高中数学《导数及其应用》同步练习题(含答案)

合集下载

高二数学导数及其应用试题答案及解析

高二数学导数及其应用试题答案及解析

高二数学导数及其应用试题答案及解析1.物体的运动方程是(位移单位:m,时间单位:s),当时,求物体的瞬时速度及加速度.【答案】当时,物体的瞬时速度加速度.【解析】故当时,所以当时间时,.答:当时,物体的瞬时速度加速度.【考点】本题主要考查导数的运算,瞬时速度、加速度的概念。

点评:求物体的瞬时速度即求关于时间的导数,求加速度即求速度关于时间的导数.2.函数的导数为A.B.C.D.【答案】B【解析】=.故选B.【考点】本题主要考查导数公式,导数的运算法则。

点评:简单题,牢记公式,掌握法则,细心求导。

3.设 y=loga(a>0,a≠1),则y’=( )A.B.lna C.—loga e D.logae【答案】D【解析】复合函数求导数。

设y=,,,最后把两个式子相乘得出y’=logae,故选D。

【考点】本题主要考查导数公式及导数的四则运算法则。

点评:注意理解导数的概念,牢记导数公式,典型题。

4.物体A以速度在一直线上运动,在此直线上与物体A出发的同时,物体B在物体A 的正前方5m处以的速度与A同向运动,问两物体何时相遇?相遇时物体A的走过的路程是多少?(时间单位为:s,速度单位为:m/s)(15分)【答案】=="130" (m)【解析】解:设A追上B时,所用的时间为依题意有即="5" (s)所以=="130" (m)【考点】本题主要考查定积分在物理中的应用,变速直线运动的路程。

点评:做变速直线运动的物体,速度函数为,则路程.5.设直线与抛物线所围成的图形面积为S,它们与直线围成的面积为T, 若U=S+T达到最小值,求值.【答案】(1)(2)当时,显然无最小值。

【解析】分析:首先做草图,求得直线与抛物线的交点.用定积分求面积和(关于的函数).进而用导数研究函数的单调性,并求最值.故函数无最小值。

当时,显然无最小值。

【考点】本题主要考查解析几何知识,定积分求曲边梯形的面积,利用导数研究函数的单调性和最值.点评:综合性较强,较全面地考查直线与抛物线关系及定积分的应用,导数的应用。

导数及其应用测试题(有详细答案)

导数及其应用测试题(有详细答案)

《导数及其应用》一、选择题1。

0()0f x '=是函数()f x 在点0x 处取极值的:A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 2、设曲线21y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为A 。

B. C 。

D.3.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )4.若曲线y =x 2+ax +b在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 5.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( )A .2B .3C .4D .56。

设函数()f x 的导函数为()f x ',且()()221f x x x f '=+⋅,则()0f '等于 ( )A 、0B 、4-C 、2-D 、27。

直线y x =是曲线ln y a x =+的一条切线,则实数a 的值为( )A .1-B .eC .ln 2D .18。

若函数)1,1(12)(3+--=k k x x x f 在区间上不是单调函数,则实数k 的取值范围( ) A .3113≥≤≤--≤k k k 或或 B .3113<<-<<-k k 或C .22<<-kD .不存在这样的实数k9.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示, 则函数()f x 在(),a b 内有极小值点 ( )A .1个B .2个C .3个D .4个 10.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .32二、填空题(本大题共4个小题,每小题5分,共20分) 11。

高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案

高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案
求下列函数的导数: (1)y = e3x+2 ;(2)ln(2x − 1).

解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−

8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
8 1 ) 且 (x0 , y 0 ) 在曲线 y = x3 上,所以 3 3 ⎧ ⎪ 8 − y = x2 (2 − x0 ), 0 0 ⎨3 1 ⎪ ⎩ y = x3 , ⎪ 0 3 0 − 3x2 + 4 = 0, x3 0 0
整理得

(x0 − 2)2 (x0 + 1) = 0.

高中数学选修1-1(人教B版)第三章导数及其应用3.3知识点总结含同步练习题及答案

高中数学选修1-1(人教B版)第三章导数及其应用3.3知识点总结含同步练习题及答案

三、知识讲解
1.利用导数研究函数的单调性 描述: 一般地,函数的单调性与其导数的正负有如下关系: 在某个区间 (a, b) 内,如果 f ′ (x) > 0 ,那么函数 y = f (x) 在这个区间内单调递增;如果 f ′ (x) < 0 ,那么函数 y = f (x) 在这个区间内单调递减. 注:在 (a, b) 内可导的函数 f (x) 在 (a, b) 上递增(或递减)的充要条件是 f ′ (x) ⩾ 0 (或 f ′ (x) ⩽ 0 ),x ∈ (a, b) 恒成立,且 f ′ (x) 在 (a, b) 的任意子区间内都不恒等于 0 . 例题: 求下列函数的单调区间: (1)f (x) = x 3 − 3x 2 − 9x + 5 ;(2)f (x) = x 函数的极值定义 已知函数 y = f (x) ,设 x 0 是定义域 (a, b) 内任一点,如果对 x0 附近的所有点 x,都有 f (x) < f (x0 ) 成立,则称函数 f (x) 在点 x0 处取得极大值,记作
y 极大 = f (x0 ).
并把 x 0 称为函数 f (x) 的一个极大值点. 如果在 x 0 附近都有 f (x) > f (x0 ) 成立,则称函数 f (x) 在点 x0 处取得极小值,记作
1 3 x − x2 + 2x + 1 . 3 解:(1)函数的定义域为 R.
(3)f (x) =
f ′ (x) = 3x2 − 6x − 9 = 3(x − 3)(x + 1),
令 f ′ (x) > 0 ,解得
x < −1或x > 3,
令 f ′ (x) < 0 ,解得
−1 < x < 3.

高中数学导数及其应用多选题100含答案

高中数学导数及其应用多选题100含答案
由于当 时, , 在 上为单调递减函数,
因为 ,所以 ,故 正确;
由于 在 上有解,故 有解,
所以 ,设 ,则 ,
令 ,解得 ,
当 时, ,故 在 上为单调递减函数.
当 时, ,故 在 上为单调递增函数.
所以 .
故 ,故 正确.
故选:ACD.
【点睛】
方法点睛:本题通过对多个命题真假的判断,综合考查导数的应用,这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.
不合题意


根据导函数作出图像如下
符合题意.
故选:ABD
【点睛】
本题主要考查了函数的新定义及其应用,其中解答中正确理解函数的新定义,以及结合函数的图象求解是解答的关键,学生可利用数形结合求解,需要较强的推理与运算能力.
5.已知 , , 是 的导函数,则下列结论正确的是()
A. 在 上单调递增.
B. 在 上两个零点
【详解】
函数 ,所以 ,
令 ,即 ,解得 ,
当 时, ,故 在 上为单调递增函数.
当 时, ,故 在 上为单调递减函数.
所以 在 时取得极大值 ,故 正确;
当 时, , 在 上为单调递增函数,
因为 ,所以函数 在 上有唯一零点,
当 时, 恒成立,即函数 在 上没有零点,
综上, 有唯一零点,故 错误.
C.当 时, 恒成立,则
D.若函数 只有一个极值点,则实数
【答案】ACD
【分析】
求出导函数 ,由 确定增区间,判断A,然后可得 ,再利用导数确定 的单调性与极值,结合零点存在定理得零点个数,判断B,构造函数 ,由 在 上递减,求得 范围,判断C,利用导数研究 的单调性与极值点,得 的范围,判断D.

