【考研】河海大学5结构力学全部核心考点讲义
结构力学最全知识点梳理及学习方法
第一章 绪 论§1-1 结构力学的研究对象和任务一、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的方式所组成的构件的体系,用以支承荷载并传递荷载起支撑作用的部分。
注:结构一般由多个构件联结而成,如:桥梁、各种房屋(框架、桁架、单层厂房)等。
最简单的结构可以是单个的构件,如单跨梁、独立柱等。
二、结构的分类:由构件的几何特征可分为以下三类1.杆件结构——由杆件组成,构件长度远远大于截面的宽度和高度,如梁、柱、拉压杆。
2.薄壁结构——结构的厚度远小于其它两个尺度,平面为板曲面为壳,如楼面、屋面等。
3.实体结构——结构的三个尺度为同一量级,如挡土墙、堤坝、大块基础等。
三、课程研究的对象♦ 材料力学——以研究单个杆件为主♦ 弹性力学——研究杆件(更精确)、板、壳、及块体(挡土墙)等非杆状结构 ♦ 结构力学——研究平面杆件结构四、课程的任务1.研究结构的组成规律,以保证在荷载作用下结构各部分不致发生相对运动。
探讨结构的合理形式,以便能有效地利用材料,充分发挥其性能。
2.计算由荷载、温度变化、支座沉降等因素在结构各部分所产生的内力,为结构的强度计算提供依据,以保证结构满足安全和经济的要求。
3.计算由上述各因素所引起的变形和位移,为结构的刚度计算提供依据,以保证结构在使用过程中不致发生过大变形,从而保证结构满足耐久性的要求。
§1-2 结构计算简图一、计算简图的概念:将一个具体的工程结构用一个简化的受力图形来表示。
选择计算简图时,要它能反映工程结构物的如下特征:1.受力特性(荷载的大小、方向、作用位置)2.几何特性(构件的轴线、形状、长度)3.支承特性(支座的约束反力性质、杆件连接形式)二、结构计算简图的简化原则 1.计算简图要尽可能反映实际结构的主要受力和变形特点..............,使计算结果安全可靠; 2.略去次要因素,便于..分析和...计算..。
三、结构计算简图的几个简化要点1.实际工程结构的简化:由空间向平面简化2.杆件的简化:以杆件的轴线代替杆件3.结点的简化:杆件之间的连接由理想结点来代替(1)铰结点:铰结点所连各杆端可独自绕铰心自由转动,即各杆端之间的夹角可任意改变。
(完整版)结构力学最全知识点梳理及学习方法
(完整版)结构⼒学最全知识点梳理及学习⽅法第⼀章绪论§1-1 结构⼒学的研究对象和任务⼀、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的⽅式所组成的构件的体系,⽤以⽀承荷载并传递荷载起⽀撑作⽤的部分。
注:结构⼀般由多个构件联结⽽成,如:桥梁、各种房屋(框架、桁架、单层⼚房)等。
最简单的结构可以是单个的构件,如单跨梁、独⽴柱等。
⼆、结构的分类:由构件的⼏何特征可分为以下三类1.杆件结构——由杆件组成,构件长度远远⼤于截⾯的宽度和⾼度,如梁、柱、拉压杆。
2.薄壁结构——结构的厚度远⼩于其它两个尺度,平⾯为板曲⾯为壳,如楼⾯、屋⾯等。
3.实体结构——结构的三个尺度为同⼀量级,如挡⼟墙、堤坝、⼤块基础等。
三、课程研究的对象材料⼒学——以研究单个杆件为主弹性⼒学——研究杆件(更精确)、板、壳、及块体(挡⼟墙)等⾮杆状结构结构⼒学——研究平⾯杆件结构四、课程的任务1.研究结构的组成规律,以保证在荷载作⽤下结构各部分不致发⽣相对运动。
探讨结构的合理形式,以便能有效地利⽤材料,充分发挥其性能。
2.计算由荷载、温度变化、⽀座沉降等因素在结构各部分所产⽣的内⼒,为结构的强度计算提供依据,以保证结构满⾜安全和经济的要求。
3.计算由上述各因素所引起的变形和位移,为结构的刚度计算提供依据,以保证结构在使⽤过程中不致发⽣过⼤变形,从⽽保证结构满⾜耐久性的要求。
§1-2 结构计算简图⼀、计算简图的概念:将⼀个具体的⼯程结构⽤⼀个简化的受⼒图形来表⽰。
选择计算简图时,要它能反映⼯程结构物的如下特征:1.受⼒特性(荷载的⼤⼩、⽅向、作⽤位置)2.⼏何特性(构件的轴线、形状、长度)3.⽀承特性(⽀座的约束反⼒性质、杆件连接形式)⼆、结构计算简图的简化原则1.计算简图要尽可能反映实际结构的主要受⼒和变形特点..............,使计算结果安全可靠;2.略去次要因素,便于..。
..分析和...计算三、结构计算简图的⼏个简化要点1.实际⼯程结构的简化:由空间向平⾯简化2.杆件的简化:以杆件的轴线代替杆件3.结点的简化:杆件之间的连接由理想结点来代替(1)铰结点:铰结点所连各杆端可独⾃绕铰⼼⾃由转动,即各杆端之间的夹⾓可任意改变。
结构力学知识点超全总结
结构力学知识点超全总结结构力学是一门研究物体受力和变形的力学学科,它是很多工程学科的基础,如土木工程、机械工程、航空航天工程等。
以下是结构力学的一些重要知识点的总结:1.载荷:结构承受的外力或外界加载的活动载荷,如重力、风荷载、地震载荷等。
2.支座反力:为了平衡结构受力,在支座处产生的力。
3.静力平衡:结构处于静止状态时,受力分析满足力的平衡条件。
这包括平面力系统的平衡、剪力力系统的平衡和力矩力系统的平衡。
4.杆件的拉力和压力:杆件受力状态分为拉力和压力。
拉力是杆件由两端拉伸的状态,压力是杆件由两端压缩的状态。
5.梁的受力和变形:梁是一种长条形结构,在实际工程中经常使用。
梁的受力分析包括剪力和弯矩的计算,梁的变形包括弯曲和剪切变形。
6.悬臂梁和简支梁:悬臂梁是一种只有一端支座的梁结构,另一端自由悬挂。
简支梁是两端都有支座的梁结构。
7.梁的挠度和渐进程度:梁的挠度是指结构在受力后发生的形变。
梁的渐进程度是指梁的挠度随着距离变化的情况。
8.板和平面受力分析:板是一种平面结构,它的受力和变形分析和梁类似。
平面受力分析是一种在平面框架结构上进行受力分析的方法。
