(2,4)上单调递增,在(4,6)上单调递减,所以(](2)(6)0,4t x x =--∈, 又函数ln y t =在(]0,4∈t 上单调递增;由复合函数的单调性,可得()f x 在(2,4)上单调递增,在(4,6)上单调递减; 故A 错;因为(]0,4∈t 时,(]ln ,2ln 2y t =∈-∞,即(],2ln 2()f x ∈-∞,所以()f x 在(2,6)上的最大值为2ln 2,无最小值; 故BC 正确;因为(4)ln(42)ln(64)ln(2)ln(2)f x x x x x -=--+-+=-++,(4)ln(42)ln(64)ln(2)ln(2)f x x x x x +=+-+--=++-,即(4)(4)f x f x -=+,所以()f x 的图象关于直线4x =对称,故D 正确. 故选:BCD . 【点睛】 思路点睛:求解对数型复合函数的单调性及最值时,一般根据对数函数的单调性,以及复合函数单调性的判定方法,先判断函数单调性,再由函数单调性,即可求出最值等. 11.AD 【分析】利用函数周期性的定义可判断A 选项的正误;利用4f π⎛⎫-⎪⎝⎭和4f π⎛⎫ ⎪⎝⎭的值可判断B 选项的正误;化简函数()f x 在0,2π⎛⎫⎪⎝⎭上的解析式,可判断C 选项的正误;由()0f 的值可判断D 选项的正误. 【详解】 对于A 选项,()()()[][]()2sin cos 2cos sin 2sin cos cos sin f x x x x x f x πππ+=+++=+=⎡⎤⎡⎤⎣⎦⎣⎦,所以,函数()f x 的一个周期为2π,A 选项正确;对于B 选项,sin cos sin 0cos 014f π⎛⎫=+=+= ⎪⎝⎭⎣⎦⎣⎦,()sin cos sin 0cos 1cos1422f π⎡⎛⎫-=+-=+-=⎢ ⎪⎝⎭⎣⎦⎣⎦,44f f ππ⎛⎫⎛⎫∴-≠ ⎪ ⎪⎝⎭⎝⎭,44f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 不是偶函数,B 选项错误; 对于C 选项,当02x π<<时,0sin 1x <<,0cos 1x <<,则[][]sin cos 0x x ==,则()sin0cos01f x =+=,所以,函数()f x 在0,2π⎛⎫⎪⎝⎭是常函数,C 选项错误;对于D 选项,()[][]0sin cos0cos sin 0sin1cos01sin1f ∴=+=+=+>D 选项正确. 故选:AD. 【点睛】关键点点睛:本题考查三角函数的新定义——取整函数,解题时充分利用正弦函数、余弦函数的有界性化简函数解析式,在推导命题不成立时,可充分利用特殊值法来进行验证. 12.ACD 【分析】由[]0,x π∈可求得23x πω-的取值范围,设23t x πω=-,根据题意作出函数cos y t =的图象,可判断AB 选项的正误;根据已知条件可得出关于ω的不等式,解出ω的取值范围,可判断D 选项的正误;由0,10x π⎛⎫∈ ⎪⎝⎭计算出23x πω-,利用余弦函数的单调性可判断C 选项的正误. 【详解】由[]0,x π∈可求得222,333x πππωωπ⎡⎤-∈--⎢⎥⎣⎦, 设23t x πω=-,则22,33t ππωπ⎡⎤∈--⎢⎥⎣⎦,作出函数cos y t =的图象如下图所示:因为[]0,x π∀∈都有()()12()f x f x f x ≤≤,则()()1min f x f x =,()()2max f x f x =, 且满足()30f x =的实数3x 有且只有3个,由图象可知,满足题目条件的实数1x 有且只有一个,A 选项正确; 由图象可知,满足题目条件的实数2x 有一个或两个,B 选项错误; 由图象可得325232πππωπ≤-<,解得131966ω≤<,D 选项正确; 当0,10x π⎛⎫∈ ⎪⎝⎭时,22233103x πππωπω-<-<-, 由上可知,131966ω≤<,所以,9272010320ππωππ-≤-<-, 所以,函数()f x 在0,10π⎛⎫⎪⎝⎭上单调递增,C 选项正确. 故选:ACD. 【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成()sin y A ωx φ=+或()cos y A x ωϕ=+形式,再求()sin y A ωx φ=+或()cos y A x ωϕ=+的单调区间,只需把x ωϕ+看作一个整体代入sin y x =或cos y x =的相应单调区间内即可,注意要先把ω化为正数. 13.2π.【分析】将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可. 【详解】函数()2sin 2f x x ==142cos x-,周期为2π 【点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题. 14.