2017_18学年高中数学第二讲参数方程2.1曲线的参数方程练习

合集下载

人教版高中数学选修4-4:第二讲一第2课时圆的参数方程含解析

人教版高中数学选修4-4:第二讲一第2课时圆的参数方程含解析

第二讲 参数方程一、曲线的参数方程第2课时 圆的参数方程A 级 基础巩固一、选择题1.已知圆P :⎩⎪⎨⎪⎧x =1+10cos θ,y =-3+10sin θ(θ为参数),则圆心P 及半径r 分别是( ) A .P(1,3),r =10B .P(1,3),r =10C .P(1,-3),r =10D .P(1,-3),r =10解析:由圆P 的参数方程可知圆心(1,-3),半径r =10.答案:C2.圆x 2+y 2+4x -6y -3=0的参数方程为( )A.⎩⎨⎧x =2+4cos θ,y =-3+4sin θ(θ为参数) B.⎩⎨⎧x =-2+4cos θ,y =3+4sin θ(θ为参数) C.⎩⎨⎧x =2-4cos θ,y =3-4sin θ(θ为参数) D.⎩⎨⎧x =-2-4cos θ,y =3-4sin θ(θ为参数) 解析:圆的方程配方为:(x +2)2+(y -3)2=16,所以圆的圆心为(-2,3),半径为4,故参数方程为B 选项.答案:B3.已知圆O 的参数方程是⎩⎨⎧x =2+4cos θ,y =-3+4sin θ(0≤θ<2π),圆上点A 的坐标是(4,-33),则参数θ=( )A.7π6B.4π3C.11π6D.5π3解析:由题意⎩⎨⎧4=2+4cos θ,-33=-3+4sin θ(0≤θ<2π), 所以⎩⎪⎨⎪⎧cos θ=12,sin θ=-32(0≤θ<2π),解得θ=5π3. 答案:D4.若P(x ,y)是圆⎩⎨⎧x =2+cos α,y =sin α(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:依题意P(2+cos α,sin α),所以(x -5)2+(y +4)2=(cos α-3)2+(sin α+4)2=26-6cos α+8sin α=26+10sin(α-φ)⎝⎛⎭⎪⎫其中cos φ=45,sin φ=35, 所以当sin(α-φ)=1,即α=2k π+π2+φ(k ∈Z)时,有最大值为36. 答案:A5.直线:3x -4y -9=0与圆:⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数)的位置关系是( ) A .相切B .相离C .直线过圆心D .相交但直线不过圆心 解析:圆心坐标为(0,0),半径为2,显然直线不过圆心,又圆心到直线距离d =95<2. 所以直线与圆相交,但不过圆心.答案:D二、填空题6.已知圆的方程为x 2+y 2=2x ,则它的一个参数方程是______.解析:将x 2+y 2=2x 化为(x -1)2+y 2=1知圆心坐标为(1,0),半径r =1,所以它的一个参数方程为⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数). 答案:⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数) 7.已知曲线方程⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数),则该曲线上的点与定点(-1,-2)的距离的最小值为________. 解析:设曲线上动点为P(x ,y),定点为A ,则|PA|=(1+cos θ+1)2+(sin θ+2)2= 9+42sin ⎝ ⎛⎭⎪⎫θ+π4, 故|PA|min =9-42=22-1.答案:22-18.曲线C :⎩⎨⎧x =cos θ,y =-1+sin θ(θ为参数)的普通方程为__________.如果曲线C 与直线x +y +a =0有公共点,那么a 的取值范围是________.解析:⎩⎨⎧x =cos θ,y =-1+sin θ(θ为参数)消参可得 x 2+(y +1)2=1,利用圆心到直线的距离d ≤r 得|-1+a|2≤1, 解得1-2≤a ≤1+ 2. 答案:x 2+(y +1)2=1 [1-2,1+2]三、解答题9.已知曲线C 的极坐标方程是ρ=2cos θ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =32t +m ,y =12t(t 为参数). (1)求曲线C 的直角坐标方程和直线l 普通方程;。

2017_18学年高中数学第二章参数方程三直线的参数方程教学案

2017_18学年高中数学第二章参数方程三直线的参数方程教学案

三 直线的参数方程[对应学生用书P27]1.直线的参数方程(1)过点M 0(x 0,y 0),倾斜角为α的直线l 的参数为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)(2)由α为直线的倾斜角知α∈[0,π)时,sin α≥0. 2.直线参数方程中参数t 的几何意义参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离. (1)当M 0M ―→与e (直线的单位方向向量)同向时,t 取正数. (2)当M 0M ―→与e 反向时,t 取负数,当M 与M 0重合时,t =0.[对应学生用书P27][例1] 已知直线l 的方程为3x -4y +1=0,点P (1,1)在直线l 上,写出直线l 的参数方程,并求点P 到点M (5,4)的距离.[思路点拨] 由直线参数方程的概念,先求其斜率,进而由斜率求出倾斜角的正、余弦值,从而得到直线参数方程.[解] 由直线方程3x -4y +1=0可知,直线的斜率为34,设直线的倾斜角为α,则tan α=34,sin α=35,cos α=45.又点P (1,1)在直线l 上,所以直线l 的参数方程为⎩⎪⎨⎪⎧x =1+45t ,y =1+35t (t 为参数).因为3×5-4×4+1=0,所以点M 在直线l 上.由1+45t =5,得t =5,即点P 到点M 的距离为5.理解并掌握直线参数方程的转化,弄清参数t 的几何意义,即直线上动点M 到定点M 0的距离等于参数t 的绝对值是解决此类问题的关键.1.设直线l 过点A (2,-4),倾斜角为5π6,则直线l 的参数方程为________________.解析:直线l的参数方程为⎩⎪⎨⎪⎧x =2+t cos5π6,y =-4+t sin 5π6(t 为参数),即⎩⎪⎨⎪⎧x =2-32t ,y =-4+12t (t 为参数).答案:⎩⎪⎨⎪⎧x =2-32t ,y =-4+12t (t 为参数)2.一直线过P 0(3,4),倾斜角α=π4,求此直线与直线3x +2y =6的交点M 与P 0之间的距离.解:设直线的参数方程为⎩⎪⎨⎪⎧x =3+22t ,y =4+22t ,将它代入已知直线3x +2y -6=0, 得3(3+22t )+2(4+22t )=6. 解得t =-1125,∴|MP 0|=|t |=1125.[例2] 已知直线l 经过点P (1,1),倾斜角α=π6,(1)写出直线l 的参数方程.(2)设l 与圆x 2+y 2=4相交于两点A 、B ,求点P 到A 、B 两点的距离之积.[思路点拨] (1)由直线参数方程的概念可直接写出方程;(2)充分利用参数几何意义求解.[解] (1)∵直线l 过点P (1,1),倾斜角为π6,∴直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π6,y =1+t sin π6,即⎩⎪⎨⎪⎧x =1+32t ,y =1+12t 为所求.(2)因为点A ,B 都在直线l 上,所以可设它们对应的参数为t 1和t 2,则点A ,B 的坐标分别为A (1+32t 1,1+12t 1),B (1+32t 2,1+12t 2), 以直线l 的参数方程代入圆的方程x 2+y 2=4整理得到t 2+(3+1)t -2=0,① 因为t 1和t 2是方程①的解,从而t 1t 2=-2. 所以|PA |·|PB |=|t 1t 2|=|-2|=2.求解直线与圆或圆锥曲线有关的弦长时,不必求出交点坐标,根据直线参数方程中参数t 的几何意义即可求得结果,与常规方法相比较,较为简捷.3.直线l 通过P 0(-4,0),倾斜角α=π6,l 与圆x 2+y 2=7相交于A 、B 两点.(1)求弦长|AB |; (2)求A 、B 两点坐标.解:∵直线l 通过P 0(-4,0),倾斜角α=π6,∴可设直线l 的参数方程为⎩⎪⎨⎪⎧x =-4+32t ,y =t 2.代入圆方程,得(-4+32t )2+(12t )2=7. 整理得t 2-43t +9=设A 、B 对应的参数分别t 1和t 2, 由根与系数的关系得t 1+t 2=43,t 1t 2=9 ∴|AB |=|t 2-t 1|=t 1+t 22-4t 1t 2=2 3.解得t 1=33,t 2=3,代入直线参数方程 ⎩⎪⎨⎪⎧x =-4+32t ,y =12t ,得A 点坐标(12,332),B 点坐标(-52,32).4.如图所示,已知直线l 过点P (2,0),斜率为43,直线l 和抛物线y2=2x 相交于A ,B 两点,设线段AB 的中点为M ,求:(1)P ,M 间的距离|PM |; (2)点M 的坐标.解:(1)由题意,知直线l 过点P (2,0),斜率为43,设直线l 的倾斜角为α,则tan α=43,cos α=35,sin α=45,∴直线l 的参数方程的标准形式为 ⎩⎪⎨⎪⎧x =2+35t ,y =45t(t 为参数). *∵直线l 和抛物线相交,∴将直线l 的参数方程代入抛物线方程y 2=2x 中, 整理得8t 2-15t -50=0,Δ=152+4×8×50>0. 设这个二次方程的两个根为t 1,t 2,由根与系数的关系得t 1+t 2=158,t 1t 2=-254.由M 为线段AB 的中点, 根据t 的几何意义,得|PM | =⎪⎪⎪⎪⎪⎪t 1+t 22=1516.(2)因为中点M 所对应的参数为t M =1516,将此值代入直线l 的参数方程的标准形式(*),得⎩⎪⎨⎪⎧x =2+35×1516=4116,y =45×1516=34,即M ⎝⎛⎭⎪⎫4116,34.[对应学生用书P28]一、选择题1.直线的参数方程为⎩⎪⎨⎪⎧x =-1+t 2,y =2-32t ,M 0(-1,2)和M (x ,y )是该直线上的定点和动点,则t 的几何意义是( )A .有向线段M 0M 的数量B .有向线段MM 0的数量C .|M 0M |D .以上都不是解析:参数方程可化为⎩⎪⎨⎪⎧x =-1+-12-t ,y =2+32-t答案:B2.曲线的参数方程为⎩⎪⎨⎪⎧x =3t 2+2,y =t 2-1(t 是参数),则曲线是( )A .线段B .双曲线的一支C .圆D .射线解析:由y =t 2-1得y +1=t 2,代入x =3t 2+2, 得x -3y -5=0(x ≥2).故选D. 答案:D3.直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t(t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10D .2 2解析:因为题目所给方程不是参数方程的标准形式,参数t 不具有几何意义,故不能直接由1-0=1来得距离,应将t =0,t =1分别代入方程得到两点坐标(2,-1)和(5,0),由两点间距离公式来求出距离,即-2+-1-2=10.答案:B4.若直线⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数)与圆⎩⎪⎨⎪⎧x =4+2cos φ,y =2sin φ(φ为参数)相切,那么直线倾斜角α为( )A.π6 B.π4 C.π3D.π6或5π6解析:直线化为y x=tan α,即y =tan α·x , 圆方程化为(x -4)2+y 2=4, ∴由|4tan α|tan 2α+1=2⇒tan 2α=13, ∴tan α=±33,又α∈[0,π),∴α=π6或5π6. 答案:D 二、填空题5.直线⎩⎪⎨⎪⎧x =2+22t ,y =-3-22t (t 为参数)上到点M (2,-3)的距离为2且在点M 下方的点的坐标是________.解析:把参数方程化成标准形式为⎩⎪⎨⎪⎧x =2-22-t ,y =-3+22-t ,把-t 看作参数,所求的点在M (2,-3)的下方,所以取-t =-2,即t =2,所以所求点的坐标为(3,-4).答案:(3,-4)6.若直线l 的参数方程为⎩⎪⎨⎪⎧x =1-35t ,y =45t(t 为参数),则直线l 的斜率为______.解析:由参数方程可知,cos θ=-35,sin θ=45.(θ为倾斜角).∴tan θ=-43,即为直线斜率.答案:-437.已知直线l 1:⎩⎪⎨⎪⎧x =1-2t ,y =2+kt (t 为参数),l 2:⎩⎪⎨⎪⎧x =s ,y =1-2s (s 为参数),若l 1∥l 2,则k =____________;若l 1⊥l 2,则k =________.解析:将l 1,l 2的方程化为普通方程,得l 1:kx +2y -4-k =0,l 2:2x +y -1=0, l 1∥l 2⇒k 2=21≠4+k1⇒k =4.l 1⊥l 2⇒(-2)·(-k2)=-1⇒k =-1.答案:4 -1 三、解答题8.设直线的参数方程为⎩⎪⎨⎪⎧x =5+3t ,y =10-4t(t 为参数).(1)求直线的普通方程;(2)将参数方程的一般形式化为参数方程的标准形式. 解:(1)把t =x -53代入y 的表达式 得y =10-x -3,化简得4x +3y -50=0,所以直线的普通方程为4x +3y -50=0. (2)把参数方程变形为⎩⎪⎨⎪⎧x =5-35-5t ,y =10+45-5t ,令t ′=-5t ,即有⎩⎪⎨⎪⎧x =5-35t ′,y =10+45t ′(t ′为参数)为参数方程的标准形式.9.已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点,交椭圆于A ,B 两点,求弦AB 的长度.解:因为直线l 的斜率为1,所以直线l 的倾斜角为π4.椭圆x 24+y 2=1的右焦点为(3,0),直线l 的参数方程为⎩⎪⎨⎪⎧x =3+22t ,y =22t (t 为参数),代入椭圆方程x 24+y 2=1,得⎝ ⎛⎭⎪⎫3+22t 24+⎝ ⎛⎭⎪⎫22t 2=1,整理,得5t 2+26t -2=0. 设方程的两实根分别为t 1,t 2, 则t 1+t 2=-265,t 1·t 2=-25,|t 1-t 2|=t 1+t 22-4t 1t 2=⎝ ⎛⎭⎪⎫-2652+85=85, 所以弦AB 的长为85.10.已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|PA |·|PB |的值. 解:(1)曲线C :(x -1)2+(y -2)2=16,直线l :⎩⎪⎨⎪⎧x =3+12t ,y =5+32t (t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0,设t 1,t 2是方程的两个根,则t 1t 2=-3,所以|PA ||PB |=|t 1||t 2|=|t 1t 2|=3.。