高考数学复习-导数及其应用练习试题卷及参考答案

高考数学复习-导数及其应用练习试题卷及参考答案

高考数学复习-导数及其应用练习试题卷及参考答案一、选择题(10×5′=50′)1.曲线y =x 3在点P (2,8)处的切线方程为 ( )A.y =6x -12B.y =12x -16C.y =8x +10D.y =12x -32 2.过原点与曲线y =1x -相切的切线方程为 ( ) A.y =21x B.y =2x C.y =x D.y =31x3.物体自由落体运动方程为s =s (t )=21gt 2,g =9.8m/s 2,若v =0lim →n ts t s ∆-∆+)1()1(=g=9.8m/s.那么下列说法正确的是 ( )A.9.8m/s 是在1s 这段时间内的速率B.9.8m/s 是从1s 到(1+Δt )s 这段时间内的速率C.9.8m/s 是物体在t =1 s 这一时刻的速率D.9.8m/s 是物体从1 s 到(1+Δt )s 这段时间内的平均速率4.已知过曲线y =31x 3上点P 的切线l 的方程为12x -3y =16,那么P 点坐标只能为 ( ) A.⎪⎭⎫ ⎝⎛38,2 B.⎪⎭⎫ ⎝⎛-34,1 C.⎪⎭⎫ ⎝⎛--328,1 D.⎪⎭⎫ ⎝⎛320,3 5.一质点做直线运动,若它所经过的路程与时间的关系为:s (t )=4t 2-3(s 单位:m,t 单位:s),则t =5时的瞬时速率为 ( )A.37B.38C.39D.40 6.一个圆半径以0.1 cm/s 速率增加,那么当半径r =10 cm 时,此圆面积的增加速率(单位:cm 2/s )为 ( )A.3πB.4πC.2πD.π7.一圆面以10π cm 2/s 的速率增加,那么当圆半径r =20 cm 时,其半径r 的增加速率u 为 ( ) A.21 cm/s B.31 cm/s C.41 cm/s D.51cm/s8.曲线y =x n(n ∈N )在点P (2,22n)处切线斜率为20,那么n 为 ( )A.7B.6C.5D.49.直线a ∥b ,a 处一面高墙,点P 处站一人,P 到直线a 的距离P A =10 m,P 到直线b 的距离PB =2 m,在夜晚一光源S 从B 点向左运动,速率为5 m/s(沿直线b 运动),那么,P 点处的人投在墙a 上影子Q 的运动速率为 ( )A.10 m/sB.15 m/sC.20 m/sD.25 m/s 10.质点P 在半径为r 的圆周上逆时针方向做匀角速率运动, 角速率为1 rad/s.如图所示,设A 为起点,那么t 时刻点P 在x 轴上射影点M 的速率为 ( )A.r sin tB.-r sin tC.r cos tD.-r cos t第10题图二、填空题(4×4′=16′)11.曲线y =x (x +1)(2-x )有两条平行于直线y =x 的切线,则两切 线之间的距离是 .12.函数S =e t 2-sin(ωt +φ),那么S ′t 为 .13.设曲线y =x 上有点P (x 1,y 1),与曲线切于点P 的切线为m .若直线n 过P 且与m 垂直,则称n 为曲线在P 处的法线,设n 交x 轴于Q ,又作PR ⊥x 轴于R ,则RQ 的长是 .14.设坐标平面上的抛物线y =x 2的图象为C ,过第一象限的点(a ,a 2)作C 的切线l ,则l 与y 轴的交点Q 的坐标为 ,l 与y 轴夹角为30°时,a = . 三、解答题(4×10′+14′=54′)15.A (1,c )为曲线y =x 3-ax 2+b 上一点,曲线在A 点处的切线方程为y =x +d ,曲线斜率为1的切线有几条?它们之间的距离是多少?16.已知抛物线C 1:y =x 2+2x 和C 2:y =-x 2+a ,如果直线l 同时是C 1和C 2的切线,则得l 为C 11和C 2的公切线,公切线上两切点之间的线段称为公切线段.(1)a 取什么值时,C 1和C 2有且仅有一条公切线?写出此公切线方程; (2)若C 1与C 2有两条公切线,证明相应的两条公切线段互相平分.17.已知函数f (x )=ln(x +1)-x . (1)求函数f (x )的单调递减区间; (2)若x >-1,证明:1-11+x ≤ln(x +1)≤x .18.如图所示的是曲柄连杆装置, (1)求滑块运动方程; (2)求滑块运动速率.19.质点运动方程s =f (t )实为位移s 对时间t 的函数,质点的运动速度即是对应的位移函数的导数s ′=f ′(t ).(1)求质点运动s 1=vt +s 0和s 2=21at 2+vt +s 0的运动速度并判定运动的性质.(v 、a 、s 0均为大于零的常数)(2)已知某质点的运动方程为s =sin2πt ,问此运动何时速度为0?第18题图参考答案一、选择题1.B 设所求切线斜率为k ,那么,k =0lim →∆x x y∆∆=0lim →∆x xx ∆-∆+332)2(=12,所以,所求切线方程为y -8=12(x -2),整理得:y =12x -16.2.A 设切点P (x 0,10-x ),那么切线斜率k =y ′|0x x ==1210-x .又因为切线过点O (0,0),及点P ,则k =0100---x x ,所以1210-x =01x x -.解得x 0=2.所以斜率k =21.从而切线方程为:y =21x . 3.C4.A 设P 点坐标为⎪⎪⎭⎫ ⎝⎛3,300x x ,由导数几何意义可知:y ′|0x x ==k l =4,又因为y ′|0x x ==x 20, 所以x 0=±2,所以点P 坐标为⎪⎭⎫⎝⎛±±38,2.5.D 设物体在时刻5时的瞬时速度为:v (5)= 0lim →∆t 40]354[]3)5(4[22=∆-⨯--∆+tt .6.C 当圆半径变化t s 时,圆面积为S =πr 2,那么圆面积变化速率为v =S t ′=2πr ·r t ′;又因为r t ′=0.1 cm/s.从而r =10 cm 时,v =2π×10×0.1 cm 2/s=2π cm 2/s.7.C 设t s 时刻圆面积为S ,则S =πr 2,时刻t 圆面积增加速率为S t ′,对应半径增加速率 u =r t ′,S t ′=2πr ·r t ′,此时S t ′=10π cm 2/s,r =20 cm.由10π=2π×20×r t ′,从而r t ′=41cm/s. 8.C 由导数的几何意义可知,曲线在P 点处切线斜率k =y ′, ∴20=y ′|2=x =n ·(2)1-n ①然后采用试值法,可知当n =5时满足方程①.9.D 设光源S 运动路程为l ,则SB =l =5t ,此时影子Q 运动路 程为x =AQ ,又由于△APQ ∽△BPS (如图).从而,51102===PA PB AQ SB .