()sin 23f x x π⎛⎫=+ ⎪⎝⎭【分析】根据三角函数图象依次求得,,A ωϕ的值. 【详解】由图象可知1A =,2,23622T T πππππ⎛⎫=--=== ⎪⎝⎭,所以2ω=,故()()sin 2f x x ϕ=+,将点,06π⎛⎫-⎪⎝⎭代入上式得sin 03πϕ⎛⎫-+= ⎪⎝⎭,因为||2ϕπ<,所以3πϕ=.故()sin 23f x x π⎛⎫=+ ⎪⎝⎭.故答案为:()sin 23f x x π⎛⎫=+ ⎪⎝⎭【点睛】本小题主要考查根据三角函数的图象求三角函数的解析式,属于基础题.15【分析】由已知两边取常用对数,根据对数运算法则化简即可求值. 【详解】因为()3501abk k ==>≠,所以lg3lg5lg a bk ==,所以lg lg ,lg 3lg 5k ka b ==, 因为2a b ab +=,所以112a b+=, 即lg 3lg 5lg152lg lg lg k k k+==, 所以2lg152lg lg k k ==,所以215k =,解得k =,16.(],1-∞ ()1,+∞ 【分析】(1)利用对数函数和反比例函数的基本性质可求得函数()f x 的值域;(2)分01a <≤、1a >两种情况讨论,可知直线y b =与函数()f x 的图象有两个交点,数形结合可得出结果. 【详解】(1)当2a =时,则()2log ,022,2x x f x x x<<⎧⎪=⎨≥⎪⎩. 当02x <<时,()22log log 21f x x =<=; 当2x ≥时,()(]20,1f x x=∈. 综上所述,当2a =时,函数()f x 的值域为(],1-∞;(2)由题意可知,存在实数b ,使得函数y b =与函数()f x 的图象有两个交点. ①当01a <≤时,如下图所示:此时,不存在实数b ,使得函数y b =与函数()f x 的图象有两个交点; ②当1a >时,如下图所示:此时,存在实数b ,使得函数y b =与函数()f x 的图象有两个交点.综上所述,当1a >时,存在实数b ,使得函数y b =与函数()f x 的图象有两个交点. 故答案为:(],1-∞;()1,+∞. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 17.(1)1;(2)9- 【分析】(1)利用对数的运算性质即可求解.(2)利用诱导公式以及齐次式的运算即可求解. 【详解】 (1)原式()2lg 2lg32lg 2lg3lg1211lg 6lg 2lg121lg36lg100lg 22++====++-+. (2)原式()()()()()23cos sin cos sin sin cos sin sin sin sin sin ααααααααααα--++==---- 2222222cos 12cos sin 2tan sin sin tan ααααααα+++===---, 又tan 1tan 1αα=--,解得1tan 2α=,所以原式2292tan 491tan 4αα+-=-=-. 18.(1)表格图象见解析;(2)()37,88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 【分析】(1)根据函数()f x 的解析式可完善表格,然后描点、连线,可作出函数()f x 在9,88ππ⎡⎤⎢⎥⎣⎦上的图象;(2)解不等式()3222242k x k k Z πππππ+≤-≤+∈可得函数()f x 的单调递减区间. 【详解】 (1)()24f x x π⎛⎫=- ⎪⎝⎭,如下表所示:函数()f x 在区间9,88ππ⎡⎤⎢⎥⎣⎦上的图象如下图所示:(2)由()3222242k x k k Z πππππ+≤-≤+∈,解得()3788k x k k Z ππππ+≤≤+∈. 因此,函数()f x 的单调递减区间为()37,88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 19.(1)函数()f x 为奇函数,证明见解析;(2)(),0-∞. 【分析】(1)求出函数()f x 的定义域,计算得出()f x -与()f x 之间的关系,由此可得出结论; (2)由,04x π⎛⎫∈-⎪⎝⎭可得出1tan 0x -<<,1tan 0x ->,利用()0g x =可得出tan 1tan x a x =+,求出函数tan 1tan x y x =+在,04π⎛⎫- ⎪⎝⎭上的值域,由此可得出实数a 的取值范围.