自动控制原理第8章_非线性控制系统分析

合集下载

《自动控制原理》考点精讲(第8讲 非线性控制系统分析)

《自动控制原理》考点精讲(第8讲  非线性控制系统分析)
(2)稳定性分析很复杂 线性系统的稳定性只取决于系统的结构与参数,而与外部作用 和初始条件无关。 非线性系统的稳定性:与系统的参数与结构、运动的初始状 态、输入信号有直接关系。 非线性系统的某些平衡状态(如果不止有一个平衡状态的话) 可能是稳定的,而另外一些平衡状态却可能是不稳定的。
自动控制原理(自动控制理论)考点精讲
量外,还含有关于ω的高次谐波分量。使输出波形发生非线
性畸变。 正弦响应的复杂性:①跳跃谐振及多值响应;②倍频振荡与 分频振荡;③组合振荡(混沌);④频率捕捉。 混沌:
自动控制原理(自动控制理论)考点精讲
网学天地( )
e
x
x(t)
x(t)
x(t)
x(t)
ωt ωt
ωt ωt
自动控制原理(自动控制理论)考点精讲
自动控制原理(自动控制理论)考点精讲
网学天地( )
例:欠阻尼二阶系统的相平面描述——相轨迹
相轨迹在某些特定情况 下,也可以通过积分法, 直接由微分方程获得x和x 导数的解析关系式:
x dx = f (x, x) ⇒ g(x)dx = h(x)dx dx
自动控制原理(自动控制理论)考点精讲
α
=
dx dx
=
f (x, x) x
则与该曲线相交的任何相轨迹在交点处的切线斜率均为α,
该曲线称为等倾线。 注1:线性系统的等倾线为直线; 注2:非线性系统的等倾线为曲线或折线。
自动控制原理(自动控制理论)考点精讲
网学天地( )
由等倾线的概念知,当相轨迹经过该等倾线上任一点时,其 切线的斜率都相等,均为α。取α为若干不同的常数,即可 在相平面上绘制出若干条等倾线,在等倾线上各点处作斜率 为α的短直线,并以箭头表示切线方向,则构成相轨迹的切 线方向场。

自动控制原理第八章习题答案

自动控制原理第八章习题答案

第八章 非线性控制系统分析练习题及答案8-2 设一阶非线性系统的微分方程为3x x x+-= 试确定系统有几个平衡状态,分析平衡状态的稳定性,并画出系统的相轨迹。

解 令 x=0 得 -+=-=-+=x x x x x x x 321110()()()系统平衡状态x e =-+011,,其中:0=e x :稳定的平衡状态;1,1+-=e x :不稳定平衡状态。

计算列表,画出相轨迹如图解8-1所示。

可见:当x ()01<时,系统最终收敛到稳定的平衡状态;当x ()01>时,系统发散;1)0(-<x 时,x t ()→-∞; 1)0(>x 时,x t ()→∞。

注:系统为一阶,故其相轨迹只有一条,不可能在整个 ~xx 平面上任意分布。

8-3 试确定下列方程的奇点及其类型,并用等倾斜线法绘制相平面图。

(1) x xx ++=0 (5) ⎩⎨⎧+=+=2122112x x xx x x解 (1) 系统方程为x -2 -1 -13 0 131 2x-6 0 0.385 0 -0.385 0 6 x 11 2 01 0211图解8-1 系统相轨迹⎩⎨⎧<=-+I I >=++I )0(0:)0(0:x x x x x x x x令0x x ==,得平衡点:0e x =。

系统特征方程及特征根:21,221,21:10,()2:10, 1.618,0.618()s s s s s s I II ⎧++==-±⎪⎨⎪+-==-+⎩稳定的焦点鞍点(, ) , , x f x x x x dxdxxx x dx dx x x x x x==--=--==--=-+=ααβ111⎪⎪⎩⎪⎪⎨⎧<-=>--=)0(11:II )0(11:I x x βαβα计算列表用等倾斜线法绘制系统相平面图如图解8-2(a )所示。

图解8-2(a )系统相平面图(5) xx x 112=+ ① 2122x x x+= ② 由式①: x xx 211=- ③ 式③代入②: ( )( )x xx x x 111112-=+- 即 x x x 11120--= ④ 令 x x110== 得平衡点: x e =0 由式④得特征方程及特征根为 ⎩⎨⎧-==--414.0414.20122,12λs s (鞍点) 画相轨迹,由④式x xdxdx x x x 1111112===+α xx 112=-α 计算列表用等倾斜线法绘制系统相平面图如图解8-2(b )所示。