∴515=x t ,∴x =25t ,从而影子Q 运动速率为v =x ′=25.第9题图解10.B 点M 的运动方程为x =r cos t ,那么点M 的运动速率v =x ′=-r sin t . 二、填空题11.22716 分析 从y ′=1入手,写出两切线的方程.解 y =-x 3+x 2+2x ,∴y ′=-3x 2+2x +2.所求直线与直线y=x 平行.∴k =1. 命y ′=1,即3x 2-2x -1=0,(3x +1)(x -1)=0,x =-31或1,x =-31时, y =-(-271)+91-32=-2714,x =1时,y =-1+1+2×1=2.故切点为A ⎪⎭⎫ ⎝⎛--2714,31,B (1,2)切线方程为:l 1:y +2714=x +31,即x-y -275=0,l 2:y -1=x -2, 即x-y +1=0,两切线间的距离为:d =22751⎪⎭⎫⎝⎛--=22716.12.S t ′=-2e t 2-sin(ωt +φ)+ωe t 2-cos(ωt +φ).S t ′=(e t 2-)′sin(ωt +φ)+e t 2-(sin(ωt +φ))′=-2e t 2-sin(ωt +φ)+e t 2-ωcos(ωt +φ). 13.21 由y ′=x21得P (x 1,y 1)的切线斜率k 1=121x , P 点的法线斜率k 2=-1121x k -=, ∴法线方程为y -y 1=-21x (x -x 1),令y =0得x =112x y ,即Q 的横坐标为,|RQ |=|x -x 1|=112x y =112x x =21. 点评 有关曲线切线的问题,一般都可用导数的几何意义完成,曲线在某一定点处的切线是惟一的,因此斜率也是惟一的(若存在的话),采用斜率相等这一重要关系,往往都可解决这类问题.14.(0,-a 2),23∵y ′=2x ,y ′|a x ==2a , ∴l :y -a 2=2a (x -a ),令x =0得y =-a 2,∴Q (0,-a 2),由k =2a =tan(90°-30°)=3,∴a =23.三、解答题15.分析 根据题目条件可列出多个不等式,但要用它们解出全部4个未知系数是困难的,问题在于,要回答本题的两个问题,是否必须求出所有的未知系数,想到这里,便会豁然开朗.解 f ′(x )=3x 2-2ax ,f ′(1)=3-2a∵切线斜率为1,∴3-2a =1,a =1 3x 2-2ax =3x 2-2x 令3x 2-2x =1,x =1或-31 故已知曲线斜率为1的切线有两条. 因为A 在曲线上,∴c =1-1+b =b ,过点A 的切线为y-c =x -1,即y =x +c -1,∴d=c -1. 当x =-31时,y =(-31)3-(-31)2+c , 故相应切点为(-31,c -274).切线方程为y -(c -274)=x +31,即y =x +c +275. 两直线间距离为227162)1()275(=--+c c . 16.解 (1)函数y =x 2+2x 的导数y ′=2x +2,曲线C 1在点P (x 1,x 21+2x 1)处的切线方程是 y -(x 21+2x 1)=(2x 1+2)(x -x 1)即y =(2x 1+2)x -x 21 ①函数y =-x 2+a 的导数y ′=-2x .曲线C 2在点Q (x 2,-x 22+a )处的切线方程是y -(-x 22+a )=-2x 2(x -x 2)即y =-2x 2x +x 22+a ②如果直线l 是过P 和Q 的公切线,则①式和②式都是直线l 的方程,所以:⎪⎩⎪⎨⎧+=--=+.,1222121a x x x x 消去x 2,得2x 21+2x 1+1+a =0若Δ=4-8(1+a )=0,即a =-21,得x 1=-21,x 2=-21, ∴P (-21,-43)、Q (-21,-43),P 与Q 重合,所以:当a =-21时,C 1与C 2只有一条公切线, 公切线方程是:y =x -41. (2)由(1)知:当 Δ=4-8(1+a )>0即a <-21时,P 与Q 不重合,此时C 1与C 2有两条公切线.设一条公切线上的切点为P (x 1,y 1)、Q(x 2,y 2),其中P ∈C 1,Q ∈C 2,则x 1+x 2=-1y 1+y 2=(x 21+2x 1)+(-x 22+a )=x 21+2x 1-(x 1+1)2+a =a -1线段PQ 的中点E ⎪⎭⎫ ⎝⎛+--21,21a .同理,另一条公切线段P ′Q ′的中点也是⎪⎭⎫⎝⎛+--21,21a .∴当C 1与C 2有两条公切线时,相应的两公切线段相互平分.点评 本题把导数与二次曲线位置关系融为一体,重在考查用导数的几何意义分析问题解决问题的能力.17.解 (1)函数f (x )的定义域为(-1,+∞),f ′(x )=11+x -1=-1+x x.由f ′(x )<0及x >-1得x >0.∴当x ∈(0,+∞)时,f (x )是减函数,即f (x )的单调递减区间为(0,+∞).(2)由(1)知,当x ∈(-1,0)时,f ′(x )>0;当x ∈(0,+∞)时,f ′(x )<0. 因此,当x >-1时,f (x )≤f (0),即ln(x +1)-x ≤0. ∴ln(x +1)≤x .令g (x )=ln(x +1)+11+x -1, 则g ′(x )=11+x -22)1()1(1+=+x xx . 当x ∈(-1,0)时,g ′(x )<0;当x ∈(0,+∞)时,g ′(x )>0. ∴当x >-1时,g (x )≥g (0),即ln(x +1)+11+x -1≥0, ∴ln(x +1)≥1-11+x . 综上可知,当x >-1时,有1-11+x ≤ln(x +1)≤x . 18.解 (1)由图可知s=OC+CB .由三角函数定义可知:OC =r cos ωt ,CA =r sin ωt , 所以,CB =t r l CA l ω-=-22222sin ,从而, s =r cos ωt +t r l ω-222sin ,此为滑块运动方程. (2)s 关于时间t 的导数s ′就是滑块运动速率v 即 v =st ′=(r cos ωt +t r l ω-222sin )′=-r ωsin ωt +tr l t r l ω-'ω-222222sin 2)sin (,v =-r ωsin ωt -tr l t r ω-ωω2222sin 22sin19.解 (1)s 1′=v ,s 2′=at+vs 1为匀速直线运动,速度为v ;s 2为匀加速直线运动,加速度为a .(2)s ′=2πcos2πt .令s ′=0, 即cos2πt =0,得2πt =k π+2 ,t =2k +41.。