第二讲 参数方程

第二讲 参数方程

最大值6 2 , 最小值 6 2 .
2、θ取一切实数时,连接A(4sinθ,6cosθ)和B(-4cosθ,
6sinθ)两点的线段的中点轨迹是 B .
B. 椭圆 C. 直线 x=2sinθ-2cosθ 设中点M (x, y) y=3cosθ+3sinθ 2 2
A. 圆
D. 线段
x y 2 4 9
(3)
x 9
2
1 (4)
y 25
2
x 64
2

y 100
2
1
例1、如图,在椭圆x2+8y2=8上求一点P,使P到直线
l:x-y+4=0的距离最小.
分析1: 设P( 8 8y 2 , y),
则d | 8 8y 2 y 4 | 2
y
O P
x
分析2:设P(2 2 cos, sin ),
x= t 1 (1) (t为参数) y 1 2 t
x= sin cos (2) ( 为参数). y 1 sin 2
练习1 将下列参数方程化为普通方程:
(1)
x 2 3 cos y 3 sin
x=t+1/t
(2)
x sin y cos 2
1.写出下列圆的参数方程:
x =-2+cosθ (2)圆心为(-2,-3),半径为1: ______________. y =-3+sinθ x =5cosθ+1 2.若圆的参数方程为 , 则其标准 y =5sinθ-1
2+(y+1)2=25 ( x 1) 方程为:_________________.
所以,点M的轨迹的参数方程是

第二讲:曲线的参数方程

第二讲:曲线的参数方程

可以使其准确落在指定位置.
1、参数方程的概念:
一般地, 在平面直角坐标系中,如果曲线上任意一点的
坐标x, y都是某个变数t的函数
x f (t),

y

g (t ).
(2)
那么方程(2) 就叫做这条曲线的参数方程, 联系变数x,y 的变数t叫做参数.
相对于参数方程而言,直接给出点的坐标间关系 的方程叫做普通方程。
x 1 cos

参数方程为

y

3

sin
(θ为参数)
例2 如图,圆O的半径为2,P是圆上的动点, Q(6,0)是x轴上的定点,M是PQ的中点,当 点P绕O作匀速圆周运动时,求点M的轨迹的 参数方程。
y
P M

o
Qx
解:设点M的坐标是(x, y),xOP ,则点
P的坐标是(2 cos ,2sin ),由中点坐标公式得:
x 3
1 t 2 (t为参数)和x 3
1t2
y 2t
y 2t
小结:
(1)圆:(x-x0)2+(y-y0)2= r2
x x0 r cos

y

y0
r sin
(为参数)
(2)椭圆:x
a
2 2

y2 b2
1,(a

b
0)
(3)双曲线:ax22
由参数的任意性,可取y 2sin ,
所以椭圆 x2 y2 1的参数方程是 94
x

y

3 c os (为参数) 2sin
(2)把y 2t代入椭圆方程,得x2 4t 2 1 94

人教版高中数学选修4-4课件:第二讲二第2课时双曲线的参数方程和抛物线的参数方程

人教版高中数学选修4-4课件:第二讲二第2课时双曲线的参数方程和抛物线的参数方程

x=sec θ,
解:把双曲线方程化为参数方程
(θ 为参
y=tan θ
数),
林老师网络编辑整理
18
设双曲线上点 Q(sec θ,tan θ),则
|PQ|2=sec2θ+(tan θ-2)2=
(tan2θ+1)+(tan2θ-4tan θ+4)=
2tan2θ-4tan θ+5=2(tan θ-1)2+3,
林老师网络编辑整理
5
2.抛物线的参数方程
如图,抛物线 y2=2px(p>0)的参数方程为
x=2pt2,
____y_=__2_p_t ____t为参数,t=tan1

α.
林老师网络编辑整理
6
温馨提示 t=sin1 α(α 是以射线 OM 为终边的角),即 参数 t 表示抛物线上除顶点之外的任意一点与原点连线的 斜率的倒数.
第二讲 参数方程
林老师网络编辑整理
1
二、圆锥曲线的参数方程 第 2 课时 双曲线的参数方程和
抛物线的参数方程
林老师网络编辑整理
2
[学习目标] 1.了解抛物线和双曲线的参数方程,了 解抛物线参数方程中参数的几何意义(重点). 2.利用抛 物线和双曲线的参数方程处理问题(重点、难点).
林老师网络编辑整理
当 tan θ-1=0,即 θ=π4时,
|PQ|2 取最小值 3,此时有|PQ|= 3.
即 P、Q 两点间的最小距离为 3.
林老师网络编辑整理
19
[迁移探究] (变换条件)已知圆 O1:x2+(y-2)2=1 上一点 P 与双曲线 x2-y2=1 上一点 Q,求 P,Q 两点间 距离的最小值.
解:设 Q(sec θ,tan θ), 由题意知|O1P|+|PQ|≥|O1Q|. |O1Q|2=sec2θ+(tan θ-2)2=

高中数学第二章参数方程2.1曲线的参数方程练习(含解析)新人教B版选修44

高中数学第二章参数方程2.1曲线的参数方程练习(含解析)新人教B版选修44

高中数学第二章参数方程2.1曲线的参数方程练习(含解析)新人教B版选修44课时过关·能力提升1若点P(3,b)在曲A.-5B.3C.5或-3D.-5或3解析:由点P在曲线上,t=±2.当t=2时,y=b=-5;当t=-2时,y=b=3.答案:D2曲A.(1,4)BC.(1,-3)D解析:把t x=1+t2,得x=1即y2+6y-16x+25=0.令y=0,得x故曲线与x轴的交点坐标答案:B3动点M作匀速直线运动,它在x轴正方向和y轴正方向的分速度分别为3 m/s和4 m/s,直角坐标系的长度单位是1 m,点M的起始位置在点M0(2,1)处,则点M的轨迹的参数方程是()A≥0)B≥0)C≥0)D≥0)解析:设在时刻t点M的坐标为M(x,y),≥0).答案:B4参数方A.直线B.抛物线C.椭圆D.双曲线解析:y=tanθ=平方得y2由sin2θcos22θ=1则y2,得x2-y2=4.故曲线为双曲线.答案:D5“由方答案:必要不充分6已知曲线C的参数方程(1)判断点M1(0,1),M2(5,4)与曲线C的位置关系;(2)已知点M3(6,a)在曲线C上,求a的值.解:(1)把点M1的坐标(0,1)代t=0,所以点M1在曲线C上.把点M2的坐标(5,4)代此时无解,所以点M2不在曲线C上.(2)因为点M3(6,a)在曲线C上,所t=2,a=9,所以a的值为9.★7已知点P(x,y)是曲线C(1)x+y的最值;(2)点P到直线x+y-1=0的距离d的最值.解:因为点P在曲线C上,所以点P(3+cosθ,2+sinθ).(1)x+y=3+cosθ+2+sinθ=5故x+y的最大值为55(2)d显然,当si,d取最大值1+si,d取最小。