精品文档-自动控制原理(王春侠)-第八章

精品文档-自动控制原理(王春侠)-第八章
19
8.2 描 述 函 数 法 8.2.1 描述函数的基本概念
设非线性环节的输入为 x(t)=A sinωt
一般情况下,非线性环节的稳态输出y(t)是非正弦周期信号。 将y(t)用傅氏级数表示为
y t A0 An cos nt+Bn sin nt =A0 Yn sin nt+n
n =1
n =1
kx,
x ≤a
y Msignx, x >a
2
图8-1 饱和非线性特性
3
2. 死区特性
死区又称不灵敏区,如图8-2所示。其输入与输出之间关
系的表达式为
0,
x ≤Δ
y k x Δsignx, x >Δ
式中,Δ为死区范围; k为线性段的斜率。
当输入信号小于Δ时,对系统来说,虽然有输入但无输
出,只有当|x|>Δ时才有输出,这时,输出与输入之间为
第八章 非线性控制系统分析
8.1 非线性系统的基本概念 8.2 描述函数法 8.3 相平面法 8.4 Matlab应用实例
1
8.1 非线性系统的基本概念 8.1.1 典型非线性特性
控制系统中含有本质非线性环节,如果这些本质非线性特 性能用简单的折线来描述,则称为典型非线性特性。
1. 饱和特性 饱和特性是一种常见的非线性特性,如图8-1所示。其数 学表达式为
最后指出,这种方法只适用于单个的非线性元件,如果有 两个以上的非线性元件,则必须把它们合并为一个模块,否则 第二个元件的输入就不会是正弦波。
22
8.2.2 典型非线性特性的描述函数 1. 死区特性 在具有死区的元件中,当输入在死区的幅值范围内时
就没有输出。图8-6所示为死区非线性特性及其输入、输出波 形。

自动控制原理 胡寿松 第八章 非线性控制系统分析

自动控制原理 胡寿松 第八章 非线性控制系统分析

k ( x b) y c k ( x b)
当x y / k b 当 b x y / k b 当x y / k b
式中, b 为常数,它等于主动轮改变方向时的值。
间隙特性类似于线性系统的滞后环节,但不完全等价,它对控制系统的动 态、稳态特性都不利。
虚线可用动态非线性微分方程来描述 死区特性可能给控制系统带来不利影响,它会使控制的灵敏度下降,稳态 误差加大;
死区特性也可能给控制系统带来有利的影响,有些系统人为引入死区以提 高抗干扰能力。
2. 饱和特性
可以说,任何实际装置都存在饱和特性,因为它们的输出不可能无限增大。 实际的饱和特性一般如图中的点划线所示,为了分析的方便,我们将它用图中 的三段直线来近似,并称之为理想饱和特性。 理想饱和特性的数学描述为:
3. 非线性系统的分析与设计方法
系统分析和设计的目的是通过求取系统的运动形式,以解决稳定性问题为中 心,对系统实施有效的控制。 由于非线性系统形式多样,受数学工具限制,一般情况下难以求得非线性微 分方程的解析解,只能采用工程上适用的近似方法。 本章重点介绍两种方法:(考研) 1)相平面法
2)描述函数法
2) 非线性系统的分类
非本质非线性 :能用小偏差线性化方法进行线性化处理的非线性。 本质非线性 : 不能用小偏差线性化方法解决的非线性。
3)研究非线性控制理论的意义 随着生产和科学技术的发展,对控制系统的性能和精度要求越来越高,建 立在线性化基础上的分析和设计方法已经难以解决高质量的控制问题。 为此,必须针对非线性系统的数学模型,采用非线性控制理论进行研究。 此外,为了改善系统的性能,实现高质量的控制,还必须考虑非线性控制器 的设计。
8-3 相平面法

自动控制原理第八章非线性控制系统

自动控制原理第八章非线性控制系统
稳定性定义
如果一个非线性系统在初始扰动下偏离平衡状态,但在时间推移过程中能够恢复到平衡状态,则称该系统是稳定 的。
线性系统稳定的必要条件
系统矩阵A的所有特征值均具有负实 部。
系统矩阵A的所有特征值均具有非正实 部,且至少有一个特征值为0。
劳斯-赫尔维茨稳定判据
劳斯判据
通过计算系统矩阵A的三次或更高次特征多项式的根的实部来判断系统的稳定性。如果所有根的实部 均为负,则系统稳定;否则,系统不稳定。
输出反馈方法
通过输出反馈来改善非线性系统的性能,实 现系统的稳定性和跟踪性能。
自适应控制方法
通过在线调整控制器参数来适应非线性的变 化,提高系统的跟踪性能和稳定性。
非线性系统的设计方法
根轨迹法
通过绘制根轨迹图来分析系统的稳定性,并 设计适当的控制器。
相平面法
通过绘制相平面图来分析非线性系统的动态 行为,进行系统的分析和设计。
感谢您的观看
THANKS
自动控制原理第八章非线性 控制系统
目录
• 非线性系统的基本概念 • 非线性系统的分析方法 • 非线性系统的稳定性分析 • 非线性系统的校正与设计 • 非线性系统的应用实例
01
非线性系统的基本概念
非线性系统的定义
非线性系统的定义
非线性系统是指系统的输出与输入之 间不满足线性关系的系统。在自动控 制原理中,非线性系统是指系统的动 态特性不能用线性微分方程来描述的 系统。
02
它通过将非线性系统表示为一 个黑箱模型,通过测量系统的 输入输出信号来研究其动态特 性。
03
输入输出法适用于分析具有复 杂结构的非线性系统,通过实 验测量和数据分析,可以了解 系统的动态响应和稳定性。
03