高二数学(必修二)一元函数的导数及其应用练习题及答案

高二数学(必修二)一元函数的导数及其应用练习题及答案

高二数学(必修二)一元函数的导数及其应用练习题及答案一、单选题1.降低室内微生物密度的有效方法是定时给室内注入新鲜空气,即开窗通风换气.在某室内,空气中微生物密度(c )随开窗通风换气时间(t )的关系如下图所示.则下列时间段内,空气中微生物密度变化的平均速度最快的是( )A .[5,10]B .[5,15]C .[5,20]D .[5,35]2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是2()10 4.98h t t t =-+(距离单位:米,时间单位:秒),则他在0.25秒时的瞬时速度为( ) A .6.75米/秒B .6.55米/秒C .5.75米/秒D .5.55米/秒3.若过点(,)a b 可以作曲线1(0)y x x x=->的两条切线,则( ) A .0b a >>B .1a b a a>>-C .10a b a a <-<<D .10a b a a-<<<4.已知3()f x x =,则0(1)(1)lim x f x f x∆→-+∆--=∆( )A .0B .3-C .2D .35.函数()()e sin cos xf x x x =+在点()0,1处切线方程为( )A .41y x =+B .31y xC .21y x =+D .1y x =+6.下列求导运算过程中,正确的是( ). A .()()22()ax bx c a x b x '''++=+ B .()()22cos 2(cos )2x x x x ''''-=- C .(sin 2)(sin )cos (cos )sin x x x x x '''=+D .()2212(2)x x x x -'⎛⎫''-=+ ⎪⎝⎭7.当121x x <<时,不等式1221e e 0x xx x -<成立.若e e a b >>,则( )A .e 1e e b b -<B .e e e aa b b +<C .e ln b a b a <D .e ln a ab b >8.已知过点()2,b 不可能作曲线2e x y =的切线.对于满足上述条件的任意的b ,函数()()22ln e 112x a b f x x a a x =-++>恒有两个不同的极值点,则a 的取值范围是( )A .(21,e ⎤⎦B .(2e,e ⎤⎦ C .)2e,e ⎡⎣D .()21,e二、多选题9.已知点()11,A x y ,()22,B x y 在函数()y f x =的图像上,若函数()f x 从1x 到2x 3则下面叙述正确的是( ) A .曲线()y f x =的割线AB 的倾斜角为6πB .曲线()y f x =的割线AB 的倾斜角为3πC .曲线()y f x =的割线AB 3D .曲线()y f x =的割线AB 310.(多选)下列说法中错误的是( ) A .若()0f x '不存在,则曲线()y f x =在0x x =处没有切线 B .若曲线()y f x =在0x x =处有切线,则()0f x '必存在 C .若()0f x '存在,则曲线()y f x =在0x x =处的切线的斜率存在D .若曲线()y f x =在0x x =处的切线的斜率不存在,则曲线在该点处没有切钱11.给出定义:若函数()f x 在D 上可导,即()f x '存在,且导函数()f x '在D 上也可导,则称()f x 在D 上存在二阶导函数,记()()()f x f x ''''=,若()0f x ''<在D 上恒成立,则称()f x 在D 上为凸函数.以下四个函数在π0,2⎛⎫⎪⎝⎭上不是凸函数的是( )A .()sin cos f x x x =-B .()ln 4f x x x =-C .()321f x x x =-+-D .()e xf x x =12.已知函数()323f x ax ax b =-+,其中实数0R a b >∈,,则下列结论正确的是( )A .()f x 必有两个极值点B .()y f x =有且仅有3个零点时,b 的范围是()0,4aC .当2b a =时,点1,02⎛⎫⎪⎝⎭是曲线()y f x =的对称中心D .当56a b a <<时,过点()2,A a 可以作曲线()y f x =的3条切线三、填空题13.函数()1e x f x x=+在其图象上的点()1,e 1+处的切线方程为________.14.设点P 是曲线e e e ex xx x y ---=+上任意一点,直线l 过点P 与曲线相切,则直线l 的倾斜角的取值范围为______.15.已知函数()f x 是定义在R 上的可导函数,其导函数为()f x ',若()14f =,且()23f x x '-<对任意的x ∈R 恒成立,则不等式()()23223f x x x -<-的解集为________.16.已知函数1e 1,1()ln(1),1x x f x x x -⎧+≤⎪=⎨->⎪⎩则函数1()[()]2()2F x f f x f x =--的零点个数为___________.四、解答题17.在受到制动后的t 秒内一个飞轮上一点P 旋转过的角度(单位:弧度)由函数φ(t )=4t -0.3t 2(单位:秒)给出.(1)求t =2秒时,P 点转过的角度;(2)求在2≤t ≤2+Δt 时间段内P 点转过的平均角速度,其中①Δt =1,②Δt =0.1,③Δt =0.01.18.已知函数2()()f x x x a =-.(1)当(0,1)x ∈时,函数()f x 的图像上任意一点处的切线斜率为k ,若3k ≥-,求实数a 的取值范围;(2)若2a =-,求曲线()y f x =过点(1,(1))M f --的切线方程.19.求下列函数的导函数: (1)sin y x x =(2)2ln x y x=(3)tan 2ln y x x x =-20.已知函数2()(,)mxf x m n x n=∈+R ,在1x =处取得极小值2. (1)求函数()f x 的解析式; (2)求函数()f x 的极值;(3)设函数2()2g x x ax a =-+,若对于任意1x ∈R ,总存在[]21,1x ∈-,使得21()()g x f x ≤,求实数a的取值范围.21.已知函数1()(1)ln ,f x ax a x a x=--+∈R . (1)若2a =-,求函数()f x 的单调区间;(2)若1a ≥,且()1f x >在区间1,e e ⎡⎤⎢⎥⎣⎦上恒成立,求a 的取值范围;(3)若1e>a ,判断函数()[()1]g x x f x a =++的零点的个数.22.已知函数()e x ax f x =和函数()ln xg x ax=有相同的最大值,直线y m =与两曲线()y f x =和()y g x =恰好有三个交点,从左到右三个交点横坐标依次为123,,x x x . (1)求实数a 的值; (2)求证:2132x x x =.参考答案1.C 2.D 3.B 4.D 5.C 6.A 7.D 8.A 9.BC 10.ABD 11.AD 12.ABD 13.()e 12y x =-+ 14.π0,4⎛⎤⎥⎦⎝15.(2,)+∞ 16.517.解析 (1)当t =2时,φ(2)=4×2-0.3×22=8-1.2=6.8(弧度). (2)∵tϕ∆∆=(2)(2)t t +∆-∆ϕϕ=24(2)0.3(2) 6.8t t t+∆-+∆-∆=4-1.2-0.3Δt =2.8-0.3Δt , ∴①当Δt =1时,平均角速度为tϕ∆∆=2.8-0.3×1=2.5(弧度/秒); ②当Δt =0.1时,平均角速度为tϕ∆∆=2.8-0.3×0.1=2.77(弧度/秒); ③当Δt =0.01时,平均角速度为tϕ∆∆=2.8-0.3×0.01=2.797(弧度/秒). 18.(1)函数2()()f x x x a =-的导数为22()2()32f x x x a x x ax '=-+=-, 由题意可得当()0,1x ∈时,2323x ax -≥-恒成立,即有123a x x⎛⎫≤+ ⎪⎝⎭,由勾函数的性质知,函数13y x x⎛⎫=+ ⎪⎝⎭在(,1)-∞-和(1,)+∞上单调递增,在(1,0)-和(0,1)上单调递减,所以113()3(1)61x x +>+=,即有26a ≤,则3a ≤, 所以a 的取值范围是(],3-∞.(2)函数2()(2)f x x x =+的导数为2()34f x x x '=+,设切点为(),m n ,则322n m m =+,()f x 在x m =处的斜率为234k m m =+,即有切线方程为()234()y n m m x m -=+-,将()1,1M -代入可得()3221234(1)m m m m m --=+--,整理可得2(1)(21)0m m ++=,解得1m =-或12m =-, 即有所求切线的方程为()11y x -=-+或51(1)4y x -=-+, 即y x =-或5144y x =--. 