9.斜拉索:斜拉索是一种由杆件和拉索组成的结构,它广泛应用于桥梁、摩天大楼等工程中。
斜拉索的受力分析包括张力和弯矩的计算。
10.刚度:刚度是指物体在受力作用下抵抗变形的能力。
刚度越大,物体的变形越小。
刚度可以通过杆件的弹性模量和几何尺寸进行计算。
11.弹性和塑性:结构的受力状态可以分为弹性和塑性两种情况。
弹性是指结构受力后能够恢复到原始形状的性质,塑性是指结构受力后会产生永久变形的性质。
12.稳定性和失稳:结构的稳定性是指结构在受力作用下保持原始形状的能力。
失稳是指结构在受力过程中无法保持原始形状,产生不稳定状态。
13.矩形截面和圆形截面的力学特性:矩形截面和圆形截面是两种常见的结构截面形状。
矩形截面具有较高的抗弯刚度,而圆形截面具有较高的抗剪强度。
河北省考研土木工程复习资料结构力学重点知识点总结
河北省考研土木工程复习资料结构力学重点知识点总结结构力学是土木工程专业考研中的一门重要科目。
它涉及到土木工程中各种结构的力学性能与分析方法。
为了帮助考生更好地复习该科目,本文将对河北省考研土木工程复习资料中结构力学的重点知识点进行总结。
一、刚体静力学1. 刚体的概念:刚体是具有固定几何形状,在外力作用下不产生形变的物体。
2. 平衡条件:一个刚体处于平衡状态时,重力和支持力的合力为零,力矩的合力为零。
3. 刚体的等效:多个力对刚体的作用可等效为一个合力和一个合力矩。
4. 增力和分力:多个力可通过合力和分力的计算方式进行简化处理。
5. 铰接支持:对于铰接支持的刚体,只能受力而不能传递力矩。
二、杆件的受力与变形1. 弹性杆件:在受力作用下产生弹性变形,杆件受力与位移之间存在一定的线性关系。
2. 应力与应变:应力是单位截面上的内力,应变是单位长度上的变形量与长度之比。
3. 杨氏模量:描述了材料的弹性变形能力,是应力与应变之间的比例系数。
4. Hooke定律:在弹性变形范围内,材料的应力与应变呈线性关系。
5. 弯曲变形:杆件受到弯矩作用时,会产生横截面的弯曲变形。
三、梁的受力与变形1. 梁的受力分析:根据受力分析原理,可以确定梁的受力分布情况。
2. 梁的挠度计算:挠度是描述梁在受力作用下产生的变形情况的物理量。
3. 梁的切线方程:通过切线方程可以求解梁在不同位置的弯矩和剪力大小。
4. 梁的应力分析:梁的应力可以根据形状、受力分布和材料力学性能计算得出。
四、桁架结构1. 桁架结构的特点:桁架结构由多个杆件和节点连接而成,具有轻量、刚性强等特点。
2. 节点受力计算:对于节点受力计算,可以通过平衡条件和力矩平衡条件求解。
3. 桁架的应力分析:根据杆件的长度和截面积,可以计算出桁架结构的应力分布情况。
五、悬链线与曲线1. 悬链线的定义:悬链线是自由悬垂的弹性线,其形状为平衡时曲面上任一点到其两个端点所在直线的垂线相交所得的轨迹曲线。
考研结构力学知识点梳理
考研结构力学知识点梳理))))))第一章结构的几何构造分析1.瞬变体系:本来是几何可变,经微小位移后,又成为几何不变的体系,成为瞬变体系。
瞬变体系至少有一个多余约束。
2.两根链杆只有同时连接两个相同的刚片,才能看成是瞬铰。
3.关于无穷远处的瞬铰:(1)每个方向都有且只有一个无穷远点,(即该方向各平行线的交点),不同方向有不同的无穷远点。
(2)各个方向的无穷远点都在同一条直线上(广义)。
(3)有限点都不在无穷线上。
4.结构及和分析中的灵活处理:(1)去支座去二元体。
体系与大地通过三个约束相连时,应去支座去二元体;体系与大地相连的约束多于4个时,考虑将大地视为一个刚片。
(2)需要时,链杆可以看成刚片,刚片也可以看成链杆,且一种形状的刚片可以转化成另一种形状的刚片。
5.关于计算自由度:(基本不会考)(1),则体系中缺乏必要约束,是几何常变的。
(2)若,则体系具有保证几何不变所需的最少约束,若体系无多余约束,则为几何不变,若有多余约束,则为几何可变。
(3),则体系具有多与约束。
是保证体系为几何不变的必要条件,而非充分条件。
若分析的体系没有与基础相连,应将计算出的W减去3.第二章静定结构的受力分析1.静定结构的一般性质:(1)静定结构是无多余约束的几何不变体系,用静力平衡条件可以唯一的求得全部内力和反力。
(2)静定结构只在荷载作用下产生内力,其他因素作用时,只引起位移和变形。
(3)静定结构的内力与杆件的刚度无关。
(4)在荷载作用下,如果仅靠静定结构的某一局部就可以与荷载维持平衡,则只有这部分受力,其余部分不受力。
(5)当静定结构的一个内部几何不变部分上的荷载或构造做等效变换时,其余部分的内力不变。
(6)静定结构有弹性支座或弹性结点时,内力与刚性支座或刚性节点时一样。
解放思想:计算内力和位移时,任何因素都可以分别作用,分别求解,再线性叠加,以将复杂问题拆解为简单情况处理。
2.叠加院里的应用条件是:用于静定结构内力计算时应满足小变形,用于位移计算和超静定结构的内力计算时材料还应服从胡克定律,即材料是线弹性的。
河南省考研土木工程复习资料结构力学重点知识点总结
河南省考研土木工程复习资料结构力学重点知识点总结河南省考研土木工程复习资料:结构力学重点知识点总结结构力学是土木工程中的一个重要学科,主要研究物体在受力情况下的静力学和动力学问题。
对于考研学生来说,掌握结构力学的重点知识点是很有必要的。
本文将对河南省考研土木工程复习资料中的结构力学重点知识点进行总结,帮助考生更好地复习和备考。
一、力学基本原理1. 刚体力学刚体是可以看作无限多个点构成的理想物体,具有固定的形状和大小,不受外力作用改变形状。
- 刚体平衡条件:力的合力为零,力的合力矩为零。
- 平面刚体的平衡条件:合力为零,合力矩为零。
2. 杆件力学- 杆件的受力分析方法:分离法、裂剪法、合并法、分段法等。
- 杆件的内力:张力、压力、弯矩、剪力等。
- 杆件的受力性状:受压、受拉、受弯、受剪等。