2017_2018学年高中数学第二讲参数方程二圆锥曲线的参数方程1椭圆的参数方程学案(含解析)新人教A版选修4_4

2017_2018学年高中数学第二讲参数方程二圆锥曲线的参数方程1椭圆的参数方程学案(含解析)新人教A版选修4_4

1.椭圆的参数方程椭圆的参数方程(1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ是参数),规定参数φ的取值范围是 已知实数x ,y 满足x 225+y 216=1,求目标函数z =x -2y的最大值与最小值.将椭圆上的点的坐标设成参数方程的形式,将问题转化成三角函数求最值问题. 椭圆x 225+y 216=1的参数方程为⎩⎪⎨⎪⎧x =5cos φ,y =4sin φ(φ为参数).代入目标函数得z =5cos φ-8sin φ =52+82cos(φ+φ0)=89cos(φ+φ0)⎝ ⎛⎭⎪⎫tan φ0=85.所以目标函数z min =-89,z max =89.利用椭圆的参数方程,求目标函数的最大(小)值,通常是利用辅助角公式转化为三角函数求解.1.已知椭圆x 225+y 216=1,点A 的坐标为(3,0).在椭圆上找一点P ,使点P 与点A 的距离最大.解:椭圆的参数方程为⎩⎪⎨⎪⎧x =5cos θ,y =4sin θ(θ为参数).设P (5cos θ,4sin θ),则 |PA |=θ-2+θ2=9cos 2θ-30cos θ+25=θ-2=|3cos θ-5|≤8,当cos θ=-1时,|PA |最大.此时,sin θ=0,点P 的坐标为(-5,0).2.椭圆x 29+y 24=1上一动点P (x ,y )与定点A (a,0)(0<a <3)之间的距离的最小值为1,求a 的值.解:椭圆的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ(θ为参数).设动点P (3cos θ,2sin θ),则 |PA |2=(3cos θ-a )2+4sin 2θ =5⎝ ⎛⎭⎪⎫cos θ-35a 2-45a 2+4. ∵0<a <3,∴0<35a <95.于是若0<35a ≤1,则当cos θ=35a 时,|PA |min =-45a 2+4=1,得a =152(舍去); 若1<35a <95,则当cos θ=1时,由|PA |min =a 2-6a +9=1,得|a -3|=1,∴a =2,故满足要求的a 值为2.已知A ,B 分别是椭圆36+9=1的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC的重心G 的轨迹方程.由条件可知,A ,B 两点坐标已知,点C 在椭圆上,故可设出点C 坐标的椭圆参数方程形式,由三角形重心坐标公式求解.由题意知A (6,0),B (0,3).由于动点C 在椭圆上运动,故可设动点C 的坐标为(6cos θ,3sin θ),点G 的坐标设为(x ,y ),由三角形重心的坐标公式可得⎩⎪⎨⎪⎧x =6+0+6cos θ3,y =0+3+3sin θ3,即⎩⎪⎨⎪⎧x =2+2cos θ,y =1+sin θ.消去参数θ得到x -24+(y -1)2=1.本题的解法体现了椭圆的参数方程对于解决相关问题的优越性,运用参数方程显得很简单,运算更简便.3.已知椭圆方程是x 216+y 29=1,点A (6,6),P 是椭圆上一动点,求线段PA 中点Q 的轨迹方程.解:椭圆的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).设P (4cos θ,3sin θ),Q (x ,y ),则有 ⎩⎪⎨⎪⎧x =4cos θ+62,y =3sin θ+62,即⎩⎪⎨⎪⎧x =2cos θ+3,y =32sin θ+3(θ为参数).∴9(x -3)2+16(y -3)2=36, 即为所求轨迹方程.4.设F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右两个焦点.(1)若椭圆C 上的点A ⎝ ⎛⎭⎪⎫1,32到F 1,F 2的距离之和等于4,写出椭圆C 的方程和焦点坐标; (2)设点P 是(1)中所得椭圆上的动点,求线段F 1P 的中点的轨迹方程. 解:(1)由椭圆上点A 到F 1,F 2的距离之和是4, 得2a =4,即a =2.又点A ⎝ ⎛⎭⎪⎫1,32在椭圆上, 因此14+⎝ ⎛⎭⎪⎫322b 2=1,得b 2=3,于是c 2=a 2-b 2=1,所以椭圆C 的方程为x 24+y 23=1,焦点坐标为F 1(-1,0),F 2(1,0).(2)设椭圆C 上的动点P 的坐标为(2cos θ,3sin θ),线段F 1P 的中点坐标为(x ,y ),则x =2cos θ-12,y =3sin θ+02, 所以x +12=cos θ,2y3=sin θ.消去θ,得⎝ ⎛⎭⎪⎫x +122+4y23=1.即为线段F 1P 中点的轨迹方程.已知椭圆4+y 2=1上任一点M (除短轴端点外)与短轴两端点B 1,B 2的连线分别交x轴于P ,Q 两点,求证:|OP |·|OQ |为定值.利用参数方程,设出点M 的坐标,并由此得到直线MB 1,MB 2的方程,从而得到P ,Q 两点坐标,求出|OP |,|OQ |,再求|OP |·|OQ |的值.设M (2cos φ,sin φ),φ为参数,B 1(0,-1),B 2(0,1).则MB 1的方程:y +1=sin φ+12cos φx ,令y =0,则x =2cos φsin φ+1,即|OP |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ.MB 2的方程:y -1=sin φ-12cos φx ,令y =0,则x =2cos φ1-sin φ.∴|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1-sin φ.∴|OP |·|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ×⎪⎪⎪⎪⎪⎪2cos φ1-sin φ=4.即|OP |·|OQ |=4为定值.利用参数方程证明定值(或恒成立)问题,首先是用参数把要证明的定值(或恒成立的式子)表示出来,然后利用条件消去参数,得到一个与参数无关的定值即可.5.对任意实数,直线y =x +b 与椭圆⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(0≤θ≤2π)恒有公共点,则b 的取值范围是________.解析:将(2cos θ,4sin θ)代入y =x +b ,得4sin θ=2cos θ+b . ∵恒有公共点,∴以上方程有解. 令f (θ)=4sin θ-2cos θ =25sin(θ-φ). ∴-25≤f (θ)≤2 5. ∴-25≤b ≤2 5. 答案:6.曲线⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(a >b >0)上一点M 与两焦点F 1,F 2所成角为∠F 1MF 2=α.求证:△F 1MF 2的面积为b 2tan α2.证明:∵M 在椭圆上,∴由椭圆的定义,得|MF 1|+|MF 2|=2a , 两边平方,得|MF 1|2+|MF 2|2+2|MF 1||MF 2|=4a 2. 在△F 1MF 2中,由余弦定理,得|MF 1|2+|MF 2|2-2|MF 1|·|MF 2|cos α=|F 1F 2|2=4c 2. 由两式,得|MF 1|·|MF 2|=b 2cos2α2.故S △F 1MF 2=12|MF 1|·|MF 2|sin α=b 2tan α2.课时跟踪检测(十) 一、选择题1.椭圆⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数),若θ∈,则椭圆上的点(-a,0)对应的θ等于( )A .π B.π2 C .2π D.3π2解析:选A ∵点(-a,0)中x =-a , ∴-a =a cos θ, ∴cos θ=-1,∴θ=π. 2.已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为( )A. 3 B .-33C .2 3D .-2 3 解析:选C 点M 的坐标为(1,23), ∴k OM =2 3.3.直线x 4+y 3=1与椭圆x 216+y 29=1相交于A ,B 两点,该椭圆上点P 使得△PAB 的面积等于4,这样的点P 共有( )A .1个B .2个C .3个D .4个 解析:选B 设椭圆上一点P 1的坐标为(4cos θ,3sin θ),θ∈⎝⎛⎭⎪⎫0,π2,如图所示,则S四边形P 1AOB =S △OAP 1+S △OBP 1=12×4×3sin θ+12×3×4cos θ =6(sin θ+cos θ)=62sin ⎝ ⎛⎭⎪⎫θ+π4.当θ=π4时,S 四边形P 1AOB 有最大值为6 2.所以S △ABP 1≤62-S △AOB =62-6<4.故在直线AB 的右上方不存在点P 使得△PAB 的面积等于4,又S △AOB =6>4,所以在直线AB 的左下方,存在两个点满足到直线AB 的距离为85,使得S △PAB =4.故椭圆上有两个点使得△PAB 的面积等于4.4.两条曲线的参数方程分别是⎩⎪⎨⎪⎧x =cos 2θ-1,y =1+sin 2θ(θ为参数)和⎩⎪⎨⎪⎧x =3cos t ,y =2sin t (t为参数),则其交点个数为( )A .0B .1C .0或1D .2 解析:选B由⎩⎪⎨⎪⎧x =cos 2θ-1,y =1+sin 2θ,得x +y -1=0(-1≤x ≤0,1≤y ≤2),由⎩⎪⎨⎪⎧x =3cos t ,y =2sin t 得x 29+y 24=1.如图所示,可知两曲线交点有1个. 二、填空题5.椭圆⎩⎪⎨⎪⎧x =-4+2cos θ,y =1+5sin θ(θ为参数)的焦距为________.解析:椭圆的普通方程为x +24+y -225=1.∴c 2=21,∴2c =221. 答案:2216.实数x ,y 满足3x 2+4y 2=12,则2x +3y 的最大值是________. 解析:因为实数x ,y 满足3x 2+4y 2=12, 所以设x =2cos α,y =3sin α,则 2x +3y =4cos α+3sin α=5sin(α+φ), 其中sin φ=45,cos φ=35.当sin(α+φ)=1时,2x +3y 有最大值为5. 答案:57.在直角坐标系xOy 中,椭圆C的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数,a >b >0),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆 O 的极坐标方程分别为ρsin ⎝ ⎛⎭⎪⎫θ+π4=22m (m 为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆 O 相切,则椭圆C 的离心率为____________.解析:l 的直角坐标方程为x +y =m ,圆O 的直角坐标方程为x 2+y 2=b 2,由直线l 与圆O 相切,得m =±2b .从而椭圆的一个焦点为(2b,0),即c =2b , 所以a =3b ,则离心率e =c a =63. 答案:63三、解答题8.已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R),求它们的交点坐标.解:将⎩⎨⎧x =5cos θy =sin θ(0≤θ<π)化为普通方程,得x 25+y 2=1(0≤y ≤1,x ≠-5),将x =54t 2,y =t 代入,得516t 4+t 2-1=0, 解得t 2=45,∴t =255(∵y =t ≥0),x =54t 2=54·45=1,∴交点坐标为⎝⎛⎭⎪⎫1,255.9.对于椭圆⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数),如果把横坐标缩短为原来的1a,再把纵坐标缩短为原来的1b 即得到圆心在原点,半径为1的圆的参数方程⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).那么,若把圆看成椭圆的特殊情况,试讨论圆的离心率,并进一步探讨椭圆的离心率与椭圆形状的关系.解:设圆的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数),如果将该圆看成椭圆,那么在椭圆中对应的数值分别为a =b =r , 所以c =a 2-b 2=0, 则离心率e =ca=0.即把圆看成椭圆,其离心率为0,而椭圆的离心率的范围是(0,1),可见椭圆的离心率越小即越接近于0,形状就越接近于圆,离心率越大,椭圆越扁.10.在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.解:(1)把极坐标系下的点P ⎝⎛⎭⎪⎫4,π2化为直角坐标, 得P (0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上.(2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α),从而点Q 到直线l 的距离为d =|3cos α-sin α+4|2=2cos ⎝ ⎛⎭⎪⎫α+π6+42=2cos ⎝ ⎛⎭⎪⎫α+π6+2 2.由此得,当cos ⎝⎛⎭⎪⎫α+π6=-1时,d 取得最小值,且最小值为 2.。