【详解】(1)对于函数()1tan ln 1tan x f x x -=+,有1tan 01tan xx ->+,即tan 10tan 1x x -<+,解得1tan 1x -<<,解得()44k x k k Z ππππ-<<+∈,所以,函数()f x 的定义域为(),44k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z , ()()()()11tan 1tan 1tan 1tan ln ln ln ln 1tan 1tan 1tan 1tan x x x x f x f x x x x x ---+--⎛⎫-====-=- ⎪+--++⎝⎭, 所以,函数()f x 为奇函数;(2)()()()()1tan 1tan 1tan tan 1tan tan f x a x a x x g x e x x x---=-=-+, 04x π-<<,则1tan 0x -<<,1tan 0x ->,所以,0tan 11x <+<,令()0g x =,可得()tan 11tan 1101tan tan 1tan 1x xa x x x +-===-<+++, 所以,实数a 的取值范围是(),0-∞. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 20.(1)12x π=-;(2)512ω≤<. 【分析】(1)由函数的()f x 的最小正周期求得ω,再根据图象的平移得出函数()f x 的解析式,由正弦函数的性质可得答案;(2)由图象平移得出:()33f x x ππω⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦,再由()f x 在,2ππ⎡⎤⎢⎥⎣⎦上仅有一个零点,建立不等式组,解之可得范围. 【详解】解:(1)因为()f x 的最小正周期为π,2ππω∴=,2ω∴=,()f x 的图像是由3y x πω⎛⎫=+ ⎪⎝⎭的图像向右平移3π个单位得到,()33f x x ππω⎡⎤⎛⎫∴=-+ ⎪⎢⎥⎝⎭⎣⎦,即()23f x x π⎛⎫=- ⎪⎝⎭,令232x k ππ-=π+,k Z ∈,得()f x 的对称轴方程为212k x π5π=+,k Z ∈, 要使直线212k x π5π=+(k Z ∈)与y 轴距离最近,则须5212k ππ+最小,1k ∴=-,此时对称轴方程为12x π=-,即所求对称轴方程为12x π=-.(2)由已知得:()33f x x ππω⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦,令()0f x =得:33x k ππωωπ+-=,k Z ∈,即33k x πππωω+-=,k Z ∈,()f x 在,2ππ⎡⎤⎢⎥⎣⎦上仅有一个零点,()()3321332133k k k πππωππωπππωπωπππωπω⎧+-⎪≤≤⎪⎪⎪-+-⎪∴<⎨⎪⎪++-⎪>⎪⎪⎩,k Z ∈,0ω>, 3162268322k k k k ωωω-⎧≤≤-⎪⎪∴>-⎨⎪+⎪<⎩,0ω>,6203162232682k k k k k ⎧⎪->⎪-⎪∴≤-⎨⎪+⎪-<⎪⎩,解得:123k ≤<, k Z ∈,1k ∴=,512ω∴≤<. 【点睛】方法点睛:求解()()sin +f x A x ωϕ=的性质时,可采用将+x ωϕ整体看待,可求得函数的值域、对称轴、对称中心、单调性等性质以及求参数的范围. 21.(1)2sin AB α=;(2)矩形ABCD面积的最大值为2. 【分析】(1)由题意可得3DAO π∠=,过B 作OP 的垂线,垂足为N ,在ABN 中,即可求解.(2)由(1)可得2sin AB α=,sin BN α=,从而可得cos 6AN AB πα==,cos OA ON AN αα=-=,根据矩形面积公式以及辅助角公式即可求解.【详解】(1)3POQ π∠=且OA OD =,AOD ∴为等边三角形,3DAO π∴∠=, 又四边形ABCD 为矩形,2DAB π∴∠=,6BAP π∴∠=,在扇形OPQ 中,半径1OP =,过B 作OP 的垂线,垂足为N ,sin sin BN OB αα∴==,在ABN 中,2sin sin sin 6BN BN AB BAP απ===∠. (2)矩形ABCD 面积S AB AD =,设BOP α∠=,由(1)可知2sin AB α=,sin BN α=,cos cos ON OB αα==,cos6AN AB πα==,cos OA ON AN αα∴=-=,()2sin cos ABCD S AB AD AB OA ααα∴=⋅=⋅=矩形sin 222sin 23πααα⎛⎫==+- ⎪⎝⎭0,3πα⎛⎫∈ ⎪⎝⎭,2,33ππαπ⎛⎫∴+∈ ⎪⎝⎭, ∴当232ππα+=,即12πα=时,矩形ABCD 面积的最大值,最大值为2.22.(1)选①②③,()2sin 26f x x π⎛⎫=+⎪⎝⎭;(2))⎡+∞⎣. 