二、结构受力分析1. 静力平衡方程在进行结构受力分析时,需要利用静力平衡方程来进行计算。
- 作用于刚体上的外力。
- 刚体的几何形状和坐标系。
2. 静力平衡方程的应用静力平衡方程的应用包括求解支持反力、杆件内力、平衡条件方程等。
三、悬链线和弧形受力1. 悬链线的性质- 悬链线的定义和条件。
- 悬链线的受力分析。
2. 弧形的受力分析- 弧形的受力特点。
- 弧形的受力分析方法。
四、三维力系1. 三维力系的平衡条件三维力系的平衡条件包括合力矩为零、合力为零、合力施加线与合力矩施加线的交点共线等。
2. 三维力系的应用通过对结构体系进行三维力系分析,可以计算出结构的支持反力、内力和平衡条件。
五、静定系统与静不定系统1. 静定系统- 静定系统的定义和条件。
- 静定系统的判断方法。
2. 静不定系统- 静不定系统的定义和条件。
- 静不定系统的判断方法。
六、钢结构和钢筋混凝土结构1. 钢结构的受力分析- 钢结构的受力特点。
- 钢结构的受力计算。
2. 钢筋混凝土结构的受力分析- 钢筋混凝土结构的受力特点。
- 钢筋混凝土结构的受力计算。
(完整)结构力学(知识点)
章节平面杆件结构按计算简图分类体系的几何组成与静力性的关系概述几何组成分析举例平面体系的几何组成分析几何组成分析中的几个概念平面体系的计算自由度静定梁和静定刚架静定平面刚架单跨静定梁多跨静定梁绪论几何不变体系和几何可变体系结构力学结构力学的研究对象和任务杆件结构的计算简图几何不变体系的简单组成规则静定结构的一般特性虚功原理和结构位移计算静定结构在荷载作用下的位移计算变形体系的虚功原理平面杆件结构位移计算的一般公式概述各种型式的结构受力特征 静定桁架和组合结构静定平面桁架三种简支桁架的比较概述三铰拱的内力计算三铰拱三铰拱的压力线和合理拱轴空间桁架静定组合结构静定结构在支座位移时的位移计算力法对称性的利用用弹性中心法计算无铰拱用力法计算超静定结构在荷载作用下的内力用力法计算超静定结构在支座位移和温度变化时的内力力法基本概念力法的典型方程超静定结构概述静定结构在温度变化时的位移计算算图乘法线性弹性结构的互等定理超静定结构的位移计算超静定结构内力图的校核超静定结构的一般特性概述截面直杆的转角位移方程位移法的基本概念位移法位移法的典型方程用位移法计算超静定结构在荷载作用下的内力用位移法计算超静定结构在支座位移和温度变化时的内力直接利用平衡条件建立位移法方程矩分配法的基本概念力矩分配法用力矩分配法计算连续梁和无结点线位移的刚架无剪力分配法影响线的概念静力法作静定粱的影响线结点荷载作用下粱的影响线静力法作静定桁架的影响线机动法作静定梁的影响线利用影响线求量值影响线移动荷载最不利位置的确定公路、铁路的标准荷载制及换算荷载简支梁的内力包络图和绝对最大弯矩机动法作连续梁的影响线连续梁的内力包络图知识点章编号节编号知识点编号结构及其分类31374结构力学研究对象31375结构力学的任务31376计算简图的定义31477选取计算简图的一般原则31478实际结构的简化31479平面杆件结构按计算简图分类31580几何不变体系和几何可变体系41681平面体系的几何组成分析41682自由度41783约束41784必要约束与多余约束41785实铰与虚铰41786几何组成分析41787体系的实际自由度S与体系的计算自由度W 41888平面体系的计算自由度算法一——刚片系的W 41889平面体系的计算自由度算法二——铰接链杆体系的W 41890体系的几何组成性质与计算自由度之间的关系41891几何不变体系的简单组成规则41992几何可变体系41993体系的几何组成分析及其步骤42094几何组成分析的方法及举例42095体系的几何组成与静力性的关系42196用截面法求指定截面的内力52297内力图的特征52298用区段叠加法作直杆段的弯矩图52299简支斜梁522100多跨静定梁的组成方式和特点523101多跨静定梁内力计算523102静定平面刚架的类型和特点524103求作静定平面刚架的内力图524104求作静定平面刚架的内力图的要点524105速绘静定平面刚架的弯矩图524106静定梁和静定刚架524107拱的分类625108三铰拱各部分名称625109带拉杆的拱625110三铰拱内力符号规定626111学三铰拱支反力的计算626112三铰拱的内力计算公式626113三铰拱的内力图绘制626114三铰拱的受力特点626115合力多边形627116三铰拱的压力线627117三铰拱的合理拱轴627118桁架的计算简图728119平面桁架的分类728120结点法729121结点平衡的特殊情况729122截面法729123结点法与截面法的联合应用729124对称桁架的受力计算729125静定平面桁架729126简支桁架的受力特点730127三种简支桁架的比较730128空间桁架的支座731129空间桁架的几何组成731130空间桁架的计算方法731131组合结构及其受力特点732132静定组合结构内力的计算方法732133静定组合结构732134各种型式的结构受力特征733135静定梁、刚架内力733136静定结构的一般特性734137位移835138计算位移的目的835139实功836140虚功836141刚体(系)的虚功原理836142变形体系的虚功原理836143虚功原理的两种形式836144实际状态837145虚拟状态837146结构位移计算的一般公式837147单位力设置法837148荷载引起的结构位移计算公式838149梁和刚架的位移计算838150桁架的位移计算838151组合结构的位移计算838152图乘法的适用条件839153图乘法原理839154图乘法的几点说明839155静定结构在支座位移时的位移计算840156温变引起的位移计算841157制造误差引起的位移计算841158功的互等定理842159位移互等定理842160反力互等定理842161反力与位移互等定理842162超静定结构和静定杆件结构分类943163超静定次数的确定943164超静定结构概述943165力法计算超静定结构的思路944166力法的基本未知量、基本结构及基本体944167系、典型方程力法的基本概念944168用力法计算一次超静定结构944169两次超静定结构的力法典型方程945170 