2017-2018学年高二年级数学期末试卷(理数)含答案

2017-2018学年高二年级数学期末试卷(理数)含答案

2.若 x 2m2 3 是 1 x 4 的必要不充分条件,则实数 m 的取值范围是( )
10.已知函数 f x 1 x3 1 mx2 4x 3 在区间 1,2上是增函数,则实数 m 的取值范围是(
32
A . 3,3
B . ,3 3, C . ,1 1,
,则满足
11.已知函数
f
x
3|x1| , x2 2x
x 1,
0, x
0
若关于
x
的方程 f
x2

a
1f
x
a

0有
7
个不
等实根,则实数 a 的取值范围是(
)
A . 2,1
B .2,4
C . 2,1
D . ,4
12.
已知函数
A . loga c logb c B . logc a logc b C . a c bc
D . ca cb
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是 9.已知函数 f x 2 xm 1 为偶函数,记 a f log0.5 3 , b f log2 5 , c f 2m,则
由题设知


解得 的横坐标分别是 则 有 又
,又 于是
, ,

,即 l 与直线 平行, 一定相交,分别联立方

是平面
的法向量,则
,即

对任意
,要使

的面积之比是常数,只需 t 满足
可取
,故,所以 与平面
20. (1)依题意可得
所成角的正弦值为 ---------12 分 ,

2017年高中数学第2讲参数方程第2节直线和圆锥曲线的参数方程第3课时椭圆的参数方程课件北师大版选修4-4

2017年高中数学第2讲参数方程第2节直线和圆锥曲线的参数方程第3课时椭圆的参数方程课件北师大版选修4-4

1.椭圆的参数方程
普通方程 ax22+by22=1 (a>b>0) ay22+bx22=1 (a>b>0)
参数方程
x= acos φ y= bsin φ
(φ为参数)
x=bcos φ y=asin φ
(φ为参数)
2.椭圆中参数φ的意义与圆中参数θ的意义的区别是点M所 对应的圆的半径OA(或OB)的____旋__转__角_,称为____离__心__角_,不 是OM的_____旋__转__角_.
(2)利用asin θ+bcos θ= a2+b2sin(θ+φ)化简,运用三角 函数的有界性求最值.
[变式训练]
1.求椭圆
x2 9

y2 4
=1的内接矩形中,面积最大
的矩形的长和宽及其最大面积.(如图)
解析:
已知椭圆
x2 9
+y42
=1的参数方程为
x=3cosφ, y=2sinφ

消去参数θ得到x-422+(y-1)2=1.
[规律方法] 本题的解法体现了椭圆的参数方程对于解决 相关问题的优越性,运用参数方程显得很简单,运算更简便.
[变式训练] 2.已知线段AB=4,直线l垂直平分AB,垂足 为点O,在属于l并且以O为起点的同一射线上取两点P,Q,使 OP·OQ=9,求直线AP与直线BQ的交点M的轨迹方程.
第三课时 椭圆的参数方程
[学习目标]
1.掌握椭圆的参数方程,并解决一些长度、面积问题. 2.掌握利用椭圆的性质来解决实际问题. 3.通过对具体问题的解决,体会运用数形结合的思想方 法去分析问题和解决问题.
[学法指要]
1.理解椭圆参数方程的意义.(重点) 2.常与方程、三角函数和圆锥曲线结合命题.(难点)

第十二章 第1节 第2课时 参数方程

第十二章 第1节 第2课时 参数方程
y=1t t2-1②, ①式代入②式得普通方程为x2+y2=1. 其中00<≤xy≤<11,或- -11≤ <yx≤<00, .
17
知识衍化体验
考点聚集突破
(2)由x=2+sin2 θ,0≤sin2 θ≤1⇒2≤2+sin2 θ≤3⇒2≤x≤3,
xy= =2-+1s+inc2oθs,2θ⇒xy- =2-=1s+in12-θ,2sin2 θ
14
知识衍化体验
考点聚集突破
(2)直线l的普通方程是x+4y-4-a=0.
设曲线C上点P(3cos θ,sin θ).

P

l
距离
d=|3cos
θ+4sin 17
θ-4-a|=|5sin(θ+φ)-4-a|,其中 17
tan
φ=34.
又点 C 到直线 l 距离的最大值为 17,
所以|5sin(θ+φ)-4-a|的最大值为17. 若a≥0,则-5-4-a=-17,∴a=8. 若a<0,则5-4-a=17,∴a=-16. 综上,实数a的值为a=-16或a=8.
(1)参数方程xy= =fg((tt)),中的 x,y 都是参数 t 的函数.(
)
(2)过
M0(x0,y0),倾斜角为
α
的直线
l
的参数方程为xy= =xy00+ +ttcsions
α, α (t
为参数).参数
t 的几何意义表示:直线 l 上以定点 M0 为起点,任一点 M(x,y)为终点的有向线段M→0M 的数量.( )
知识衍化体验
考点聚集突破
考点二 参数方程的应用
【例 2-1】
已知椭圆
C:x42+y32=1,直线

2017_2018学年高中数学第二讲参数方程一曲线的参数方程2圆的参数方程学案含解析新人教A版选修

2017_2018学年高中数学第二讲参数方程一曲线的参数方程2圆的参数方程学案含解析新人教A版选修

2.圆的参数方程圆的参数方程(1)在t 时刻,圆周上某点M 转过的角度是θ,点M 的坐标是(x ,y ),那么θ=ωt (ω为角速度).设|OM |=r ,那么由三角函数定义,有cos ωt =xr ,sin ωt =y r,即圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =r cos ωt ,y =r sin ωt(t 为参数).其中参数t 的物理意义是:质点做匀速圆周运动的时刻.(2)若取θ为参数,因为θ=ωt ,于是圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数).其中参数θ的几何意义是:OM 0(M 0为t =0时的位置)绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.(3)若圆心在点M 0(x 0,y 0),半径为R ,则圆的参数方程为⎩⎪⎨⎪⎧x =x 0+R cos θ,y =y 0+R sin θ(0≤θ<2π).圆(数方程.根据圆的特点,结合参数方程概念求解. 如图所示,设圆心为O ′,连接O ′M , ∵O ′为圆心, ∴∠MO ′x =2φ.∴⎩⎪⎨⎪⎧x =r +r cos 2φ,y =r sin 2φ.(φ为参数)(1)确定圆的参数方程,必须根据题目所给条件,否则,就会出现错误,如本题容易把参数方程写成⎩⎪⎨⎪⎧x =r +r cos φ,y =r sin φ.(φ为参数)(2)由于选取的参数不同,圆有不同的参数方程.1.已知圆的方程为x 2+y 2=2x ,写出它的参数方程. 解:x 2+y 2=2x 的标准方程为(x -1)2+y 2=1, 设x -1=cos θ,y =sin θ,则参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数,0≤θ<2π).2.已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θ,y =sin θ上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线.解:设中点M (x ,y ).则 ⎩⎪⎨⎪⎧x =2+cos θ2,y =0+sin θ2,即⎩⎪⎨⎪⎧x =1+12cos θ,y =12sin θ(θ为参数).这就是所求的轨迹方程.它是以(1,0)为圆心,以12为半径的圆.若 (x -1)2+(y +2)2=4表示圆,可考虑利用圆的参数方程将求2x +y 的最值转化为求三角函数最值问题.令x -1=2cos θ,y +2=2sin θ,则有x =2cos θ+1,y =2sin θ-2,故2x +y =4cos θ+2+2sin θ-2. =4cos θ+2sin θ=25sin(θ+φ). ∴-25≤2x +y ≤2 5.即2x +y 的最大值为25,最小值为-2 5.圆的参数方程突出了工具性作用,应用时,把圆上的点的坐标设为参数方程形式,将问题转化为三角函数问题,利用三角函数知识解决问题.3.求原点到曲线C :⎩⎪⎨⎪⎧x =3+2sin θ,y =-2+2cos θ(θ为参数)的最短距离.解:原点到曲线C 的距离为:x -0 2+ y -0 2= 3+2sin θ 2+ -2+2cos θ 2=17+4 3s in θ-2cos θ =17+413⎝⎛⎭⎪⎫313sin θ-213cos θ= 17+413sin θ+φ≥17-413= 13-2 2=13-2. ∴原点到曲线C 的最短距离为13-2.4.已知圆C :⎩⎪⎨⎪⎧ x =cos θ,y =-1+sin θ(θ为参数)与直线x +y +a =0有公共点,求实数a的取值范围.解:法一:∵⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ消去θ,得x 2+(y +1)2=1,∴圆C 的圆心为(0,-1),半径为1. ∴圆心到直线的距离d =|0-1+a |2≤1.解得1-2≤a ≤1+2,即a 的取值范围是. 法二:将圆C 的方程代入直线方程,得 cos θ-1+sin θ+a =0,即a =1-(sin θ+cos θ)=1-2sin ⎝ ⎛⎭⎪⎫θ+π4. ∵-1≤sin ⎝⎛⎭⎪⎫θ+π4≤1,∴1-2≤a ≤1+2,即a 的取值范围是.课时跟踪检测(八)一、选择题1.圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数).则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0) 解析:选D 将⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ化为(x -2)2+y 2=4,其圆心坐标为(2,0).2.直线:x +y =1与曲线⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的公共点有( )A .0个B .1个C .2个D .3个解析:选C 将⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ化为x 2+y 2=4,它表示以(0,0)为圆心,2为半径的圆,由于12=22<2=r , 故直线与圆相交,有两个公共点.3.直线:3x -4y -9=0与圆:⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的位置关系是( )A .相切B .相离C .直线过圆心D .相交但直线不过圆心 解析:选D 圆心坐标为(0,0),半径为2,显然直线不过圆心, 又圆心到直线距离d =95<2,故选D.4.P (x ,y )是曲线⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:选A 设P (2+cos α,sin α),代入,得 (2+cos α-5)2+(sin α+4)2=25+sin 2α+cos 2α-6cos α+8sin α =26+10sin(α-φ). ∴最大值为36. 二、填空题5.参数方程⎩⎪⎨⎪⎧x =3cos φ+4sin φ,y =4cos φ-3sin φ(φ为参数)表示的图形是________.解析:x 2+y 2=(3cos φ+4sin φ)2+(4cos φ-3sin φ)2=25.∴表示圆. 答案:圆6.已知圆C的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ=1,则直线l 与圆C 的交点的直角坐标为________.解析:由极坐标系与直角坐标系互化关系可知,直线l 的直角坐标方程为x =1. 由圆C 的参数方程可得x 2+(y -1)2=1, 由⎩⎪⎨⎪⎧x =1,x 2+ y -1 2=1得直线l 与圆C 的交点坐标为(1,1). 答案:(1,1)7.(广东高考)已知曲线C 的极坐标方程为 ρ=2cos θ.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________.解析:由极坐标方程与直角坐标方程互化公式可得,曲线C 的直角坐标方程为(x -1)2+y 2=1,故曲线C 对应的参数方程可写为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数).答案:⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数)三、解答题8.P 是以原点为圆心,半径r =2的圆上的任意一点,Q (6,0),M 是PQ 中点. (1)画图并写出⊙O 的参数方程;(2)当点P 在圆上运动时,求点M 的轨迹的参数方程.解:(1)如图所示,⊙O 的参数方程⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数).(2)设M (x ,y ),P (2cos θ,2sin θ), ∵Q (6,0),∴M 的参数方程为⎩⎪⎨⎪⎧x =6+2cos θ2,y =2sin θ2,即⎩⎪⎨⎪⎧x =3+cos θ,y =sin θ(θ为参数).9.设点M (x ,y )在圆x 2+y 2=1上移动,求点Q (x (x +y ),y (x +y ))的轨迹. 解:设M (cos θ,sin θ)(0≤θ<2π),点Q (x 1,y 1),则⎩⎪⎨⎪⎧x 1=cos θ cos θ+sin θ =cos 2θ+cos θsin θ,y 1=sin θ cos θ+sin θ =sin θcos θ+sin 2θ,∴⎩⎪⎨⎪⎧x 1+y 1=1+sin 2θ,x 1y 1=12sin 2θ+12sin 22θ.将sin 2θ=x 1+y 1-1代入另一个方程, 整理,得⎝⎛⎭⎪⎫x 1-122+⎝ ⎛⎭⎪⎫y 1-122=12.∴所求轨迹是以⎝ ⎛⎭⎪⎫12,12为圆心,以22为半径的圆.10.已知直线C 1:⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.解:(1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1.联立方程组⎩⎨⎧y =3 x -1 ,x 2+y 2=1,解得C 1与C 2的交点坐标为(1,0),⎝ ⎛⎭⎪⎫12,-32.(2)C 1的普通方程为x sin α-y cos α-sin α=0.A 点坐标为(sin 2α,-cos αsin α),故当α变化时,P 点轨迹的参数方程为⎩⎪⎨⎪⎧x =12sin 2α,y =-12sin αcos α(α为参数).P 点轨迹的普通方程为⎝⎛⎭⎪⎫x -142+y 2=116.故P 点轨迹是圆心为⎝⎛⎭⎪⎫14,0,半径为14的圆.。