自动控制原理第八章

自动控制原理第八章
非线性是宇宙间的普遍规律 非线性系统的运动形式多样,种类繁多 线性系统只是在特定条件下的近似描述

2.非线性系统的一般数学模型
f (t , d y dt
n n
,
dy dt
, y ) g (t ,
d r dt
m
m
,
dr dt
, r)
其中,f (· )和g (· )为非线性函数。
2012-6-21 《自动控制原理》 第八章 非线性系统 23
2012-6-21 《自动控制原理》 第八章 非线性系统 5
(1)当初始条件x0<1时,1-x0>0,上式具有负的特
征根,其暂态过程按指数规律衰减,该系统稳定。 (2)当x0=1时,1-x0=0,上式的特征根为零,其暂 态过程为一常量。 (3)当x0>1时,1-x0<0,上式的特征根为正值,系 统暂态过程按指数规律发散,系统不稳定。 系统的暂态过程如图所示。 由于非线性系统的这种性质, 在分析它的运动时不能应用 线性叠加原理。
非线性弹簧输出的幅频特性
2012-6-21 《自动控制原理》 第八章 非线性系统 11
实际中常见的非线性例子
实际的非线性例子:晶体管放大器有一个线性工作范围,
超出这个范围,放大器就会出现饱和现象;有时,工程上
还人为引入饱和特性用以限制过载;
电动机输出轴上总是存在摩擦力矩和负载力矩,只有在输
2012-6-21
《自动控制原理》 第八章 非线性系统
16

系统进入饱和后,等效K↓
% ( 原来系统稳定,此时系 统一定稳定) (原来不稳,非线性系 统最多是等幅振荡) 振荡性 限制跟踪速度,跟踪误 差 ,快速性

自动控制原理第8章

自动控制原理第8章

f(x, x) f(x, x) 或 f(x, x) f(x, x)
即 f(x, x)是关于 xx
x
自动控制原理
9
(2)相平面图上的奇点和普通点
相平面上任一点(x, x),只要不同时满足 x 0和 f(x, x) 0 , 则该点的斜率是唯一的,通过该点的相轨迹有且仅有一条, 这样的点称为普通点。
中心点

vortex or center
σ
x
x
中心点
鞍点

x
saddle point
σ
鞍点
x
自动控制原理
21
j λ2 λ1 0
节点 node
j 0
j
0 λ1 λ2
不稳定节点 unstable node
j
0
稳定焦点 stable focus
j
不稳定焦点 unstable focus
j
0
λ1 0 λ2
此系统将具有振荡发散状态。
终将趋于环内平衡点,不会产生自振荡。
自动控制原理
25
例8-3 x 0.5x 2x x2 0
解: x dx 0.5x 2x x2 0 dx
试分析稳定性。
则:
dx dx
0.5x 2x x
x2
0 0
有:
0.5x 2x x2 0
x 0
-2
x
0x
奇点位置:
如果把相变量x视为位移,于是 x 和 x 可以理解为速度和
加速度。在奇点处,由于系统的速度和加速度均为零,因
此奇点就是系统的平衡点equilibrium point 。
自动控制原理
20
系统奇点的分类

《自动控制原理》第八章非线性控制系统分析

《自动控制原理》第八章非线性控制系统分析

K G jw = ( ) S 0.1S+1)( 0.2S+1) ( K −0.3w− j(1−0.02w2 )] [ = 4 2 w 0.0004w + 0.05w +1) (
S= jw
令 ImG(jw) = 0 即 1 – 0.02w2 = 0 ,可得 G(jw) 曲线与负实轴交点的频率为:
1 wx = = 50 = 7.07rad / s 0.02
C(t)
∆2 ∆3 ∆ = ∆1 + + k k k2 1 1
K1 ,k2 ,k3 为传递函数各自的增益
处于系统前向通路最前边的元件,其死区所 造成的影响最大,而放大元件和执行元件的影响 可以通过提高这些元件前几项的传递函数来减小。 死区对系统的直接影响是造成稳态误差,降 低了定位精度。
≤ 时,输出量 y 与 x 是线 饱和:当输入量 x≤ a x> a > 时,输出量不再 性关系 y = kx ,当 随着输入量线性增长,而保持为某一常值。
两条曲线在交点处的幅值相等,即: −π
1 1 1 2 [arcsin + 4 1−( ) ] A A A = −1
得:A = 0.5 应用奈氏判据可以判断交点对应的周期运动 2.5sin7.07t 是稳定的,故当 k = 15 时,非线性系统 工作在自振状态,自振振幅 A = 2.5 ,频率 w = 7.07rad/s (2)欲使系统稳定地工作,不出现自振荡,由于 G(s) 的极点均在右半平面,故根据奈氏判据
相对负倒描述函数为:
A A2 ( ) 1 π π h h − =− =− NA ( ) 4 4 A2 h2 1−( ) ( ) −1 h A
采用相对描述函数后,系统的特征方程改写为:

自动控制原理-第8章非线性控制系统

自动控制原理-第8章非线性控制系统

8非线性控制系统前面几章讨论的均为线性系统的分析和设计方法,然而,对于非线性程度比较严重的系统,不满足小偏差线性化的条件,则只有用非线性系统理论进行分析。

本章主要讨论本质非线性系统,研究其基本特性和一般分析方法。

8.1非线性控制系统概述在物理世界中,理想的线性系统并不存在。

严格来讲,所有的控制系统都是非线性系统。

例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。

当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。

实际上,所有的物理元件都具有非线性特性。

如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。

图8-1所示的伺服电机控制特性就是一种非线性特性,图中横坐标u为电机的控制电压,纵坐标为电机的输出转速,如果伺服电动机工作在A1OA2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。

但如果电动机的工作区间在B1OB2区段•那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的非线性。

8.1.1控制系统中的典型非线性特性组成实际控制系统的环节总是在一定程度上带有非线性。

例如,作为放大元件的晶体管放大器,由于它们的组成元件(如晶体管、铁心等)都有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;执行元件例如电动机,总是存在摩擦力矩和负载力矩,因此只有当输入电压达到一定数值时,电动机才会转动,即存在不灵敏区,同时,当输入电压超过一定数值时,由于磁性材料的非线性,电动机的输出转矩会出现饱和;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙,等等。

实际控制系统总是或多或少地存在着非线性因素,所谓线性系统只是在忽略了非线性因素或在一定条件下进行了线性化处理后的理想模型。

常见典型非线性特性有饱和非线性、死区非线性、继电非线性、间隙非线性等。

第8章非线性控制系统

第8章非线性控制系统

自动控制原理
14
3.逆系统法: 运用内环非线性反馈控制,构造伪线性系统, 以此为基础,设计外环控制网络,该方法直接应 用数学工具研究非线性控制问题,是非线性系统 研究的一个发展方向。但是,这些方法主要是解 决非线性系统的“分析”问题,且以稳定性问题 为主展开的。非线性系统的“综合”方法的研究 成果远不如稳定性问题研究所取得的成果。
第 八 章 非线性控制系统分析
第 8 章 非线性控制系统
8.1概述 8.2非线性系统的特点 8.3相平面分析法 8.4描述函数分析法
自动控制原理
2
8.1 概述
非线性系统与线性系统有着很大的差别,诸如非 线性系统的响应取决于输入信号的幅值和形式, 不能应用叠加原理,目前还没有统一的且普遍适 用的处理方法。
等倾线上各点处作斜率为a的短直线,并以箭头表示 切线方向,则构成相轨迹的切线方向场。
自动控制原理
25
例8-2 试用等倾线法求下列方程的相平面图。
(8-17) 解 式(8-17)是非线性微分方程,但可分解为两个线性微分方程 ax x 0 , x 0 x (8-18) ax x 0 , x 0 x (8-19) 由方程(8-17)可知 f ( x, x) a | x | x ,而 f ( x, x) f ( x, x) 。因此 相平面图对称于x轴,只需绘制上半平面的相轨迹,再用对称 性确定下半平面的相轨迹。 1 x 由式(8-18)可得上半平面的等倾线方程: x a 设,求得等倾线如图8.13实线所示,画出等倾线上的平行短 线,作为相轨迹线段的近似。适当配置短线并把它们连成曲线 即相轨迹曲线,如图8.13中虚线所示。由于图形对称于x 轴,所以相轨迹为一组封闭的卵形圆。

自动控制原理第8章

自动控制原理第8章

y f ( x)
输入为
x X sin t ,输出为 y ( t ) f ( X sin t ) ,它是一个非正弦的
周期函数。展成富氏级数:
第8章 非线性系统分析
y ( t ) A0 A0
(A
n 1

n
cos n t B n sin n t )
2.死区特性的描述函数 死区特性的输入、输出特性及在正弦函数输入时的输出波形 如图。
a
0
y
y
K
a
x
0
1
1 2
t
0
x
1
1
2
1
t
死区特性及输入、输出波形
第8章 非线性系统分析
其输出表达式为
y (t )
0
0≤ t≤ 1
K ( X sin t a )
Y
n 1
n
sin( n t n )
An 1
其中:
A0
1 2

2
y (t ) d t
0


2
y ( t ) cos n td t
0
Bn
1


2
y ( t ) sin n td t
0
Yn
An B n
2
2
n arctan
An Bn
设非线性特性均为对称奇函数, A 0
0
x a
x≥a x ≤ a
控制系统中的测量元件、执行部件以及放 大器都存在着不灵敏区。
y
K (xa) K (x a)
死区特性元件等效于一个变增益元件,在死区 范围内,等效增益为零,大于死区后,等效增益随 输入信号的增大在增大,但等效增益总是小于原来 的 K 值。