19.(1)12sin sin y x x x x ==⋅,()111122221sin sin sin cos 22y x x x x x x x x x x x '-'⎛⎫=⋅+⋅=⋅+⋅= ⎪⎝⎭'.(2)2ln x y x=,()()()22222212ln ln ln (2ln 1)ln ln ln x x x x x x x x x x y xxx ''⋅-⋅⋅-='-⋅==.(3)tan 2ln y x x x =-,()()()22222sin cos sin cos sin cos sin 1tan cos cos cos cos x x x x x x xx x x x x ''''-+⎛⎫==== ⎪⎝⎭, ()()22tan tan 2ln tan cos x y x x x x x x x x''=⋅+⋅-=+-''. 20.(1)∵2()mxf x x n=+,则2222222()2()()()m x n mx mn mx f x x n x n +--'==++,由题意可得()()()2121101m f n mn m f n ⎧==⎪+⎪⎨-==+'⎪⎪⎩,解得41m n =⎧⎨=⎩, 则函数()f x 的解析式为24()1x f x x =+,且224(1)(1)()(1)x x f x x --+'=+, 令()0f x '=,解得:1x =±,则当x 变化时,(),()f x f x '的变化情况如下表:x()1-∞-,1-()11-,1()1+∞,()f x '-+-()f x减 极小值2- 增极大值2减故41m n =⎧⎨=⎩符合题意,即24()1x f x x =+.(2)由(1)可得:当=1x -时,函数()f x 有极小值2-;当1x =时,函数()f x 有极大值2. (3)∵函数24()1xf x x =+在0x >时,()0f x >,在0x <时,()0f x <且(0)0f =, ∴由(1)知:当=1x -时,函数()f x 有最小值2-, 又∵对任意1x ∈R 总存在[]21,1x ∈-,使得21()()g x f x ≤,则当[]1,1x ∈-时,()g x 的最小值不大于2-,对于222()2()g x x ax a x a a a =-+=-+-开口向上,对称轴为x a =,当1a ≤-时,则()g x 在[]1,1-上单调递增,故()g x 的最小值为(1)132g a -=+≤-,得1a ≤-; 当1a ≥时,则()g x 在[]1,1-上单调递减,故()g x 的最小值为(1)12g a =-≤,得3a ≥;当11a -<<时,则()g x 在[)1,a -上单调递减,在[],1a 上单调递增,()g x 的最小值为2(2)g a a a =-≤-,得1a ≤-或2a ≥,不合题意,舍去; 综上所述:a 的取值范围是(][),13,-∞-+∞.21.(1)若2a =-,则1()2ln ,(0,)f x x x x x=--+∈+∞,2(21)(1)()x x f x x -+-'=由()0f x '>得,01x <<;由()0f x '<得,1x >.所以函数()f x 的单调增区间为(0,1);单调减区间为(1,)+∞.(2)依题意,在区间1,e e ⎡⎤⎢⎥⎣⎦上min ()1f x >.222(1)1(1)(1)(),1ax a x ax x f x a x x -++--==≥'. 令()0f x '=得,1x =或1x a=.若e a ≥即11e a ≤,则由()0f x '>得,1e x <≤,()f x 递增;由()0f x '<得,11ex ≤<,()f x 递减. 所以min ()(1)11f x f a ==->,满足条件;若1e a <<,则由()0f x '>得1e1x a≤<或1e x <≤,在1e1x a≤<时()f x 递增或1e x <≤时()f x 递增;由()0f x '<得11x a <<,()f x 递减.min 1()min ,(1)e f x f f ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭, 依题意11e (1)1f f ⎧⎛⎫>⎪ ⎪⎝⎭⎨⎪>⎩,即2e e 12a a ⎧>⎪+⎨⎪>⎩,所以2e a <<.若1a =,则()0f x '≥. 所以()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上单调递增,min 1()1e f x f ⎛⎫=< ⎪⎝⎭,不满足条件; 综上,2a >.(3)2(0,),()(1)ln (1)1x g x ax a x x a x ∈+∞=-+++-.所以()2(1)ln g x ax a x '=-+.设()2(1)ln m x ax a x =-+,12(1)()2a ax a m x a x x-='++=-. 令()0m x '=得12a x a+=. 当102a x a+<<时,()0m x '<;当12a x a +>时,()0m x '>.所以()g x '在102,a a ⎛⎫+ ⎪⎝⎭上单调递减,在12,a a ⎛⎫++∞ ⎪⎝⎭上单调递增. 所以()g x '的最小值为11(1)1ln 22a a g a a a ++⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭'. 因为1e>a ,所以111122222ee a a a +=+<+<. 所以()g x '的最小值11(1)1ln 022a a g a a a ++⎛⎫⎛⎫=+->⎭⎝'⎪⎪⎝⎭. 从而,()g x 在区间(0,)+∞上单调递增. 又5210352111(62ln )1e e e a g a a a a+⎛⎫=++-⎪⎝⎭,设3()e (2ln 6)h a a a =-+. 则32()e h a a ='-.令()0h a '=得32e a =.由()0h a '<,得320e a <<; 由()0'>h a ,得32e a >.所以()h a 在320,e ⎛⎫ ⎪⎝⎭上单调递减,在32,e ⎛⎫+∞ ⎪⎝⎭上单调递增. 所以min 32()22ln 20e h a h ⎛⎫==-> ⎪⎝⎭.所以()0>h a 恒成立.所以332ln 6e 2ln 6,1e a a a a+>+<. 所以5272722721111111111110e e e e e e e e e a g a a a +⎛⎫<+-=++-<++-<⎪⎝⎭. 又(1)20g a =>,所以当1e>a 时,函数()g x 恰有1个零点. 22.(1)()()(1)e ex xax a x f x f x -'=⇒=,()()2ln 1ln x x g x g x ax ax -'=⇒=, 当a<0时,当1x >时,()()0,f x f x '>单调递增, 当1x <时,()()0,f x f x '<单调递减,所以当1x =时,函数()f x 有最小值,没有最大值,不符合题意; 当0a >时,当1x >时,()()0,f x f x '<单调递减,当1x <时,()()0,f x f x '>单调递增,所以当1x =时,函数()f x 有最大值, 即()()max 1ea f x f ==;当0a >时,当e x >时,()()0,g x g x '<单调递减, 当0e x <<时,()()0,g x g x '>单调递增,所以当e x =时,函数()g x 有最大值,即()()max 1e eg x g a ==; 于是有11,0,1ea a a a ae=⇒=±>∴=, (2)两个函数大致图象如下:设()(),f x g x 图象的交点为M ,第 11 页 共 11 页 当直线y m =经过点M 时,此时直线y m =与两曲线()y f x =和()y g x =恰好有三个交点,不妨设12301e x x x <<<<<,且12312223ln ln e e x x xx x x m x x ==== (*) 由()()1212212ln 2ln ln ln e e x x x x xf x f x x ==⇒=,又121,ln ln e 1x x <<=,又当1x <时,()f x 单调递增,所以12ln x x =,又()()3233223ln 3ln ln ln e e x x x xx f x f x x ==⇒=,又231,ln ln e 1x x >>=,又当1x >时,()f x 单调递减,所以23ln x x =,由(*)可得:332222ln 1ln ln x x x x x x m ===, 22121ln x x x x m==,于是有23213212x x x x x x x =⇒=.。