高中数学第二讲参数方程一参数的曲线方程第1课时参数方程的概念、参数方程与普通方程的互化

高中数学第二讲参数方程一参数的曲线方程第1课时参数方程的概念、参数方程与普通方程的互化

所以 y=1±sin θ.
不 妨 取 y = 1 + sin θ , 则 所 求 的 参 数 方 程 为
x=cos θ, y=1+sin θ(θ
为参数).
归纳升华
1.消去参数的方法主要有三种. ①利用解方程的技巧求出参数的表示式,然后运用代
入消元法或加减消元法消去参数.
②利用三角恒等式借助 sin2θ+cos2θ=1 等消去参数.
③根据参数方程本身的结构特征,选用一些灵活的方

)例如借助1+2tt22+11- +tt222=1,t+1t 2-t-1t 2=4
等 )从整体上消去参数.
2.将参数方程化为普通方程时,要注意防止变量 x 和 y 的取值范围扩大或缩小,必须根据参数的取值范围, 确定函数 f(t)和 g(t)的值域,即 x 和 y 的取值范围.
消去参数 t,得 a=1. (2)由上述可得,曲线 C 的参数方程是xy==t12+. 2t, 把点 P 的坐标(1,0)代入方程组,解得 t=0, 因此 P 在曲线 C 上. 把点 Q 的坐标(3,-1)代入方程组,得到3-=11=+t22,t, 这个方程组无解,因此点 Q 不在曲线 C 上.
归纳升华 1.满足某种约束条件的动点的轨迹形成曲线,点与 曲线的位置关系有两种:点在曲线上和点不在曲线上.
一是曲线上有一点的坐标(x,y)与参数的关系比较明显, 容易列出方程;二是 x,y 的值可以由参数唯一确定;第 三步,根据已知条件、图形的几何性质、问题的物理意义 等,建立点的坐标与参数的函数关系式,并化成最简形式; 第四步,证明以化简后的参数方程的解为坐标的点都是曲 线上的点.(求解过程中第四步通常省略,但要通过检验, 并准确标注参数及其取值范围.)
所确定的点 M(x,y)都在这条曲线上,那么方程 xy==gf((tt)),就叫作这条曲线的参数方程,联系变数 x,y 的变数 t 叫作参变数,简称参数.相对于参数方程而言, 直接给出点的坐标间关系的方程叫作普通方程.

高中数学第二节 参数方程ppt课件

高中数学第二节 参数方程ppt课件

2.参数方程与普通方程的互化 通过消去_参__数__从参数方程得到普通方程,如果知道 变数 x,y 中的一个与参数 t 的关系,例如 x=f(t),把它 代入普通方程,求出另一个变数与参数的关系 y=g(t), 那么xy==gf((tt)),就是曲线的参数方程.
3.常见曲线的参数方程和普通方程
解:(1)由xy==s3icnoαs α,消去参数 α,得x92+y2=1, 即 C 的普通方程为x92+y2=1, 由 ρsinθ-π4= 2,得 ρsin θ-ρcos θ=2,① 将xy==ρρscionsθθ,,代入①得 y=x+2, 所以直线 l 的倾斜角为π4.
选修4-4 坐标系与参数方程
第二节 参数方程
最新考纲
考情索引
2018·全国卷Ⅱ,
1.了解参数方程及 其参数的意义. 2.能选择适当的参 数写出直线、圆和 椭圆的参数方程.
T22 2018·全国
卷Ⅲ,T22 2017·全国卷Ⅰ, T22 2017·全国卷
Ⅲ,T22 2016·全国卷Ⅱ,
T23
核心素养
[变式训练]
(2019·郑州质检)在平面直角坐标系 xOy 中,曲线 C
的参数方程为xy==s3icnoαs
α, (α
为参数),在以原点为极点,
x 轴正半轴为极轴的极坐标系中,直线 l 的极坐标方程为
ρsinθ-π4= 2. (1)求 C 的普通方程和 l 的倾斜角;
(2)设点 P(0,2),l 和 C 交于 A,B 两点,求|PA|+|PB|.
(2)(人A选修4-4·P37例2改编)在平面直角坐标系
xOy中,若直线l:
x=t, y=t-a
(t为参数)过椭圆C:
x=3cos y=2sin