自动控制原理第8章非线性控制系统

自动控制原理第8章非线性控制系统

自动控制原理第8章非线性控制系统在自动控制系统中,线性控制系统一直被广泛应用,因为线性系统的行为可预测且易于分析。

然而,在实际的控制系统中,往往存在着一些非线性特性,如非线性环节、非线性传感器和非线性负载等。

非线性系统的行为往往更为复杂,因此需要采用特殊的控制方法来进行控制。

8.1非线性系统的特性非线性系统与线性系统相比,具有以下几个特点:1.非线性特性:非线性系统的输入和输出之间的关系不符合线性定律,而是非线性关系。

这种非线性关系可能是由于系统内部的非线性元件或非线性行为导致的。

2.非线性行为:在非线性系统中,系统的行为经常出现不可预测的情况。

当输入信号的幅值较小时,系统的行为可能是线性的,但是当幅值增大时,系统的行为可能会发生剧烈的变化。

3.非线性耦合:在非线性系统中,不同输入变量之间可能存在耦合关系。

当一个输入变量发生改变时,可能会影响到其他输入变量的行为。

4.非线性稳定性:在非线性系统中,稳定性分析比线性系统更为困难。

非线性系统可能存在多个平衡点或者极限环,而且稳定性分析需要考虑到非线性因素的影响。

8.2非线性系统的建模对于非线性系统的控制,首先需要对系统进行建模,以便进行后续的分析和设计。

非线性系统的建模可以采用两种常用的方法:数学建模和仿真建模。

1.数学建模:数学建模是利用数学模型来描述非线性系统的行为。

非线性系统的数学建模可以采用微分方程、差分方程、泰勒级数展开、输入输出模型等多种方法。

2.仿真建模:仿真建模是利用计算机仿真软件来模拟非线性系统的行为。

通过建立系统的数学模型,并利用计算机进行仿真,可以得到系统的输出响应和稳定性分析。

8.3非线性控制方法在非线性控制系统中,常用的控制方法包括自适应控制、模糊控制和神经网络控制等。

1.自适应控制:自适应控制用于处理未知或难以测量的非线性系统。

自适应控制方法通过不断调整控制器的参数,以适应系统的变化。

2.模糊控制:模糊控制利用模糊逻辑和模糊推理来处理非精确和不确定的输入量。

自动控制原理 第8章习题解答(非线性系统分析)

自动控制原理 第8章习题解答(非线性系统分析)
(−∞ , −1) 段,方向向左,分别绘于上图 (a) (b) 上。 N
对于图
(a) 所示情形,G (
jω )


1 N
无交点,非线性系统不会产生自持振荡,
该非线性系统也是稳定的;
对于图 (b) 所示情形,G ( jω ) 与 − 1 有两个交点,其中交点 A 是稳定交点,
N
该非线性系统会产生自持振荡。
2 时, N(A)取极值。
2
−1
= − π ≈ −0.39
N ( A) A= 2
8
2
( ) (4)计算自振参数
− 1 =G N ( A)
jωg
A1 = 12.72 ,A2 = 0.503
即:系统将产生自振,振荡角频率为 ωg = 1 rad s ,振幅为 A = 12.72
12
【解】(1)将系统方框图化为标准结构
分析可得, ∆1 = 0.5
11
得系统等效方框图为:
(2)绘出线性部分的 G ( jω)曲线
与负实轴的交点处,ωg = 1
G( jω) =
10
=5
ω ⋅ ( 1+ ω 2 )2 ω =ωg
−0.39
(3)绘出非线性部分的

1 N
曲线
计算可得,当 A =
2e0 =
解得:
∆1
=
∆ k

4
习题8.4 设有非线性控制系统,其中非线性特性为斜率 k = 1的饱
和特性。当不考虑饱和特性时,闭环系统稳定。试分析该非线性控制系统 是否有产生自持振荡的可能性。 【解】不考虑饱和因素时,稳定的线性系统的开环频率响应形式有多种,例如:
AB
考虑饱和因素,斜率为 k = 1的饱和特性的 − 1 曲线分布在负实轴上

自控第8章 非线性系统

自控第8章 非线性系统

6. 非线性系统中,当输入量是正弦信号时,输出稳态分 量包含大量的谐波成分,频率响应复杂,输出波形会 很容易畸变。
11
三、非线性系统的分析方法
1、相平面法
时域分析法中的一种图解分析法。不适用于高阶系统。 2、描述函数法 结合频域分析法和非线性的谐波线性化的一综合图解分
析法。分析非线性系统稳定性和自激振荡比较有效。
二、继电特性
1、特性曲线
M y
来源:继电器是继电
特性的典型元件。
0
-M
x
继电特性 具有图示性质的继电特性称理想继电器。
15
2、数学表达式
y
M y M
x0

M
x 0
0
-M
x
造成的影响:
继电特性
(1)改善系统性能,简化系统结构。
(2)可能会产生自激振荡,使系统不稳定。
16
旋线,这种奇点称为稳定
焦点。 系统欠阻尼运动时的相轨迹
51
4、稳定节点
1
x(t ) A1e
q1t
这时方程的解为
A2e
q2t
其中
A1
x0 x0 2
1 2
A2
x0 x0 1
1 2
(t ) A1q1e q1t A2q2e q2t x
相轨迹: 描绘相平面上的点随时间变化的曲线叫相轨迹。
相轨迹方程:x2和 x1的关系方程。
35
例1 弹簧—质量块运动系统如图。
m 是物体质量;
k 是弹性系数; x 是偏离平衡点的位移。
为方便计算令 m=k=1 ;
已知初始条件
x(0) x0 x(0) x0