【分析】(1)根据题意可得出函数()f x 的最小正周期,可求得ω的值,根据所选的条件得出关于ϕ的表达式,然后结合所选条件进行检验,求出ϕ的值,综合可得出函数()f x 的解析式; (2)求得()sin 26h x x π⎛⎫=- ⎪⎝⎭,由,123x ππ⎡⎤∈⎢⎥⎣⎦可计算得出()[]0,1h x ∈,进而可得出()1,sin 226g x π⎡⎤⎛⎫∈-- ⎪⎢⎥⎝⎭⎣⎦,由参变量分离法得出()()211a g x g x ≥+++,利用基本不等式求得()()211g x g x +++的最小值,由此可得出实数a 的取值范围. 【详解】(1)由题意可知,函数()f x 的最小正周期为22T ππ=⨯=,22Tπω∴==. 选①,因为函数()f x 的一条对称轴3x π=-,则()232k k Z ππϕπ⎛⎫⨯-+=+∈ ⎪⎝⎭, 解得()76k k Z πϕπ=+∈, ϕπ<,所以,ϕ的可能取值为56π-、6π. 若56π=-ϕ,则()52sin 26f x x π⎛⎫=- ⎪⎝⎭,则()2sin 2162f f ππ⎛⎫⎛⎫=-=-< ⎪ ⎪⎝⎭⎝⎭,不合乎题意;若6π=ϕ,则()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,则()2sin 2162f f ππ⎛⎫==> ⎪⎝⎭,合乎题意. 所以,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭; 选②,因为函数()f x 的一个对称中心5,012π⎛⎫⎪⎝⎭,则()5212k k Z πϕπ⨯+=∈, 解得()56k k Z πϕπ=-∈, ϕπ<,所以,ϕ的可能取值为56π-、6π. 若56π=-ϕ,则()52sin 26f x x π⎛⎫=- ⎪⎝⎭,当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,52,622x πππ⎡⎤-∈-⎢⎥⎣⎦, 此时,函数()f x 在区间2,63ππ⎡⎤⎢⎥⎣⎦上单调递增,不合乎题意; 若6π=ϕ,则()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,532,622x πππ⎡⎤+∈⎢⎥⎣⎦, 此时,函数()f x 在区间2,63ππ⎡⎤⎢⎥⎣⎦上单调递减,合乎题意; 所以,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭; 选③,将函数()f x 向左平移6π个单位得到的图象关于y 轴对称, 所得函数为2sin 22sin 263y x x ππϕϕ⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由于函数2sin 23y x πϕ⎛⎫=++ ⎪⎝⎭的图象关于y 轴对称,可得()32k k Z ππϕπ+=+∈, 解得()6k k Z πϕπ=+∈, ϕπ<,所以,ϕ的可能取值为56π-、6π. 若56π=-ϕ,则()52sin 26f x x π⎛⎫=- ⎪⎝⎭,()502sin 16f π⎛⎫=-=- ⎪⎝⎭,不合乎题意;若6π=ϕ,则()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,()02sin 16f π==,合乎题意. 所以,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭; (2)由(1)可知()2sin 26f x x π⎛⎫=+ ⎪⎝⎭, 所以,()()11cos 2sin 2cos 22cos 2cos 22622h x f x x x x x x x π⎛⎫=-=+-=+- ⎪⎝⎭12cos 2sin 226x x x π⎛⎫=-=- ⎪⎝⎭, 当,123x ππ⎡⎤∈⎢⎥⎣⎦时,0262x ππ≤-≤,()01h x ∴≤≤,所以,()22666h x πππ-≤-≤-, 所以,()()()1sin 2,sin 2626g x h h x h x ππ⎡⎤⎡⎤⎛⎫==-∈--⎡⎤ ⎪⎢⎥⎣⎦⎢⎥⎣⎦⎝⎭⎣⎦, ()11,1sin 226g x π⎡⎤⎛⎫∴+∈+- ⎪⎢⎥⎝⎭⎣⎦, 2223ππ<<,2362πππ∴<-<,则sin 2126π⎛⎫<-< ⎪⎝⎭, 由()()()2230g g x a x a +-+-≤可得()()()2231g x g x a g x ++≤+⎡⎤⎣⎦,所以,()()()()()()()22122321111g x g x g x a g x g x g x g x ++⎡⎤++⎣⎦≥==+++++, 由基本不等式可得()()211g x g x ++≥=+当且仅当()11,1sin 226g x π⎡⎤⎛⎫+=+- ⎪⎢⎥⎝⎭⎣⎦时,等号成立,所以,a ≥【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.。

相关文档
最新文档