n次超静定结构的力法典型方程945171力法典型方程中系数和自由项的计算945172结构的最后内力图945173力法解题步骤946174力法计算超静定梁946175力法计算超静定刚架946176力法计算超静定桁架946177力法计算超静定组合结构946178力法计算铰接排架946179力法计算两铰拱946180支座位移时超静定结构的计算947181温度变化时超静定结构的计算947182对称结构948183对称结构的受力特点948184利用对称性——选择对称的基本体系948185利用对称性——采用半结构948186弹性中心949187荷载作用时的计算949188温度变化时的计算949189支座位移时的计算949190超静定结构位移计算的思路950191荷载作用下超静定结构的位移计算950192支座位移时超静定结构的位移计算950193温度变化时超静定结构的位移计算950194平衡条件的校核951195位移条件的校核951196超静定结构的一般特性952197位移法的基本思路1053198杆端弯矩及杆端位移的正负号规定1054199单跨超静定梁的形常数和载常数1054200转角位移方程1054201位移法的基本未知量1055202位移法的基本结构1055203位移法方程1055204位移法典型方程的建立1056205位移法典型方程中系数及自由项的计算1056206方法位移法计算步骤1057207位移法算例1057208支座位移时位移法的计算1058209温度变化时位移法的计算1058210利用结点和截面平衡条件建立位移法方1059211程转动刚度1160212分配系数和传递系数1160213任意荷载作用时单结点结构的力矩分配1160214法力矩分配法1160215用力矩分配法计算连续梁1161216用力矩分配法计算无结点线位移的刚架1161217无剪力分配法的适用范围1162218无剪力分配法计算步骤和举例1162219移动荷载1263220影响线的定义1263221影响线1263222静力法作影响线的步骤1264223简支梁的影响线1264224影响线与内力图的区别1264225伸臂梁的影响线1264226结点荷载1265227结点荷载作用下影响线的作法1265228静力法作静定桁架的影响线1266229机动法及其原理1267230用机动法作影响线1267231集中荷载作用下的量值1268232分布荷载作用下的量值1268233最不利荷载位置1269234单个移动集中荷载的最不利位置1269235可任意布置的均布荷载的最不利位置1269236行列荷载的最不利位置1269237临界荷载位置的判定1269238铁路标准荷载1270239公路标准荷载1270240换算荷载12702411271242127124312722441272245连续梁的最不利荷载分布1273246连续梁的弯矩包络图1273247连续梁的剪力包络图1273248简支梁的内力包络图机动法作连续梁影响线的原理。
(完整word版)结构力学讲义
第一章绪论§1.1 结构和结构的分类一、结构(structure)由建筑材料筑成,能承受、传递荷载而起骨架作用的构筑物称为工程结构。
如:梁柱结构、桥梁、涵洞、水坝、挡土墙等等。
二、结构的分类:按几何形状结构可分为:1、杆系结构(structure of bar system) :构件的横截面尺寸<<长度尺寸;2、板壳结构(plate and shell structure) :构件的厚度<<表面尺寸。
3、实体结构(massive structure) :结构的长、宽、厚三个尺寸相仿。
三、杆系结构的分类:按连接方法,杆系结构可分为:§1.2 结构力学的研究对象、任务和方法一、各力学课程的比较:二、结构力学的任务:1、研究荷载等因素在结构中所产生的内力(强度计算);2、计算荷载等因素所产生的变形(刚度计算);3、分析结构的稳定性(稳定性计算);4、探讨结构的组成规律及合理形式。
进行强度、稳定性计算的目的,在于保证结构满足安全和经济的要求。
计算刚度的目的,在于保证结构不至于发生过大的变形,以至于影响正常使用。
研究组成规律目的,在于保证结构各部分,不至于发生相对的刚体运动,而能承受荷载维持平衡。
探讨结构合理的形式,是为了有效地利用材料,使其性能得到充分发挥。
三、研究方法:在小变形、材料满足虎克定律的假设下综合考虑:1、静力平衡;2、几何连续;3、物理关系三方面的条件,建立各种计算方法。
§1.3 结构的计算简图(computing model of structure )一、选取结构的计算简图必要性、重要性:将实际结构作适当地简化,忽略次要因素,显示其基本的特点。
这种代替实际结构的简化图形,称为结构的计算简图。
合理地选取结构的计算简图是结构计算中的一项极其重要而又必须首先解决的问题。
二、选取结构的计算简图的原则:1、能反映结构的实际受力特点,使计算结果接近实际情况。
结构力学讲义ppt课件
x
结点自由度
y
φ
x
y
x
刚片自由度
2)一个刚片在平面内有三个自由度,因为确定 该刚片在平面内的位置需要三个独立的几何参
数x、y、φ。
4. 约束
凡是能减少体系自由度的装置就称为约束。
6
约束的种类分为:
1)链杆
简单链杆 仅连结两个结点的杆件称为简单 链杆。一根简单链杆能减少一个自由度,故一 根简单链杆相当于一个约束。
FyA
特点: 1) 结构在支座截面可以绕圆柱铰A转动 ; 2) x、y方向的反力通过铰A的中心。