第8章非线性控制系统汇总

第8章非线性控制系统汇总

自动控制原理
16
8.3.1相平面的基本概念
考虑二阶线性系统 (8-2) 式中 与 n 是阻尼比和无阻尼自然振荡频率。 设系统仅由初始条件激励。这一系统的状态可以用两 个变量, x 和 x 来描述。若令,则方程(8-2)可化为 x1 x, x2 x (8-3) 2 (8-4) x2 n x1 2n x2 (0) ,由这两 x2 (0)或 x(0)、x 只要给定初始条件 x1 (0) 、 个一阶联立微分方程便可唯一地确定系统的状态。如 此定义的变量和称为相变量(或状态变量)。图8.9(a) 绘出了初始条件为 x(0) x0 , x(0) 0,在不同阻尼下的 时间响应曲线。
自动控制原理
3
8.1.1典型非线性特性
y
1. 饱和特性 2. 死区特性 3.间隙特性
y
M 近似饱和特性 -b 0 -M b
实际饱和特性 x
图8.1 饱和非线性特性
y
K
- 0 K
-b
x

0
b
x
图8.2 死区非线性特性
图8.3 间隙非线性特性
自动控制原理
4
4. 继电器特性
y M 0 -M (a) y M - y M y M
自动控制原理
13
1.相平面法: 一种图解分析方法,适用于具有严重非线性 特性的一阶、二阶系统,该方法通过在相平面绘 制相轨迹曲线,确定非线性微分方程在不同初始 条件下解的运动形式。 2.描述函数法: 一种等效线性化的图解分析方法,该方法对 于满足结构要求的非线性系统,通过谐波线性化, 将非线性特性近似为复变增益环节,然后推广应 用频率法,分析非线性系统的稳定性或自激振荡。
自动控制原理
6

自动控制原理第8章

自动控制原理第8章

第八章 非线性控制系统分析 y0=[0.5 1]′ c=v\y0
y1=zeros(1, length(t))
y2=zeros(1, length(t)) for k=1∶n y1=y1+c(k)*exp(p(k)*t) y2=y2+c(k)*p(k)*exp(p(k)*t)
end
plot(x1+y1′, x2+y2′, ′∶′)
end
plot(x1+y1′, x2+y2′, ′∶′)
第八章 非线性控制系统分析 y0=[-0.8 -1]′ c=v\y0
y1=zeros(1, length(t))
y2=zeros(1, length(t)) for k=1∶n y1=y1+c(k)*exp(p(k)*t) y2=y2+c(k)*p(k)*exp(p(k)*t)
第八章 非线性控制系统分析 a=[1 1 1] n=length(a)-1 p=roots(a) v=rot90(vander(p)) y0=[0 0]′ c=v\y0 y1=zeros(1, length(t)) y2=zeros(1, length(t)) for k=1∶n y1=y1+c(k)*exp(p(k)*t) y2=y2+c(k)*p(k)*exp(p(k)*t) end plot(x1+y1′, x2+y2) hnd=plot(x1+y1′, x2+y2′) set(hnd, ′linewidth′, 1.3) hold on
第八章 非线性控制系统分析 8.1.3 非线性系统的分析与设计方法 系统分析和设计的目的是通过求取系统的运动形式, 以解
决稳定性问题为中心, 对系统实施有效的控制。由于非线性系

自动控制原理:第八章 非线性控制系统

自动控制原理:第八章  非线性控制系统

以x, x. 为相变量,可得到相轨迹通过 点 (x, x.)的斜率
d x. dx
=
-f (x, x. ) x.
(一)相平面图的特点
1、对称性
a. 关于 x. 轴对称
f (x, x. ) - f (-x, x. ) x. = x.

f (x, x. ) = - f (-x, x. )
即f(x, x. )是关于x的奇函数。
的相平面图
解:系统方程改写为
x
dx dx
w
2x
0
积分得相轨迹方程
x 2
w2
x2
A2
x.
x0
0
x
(三)绘制相平面图的图解法— —等倾线法(Isocline method)
❖ 图解法是通过逐步作图的方法,不必 解出微分方程,而把结果直接描绘在相平 面上。
❖常用的图解法有等倾线法和园弧近似法。
❖ 在等倾线法中,首先用等倾线来确定相 平面中相轨迹斜率的分布,然后再绘制相 轨迹曲线。
(四)频率响应
系统微分方程:
K 非线性 弹簧
M 重物
M x.. +B x. +Kx+ K′x 3=0
e(t) K ′ <0
K ′ =0 K ′ >0
振幅
B
粘性阻 尼器
0
频率
系统进行强迫振荡实验 时的微分方程是:
M
..
x +B
. x
+Kx+
K′x
3=Pcoswt
频率响应
x
2
6
K ′ >0
x
5
K ′ <0
§8.2 相平面图