2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析

2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析

2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知曲线y=f(x)在x=5处的切线方程是y=-x+5,则f(5)与f′(5)分别为() A.5,-1B.-1,5C.-1,0D.0,-1答案D解析由题意可得f(5)=-5+5=0,f′(5)=-1,故选D.2.已知函数f(x)=x sin x+ax,且f1,则a等于()A.0B.1C.2D.4答案A解析∵f′(x)=sin x+x cos x+a,且f1,∴sin π2+π2cosπ2+a=1,即a=0.3.若曲线y=mx+ln x在点(1,m)处的切线垂直于y轴,则实数m等于() A.-1B.0C.1D.2答案A解析f(x)的导数为f′(x)=m+1x,曲线y=f(x)在点(1,m)处的切线斜率为k=m+1=0,可得m=-1.故选A.4.已知f1(x)=sin x+cos x,f n+1(x)是f n(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),n∈N*,则f2020(x)等于()A.-sin x-cos x B.sin x-cos xC.-sin x+cos x D.sin x+cos x答案B解析∵f1(x)=sin x+cos x,∴f2(x)=f1′(x)=cos x-sin x,∴f3(x)=f2′(x)=-sin x-cos x,∴f4(x)=f3′(x)=-cos x+sin x,∴f5(x)=f4′(x)=sin x+cos x=f1(x),∴f n(x)是以4为周期的函数,∴f2020(x)=f4(x)=sin x-cos x,故选B.5.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x(其中e为自然对数的底数),则f′(e)等于()A .1B .-1C .-eD .-e -1答案D解析已知f (x )=2xf ′(e)+ln x ,其导数f ′(x )=2f ′(e)+1x,令x =e ,可得f ′(e)=2f ′(e)+1e ,变形可得f ′(e)=-1e ,故选D.6.函数y =12x 2-ln x 的单调递减区间为()A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)答案B解析由题意知,函数的定义域为(0,+∞),又由y ′=x -1x≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].7.(2019·沈阳东北育才学校模拟)已知定义在(0,+∞)上的函数f (x )=x 2+m ,g (x )=6ln x -4x ,设两曲线y =f (x )与y =g (x )在公共点处的切线相同,则m 值等于()A .5B .3C .-3D .-5答案D解析f ′(x )=2x ,g ′(x )=6x -4,令2x =6x-4,解得x =1,这就是切点的横坐标,代入g (x )求得切点的纵坐标为-4,将(1,-4)代入f (x )得1+m =-4,m =-5.故选D.8.(2019·新乡模拟)若函数f (x )=a e x +sin x 在-π2,0上单调递增,则a 的取值范围为()B .[-1,1]C .[-1,+∞)D .[0,+∞)答案D解析依题意得,f ′(x )=a e x +cos x ≥0,即a ≥-cos xe x 对x ∈-π2,0恒成立,设g (x )=-cos xe x ,x ∈-π2,0,g ′(x )g ′(x )=0,则x =-π4,当x ∈-π2,-g ′(x )<0;当x -π4,0时,g ′(x )>0,故g (x )max =g (0,则a ≥0.故选D.9.(2019·河北衡水中学调研)如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为()A.2000π9B.4000π27C .81πD .128π答案B解析小圆柱的高分为上下两部分,上部分同大圆柱一样为5,下部分深入底部半球内设为h (0<h <5),小圆柱的底面半径设为r (0<r <5),由于r ,h 和球的半径5满足勾股定理,即r 2+h 2=52,所以小圆柱体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),求导V ′=-π(3h -5)·(h +5),当0<h ≤53时,体积V 单调递增,当53<h <5时,体积V 单调递减.所以当h =53时,小圆柱体积取得最大值,V max ==4000π27,故选B.10.(2019·凉山诊断)若对任意的0<x 1<x 2<a 都有x 2ln x 1-x 1ln x 2<x 1-x 2成立,则a 的最大值为()A.12B .1C .eD .2e答案B解析原不等式可转化为1+ln x 1x 1<1+ln x 2x 2,构造函数f (x )=1+ln x x ,f ′(x )=-ln xx2,故函数在(0,1)上导数大于零,单调递增,在(1,+∞)上导数小于零,单调递减.由于x 1<x 2且f (x 1)<f (x 2),故x 1,x 2在区间(0,1)上,故a 的最大值为1,故选B.11.(2019·洛阳、许昌质检)设函数y =f (x ),x ∈R 的导函数为f ′(x ),且f (x )=f (-x ),f ′(x )<f (x ),则下列不等式成立的是(注:e 为自然对数的底数)()A .f (0)<e -1f (1)<e 2f (2)B .e -1f (1)<f (0)<e 2f (2)C .e 2f (2)<e -1f (1)<f (0)D .e 2f (2)<f (0)<e -1f (1)答案B解析设g (x )=e -x f (x ),∴g ′(x )=-e -x f (x )+e -x f ′(x )=e -x (f ′(x )-f (x )),∵f ′(x )<f (x ),∴g ′(x )<0,∴g (x )为减函数.∵g (0)=e 0f (0)=f (0),g (1)=e -1f (1),g (-2)=e 2f (-2)=e 2f (2),且g (-2)>g (0)>g (1),∴e -1f (1)<f (0)<e 2f (2),故选B.12.(2019·廊坊省级示范高中联考)已知函数f (x )=-13x 3-12x 2+ax -b 的图象在x =0处的切线方程为2x -y -a =0,若关于x 的方程f (x 2)=m 有四个不同的实数解,则m 的取值范围为()A.-323,-B.-2-323,-2答案D解析由函数f (x )=-13x 3-12x 2+ax -b ,可得f ′(x )=-x 2-x +a ,则f (0)=-b =-a ,f ′(0)=a =2,则b =2,即f (x )=-13x 3-12x 2+2x -2,f ′(x )=-x 2-x +2=-(x -1)(x +2),所以函数f (x )在(-2,1)上单调递增,在(-∞,-2),(1,+∞)上单调递减,又由关于x 的方程f (x 2)=m 有四个不同的实数解,等价于函数f (x )的图象与直线y =m 在x ∈(0,+∞),上有两个交点,又f (0)=-2,f (1)=-56,所以-2<m <-56,故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·陕西四校联考)已知函数f (x )=ln x +2x 2-4x ,则函数f (x )的图象在x =1处的切线方程为________________.答案x -y -3=0解析∵f (x )=ln x +2x 2-4x ,∴f ′(x )=1x +4x -4,∴f ′(1)=1,又f (1)=-2,∴所求切线方程为y -(-2)=x -1,即x -y -3=0.14.已知函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则实数a 的取值范围是________.答案-1e2,解析f ′(x )=ln x +1x (x -a )=ln x +1-ax,函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则f ′(x )有两个变号零点,即f ′(x )=0有两个不等实根,即a =x (ln x +1)有两个不等实根,转化为y =a 与y =x (ln x +1)的图象有两个不同的交点.令g (x )=x (ln x +1),则g ′(x )=ln x +2,令ln x +2=0,则x =1e 2,即g (x )=x (ln x +1)[g (x )]min =-1e 2,当x →0时,g (x )→0,当x →+∞时,f (x )→+∞,所以结合f (x )的图象(图略)可知a -1e 2,15.(2019·山师大附中模拟)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.答案-1,12解析由函数f (x )=x 3-2x +e x -1e x f ′(x )=3x 2-2+e x +1e x ≥-2+e x +1ex ≥-2+2e x ·1e x=0,当且仅当x =0时等号成立,可得f (x )在R 上递增,又f (-x )+f (x )=(-x )3+2x +e -x -e x +x 3-2x +e x -1e x 0,可得f (x )为奇函数,则f (a -1)+f (2a 2)≤0,即有f (2a 2)≤0-f (a -1)=f (1-a ),即有2a 2≤1-a ,解得-1≤a ≤12.16.(2019·湖北黄冈中学、华师附中等八校联考)定义在R 上的函数f (x )满足f (-x )=f (x ),且对任意的不相等的实数x 1,x 2∈[0,+∞)有f (x 1)-f (x 2)x 1-x 2<0成立,若关于x 的不等式f (2mx -ln x-3)≥2f (3)-f (-2mx +ln x +3)在x ∈[1,3]上恒成立,则实数m 的取值范围是______________.答案12e ,1+ln 36解析∵函数f (x )满足f (-x )=f (x ),∴函数f (x )为偶函数.