29
3. 辊轴支座
A
A
FyA
特点: 1) 杆端A产生垂直于链杆方向的线位移; 2) 反力沿链杆方向作用,大小未知。
30
4. 滑动支座(定向支座)
A 实际构造
A
MA
FyA
A
MA
FyA
特点: 1)杆端A无转角,不能产生沿链杆方向的线 位移,可以产生垂直于链杆方向的线位移;
16
A
I
II
c)
B III C
形成瞬铰B、C的四根链杆相互平行(不等 长),故铰B、C在同一无穷远点,所以三个 铰A、 B、C位于同一直线上,故体系为瞬变 体系(见图c)。
17
二、举例
解题思路: 基础看作一个大刚片;要区分被约束的刚片及
提供的约束;在被约束对象之间找约束;除复 杂链杆和复杂铰外,约束不能重复使用。
高等教育出版社
4
第一章 绪 论
§1-1 结构力学的内容和学习方法
§1-2 结构计算简图
5
§1-1 结构力学的内容和学习方法
一、结构
建筑物或构筑物中 承受、传递荷载而起 骨架作用的部分称为 结构。如:房屋中的 框架结构、桥梁、大 坝等。
《结构力学》知识点归纳梳理
《结构力学》知识点归纳梳理《结构力学》是土木工程、建筑工程等专业的重要基础课程之一,它主要研究物体受力作用下的力学性质及其运动规律。
结构力学的知识对于设计和分析各种工程结构具有重要意义。
以下是对《结构力学》中的一些重要知识点进行归纳梳理。
1.静力学基本原理:(1)牛顿第一定律与质点的平衡条件;(2)牛顿第二定律与质点运动方程;(3)牛顿第三定律与作用力对;(4)力的合成与分解。
2.力和力矩的概念和计算:(1)力的点表示和力的向量运算;(2)力矩的点表示和力矩的向量运算;(3)力的矢量和点表示的转换。
3.等效静力系统:(1)强心轴的概念和计算;(2)悬臂梁的等效静力;(3)等效力和等效力矩。
4.支持反力分析:(1)节点平衡法计算支持反力;(2)静力平衡方程计算支持反力。
5.算术运算法:(1)类似向量的加法和减法;(2)类似向量的数量积和向量积。
6.静力平衡条件:(1)法向力平衡条件;(2)切向力平衡条件;(3)力矩平衡条件。
7.杆件受力分析:(1)内力的概念和分类;(2)弹性力的性质和计算方法;(3)强度力的性质和计算方法。
8.杆件内力的作图法:(1)内力的几何关系;(2)内力图的作图方法。
9.杆件内力的计算方法:(1)等效系统的概念和计算方法;(2)推力与拉力的分析与计算。
10.刚性梁的受力分析:(1)刚性梁的受力模式;(2)刚性梁的截面受力分析;(3)刚性梁的等效荷载。
11.弯矩与剪力的计算方法:(1)弯矩和剪力的表达式;(2)弯矩和剪力的计算方法。
12.杆件的弯曲:(1)弯曲梁的受力分析;(2)弯曲梁的弯曲方程。
13.弹性曲线:(1)弹性曲线的概念和性质;(2)弹性曲线的计算方法。
14.梁的挠度:(1)梁的挠度方程;(2)梁的挠度计算方法。
15.梁的受力:(1)梁受力分析的应用;(2)梁的横向剪切力。
以上是对《结构力学》中的一些重要知识点的归纳和梳理。
通过学习和掌握这些知识点,可以帮助我们更好地理解结构力学的基本原理,从而能够进行工程结构的设计和分析。
《结构力学》复习讲义
第一讲平面体系的几何组成分析及静定结构受力分析【内容提要】平面体系的基本概念,几何不变体系的组成规律及其应用。
静定结构受力分析方法,反力、内力计算与内力图绘制,静定结构特性及其应用。
【重点、难点】静定结构受力分析方法,反力、内力计算与内力图绘制一、平面体系的几何组成分析(一)几何组成分析按机械运动和几何学的观点,对结构或体系的组成形式进行分析。
(二)刚片结构由杆(构)件组成,在几何分析时,不考虑杆件微小应变的影响,即每根杆件当做刚片。
(三)几何不变体系体系的形状(或构成结构各杆的相对位置)保持不变,称为几何不变体系,如图6-1-1 (四)几何可变体系体系的位置和形状可以改变的结构,如图6-1-2。
图6-1-1 图6-1-2(五)自由度确定体系位置所需的独立运动参数数目。
如一个刚片在平面内具有3个自由度。
(六)约束减少体系独立运动参数(自由度)的装置。
1.外部约束指体系与基础之间的约束,如链杆(或称活动铰),支座(固定铰、定向铰、固定支座)。
2.内部约束指体系内部各杆间的联系,如铰接点,刚接点,链杆。
规则一:一根链杆相当于一个约束。
规则二:一个单铰(只连接2个刚片)相当于两个约束。
推论:一个连接n 个刚片的铰(复铰)相当于(n- 1)个单铰。
规则三:一个单刚性结点相当于三个约束。
推论:一个连接个刚片的复刚性结点相当于( n- 1)个单刚性结点。
3.必要约束如果在体系中增加一个约束,体系减少一个自由度,则此约束为必要约束。
4.多余约束如果体系中增加一个约束,对体系的独立运动参数无影响,则此约束称为多余约束。
(七)等效作用1.虚铰两根链杆的交叉点或其延长线的交点称为(单)虚铰,其作用与实铰相同。
平行链杆的交点在无限远处。
2.等效刚片一个内部几何不变的体系,可用一个刚片来代替。
3.等效链杆。
两端为铰的非直线形杆,可用一连接两铰的直线链杆代二、几何组成分析(一)几何不变体系组成的基本规则1.两刚片规则平面两刚片用不相交于一点的三根链杆连接成的体系,是内部几何不变且无多余约束的体系。
《结构力学》复习讲义要点
《结构力学》复习讲义要点第一部分:力学基础1. 力学的基本概念:质点、力、力的性质、力的合成与分解、力的共线条件等。
2. 刚体力学:平动与转动、力矩、角动量、转动惯量、力矩的几何与代数相等条件等。
3. 静力学:平衡条件、力偶、杆条受力分析、平衡多边形等。
第二部分:截面力学1. 杆件截面特征:截面形状、截面形心、截面面积、截面宽度、截面模数等。
2. 拉压杆截面特征:杆轴力计算、细长杆的安全系数、压杆的稳定性、杆件受拉压状态分析等。
3. 扭转杆截面特征:杆件受扭力分析、圆形截面的极限扭矩、扭转角的计算等。