自动控制原理第八章非线性控制系统分析

自动控制原理第八章非线性控制系统分析

第八章非线性控制系统分析l、基本内容和要求(l)非线性系统的基本概念非线性系统的定义。

本质非线性和非本质非线性。

典型非线性特性。

非线性系统的特点。

两种分析非线性系统的方法——描述函数法和相平面法。

(2)谐波线性化与描述函数描述函数法是在一定条件下用频率特性分析非线性系统的一种近似方法。

谐波线性化的概念。

描述函数定义和求取方法。

描述函数法的适用条件。

(3)典型非线性特性的描述函数(4)用描述函数分析非线性系统非线性系统的一般结构。

借用奈氏判据的概念建立在奈氏图上判别非线性反馈系统稳定性的方法,非线性稳定的概念,稳定判据。

(5)相平面法的基本概念非线性系统的数学模型。

相平面法的概念和内容。

相轨迹的定义。

(6)绘制相轨迹的方法解析法求取相轨迹;作图法求取相轨迹。

(7)从相轨迹求取系统暂态响应相轨迹与暂态响应的关系,相轨迹上各点相应的时间求取方法。

(8)非线性系统的相平面分析以二阶系统为例说明相轨迹与系统性能间的关系,奇点和极限环的定义,它们与系统稳定性及响应的关系。

用相平面法分析非线性系统,非线性系统相轨迹的组成。

改变非线性特性的参量及线性部分的参量对系统稳定性的影响。

2、重点(l)非线性系统的特点(2)用描述函数和相轨迹分析非线性的性能,特别注重于非线性特性或线性部分对系统性能的影响。

8-1非线性控制系统分析1研究非线性控制理论的意义实际系统都具有程度不同的非线性特性,绝大多数系统在工作点附近,小范围工作时,都能作线性化处理。

应用线性系统控制理论,能够方便地分析和设计线性控制系统。

如果工作范围较大,或在工作点处不能线性化,系统为非线性系统。

线性系统控制理论不能很好地分析非线性系统。

因非线性特性千差万别,无统一普遍使用的处理方法。

非线性元件(环节):元件的输入输出不满足(比例+叠加)线性关系,而且在工作范围内不能作线性化处理(本质非线性)。

非线性系统:含有非线性环节的系统。

非线性系统的组成:本章讨论的非线性系统是,在控制回路中能够分为线性部分和非线性部分两部分串联的系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 4
B1 1 3 2 N ( A) A A 2 16
8.2.3 典型非线性特性得描述函数
1.饱和特性的描述函数
X(t) X(t)
kA sin t 0 ω t 1 x(t ) ka b ω t 1 2
X(t)是单值奇函数,所以A1=0
非线性环节的描述函数总是输入信号幅值A的函数, 一般也是频率的函数,因此,描述函数一般记为
N ( A, j )
非线性元件的描述函数或等效幅相频率特性与输入 的正弦振荡的振幅A有关,这是非线性特性本质的反 映。它与线性环节的情况正好相反,线性环节的幅 相特性(频率特性)与正弦输入的幅值无关。
8.2.2描述函数
4 B1 [ kA sint sinω td (ω t ) ka sinω td (ω t )] π
1
e(t)

0
4kA 4ka sin2 d π π
1


2
1

0
4kA 1 1 4ka ( sin 2 1 ) cos 1 2 4
2k a a a A[arcsin( ) 1 ( )2 ] A A A
8.1.4
继电器特性
8.1.4
继电器特性
(t ) 0 m a e(t ) a, e 0 , 0 , (t ) 0 a e ( t ) m a , e x(t ) bsign[e(t )], e(t ) a b , e(t ) m a, e (t ) 0 (t ) 0 b , e(t ) m a, e
(6)气动或液压滑阀的搭接段。 放大器的输出饱和或输出限幅
8.1.3
间隙特性
具有间隙特性的实际系统: (1)齿轮转动系;
(2)磁化特性;
(3)液压传动中的油隙特 性。
(t ) 0 k (e(t ) ), x (t ) 0 x(t ) k (e(t ) ), x bsign(e(t )), x (t ) 0
如何判别自激振荡的稳定性?
当负倒特性轨迹从不稳定区进 入稳定区时,交点处的自激振 荡是稳定的自激振荡。 当负倒特性轨迹从稳定区进入 不稳定区时,交点处的自激振 荡是不稳定的自激振荡。
自激振荡
8.2.4 用描述函数法分析非线性系统的自激振荡 自激振荡振幅和频率的确定



2 k ( A sinω t
1
a) sinω td (ω t )
2kA a a a [ sin1 ( ) 1 ( ) 2 ] 2 A A A
N ( A)
2k a a a [ arcsin( ) 1 ( )2 ] π 2 A A A
3.间隙特性的描述函数
8.2.1 描述函数法的基本思想与条件
2. 基本条件 a) 非线性特性是斜对称的,这样输出中的常值分量为零; b) 线性部分具有较好的低通滤波特性,以衰减高次谐波;
c) 非线性特性不是时间函数。因为描述函数法本质上
是频率法的推广,而频率法对时变系统不适用; a) 系统中的非线性特性能简化为一个非线性环节。
国 家 精 品 课 程
自动控制原理
Principles of Automatic Control主讲人:来自王 万 良wwl@
第8章 非线性控制系统分析
导 读
为什么要介绍本章?
被控对象的种类越来越多,线性模型已不能满足要求。 例如控制系统中常出现稳定的自激振荡, 这是线性模型中不 存在的。又如控制系统中大量采用继电控制,但线性系统理论 不能分析这类系统。要建立一个能解决非线性系统全部问题的 方法是不可能的。目前许多方法是以线性化方法为基础,加以 修补使之适应解决非线性问题的需要,例如描述函数法。