高中数学 第二讲 参数方程测评习题(含解析)新人教A版选修4-4-新人教A版高二选修4-4数学试题

高中数学 第二讲 参数方程测评习题(含解析)新人教A版选修4-4-新人教A版高二选修4-4数学试题

第二讲测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.若直线l 的参数方程为{x =2017+3t ,y =2016-t (t 为参数),则直线l 的斜率等于()A.3B.-3C.1D.-13l 的斜率k=-13=-13.2.直线3x-4y-9=0与圆:{x =2cosθ,y =2sinθ(θ为参数)的位置关系是()A.相切B.相离C.直线过圆心D.相交但直线不过圆心(0,0),半径为2,圆心到直线3x-4y-9=0的距离d=95<2,故直线与圆相交但直线不过圆心.3.参数方程为{x =t +1t ,y =2(t 为参数)表示的曲线是()A.一条直线B.两条直线C.一条射线D.两条射线2表示一条平行于x 轴的直线,而由x=t+1t知x ≥2或x ≤-2,所以参数方程表示的曲线是两条射线.4.已知椭圆的参数方程为{x =2cost ,y =4sint(t 为参数),点M 在椭圆上,对应参数t=π3,点O 为原点,则直线OM的斜率为() A.√3 B.-√33C.2√3D.-2√3t=π3时,x=1,y=2√3,则M (1,2√3),所以直线OM 的斜率k=2√3. 5.已知圆的渐开线{x =r (cosφ+φsinφ),y =r (sinφ-φcosφ)(φ为参数)上一点的坐标为(3,0),则渐开线对应的基圆的面积为()A.πB.3πC.4πD.9π(3,0)代入参数方程得{3=r (cosφ+φsinφ), ①0=r (sinφ-φcosφ),②由②得φ=tan φ,即φ=0.再代入①得r=3,即基圆的半径为3,故其面积为9π.6.已知直线l 的参数方程为{x =a +t ,y =b +t (t 为参数),l 上的点P 1对应的参数是t 1,则点P 1与点P (a ,b )之间的距离是() A.|t 1| B.2|t 1| C.√2|t 1|D.√22|t 1|P 1的坐标为(a+t 1,b+t 1),则点P 1与点P 之间的距离为√t 12+t 12=√2|t 1|.7.直线{x =1+12t ,y =-3√3+√32t(t 为参数)和圆x 2+y 2=16相交于A ,B 两点,则线段AB 中点的坐标为() A.(3,-3) B.(3,-√3) C.(√3,-3)D.(-√3,3)(1+12t)2+(-3√3+√32t)2=16,得t 2-8t+12=0.设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=8,t 1+t 22=4.所以线段AB 的中点的坐标满足{x =1+12×4,y =-3√3+√32×4, 即{x =3,y =-√3.故所求的中点坐标为(3,-√3).8.已知经过曲线{x =3cosθ,y =4sinθ(θ为参数,0≤θ≤π)上的一点P 与原点O 的直线PO ,若它的倾斜角为π4,则点P 的极坐标为() A.(3,π4) B.(3√22,π4) C.(-125,π4)D.(12√25,π4)将曲线化成普通方程为x 29+y 216=1(y ≥0),将其与直线PO :y=x 联立可得点P 的坐标为(125,125).利用直角坐标与极坐标的互化公式可得点P 的极坐标为(12√25,π4).9.与普通方程x 2+y-1=0等价的参数方程是() A.{x =sint ,y =cos 2t (t 为参数) B.{x =tanφ,y =1-tan 2φ(φ为参数) C.{x =√1-t ,y =t (t 为参数) D.{x =cosθ,y =sin 2θ(θ为参数)A 中,由于普通方程x 2+y-1=0中x 可以取得一切实数,但A 中x 大于等于-1,小于等于1,故错误;选项B 中,结合正切函数的图象可知,满足题意;选项C 中,由偶次根式的定义可知,x 不可能取得一切实数,故错误;选项D 中,结合余弦函数的有界性可知x 不能取得一切实数,错误.故选B .10.已知直线l :{x =√3t ,y =2-t (t 为参数)和抛物线C :y 2=2x ,l 与C 分别交于点P 1,P 2,则点A (0,2)到P 1,P 2两点的距离之和是() A.4+√3 B.2(2+√3) C.4(2+√3)D.8+√3{x =-√32t ',y =2+12t '(t'为参数,t'=-2t ),将其代入y 2=2x ,得t'2+4(2+√3)t'+16=0. 设t'1,t'2分别为方程的根,则t'1+t'2=-4(2+√3),t'1t'2=16>0,由此可知t'1,t'2均小于零,则|AP 1|+|AP 2|=|t'1|+|t'2|=|t'1+t'2|=4(2+√3).11.若曲线C 的参数方程为{x =2+3cosθ,y =-1+3sinθ(θ为参数),直线l 的方程为x-3y+2=0,则曲线C 上到直线l的距离为7√1010的点的个数为() A.1B.2C.3D.4C 的普通方程为(x-2)2+(y+1)2=9,它表示以(2,-1)为圆心,半径为3的圆,其中圆心(2,-1)到直线x-3y+2=0的距离d=√10=7√1010,且3-7√1010<7√1010, 故过圆心且与l 平行的直线与圆交于两点,满足题意的点即为该两点.12.导学号73574066过抛物线{x =2t 2,y =√3t (t 为参数)的焦点的弦长为2,则弦长所在直线的倾斜角为() A.π3 B.π3或2π3 C.π6D.π6或5π6y 2=32x ,它的焦点坐标为(38,0).设弦所在直线的方程为y=k (x -38),由{y 2=32x ,y =k (x -38)消去y ,得64k 2x 2-48(k 2+2)x+9k 2=0.设弦的两个端点的坐标为(x 1,y 1),(x 2,y 2),则|x 1-x 2|=√(x 1+x 2)2-4x 1x 2=√(34·k 2+2k 2)2-916=√1+k2,解得k=±√3.故倾斜角为π3或2π3.二、填空题(本大题共4小题,每小题5分,共20分)13.在平面直角坐标系xOy 中,若直线l 1:{x =2s +1,y =s (s 为参数)和直线l 2:{x =at ,y =2t -1(t 为参数)平行,则常数a 的值为.1的普通方程为x=2y+1,l 2的普通方程为x=a ·y+12,即x=a2y+a2,因为l 1∥l 2,所以2=a2,故a=4.14.设P (x ,y )是圆C :(x-2)2+y 2=4上的动点,记以射线Ox 为始边、以射线OP 为终边的最小正角为θ,则以θ为参数的圆C 的参数方程为.C 的圆心坐标为(2,0),半径为2,如图,由圆的性质知以射线Cx 为始边、以射线CP 为终边的最小正角为2θ,所以圆C 的参数方程为{x =2+2cos2θ,y =2sin2θ(θ为参数).x =2+2cos2θ,y =2sin2θ(θ为参数)15.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线{x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB|=.ρcos θ=4化为直角坐标方程是x=4,而由曲线的参数方程消参得x 3=y 2,所以y 2=43=64, 即y=±8.所以|AB|=|8-(-8)|=16.16.若直线{x =tcosα,y =tsinα(t 为参数)与圆{x =4+2cosα,y =2sinα(α为参数)相切,则此直线的倾斜角α=.y=x ·tan α,圆(x-4)2+y 2=4,如图所示,sin α=24=12,则α=π6或α=5π6.5π6三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)把下列参数方程化为普通方程,并说明它们各表示什么曲线: (1){x =7cosφ,y =4sinφ(φ为参数);(2){x =1-5t ,y =7t (t 为参数).因为{x =7cosφ,y =4sinφ,所以{x7=cosφ,y4=sinφ.两边平方相加,得x 249+y 216=cos 2φ+sin 2φ=1,故所求的普通方程为x 249+y 216=1,它表示焦点在x 轴上,且长轴长为14,短轴长为8,中心在原点的椭圆. (2)因为{x =1-5t ,y =7t ,所以将t=y 7代入x=1-5t ,得x=1-5·y7,即7x+5y-7=0.故所求的普通方程为7x+5y-7=0, 它表示过(0,75)和(1,0)的一条直线.18.(本小题满分12分)已知直线l 1的方程为{x =1+t ,y =-5+√3t (t 为参数),直线l 2的方程为x-y-2√3=0.求直线l 1和直线l 2的交点P 的坐标及点P 与点Q (2√3,-5)间的距离.{x =1+t ,y =-5+√3t代入x-y-2√3=0,得t=2√3,∴点P 的坐标为(1+2√3,1).又点Q 为(2√3,-5),∴|PQ|=√12+62=√37.19.(本小题满分12分)在平面直角坐标系xOy 中,圆C 的参数方程为{x =1+3cost ,y =-2+3sint (t 为参数).在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l 的方程为√2ρsin (θ-π4)=m (m ∈R ).(1)求圆C 的普通方程及直线l 的直角坐标方程; (2)设圆心C 到直线l 的距离等于2,求m 的值.消去参数t ,得圆C 的普通方程为(x-1)2+(y+2)2=9.由√2ρsin (θ-π4)=m , 得ρsin θ-ρcos θ-m=0.所以直线l 的直角坐标方程为x-y+m=0. (2)依题意,圆心C 到直线l 的距离等于2, 即2=2,解得m=-3±2√2.20.(本小题满分12分)已知在平面直角坐标系xOy 中,圆C 的参数方程为{x =3+2cosθ,y =-4+2sinθ(θ为参数).(1)以原点为极点,x 轴的正半轴为极轴建立极坐标系,求圆C 的极坐标方程; (2)若A (-2,0),B (0,2),圆C 上任意一点M (x ,y ),求△ABM 面积的最大值.因为圆C 的参数方程为{x =3+2cosθ,y =-4+2sinθ(θ为参数),所以其普通方程为(x-3)2+(y+4)2=4.将x=ρcos θ,y=ρsin θ代入,得(ρcos θ-3)2+(ρsin θ+4)2=4,化简得ρ2-6ρcos θ+8ρsin θ+21=0.故圆C 的极坐标方程为ρ2-6ρcos θ+8ρsin θ+21=0.(2)由题意知直线AB 的方程为x-y+2=0,点M (x ,y )到直线AB :x-y+2=0的距离d=√2,△ABM 的面积S=12×|AB|×d=|2cos θ-2sin θ+9|=|2√2sin (π4-θ)+9|.所以△ABM 面积的最大值为9+2√2. 21.导学号73574067(本小题满分12分)在平面直角坐标系xOy 中,曲线C 1:{x =tcosα,y =tsinα(t 为参数,t ≠0),其中 0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=2√3cos θ. (1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB|的最大值.曲线C 2的直角坐标方程为x 2+y 2-2y=0,曲线C 3的直角坐标方程为x 2+y 2-2√3x=0.联立{x 2+y 2-2y =0,x 2+y 2-2√3x =0,解得{x =0,y =0或{x =√32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和(√32,32).(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π.因此点A 的极坐标为(2sin α,α),点B 的极坐标为(2√3cos α,α).所以|AB|=|2sin α-2√3cos α|=4|sin (α-π3)|.当α=5π6时,|AB|取得最大值,且最大值为4. 22.导学号73574068(本小题满分12分)已知曲线C 1的参数方程是{x =2cosφ,y =3sinφ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2,π3). (1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上的任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值X 围.由已知可得A ,B ,C ,D 的直角坐标分别为A (2cos π3,2sin π3),B (2cos (π3+π2),2sin (π3+π2)), C (2cos (π3+π),2sin (π3+π)),D (2cos (π3+3π2),2sin (π3+3π2)),即A (1,√3),B (-√3,1),C (-1,-√3),D (√3,-1).(2)设P (2cos φ,3sin φ),令S=|PA|2+|PB|2+|PC|2+|PD|2, 则S=16cos 2φ+36sin 2φ+16=32+20sin 2φ. 因为0≤sin 2φ≤1,所以S 的取值X 围是[32,52].。

高中数学人教A版选修4-4课件:2.1曲线的参数方程

高中数学人教A版选修4-4课件:2.1曲线的参数方程
因为 θ∈ 0,

2
所以 sin θ +

4
,所以 θ+ ∈

4

2
,1
2
3
,
4 4

4
Hale Waihona Puke ..,即 2sin θ +
故 x+y 的最大值是 2,最小值是 1.

4
∈ 1, 2 .
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
关系比较明显,容易列出方程.
首 页
1
2
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
3
思考 2 求曲线参数方程的步骤是什么?
提示:第一步,画出轨迹草图,设 M(x,y)是轨迹上任意一点的坐标.画图
时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.
C.相切
D.相离
解析:圆的普通方程为 x2+y2=4,圆心(0,0)到直线 xcos φ+ysin φ-2=0 的距离
2
1
d= =2.因为圆的半径为 2,所以直线与圆相切.
答案:C
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
1
x = 1 + 2θ,
3.将参数方程
HONGDIAN NANDIAN
1
2
1.与普通方程 xy=1 表示相同曲线的参数方程(t 为参数)是(