4. 弯曲杆截面特征:直线梁与弧形梁的受力分析、力的截面矩阵表示、梁截面的正向弯矩与反向弯矩、杨氏梁受力分析等。
第三部分:结构受力分析1. 杆系内力分析:截面法则、杆系的内力与外力关系、榀杆的变形与位移、杆系内力的计算等。
2. 杆系的受力分析:平衡条件的写法、平面结构与空间结构的受力分析、杆系的平面剪力图与弯矩图、受力分析的极端情况等。
3. 简支梁:梁的受力分析、悬臂梁的转角计算、剪力与弯矩图表、弹性线与弯矩-曲率关系等。
4. 悬链线与悬链线梁:悬链线形状方程、悬链线的性质与应用、悬链线梁的分析等。
第四部分:梁的变形1. 杆系的变形:位移分量的约束关系、虚功原理、单杆件的变形与位移、受约束的杆件变形计算等。
2. 弹性力学基本方程:胡克定律、弹性应变能、变形力、应变与变形的关系、应力分析与位移分析等。
3. 简支梁的本构关系:平衡微分方程、简支梁的自由振动、简支梁的拟静状态、简支梁的弹性力学与变形等。
第五部分:结构稳定性1. 稳定性基本概念:平衡与稳定的关系、平衡的稳定性判定、等效单轴刚度、曲线弯矩法等。
2. 简支梁的稳定性:轴力屈曲、弯曲屈曲与扭转屈曲、边界条件与截面要求等。
3. 大变形理论:弹性力学与大变形理论的区别、弹性线的切线方向、悬臂梁的大变形计算等。
总结:这份复习讲义总结了《结构力学》的核心要点,包含了力学基础、截面力学、结构受力分析、梁的变形和结构稳定性的内容。
结构力学重点大全
(03级试题) (15分)用力法计算并绘图示结构M图。EI=常数。
A=3I/2l2
q
l
l
q
x1
基本结构
l
x1 1
M1图
两个三角形图乘:
a
两个梯形图乘:
曲线图形与直线图形图乘:
h 1 ql 2
a
8
a b
l a
b
l
l
b
b
c
d
c
d
l
y0
1 abl 3
(1/3高高底)
l
y0
1 abl 6
(1/6高高底)
l
l
y06 l(2a c2bd ad b)c
y06 l(2a c2bd ad b)c
(1/6杆长乘2倍同侧积加1倍异侧积)
•⑷ 在超静定结构计算中,一部份杆件考虑弯曲变形,另一部份杆件考虑轴向变形, 则此结构为 ( D )。
A. 梁 B. 桁架 C.横梁刚度为无限大的排架 D. 组合结构
组合结构举例: 6
14 53 2
杆1、杆2、杆3、杆4、杆5 均为只有轴力的二力杆,仅 考虑轴向变形。
杆6为梁式杆件,应主 要考虑弯曲变形。
i —与多余约束相应的原结构的已知位移,一般为零。
iP —基本结构单独承受外荷载作用时,在xi作用点,沿xi方向的位移。(自由项) ij —基本结构由于xj=1作用,在xi作用点,沿xi方向的位移。(柔度影响系数)
4.在外荷载作用下,超静定梁和刚架的内力与各杆的EI的相对值有关,而与
第五章河海大学结构力学
基本未知量、基本系
基本未知量、基本系
基本未知量、基本系
§5-3-3 力法典型方程
原结构
基本系
解除位移约束处的位移协调条件为:
力法典型方程:
对n次超静定结构,其力法典型方程为:
ip ——自由项 其中 ij——柔度系数, 柔度系数: ij—— 作用在基本系上引起的 Fi 处所方向的位移
第五章 力法
§5-1 超静定结构概述 §5-2 力法基本原理 §5-3 力法原理进一步讨论 §5-4 力法举例 §5-5 结构对称性的利用 §5-6 支座移动下的内力计算
§5-7 温度改变下的内力计算
§5-8 超静定拱的内力计算 §5-9 超静定结构的位移计算 §5-10 超静定结构的计算校核 §5-11 超静定结构的特性
结论:对称结构受对称荷载作用,对称截面上只有对称未知 量。
当荷载反对称时, M P 反对称,
只有未知力 F3 , 只需求解最后 一式。 结论:对称结构受反对称载荷作用,对称截面上只有反对称未 知量。
2.取对称基本系并取成组未知量:
a.对称荷载下:
A,B处竖向反力相等,构成成组未知力 F1
思考题: 该典型方程表示什么物理条件?
例图示刚架支座c向下移动1cm, 解:
,l=4m,求作M图。
结论:超静定结构在支座移动作用下的内力 1.全部由多余约束引起: 2.与各杆刚度绝对值有关。
工程处理 某些超静定结构由于支座移动引起的内力往往是比较大 的,应引起注意。为了减小由于支座移动引起的内力,不 能简单采取增大截面的方法,可采取结构措施,如设置沉 降缝或对于基础进行处理
1
设
EI 1 1 EI 2
得 在荷载作用下,超静 定结构的多余约束力 及最后的内力只与各 杆刚度的相对比值有 关,而与各杆刚度的 绝对值无关,计算时 可采用相对刚度。
结构力学考点归纳总结(最新整理)
结构力学考点归纳总结第一章一、简化的原则1. 结构体系的简化——分解成几个平面结构2. 杆件的简化——其纵向轴线代替。
3. 杆件间连接的简化——结点通常简化为铰结点或刚结点4. 结构与基础间连接的简化结构与基础的连接区简化为支座。
按受力特征,通常简化为:(1)滚轴支座:只约束了竖向位移,允许水平移动和转动。
提供竖向反力。
在计算简图用支杆表示。
(2)铰支座:约束竖向和水平位移,只允许转动。
提供两个反力。
在计算简图用两根相交的支杆表示。
(3)定向支座:只允许沿一个方向平行滑动。
提供反力矩和一个反力。
在计算简图用两根平行支杆表示。
(4) 固定支座:约束了所有位移。
提供两个反力也一个反力矩。
5. 材料性质的简化——对组成各构件的材料一般都假设为连续的、均匀的、各向同性的、完全弹性或弹塑性的6. 荷载的简化——集荷载和分布荷载§1-4 荷载的分类一、按作用时间的久暂荷载可分为恒载和活载二、按荷载的作用范围荷载可分为集荷载和分布荷载三、按荷载作用的性质荷载可分为静力荷载和动力荷载四、按荷载位置的变化荷载可分为固定荷载和移动荷载第二章几何构造分析几何不变体系:体系的位置和形状是不能改变的讨论的前提:不考虑材料的应变2.1.2 运动自由度SS:体系运动时可以独立改变的坐标的数目。