2

[



2 0
k ( A sinω t a) cosω td (ω t )

1
k ( A a) cosω td (ω t )
2
k ( A sinω t a) cosω td(ω t )]

1
B1
2 kA 2a 2a 2a k ( A sinω t a) sinω td(ω t )] [ sin 1 (1 ) (1 ) 1 (1 ) 2 ] 1 2 A A A B1 A1
A1
B1
1 π
1 π
2
0 2
x(t) cosω td(ω t)
X 1 A12 B12
x(t ) sinω td(ω t )
0
8.2.2描述函数
1 X 1e j1 x X 1 j1 B1 A1 N ( A, j ) e j j 0 e A A A Ae


x(t ) sinω td(ω t ) 2 [ k ( A sinω t a) sinω td(ω t )

0 2 0
2

4ka a ( 1) A
1

k ( A a) sinω td(ω t )
N ( A)
A
j
A
k 2a 2a 2a 4k a a [ sin1 (1 ) (1 ) 1 (1 ) 2 ] j ( 1) 2 A A A A A
非线性系统与线性系统的区别(4)
线性系统中,当输入量是正弦信号时,输出稳态分量也 是同频率的正弦函数,可以引入频率特性的概念并用它 来表示系统固有的动态特性。 非线性系统在正弦作用下的输出比较复杂。
非线性系统与线性系统的区别(5)
在线性系统中,一般可采用传递函数、频率特性、脉冲响 应函数等概念。 工程实际中对于存在线性工作区域的非线性系统,或者非 线性不严重(光滑、连续)的准线性系统,常常采用线性化 的方法进行处理,然后在线性分析的基础上加以修正。 对于包括像继电特性那样根本不存在线性区的本质非线性 特性,工程上常用相平面方法和描述函数方法进行研究。
2.描述函数的求取 1)绘制输入—输出波形图,写出输入为 e(t ) A sin ω t 时非线性输出表达式
2)由波形图分析 x(t ) 的对称性,并计算
A1 B1 X 1
1
3)描述函数为 N ( A)
B1 A X j 1 1 e j1 A A A
8.2.2描述函数
例 非线性元件的静特性方程为
X(t) X(t)
k ( A sin ω t a ) 0 ω t 2 x(t ) k ( A a) ω t 1 2 k ( A sinω t a) 1 ω t
e(t)
k ( A sin ω t a ) 0 ω t 2 x(t ) k ( A a) ω t 1 2 k ( A sinω t a) 1 ω t 2 A1 x(t ) cosω td (ω t ) 0
8.1.2
死区特性
具有死区特性的装置: (1)测速发电机转速很低时, 输出电压几乎为0; (2)伺服电机的死区电压 (启动电压); (3)各种电路中的门槛值 (阈值); (4)电气触头间隙; (5)弹簧的预张力;
e(t ) a 0 , x(t ) k[e(t ) asign(e(t ))] , e(t ) a
4.继电器特性的描述函数
X(t) X(t)
e(t)
8.2.4 用描述函数法分析非线性系统的自激振荡
1 N ( A)G ( j ) 0
G ( j )
1 N ( A)
8.2.4 用描述函数法分析非线性系统的自激振荡 奈氏图上的稳定性分析
当系统处于某一状态时,
对应的负倒特性曲线上的
8.2.2描述函数
1.描述函数的定义
A0 x(t ) 2

( A cosiω t B siniω t )
i i i 1
2
1 Ai π
x(t) cosiω td(ω t)
0
1 Bi π
2
x(t) siniω td(ω t)
0
x1 (t ) A1 cost B1 sint X 1 sin( t 1 )
2.死区特性的描述函数
X(t) X(t)
单值奇函数,具有半周期的对称性
0, 0 ωt α 1 x(t ) k ( A sin ω t a ), α ω t 1 2

e(t)
42 B1 x (t ) sin ω td (ω t ) π 0
B1 4
8.2 描述函数法
8.2.1 描述函数法的基本思想与条件 8.2.2 描述函数
8.2.3 典型非线性特性的描述函数
8.2.4 用描述函数分析非线性系统的自激振荡
8.2.1 描述函数法的基本思想与条件
1. 基本思想 描述函数法的基本思想是用非线性元件的输出信号中的基 波分量,代替非线性元件在正弦输入作用下的实际输出。 所以这种方法又称为一次谐波法。
8.1 典型非线性特性 8.1.1 饱和特性
具有饱和特性的装置:
•放大器的输出饱和或输出 限幅
•具有行程限制及功率限制 的液压调节阀 •伺服电机在大控制电压下 运行的转速特性
•流通孔径限制
ka , e(t ) a x(t ) ke(t ) , e(t ) a ka , e(t ) a
本章主要讲什么内容?
首先介绍非线性系统的特性,然后介绍描述函数法,着重 分析自激振荡。最后介绍适合于二阶非线性系统的相平面法。
第8章 非线性控制系统分析
8.1 典型非线性特性 8.2 描述函数法 8.3 相平面法
相关文档
最新文档