又f (2mx -ln x -3)≥2f (3)-f (-2mx +ln x +3)=2f (3)-f (2mx -ln x -3),∴f (2mx -ln x -3)≥f (3).由题意可得函数f (x )在(-∞,0)上单调递增,在[0,+∞)上单调递减.∴|2mx -ln x -3|≤3对x ∈[1,3]恒成立,∴-3≤2mx -ln x -3≤3对x ∈[1,3]恒成立,即ln x2x ≤m ≤ln x +62x对x ∈[1,3]恒成立.令g (x )=ln x2x ,x ∈[1,3],则g ′(x )=1-ln x 2x 2∴g (x )在[1,e ]上单调递增,在(e,3]上单调递减,∴g (x )max =g (e)=12e .令h (x )=ln x +62x ,x ∈[1,3],则h ′(x )=-5-ln x2x 2<0,∴h (x )在[1,3]上单调递减,∴h (x )min =h (3)=6+ln 36=1+ln 36.综上可得实数m 的取值范围为12e ,1+ln 36.三、解答题(本大题共70分)17.(10分)(2019·辽宁重点高中联考)已知函数f (x )=x 3+mx 2-m 2x +1(m 为常数,且m >0)有极大值9.(1)求m 的值;(2)若斜率为-5的直线是曲线y =f (x )的切线,求此直线方程.解(1)f ′(x )=3x 2+2mx -m 2=(x +m )(3x -m )=0,令f ′(x )=0,则x =-m 或x =13m ,当x 变化时,f ′(x )与f (x )的变化情况如下表:f ′(x )+0-0+f (x )增极大值减极小值增从而可知,当x =-m 时,函数f (x )取得极大值9,即f (-m )=-m 3+m 3+m 3+1=9,∴m =2.(2)由(1)知,f (x )=x 3+2x 2-4x +1,依题意知f ′(x )=3x 2+4x -4=-5,∴x =-1或x =-13,又f (-1)=6,=6827,所以切线方程为y -6=-5(x +1)或y -6827=-即5x +y -1=0或135x +27y -23=0.18.(12分)(2019·成都七中诊断)已知函数f (x )=x sin x +2cos x +ax +2,其中a 为常数.(1)若曲线y =f (x )在x =π2处的切线斜率为-2,求该切线的方程;(2)求函数f (x )在x ∈[0,π]上的最小值.解(1)求导得f ′(x )=x cos x -sin x +a ,由f a -1=-2,解得a =-1.此时2,所以该切线的方程为y -2=-2x +y -2-π=0.(2)对任意x ∈[0,π],f ″(x )=-x sin x ≤0,所以f ′(x )在[0,π]内单调递减.当a ≤0时,f ′(x )≤f ′(0)=a ≤0,∴f (x )在区间[0,π]上单调递减,故f (x )min =f (π)=a π.当a ≥π时,f ′(x )≥f ′(π)=a -π≥0,∴f (x )在区间[0,π]上单调递增,故f (x )min =f (0)=4.当0<a <π时,因为f ′(0)=a >0,f ′(π)=a -π<0,且f ′(x )在区间[0,π]上单调递减,结合零点存在定理可知,存在唯一x 0∈(0,π),使得f ′(x 0)=0,且f (x )在[0,x 0]上单调递增,在[x 0,π]上单调递减.故f (x )的最小值等于f (0)=4和f (π)=a π中较小的一个值.①当4π≤a <π时,f (0)≤f (π),故f (x )的最小值为f (0)=4.②当0<a <4π时,f (π)≤f (0),故f (x )的最小值为f (π)=a π.综上所述,函数f (x )的最小值f (x )min,a ≥4π,π,a <4π.19.(12分)(2019·武汉示范高中联考)已知函数f (x )=4ln x -mx 2+1(m ∈R ).(1)若函数f (x )在点(1,f (1))处的切线与直线2x -y -1=0平行,求实数m 的值;(2)若对于任意x ∈[1,e ],f (x )≤0恒成立,求实数m 的取值范围.解(1)∵f (x )=4ln x -mx 2+1,∴f ′(x )=4x -2mx ,∴f ′(1)=4-2m ,∵函数f (x )在(1,f (1))处的切线与直线2x -y -1=0平行,∴f ′(1)=4-2m =2,∴m =1.(2)∵对于任意x ∈[1,e ],f (x )≤0恒成立,∴4ln x -mx 2+1≤0,在x ∈[1,e ]上恒成立,即对于任意x ∈[1,e ],m ≥4ln x +1x 2恒成立,令g (x )=4ln x +1x 2,x ∈[1,e ],g ′(x )=2(1-4ln x )x 3,令g ′(x )>0,得1<x <14e ,令g ′(x )<0,得14e <x <e ,当x 变化时,g ′(x ),g (x )的变化如下表:x 14(1,e )14e14(e ,e)g ′(x )+0-g (x )极大值∴函数g (x )在区间[1,e ]上的最大值g (x )max =g (14e )=141244ln e 1(e )+=2e e ,∴m ≥2ee,即实数m 的取值范围是2ee ,+20.(12分)已知函数f (x )=ln x -ax (ax +1),其中a ∈R .(1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围.解(1)依题意知,函数f (x )的定义域为(0,+∞),且f ′(x )=1x -2a 2x -a =2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a,函数f (x )当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a ,函数f (x )-1a,+.(2)①当a =0时,函数f (x )在(0,1]内有1个零点x 0=1;②当a >0时,由(1)知函数f (x )若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;若0<12a <1,即当a >12时,f (x )1上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足0,即ln 12a ≥34,又∵a >12,∴ln 12a <0,∴不等式不成立.∴f (x )在(0,1]内无零点;③当a <0时,由(1)知函数f (x )-1a,+若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;若0<-1a <1,即a <-1时,函数f (x )-1a,1上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].21.(12分)(2019·湖北黄冈中学、华师附中等八校联考)在工业生产中,对一正三角形薄钢板(厚度不计)进行裁剪可以得到一种梯形钢板零件,现有一边长为3(单位:米)的正三角形钢板(如图),沿平行于边BC 的直线DE 将△ADE 剪去,得到所需的梯形钢板BCED ,记这个梯形钢板的周长为x (单位:米),面积为S (单位:平方米).(1)求梯形BCED 的面积S 关于它的周长x 的函数关系式;(2)若在生产中,梯形BCED 试确定这个梯形的周长x 为多少时,该零件才可以在生产中使用?解(1)∵DE ∥BC ,△ABC 是正三角形,∴△ADE 是正三角形,AD =DE =AE ,BD =CE =3-AD ,则DE +2(3-AD )+3=9-AD =x ,S =(3+AD )·(3-AD )·sin 60°2=3(12-x )(x -6)4(6<x <9),化简得S =34(-x 2+18x -72)(6<x <9).故梯形BCED 的面积S 关于它的周长x 的函数关系式为S =34(-x 2+18x -72)(6<x <9).(2)∵由(1)得S =34(-x 2+18x -72)(6<x <9),令f (x )=S x =x -72x +x <9),∴f ′(x )1令f ′(x )=0,得x =62或x =-62(舍去),f (x ),f ′(x )随x 的变化如下表:x(6,62)62(62,9)f ′(x )+0-f (x )单调递增极大值单调递减∴当x =62时,函数f (x )=S x有最大值,为f (62)=923-36.∴当x =62米时,该零件才可以在生产中使用.22.(12分)(2019·衡水中学调研)已知函数f (x )=k e x -x 2(其中k ∈R ,e 是自然对数的底数).(1)若k =2,当x ∈(0,+∞)时,试比较f (x )与2的大小;(2)若函数f (x )有两个极值点x 1,x 2(x 1<x 2),求k 的取值范围,并证明:0<f (x 1)<1.解(1)当k =2时,f (x )=2e x -x 2,则f ′(x )=2e x -2x ,令h (x )=2e x -2x ,h ′(x )=2e x -2,由于x ∈(0,+∞),故h ′(x )=2e x -2>0,于是h (x )=2e x -2x 在(0,+∞)上为增函数,所以h (x )=2e x -2x >h (0)=2>0,即f ′(x )=2e x -2x >0在(0,+∞)上恒成立,从而f (x )=2e x -x 2在(0,+∞)上为增函数,故f (x )=2e x -x 2>f (0)=2.(2)函数f (x )有两个极值点x 1,x 2,则x 1,x 2是f ′(x )=k e x -2x =0的两个根,即方程k =2x ex 有两个根,设φ(x )=2x e x ,则φ′(x )=2-2x ex ,当x <0时,φ′(x )>0,函数φ(x )单调递增且φ(x )<0;当0<x <1时,φ′(x )>0,函数φ(x )单调递增且φ(x )>0;当x >1时,φ′(x )<0,函数φ(x )单调递减且φ(x )>0.作出函数φ(x )的图象如图所示,要使方程k =2x e x 有两个根,只需0<k <φ(1)=2e,故实数k f (x )的两个极值点x 1,x 2满足0<x 1<1<x 2,由f ′(x 1)=1e x k -2x 1=0得k =112e x x ,所以f (x 1)=1e x k -x 21=112e x x 1e x -x 21=-x 21+2x 1=-(x 1-1)2+1,由于x 1∈(0,1),所以0<-(x 1-1)2+1<1,所以0<f (x 1)<1.。