参数方程

参数方程

参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.2.常见曲线的参数方程和普通方程概念方法微思考1.在直线的参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)中,(1)t 的几何意义是什么?(2)如何利用t 的几何意义求直线上任意两点P 1,P 2的距离?提示 (1)t 表示在直线上过定点P 0(x 0,y 0)与直线上的任一点P (x ,y )构成的有向线段P 0P 的数量.(2)|P 1P 2|=|t 1-t 2|=(t 1+t 2)2-4t 1t 2.2.圆的参数方程中参数θ的几何意义是什么? 提示 θ的几何意义为该圆的圆心角.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( √ )(2)方程⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( √ )(3)已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为 3.( × ) 题组二 教材改编2.曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A.在直线y =2x 上B.在直线y =-2x 上C.在直线y =x -1上D.在直线y =x +1上答案 B解析 由⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ,得⎩⎪⎨⎪⎧cos θ=x +1,sin θ=y -2. 所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上.3.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧ x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,求常数a 的值.解 直线l 的普通方程为x -y -a =0, 椭圆C 的普通方程为x 29+y 24=1,∴椭圆C 的右顶点坐标为(3,0), 若直线l 过(3,0), 则3-a =0,∴a =3. 题组三 易错自纠4.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =2-3t (t 为参数),求直线l 的斜率.解 将直线l 的参数方程化为普通方程为 y -2=-3(x -1),因此直线l 的斜率为-3.5.设P (x ,y )是曲线C :⎩⎪⎨⎪⎧x =-2+cos θ,y =sin θ(θ为参数,θ∈[0,2π))上任意一点,求yx 的取值范围.解 由曲线C :⎩⎪⎨⎪⎧x =-2+cos θ,y =sin θ(θ为参数),得(x +2)2+y 2=1,表示圆心为(-2,0),半径为1的圆. yx表示的是圆上的点和原点连线的斜率, 设yx =k ,则原问题转化为y =kx 和圆有交点的问题, 即圆心到直线的距离d ≤r , 所以|-2k |1+k 2≤1, 解得-33≤k ≤33, 所以y x 的取值范围为⎣⎡⎦⎤-33,33.6.已知曲线C 的极坐标方程是ρ=2cos θ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎨⎧x =32t +m ,y =12t(t 为参数).(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)设点P (m,0),若直线l 与曲线C 交于A ,B 两点,且|P A |·|PB |=1,求实数m 的值. 解 (1)曲线C 的极坐标方程是ρ=2cos θ,化为ρ2=2ρcos θ,可得曲线C 的直角坐标方程为x 2+y 2-2x =0.直线l 的参数方程是⎩⎨⎧x =32t +m ,y =12t(t 为参数),消去参数t 可得x =3y +m ,即直线l 的普通方程为3y -x +m =0.(2)把⎩⎨⎧x =32t +m ,y =12t(t 为参数)代入方程x 2+y 2=2x ,化为t 2+(3m -3)t +m 2-2m =0,① 由Δ>0,解得-1<m <3.设t 1,t 2为方程①的两个实数根,∴t 1t 2=m 2-2m . ∵|P A |·|PB |=1=|t 1t 2|,∴m 2-2m =±1, 解得m =1±2或m =1,满足Δ>0. ∴实数m =1±2或m =1.题型一 参数方程与普通方程的互化1.(2018·开封调研)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-5+22t ,y =5+22t (t 为参数),以O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线C 的极坐标方程为ρ=4cos θ.(1)求曲线C 的直角坐标方程及直线l 的普通方程;(2)将曲线C 上的所有点的横坐标缩短为原来的12,再将所得到的曲线向左平移1个单位长度,得到曲线C 1,求曲线C 1上的点到直线l 的距离的最小值. 解 (1)曲线C 的直角坐标方程为x 2+y 2=4x , 即(x -2)2+y 2=4.直线l 的普通方程为x -y +25=0.(2)将曲线C 上的所有点的横坐标缩短为原来的12,得(2x -2)2+y 2=4, 即(x -1)2+y 24=1,再将所得曲线向左平移1个单位长度, 得曲线C 1:x 2+y 24=1,则曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设曲线C 1上任一点P (cos θ,2sin θ), 则点P 到直线l 的距离d =|cos θ-2sin θ+25|2=|25-5sin (θ+φ)|2≥102⎝⎛⎭⎫其中tan φ=-12,所以点P 到直线l 的距离的最小值为102. 2.在《圆锥曲线论》中,阿波罗尼奥斯第一次从一个对顶圆锥(直或斜)得到所有的圆锥曲线,并命名了椭圆(ellipse)、双曲线(hyperboler)和抛物线(parabola),在这本晦涩难懂的书中有一个著名的几何问题:“在平面上给定两点A ,B ,设P 点在同一平面上且满足|P A ||PB |=λ(λ>0且λ≠1),P 点的轨迹是圆.”这个圆我们称之为“阿波罗尼奥斯圆”.已知点M 与长度为3的线段OA 两端点的距离之比为|OM ||MA |=12,建立适当坐标系,求出M 点的轨迹方程并化为参数方程.解 由题意,以OA 所在直线为x 轴,过O 点作OA 的垂线为y 轴,建立直角坐标系, 设M (x ,y ),则O (0,0),A (3,0). 因为|OM ||MA |=12,即x 2+y 2(x -3)2+y 2=12,化简得(x +1)2+y 2=4,所以点M 的轨迹是以(-1,0)为圆心,2为半径的圆.由圆的参数方程可得⎩⎪⎨⎪⎧x =2cos θ-1,y =2sin θ.思维升华 消去参数的方法一般有三种(1)利用解方程的技巧求出参数的表达式,然后代入消去参数. (2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围. 题型二 参数方程的应用例1 在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. 解 (1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为y =tan α·x +2-tan α, 当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内, 所以①有两个解, 设为t 1,t 2,则t 1+t 2=0.又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2.思维升华 (1)解决直线与椭圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与椭圆的位置关系来解决.(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt(t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.跟踪训练1 (2017·全国Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ (θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标;(2)若C 上的点到l 的距离的最大值为17,求a . 解 (1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0. 由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1, 解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎨⎧x =-2125,y =2425,从而C 与l 的交点坐标是(3,0),⎝⎛⎭⎫-2125,2425. (2)直线l 的普通方程是x +4y -4-a =0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917. 由题设得a +917=17,所以a =8;当a <-4时,d 的最大值为-a +117. 由题设得-a +117=17,所以a =-16.综上,a =8或a =-16.题型三 极坐标方程和参数方程的综合应用例2 (2017·全国Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k (m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.解 (1)消去参数t ,得l 1的普通方程l 1:y =k (x -2); 消去参数m ,得l 2的普通方程l 2:y =1k (x +2).设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k (x -2),y =1k (x +2).消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0). (2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ) =4(0<θ<2π,θ≠π).联立⎩⎨⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ+sin θ)-2=0,得cos θ-sin θ=2(cos θ+sin θ). 故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4,得ρ2=5, 所以交点M 的极径为 5.思维升华 在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以更简捷的解决问题.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.跟踪训练2 (1)已知曲线C 1的极坐标方程为ρ=2cos θsin 2θ,C 2的参数方程为⎩⎨⎧x =2+22t ,y =2-22t (t为参数).①将曲线C 1与C 2的方程化为直角坐标系下的普通方程; ②若C 1与C 2相交于A ,B 两点,求|AB |. 解 ①曲线C 1的极坐标方程ρ=2cos θsin 2θ,即ρ2sin 2θ=2ρcos θ,∴曲线C 1的普通方程为y 2=2x ,曲线C 2的参数方程为⎩⎨⎧x =2+22t ,y =2-22t (t 为参数),消去参数t ,得C 2的普通方程为x +y =4.②将C 2的参数方程代入C 1的普通方程并化简得12t 2-32t =0,解得t 1=0,t 2=62, 故|AB |=|t 1-t 2|=6 2.(2)已知直线l :⎩⎨⎧x =5+32t ,y =3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ. ①将曲线C 的极坐标方程化为直角坐标方程;②设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值. 解 ①ρ=2cos θ变形为ρ2=2ρcos θ.(ⅰ)将ρ2=x 2+y 2,ρcos θ=x 代入(ⅰ)式即得曲线C 的直角坐标方程为x 2+y 2-2x =0.(ⅱ)②将⎩⎨⎧x =5+32t ,y =3+12t 代入(ⅱ)式,得t 2+53t +18=0.设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义知,|MA |·|MB |=|t 1t 2|=18.1.已知在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数).(1)求曲线C 的普通方程;(2)经过点P ⎝⎛⎭⎫1,12(平面直角坐标系xOy 中的点)作直线l 交曲线C 于A ,B 两点,若P 恰好为线段AB 的中点,求直线l 的方程.解 (1)由曲线C 的参数方程,得⎩⎪⎨⎪⎧cos θ=x 2,sin θ=y ,所以cos 2θ+sin 2θ=⎝⎛⎭⎫x 22+y 2=1, 所以曲线C 的普通方程为x 24+y 2=1.(2)设直线l 的倾斜角为θ1,则直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos θ1,y =12+t sin θ1(t 为参数),代入曲线C 的直角坐标方程,得(cos 2θ1+4sin 2θ1)t 2+(2cos θ1+4sin θ1)t -2=0, 所以t 1+t 2=-2cos θ1+4sin θ1cos 2θ1+4sin 2θ1,由题意知t 1=-t 2,所以2cos θ1+4sin θ1=0,得k =-12,所以直线l 的方程为x +2y -2=0.2.在极坐标系中,圆C 的极坐标方程为ρ2=4ρ(cos θ+sin θ)-3,若以极点O 为原点,极轴为x 轴的正半轴建立平面直角坐标系.(1)求圆C 的一个参数方程;(2)在平面直角坐标系中,P (x ,y )是圆C 上的动点,试求x +2y 的最大值,并求出此时点P 的直角坐标.