W:W= (各部件自由度总和a )-(全部约束数总和) W=3m-(3g+2h+b)或w=2j-b-r.注意:j与h的区别约束:限制体系运动的装置2.1.4 多余约束和非多余约束不能减少体系自由度的约束叫多余约束。
能够减少体系自由度的约束叫非多余约束。
注意:多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。
2.3.1 二元体法则约束对象:结点 C 与刚片约束条件:不共线的两链杆;瞬变体系§2-4 构造分析方法与例题1. 先从地基开始逐步组装2.4.1 基本分析方法(1)一. 先找第一个不变单元,逐步组装1. 先从地基开始逐步组装2. 先从内部开始,组成几个大刚片后,总组装二. 去除二元体2.4.3 约束等效代换1. 曲(折)链杆等效为直链杆2. 联结两刚片的两链杆等效代换为瞬铰①.分析:1.折链杆AC 与DB 用直杆2、3代替;2.刚片ECD 通过支杆1与地基相连。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013河海大学结构力学(I)基础知识点框架梳理及其解析第一章体系的几何组成分析本章需要重点掌握几何不变体系、自由度、刚片、约束等基本概念,重点掌握几何不变体系组成的三规则——两刚片规则,三刚片规则和二元体规则。
一、基本概念1、几何不变体系:在荷载作用下能保持其几何形状和位置都不改变的体系。
2、几何可变体系:在荷载作用下不能保持其几何形状和位置都不改变的体系。
3、刚片:假想的一个在平面内完全不变形的刚性物体叫作刚片。
在平面杆件体系中,一根直杆、折杆或曲杆都可以视为刚片,并且由这些构件组成的几何不变体系也可视为刚片。
刚片中任一两点间的距离保持不变,既由刚片中任意两点间的一条直线的位置可确定刚片中任一点的位置。
所以可由刚片中的一条直线代表刚片。
4、自由度的概念:一个点:在平面内运动完全不受限制的一个点有2个自由度。
一个刚片:在平面内运动完全不受限制的一个刚片有3个自由度。
5、约束,是能减少体系自由度数的装置。
1)链杆——一根单链杆或一个可动铰(一根支座链杆)具有1个约束。
2)单铰——一个单铰或一个固定铰支座(两个支座链杆)具有两个约束。
3)单刚结点——一个单刚结点或一个固定支座具有3个约束。
6、必要约束:除去该约束后,体系的自由度将增加,这类约束称为必要约束。
多余约束:除去该约束后,体系的自由度不变,这类约束称为多余约束。
7、无多余约束的几何不变体系是静定结构,有多余约束的几何不变体系是超静定结构。
一、几何不变体系的简单组成规则规则一两个刚片之间的连接(两刚片规则):(图2-3-1)两个刚片用不全交于一点也不全平行的三根链杆相连,组成无多余约束的几何不变体系。
规则二三个刚片之间的接(三刚片规则):三个刚片用不全在一条直线上的三个单铰(可以是虚铰)两两相连,组成无多余约束的几何不变体系。
规则三刚片与点之间的连接(二元体规则):二元体特性:在体系上加上或拆去一个二元体,不改变体系原有的自由度数。
利用二元体规则简化体系,使体系的几何组成分析简单明了。
【例题1】:分析图示体系的几何组成。
解答:DF、FE为二元杆,将其去掉并不影响体系的可变性。
将其去掉后,ACD 为铰接三角形,视为刚片Ⅰ,CBE 为刚片Ⅱ,基础视为刚片Ⅲ。
三个刚片通过三个不在同一条直线上的三个铰相连,组成没有多余约束的几何不变体系。
即原体系为几何不变体系。
【例题2】:分析图示体系的几何组成。
解答:将基础视为刚片Ⅰ,25、35、23三根杆组成铰结三角形,视为刚片Ⅱ,46杆视为刚片Ⅲ,刚片Ⅰ与刚片Ⅱ通过两个链杆组成的虚铰相连,刚片Ⅰ与刚片Ⅲ通过14杆、链杆组成的虚铰相连,刚片Ⅱ与刚片Ⅲ通过24杆、56杆组成的虚铰相连。
这样三个刚片通过三个在同一直线上的三个虚铰相连,组成几何瞬变体系,即图示体系为几何瞬变体系。
习题:对下列平面体系进行几何组成分析。
1、 2、A CD BEABCDE3、 4、ABCD GE FA BCDEFGHK5、 6、第二章 静定结构受力分析本章包括章跨梁的静定受力分析,多跨静定梁的受力分析,桁架的受力分析,静定刚架的受力分析,静定组合结构的受力分析及静定结构的性质几个部分。
要求同学们掌握荷载与内力的关系,叠加原理,主从和附加部分,结点法和截面法等知识点,能熟练地计算各种静定结构的内力。
第一节 单跨静定梁单跨静定梁的类型:简支梁、伸臂梁、悬臂梁。
一、截面法求某一指定截面的内力1、内力的符号规定①弯矩M :对梁而言,使杆件上凹者为正(也即下侧纤维受拉为正),反之为负。
一般情况下作内力图时,规定弯矩图纵标画在受拉一侧,不标注正负号。
②剪力Q :使截开后保留部分产生顺时针旋转者为正,反之为负。
③轴力N :拉为正,压为负。
剪力图和轴力图可绘在杆轴的任意一侧,但必须标注正负号。
2、截面法的步骤(1)以整体为研究对象,利用静力平衡条件求支座反力(简支梁、外伸梁) (2)截面法,取隔离体利用静力平衡条件求截面内力 二、荷载与内力的关系1、微分关系:dFN/dx=-qx dFQ/dx=-qy dM/dx=Q d2M/dx2=-qyNNN QQQQMM MM2、利用荷载和内力关系的几何意义,可由荷载的分布和类型定性地判断或校核区段上的内力图形状以及突变点和突变值的大小。
(1)在无荷区段q(x)=0,剪力图为水平直线,弯矩图为斜直线。
(2)在q(x)=常量段,剪力图为斜直线,弯矩图为二次抛物线。
(3)集中力作用点两侧,剪力值有突变、弯矩图形成尖点;集中力偶作用点两侧,弯矩值突变、剪力值无变化。
三、叠加法作弯矩图1、简支梁的弯矩图叠加法2、弯矩图叠加的实质指弯矩竖标的叠加(而不是图形的简单叠加),当同一截面在两个弯矩竖标在基线不同侧时,叠加后是两个竖标绝对值相减,弯矩竖标画在绝对值大的一侧;当两个竖标在基线同一侧时,则叠加后是两个竖标绝对值相加,竖标画在同侧。