解 (1)因为ρ2=4ρ(cos θ+sin θ)-3, 所以x 2+y 2-4x -4y +3=0,即(x -2)2+(y -2)2=5为圆C 的直角坐标方程,所以圆C 的一个参数方程为⎩⎨⎧x =2+5cos φ,y =2+5sin φ(φ为参数).(2)由(1)可知点P 的坐标可设为(2+5cos φ,2+5sin φ), 则x +2y =2+5cos φ+4+25sin φ =25sin φ+5cos φ+6=5sin(φ+α)+6, 其中cos α=255,sin α=55,当x +2y 取最大值时,sin(φ+α)=1,φ+α=2k π+π2,k ∈Z ,此时cos φ=cos ⎝⎛⎭⎫π2-α=sin α=55, sin φ=sin ⎝⎛⎭⎫π2-α=cos α=255, 所以x +2y 的最大值为11,此时点P 的直角坐标为(3,4).3.在平面直角坐标系xOy 中,已知曲线C :⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),直线l 过定点(-2,2),且斜率为-12.以O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的直角坐标方程以及直线l 的参数方程;(2)点P 在曲线C 上,当θ∈⎣⎡⎦⎤π12,5π12时,求点P 到直线l 的最小距离并求点P 的坐标. 解 (1)曲线C :x 24+y 23=1;k =tan α=-12,又sin 2α+cos 2α=1,解得⎩⎨⎧sin α=55,cos α=-255,故直线l 的参数方程为⎩⎨⎧ x =-2-255t ,y =2+55t (t 为参数).(2)设点P (2cos θ,3sin θ),易知直线l :x +2y -2=0,则点P 到直线l 的距离为d =|2cos θ+23sin θ-2|5=⎪⎪⎪⎪4sin ⎝⎛⎭⎫θ+π6-25,因为θ∈⎣⎡⎦⎤π12,5π12,则θ+π6∈⎣⎡⎦⎤π4,7π12, 当且仅当θ+π6=π4时,P 到直线l 的距离最小, d min =⎪⎪⎪⎪4sin ⎝⎛⎭⎫θ+π6-25=22-25=210-255,此时θ=π12, 所以P 点坐标为⎝ ⎛⎭⎪⎫6+22,32-64. 4.(2018·河南郑州外国语学校模拟)在平面直角坐标系xOy 中,曲线C 的参数方程是⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),以射线Ox 为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ-ρsin θ-3=0.(1)将曲线C 的参数方程化为普通方程,将直线l 的极坐标方程化为直角坐标方程;(2)求直线l 与曲线C 相交所得的弦AB 的长.解 (1)将曲线C 的参数方程化为直角坐标方程为x 24+y 23=1, 因为x =ρcos θ,y =ρsin θ, 所以直线l 的直角坐标方程为x -y -3=0.(2)直线l 的倾斜角为π4,过点(3,0), 所以将直线l 化为参数方程为⎩⎨⎧ x =3+t cos π4,y =t sin π4,即⎩⎨⎧ x =3+22t ,y =22t (t 为参数),代入x 24+y 23=1,得7t 2+66t -6=0, Δ=(66)2-4×7×(-6)=384>0,设方程的两根为t 1,t 2,则t 1+t 2=-667,t 1t 2=-67, 所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=3847=867.5.在平面直角坐标系xOy 中,已知倾斜角为α的直线l 经过点A (-2,1).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为1ρ=ρ+2sin θ3. (1)写出曲线C 的普通方程;(2)若直线l 与曲线C 有两个不同的交点M ,N ,求|AM |+|AN |的取值范围. 解 (1)由1ρ=ρ+2sin θ3,得ρ2+2ρsin θ=3. 将⎩⎪⎨⎪⎧ρ2=x 2+y 2,y =ρsin θ代入上式中, 得曲线C 的普通方程为x 2+y 2+2y -3=0.(2)将l 的参数方程⎩⎪⎨⎪⎧x =-2+t cos α,y =1+t sin α(t 为参数)代入C 的方程x 2+y 2+2y -3=0, 整理得t 2-4(cos α-sin α)t +4=0.因为直线l 与曲线C 有两个不同的交点,所以Δ=42(cos α-sin α)2-42>0,化简得cos αsin α<0.又0≤α<π,所以π2<α<π,且cos α<0,sin α>0. 设方程的两根为t 1,t 2,则t 1+t 2=4(cos α-sin α)<0,t 1t 2=4>0,所以t 1<0,t 2<0,所以|AM |+|AN |=-(t 1+t 2)=4(sin α-cos α)=42sin ⎝⎛⎭⎫α-π4. 由π2<α<π,得π4<α-π4<3π4, 所以22<sin ⎝⎛⎭⎫α-π4≤1, 从而4<42sin ⎝⎛⎭⎫α-π4≤42, 即|AM |+|AN |的取值范围是(4,42].6.已知曲线C 1的参数方程为⎩⎨⎧ x =2cos α,y =3sin α(α为参数),在同一平面直角坐标系中,将曲线C 1上的点按坐标变换⎩⎪⎨⎪⎧x ′=32x +23,y ′=3y +2得到曲线C 2,以原点为极点、x 轴的正半轴为极轴,建立极坐标系.(1)求曲线C 1的极坐标方程和曲线C 2的直角坐标方程;(2)若直线θ=π4(ρ∈R )与曲线C 1交于M ,N 两点,与曲线C 2交于P ,Q 两点,求|PQ ||MN |的值. 解 (1)已知曲线C 1的参数方程为⎩⎨⎧ x =2cos α,y =3sin α(α为参数),消去参数α,得x 24+y 23=1. 又x =ρcos θ,y =ρsin θ,∴3ρ2cos 2θ+4ρ2sin 2θ=12,即曲线C 1的极坐标方程为ρ2(3+sin 2θ)=12.又由已知⎩⎪⎨⎪⎧x ′=32x +23,y ′=3y +2, 得⎩⎨⎧x =23(x ′-23),y =13(y ′-2),代入x 24+y 23=1,得(x ′-23)29+(y ′-2)29=1, ∴曲线C 2的直角坐标方程为(x -23)2+(y -2)2=9.(2)将θ=π4代入ρ2(3+sin 2θ)=12,得ρ2=247, ∴ρ=±2427,∴|MN |=4427.又直线的参数方程为⎩⎨⎧ x =22t ,y =22t (t 为参数),代入(x -23)2+(y -2)2=9,整理得t 2-22(3+1)t +7=0,分别记P ,Q 两点对应的参数为t 1,t 2,则⎩⎨⎧t 1+t 2=22(3+1),t 1·t 2=7, ∴|PQ |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=243+1,∴|PQ ||MN |=243+14427=1683+4212.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一曲线的参数方程
课后篇巩固探究
A组
1.与普通方程xy=1表示相同曲线的参数方程的是()
A.(t为参数)
B.(t为参数)
C.(t为参数)
D.(t为参数)
2.圆(θ为参数)的半径等于()
A.2
B.4
C.3
D.
(x-2)2+(y-2)2=9,故半径等于3.
3.参数方程(t为参数)表示的曲线是 ()
A.双曲线x2-y2=1
B.双曲线x2-y2=1的右支
C.双曲线x2-y2=1,且x≥0,y≥0
D.双曲线x2-y2=1,且x≥,y≥1
x2-y2=1,且x=,y=≥1,故选D.
4.曲线(θ为参数)上的点到两坐标轴的距离之和的最大值是()
A. B. C.1 D.
d满足d2=(|sin θ|+|cos θ|)2=1+|sin 2θ|≤2,且当
θ=时上式取等号,故d的最大值为.
5.参数方程(t为参数)表示的图形为()
A.直线
B.圆
C.线段(但不包括右端点)
D.椭圆
x=中解得t2=,将其代入y=中,整理得到2x+y-5=0.但由t2=≥0解得0≤x<3.所以其对应的普通方程为2x+y-5=0(0≤x<3),它表示一条线段,但不包括右端点.
6.若曲线(θ为参数)经过点,则a=.
1+cos θ=,则cos θ=,于是sin θ=±,a=2sin θ=±.
7.已知圆的方程为x2+y2=2x,则它的参数方程为.
2+y2=2x的标准方程为(x-1)2+y2=1,设x-1=cos θ,y=sin θ,则参数方程为
(0≤θ<2π,θ为参数).
(0≤θ<2π,θ为参数)
8.指出下列参数方程分别表示什么曲线:
(1);
(2)(t为参数,π≤t≤2π);
(3)(θ为参数,0≤θ<2π).
由(θ为参数)得x2+y2=9.
又由0<θ<,得0<x<3,0<y<3,
所以其对应的普通方程为x2+y2=9(0<x<3,且0<y<3).
这是一段圆弧(圆x2+y2=9位于第一象限的部分).
(2)由(t为参数)得x2+y2=4.
由π≤t≤2π,得-2≤x≤2,-2≤y≤0.
所求圆的普通方程为x2+y2=4(-2≤x≤2,-2≤y≤0).
这是一段半圆弧(圆x2+y2=4位于y轴下方的部分,包括端点).
(3)由参数方程(θ为参数),得(x-3)2+(y-2)2=152,由0≤θ<2π知这是一个圆.
9.已知点P(2,0),点Q是圆上一动点,求线段PQ中点的轨迹的参数方程,并说明轨迹是什么曲线.
PQ的中点为M(x,y),
由题意知Q(cos θ,sin θ),
则(θ为参数),
即所求轨迹的参数方程为(θ为参数),它是以(1,0)为圆心,以为半径的圆.
10.导学号73574036设点P(x,y)是圆x2+y2=2y上的动点.
(1)求2x+y的取值范围;
(2)若x+y+c≥0恒成立,求实数c的取值范围.
(θ为参数).
(1)因为2x+y=2cos θ+sin θ+1=sin(θ+φ)+1(其中tan φ=2),
所以1-≤2x+y≤1+.
(2)若x+y+c≥0恒成立,即c≥-(cos θ+sin θ+1)对一切θ∈R成立,且-(cos θ+sin θ+1)的最大值是-1,
则c≥-1时,x+y+c≥0恒成立.
B组
1.参数方程(α为参数)的普通方程为()
A.y2-x2=1
B.x2-y2=1
C.y2-x2=1(|x|≤,y≥0)
D.x2-y2=1(|x|≤,y≥0)
2==1+sin α,y2=2+sin α,所以y2-x2=1.
又x=sin+cos sin∈[-],y=≥0,即
|x|≤,y≥0.故应选C.
2.导学号73574037点P(x,y)是曲线(0≤θ<2π,θ为参数)上的动点,则的取值范围是()
A. B.
C. D.
是以(-2,0)为圆心,1为半径的圆,即(x+2)2+y2=1.
设=k,则y=kx.当直线y=kx与圆相切时,k取得最小值与最大值.
由=1,解得k2=.
故的取值范围是.
3.若圆(θ为参数,r>0)的直径为4,则圆心坐标是.
可化为
两式平方相加,得(x-r)2+=r2.
∵2r=4,∴r=2,
∴圆心坐标为(2,1).
4.已知在平面直角坐标系xOy中,圆C的参数方程为(θ为参数),以Ox为极轴建立极坐标系,直线的极坐标方程为ρcos=0,则圆C截直线所得的弦长为.
C:(θ为参数)表示的曲线是以点(,1)为圆心,以3为半径的圆,将直线ρcos=0化为直角坐标方程为x-y=0,圆心(,1)到直线x-y=0的距离d==1,故圆C截直线所得的弦长为2=4.
5.导学号73574038已知圆C:(θ为参数)与直线x+y+a=0有公共点,则实数a的取值范围为.
方法一)∵
消去θ,得x2+(y+1)2=1.
∴圆C的圆心坐标为(0,-1),半径为1.
∴圆心到直线的距离d=≤1.
解得1-≤a≤1+.
故实数a的取值范围是[1-,1+].
(方法二)将圆C的方程代入直线方程,得cos θ-1+sin θ+a=0,
即a=1-(sin θ+cos θ)=1-sin.
∵-1≤sin≤1,
∴1-≤a≤1+.
故实数a的取值范围是[1-,1+].
-,1+]
6.已知动点P,Q都在曲线C:(β为参数)上,对应参数分别为β=α与
β=2α(0<α<2π),点M为线段PQ的中点.
(1)求点M的轨迹的参数方程;
(2)将点M到坐标原点的距离d表示为α的函数,并判断点M的轨迹是否过坐标原点.
依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α),
因此M(cos α+cos 2α,sin α+sin 2α).
故点M的轨迹的参数方程为(α为参数,0<α<2π).
(2)点M到坐标原点的距离d=(0<α<2π).
当α=π时,d=0,故M的轨迹过坐标原点.
7.在一次军事演习中,一台轰炸机以150 m/s的速度作水平直线飞行,在离地面飞行高度为490 m 时向目标投弹(不计阻力,重力加速度g取9.8 m/s2,炸弹的初速度等于飞机的速度).
(1)求炸弹离开飞机后飞行轨迹的参数方程.
(2)试问飞机在离目标的水平距离多远处投弹才能命中目标?
如图所示,建立平面直角坐标系,设A为投弹点,B为轰炸目标.
已知炸弹运动的水平速度和垂直速度,则可以用时间t作为参数,建立参数方程.
设曲线上任一点的坐标为(x,y),其对应的时刻为t,
则有(t为参数).
又由y≥0,得0≤t≤10,
所以参数方程为(t为参数,且0≤t≤10).
(2)炸弹飞行到地面目标B处的时间t0满足方程490-4.9t2=0,解得t0=10.
因此,x=150t=1 500(m),即飞机在离目标的水平距离1 500 m处投弹才能命中目标.
8.导学号73574039如图,已知定点A(2,0),点Q是圆O:x2+y2=1上的动点,∠AOQ的平分线交AQ于点M,当Q在圆O上运动时,求点M的轨迹的参数方程.
O到AQ的距离为d,则|AM|·d=|OA|·|OM|·sin ∠AOM(∠
AOM≠0),|QM|·d=|OQ|·|OM|·sin ∠QOM(∠QOM≠0).
又∠AOM=∠QOM,所以.
所以.因为点Q是圆x2+y2=1上的点,则设点Q的坐标为(cos θ,sin θ)(θ为参数,θ≠0),M(x,y),所以(x-2,y-0)=(cos θ-2,sin θ-0),
即x-cos θ,y=sin θ.故点M的轨迹的参数方程为(θ为参数,θ≠0).。

相关文档
最新文档