基线接力法概念。
3、直杆段弯矩图的区段叠加法直杆区段的弯矩图叠加可利用简支梁的弯矩图叠加法。
其步骤是:(1)计算直杆区段两端的最后弯矩值,画出这两个值的竖标,并将两竖标连一直线;(2)将所连直线作为新的基线,叠加相应简支梁在跨间荷载作用下的弯矩图。
四、用“拟简支梁法”绘弯矩图用“拟简支梁法”绘弯矩图时,先绘出控制截面的弯矩竖标,其间若无外荷载作用,可用直线相连;若有外荷载作用,则以上述直线为基线,再叠加上荷载在相应简支梁上的弯矩图。
【例题1】: 试绘制图示外伸梁的内力图解答:(一)求支座反力:∑∑∑===00AB M M X )(310)(1300↑=↑==KN V KN V H BA A校核:∑=⨯---+=064040160310130Y(二)绘制内力图:∑∑∑===00CM Y X M KN M KN Q N C C C .1301300=+==第二节 多跨静定梁的受力分析基本部分: 结构中不依赖于其它部分而独立与大地形成几何不变的部分。
附属部分:结构中依赖基本部分的支承才能保持几何不变的部分。
把结构中各部分之间的这种依赖、支承关系形象的画成如图示的层叠图,可以清楚的看出多跨静定梁所具有的如下特征:1) 组成顺序:先基本部分,后附属部分;2) 传力顺序:先附属部分,后基本部分。
由于这种多跨静定梁的层叠图象阶梯,可称为阶梯形多跨静定梁。
【例题2】试作图示多跨静定梁的内力图。
多跨静定梁小结了解多跨静定梁两种基本类型的几何组成特点。
多跨静定梁分层计算的目的,为了不解联立方程。
计算要点:按先附属,后基本的顺序。
习题:作出下列结构的弯矩图1、2、40kN40kN20kN/m2m2m2m2m4m22P Pa Pa a aaa第三节静定刚架的受力析一、静定刚架的计算步骤:(1)计算支座反力(或约束力);(2)计算杆端截面内力(简称杆端力)和控制截面内力;(3)画各内力图。
二、绘制刚架内力图时应注意的问题1、计算悬臂刚架时,可不必先求支座反力,从悬臂端算起即可。
2、计算简支刚架时,一般先求支座反力,而后用截面法计算。
3、计算三铰刚架时,要利用中间铰弯矩为零的条件。
4、绘Q图、N图必须标正、负号;绘M图不标正负号,M图绘在受拉一侧。
5、求支座反力后及绘内力图后都应进行校核。
注意:三铰刚架结构中,支座反力的计算是内力计算的关键所在。
通常情况下,支座反力是两两偶联的,需要通过解联立方程组来计算支座反力,因此寻找建立相互独立的支座反力的静力平衡方程,可以大大降低计算反力的复杂程度和难度。
【例题3】试绘制下图所示刚架的弯矩图。
解答:(1)对整体进行分析,对A点取矩,0M ∑=A,40B Y ⨯⋅=20+302-,。
利用Y方向的平衡,0i ∑=Y,+B AYY=30,。
(2)取右半边为隔离体,利用C点弯矩为0,对C点取矩,0c M ∑=,+0⋅⋅=BBY2X4,解得0kN BX=—1(向左)。
(3)对整体进行分析,0i ∑=X,+B AXX=0,0kN AX=1(向右)。
(4)绘制弯矩图。
习题:作出下列结构的弯矩图1、 2、l2ql3m 3m10kN第四节 平面桁架的受力分析一、理想桁架假定:1、桁架中的铰为绝对光滑而无磨擦的理想铰;2、桁架中的各杆件轴线绝对平直,且通过它两端铰中心;3、桁架上的荷载和支座都在结点上。
理想桁架杆件只产生轴向内力,即理想桁架杆件是二力杆件(由以上假定提供的可能性及二力平衡原理)。
以下提及的桁架均为理想桁架,桁架中的杆件叫桁架杆或二力杆,桁架内力及内力计算均指桁架杆轴力计算。
二、结构单杆与零杆仅截面取某结点为隔离体,并且结点连接的全部内力未知,对于仅用一个平衡议程就可以求出内力的,称为结点单杆。
利用这个概念,根据荷载状况可判断此杆内力是否为零。
零内力杆简称零杆。
求解桁架前先要找出零杆,将零杆去年以简化计算。
三、结点法依次取桁架中的单个结点为隔离体,由结点的平衡条件计算桁架内力的方法叫结点法。
由于理想桁架的上述假设,汇交于结点的各杆轴力(包括荷载和支座反力)均过铰结点中心。
所以,以单个结点为隔离体的受力图是平面汇交力系,只有两个独立的平衡方程。
一般情况下截取结点的原则是:一个结点只能截断两根待求杆件。
四、截面法计算桁架内力的截面法,是假想用一个截面将桁架的某些杆件切开,使桁架分成两部分,利用任一部分计算被切断杆件的轴力的方法。
显然,由于桁架被切开后的任一部分没有对其所含的结点数的限制,所以截面法所取的隔离体应是平面一般力系。
平面一般力系只能列出三个独立的平衡方程,因此,截面法切断的待求轴力杆件最多是三根。
【例题4】用截面法计算图示桁架中杆a、b、c的轴力。
解答:(1)求支座反力(2)计算杆件轴力取截面Ⅱ-Ⅱ以左:∑Fy=0FNC√2/2+100–80=0F NC= –28.28kN取截面Ⅰ-Ⅰ以左:∑M4=0Fax×3+100×6–40×3=0Fax= –160kNFNa=(Fax/lax)×la= –164.92 kNFay=(Fax/la)×lay= –40 kN∑Fy=0 Fby –Fay+40–100=0Fby=20 kNFNb=(Fby/lby)×lb=33.33kNFNa= –164.92kN, FN =33.33kN, FNc= –28.28 Kn 习题: 计算图示桁架中杆1、2、3的内力。
a第三章 静定结构位移计算本章包括虚功原理,单位荷载法,图乘法,其它外因作用下的位移,互等定理等知识点。
其中虚功原理和互等定理只会考小题,需要重点理解。
要求会计算外荷载作用下的位移,这就要求熟练掌握单位荷载法和图乘法。
其它外因作用下的位移不会考计算,只需了解位移产生的原理。
一、位移的基本概念结构在荷载、温度变化、支座移动与制造误差等各种因素作用下发生变形,因而结构上个点的位置会有变动。