高中数学选修1-1(人教B版)第三章导数及其应用3.4知识点总结含同步练习题及答案

高中数学选修1-1(人教B版)第三章导数及其应用3.4知识点总结含同步练习题及答案

x − 2 sin x 的图象大致是 ( 2
)
A.
B.
C.
D.
答案: C 解析: 据已知解析式可得
f (0) = 0 ,即图象经过坐标原点,故排除 A ; x x 又当 x > 2π 时, > π , 2 sin x ⩽ 2 ,即当 x > 2π 时, f (x) = − 2 sin x > 0 ,故排 2 2
f (0) = 7 > 0, f (2) = −1 < 0,
所以在区间 (0, 2) 上f (x) 的图象与 x 轴只有 1 个交点,即方程 2x3 − 6x2 + 7 = 0 在区间 (0, 2) 上只有 1 个根.
四、课后作业
(查看更多本章节同步练习题,请到快乐学)
1. 函数 y =
求方程 2x 3 − 6x 2 + 7 = 0 在区间 (0, 2) 上的根的个数. 解:设
f (x) = 2x3 − 6x2 + 7, x ∈ (0, 2),

f ′ (x) = 6x2 − 12x = 6x(x − 2) < 0(x ∈ (0, 2)),
所以 f (x) = 2x 3 − 6x 2 + 7 在 (0, 2) 上单调递减,又
法二:
f (x)
g(x) = x − 1 − f (x),
则除切点之外,曲线 C 在直线 L 的下方等价于
g(x) > 0(∀x > 0, x ≠ 1). g(x) 满足 g(1) = 0 ,且 g ′ (x) = 1 − f ′ (x) = x2 − 1 + ln x . x2
单递减;当 x > 1
所以对称轴 x =

高中数学选修2-2(人教B版)第一章导数及其应用1.4知识点总结含同步练习题及答案

高中数学选修2-2(人教B版)第一章导数及其应用1.4知识点总结含同步练习题及答案
x x [n, 2n] 上的 n 个矩形的面积之和小于曲边梯形的面积,
1 1 1 25 . + +⋯+ < n+1 n+2 2n 36

2n 1 1 1 1 n + +⋯+ <∫ dx = ln x| 2 n = ln 2n − ln n = ln 2, n+1 n+2 2n x n
因为ln 2 ≈ 0.6931 , 25 ≈ 0.6944 ,所以ln 2 < 25 .所以
3 1
π 2 dx;(3)∫ 0 2 (sin x − cos x)dx. x

(1 + x + x2 ) = ∫
3 1
1 2 3 1 x | 1 + x3 | 3 1 2 3 1 1 = (3 − 1) + (3 2 − 1 2 ) + (3 3 − 1 3 ) 2 3 44 = . 3 = x| 3 1 +
∑ f (ξi )Δx = ∑
i =1 i =1 n n
b−a f (ξi ), n
当 n → ∞ 时,上述和式无限接近某个常数,这个常数叫做函数 f (x) 在区间 [a, b] 上的定积分(definite integral),记作 ∫ ab f (x)dx,即

b a
f (x)dx = lim ∑

b a
f (x)dx = F (x)| b a = F (b) − F (a).
例题: 利用定积分定义计算: (1)∫ 1 (1 + x)dx;(2)∫ 0 xdx. 解:(1)因为 f (x) = 1 + x 在区间 [1, 2] 上连续,将区间 [1, 2] 分成 n 等份,则每个区间的

高中数学导数应用练习题及参考答案2023

高中数学导数应用练习题及参考答案2023

高中数学导数应用练习题及参考答案2023本文为高中数学导数应用的练习题及参考答案,旨在帮助学生深入理解和掌握导数的应用。

一、函数的单调性1.求以下函数的单调区间:(1)$f(x)=x^3-3x^2+4x-1$(2)$g(x)=\frac{1}{x-2}+\ln(x-1)$答案:(1)$f'(x)=3x^2-6x+4=3(x-1)^2+1>0$所以$f(x)$在$(-\infty,+\infty)$上单调递增。

(2)$g'(x)=-\frac{1}{(x-2)^2}+\frac{1}{x-1}=\frac{x-3}{(x-2)^2(x-1)}$当$x<1$或$1<x<2$时,$g'(x)>0$,$g(x)$单调递增。

当$x>2$时,$g'(x)<0$,$g(x)$单调递减。

所以$g(x)$的单调区间为$(-\infty,1)\cup(1,2)\cup(2,+\infty)$。

二、函数的极值2.求以下函数的极值及其所在点:(1)$y=x^3-3x^2-9x+5$(2)$y=2\sin x+\cos 2x$答案:(1)$y'=3x^2-6x-9=3(x-3)(x+1)$令$y'=0$,解得$x=-1$或$x=3$。

又$y''=6x-6$,当$x=-1$时,$y''<0$,$y(x)$取极大值;当$x=3$时,$y''>0$,$y(x)$取极小值。

所以$y(x)$的极大值为$y_{max}=17$,其所在点为$x=-1$;极小值为$y_{min}=-19$,其所在点为$x=3$。

(2)$y'=2\cos x-2\sin 2x$,$y''=-2\sin x-4\cos 2x$令$y'=0$,解得$x=\frac{1}{4}\arctan\frac{\sqrt{10}-1}{\sqrt{3}}+k\pi$,$k\in Z$。

高二数学导数及其应用试题答案及解析

高二数学导数及其应用试题答案及解析

高二数学导数及其应用试题答案及解析1.函数的导数是()A.B.C.D.【答案】D【解析】===【考点】基本函数的求导公式、积的求导法则点评:本题比较简单,直接代入求导公式运算。

要求学生熟记公式。

2.已知直线是的切线,则的值为()A.B.C.D.【答案】C【解析】,则∴切点为,曲线过∴,。

【考点】切线方程、对数运算。

点评:根据导数的几何意义,先把切点利用k表示,再利用切点是切线和曲线的公共点代入已知方程求值。

3.在曲线y=2x2-1的图象上取一点(1, 1)及邻近一点(1+Δx,1+Δy),则等于A.4Δx+2Δx2B.4+2Δx C.4Δx+Δx2D.4+Δx【答案】B【解析】∵△y=2(1+△x)2-1-1=2△x2+4△x,∴=4+2△x,故选B.【考点】本题主要考查导数的概念。

点评:遵循“算增量,求比值”,细心计算。

4.(2006年福建卷)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米。

(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(II)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?【答案】(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。

(II)当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.【解析】分析:结合物理知识进行求解.解:(I)当时,汽车从甲地到乙地行驶了小时,要耗没(升)。

答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。

(II)当速度为千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为升,依题意得令得当时,是减函数;当时,是增函数。

当时,取到极小值因为在上只有一个极值,所以它是最小值。

答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.【考点】本小题主要考查函数、导数及其应用。

高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案

高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案

导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).



高考不提分,赔付1万元,关注快乐学了解详情。

解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为

A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。

高三数学精选导数及其应用多选题同步练习

高三数学精选导数及其应用多选题同步练习

高三数学精选导数及其应用多选题同步练习一、导数及其应用多选题1.已知(0,1)x ∈,则下列正确的是( )A .cos 2x x π+<B .22xx <C .22sin 24x x x >+ D .1ln 1x x <- 【答案】ABC 【分析】构造函数()sin f x x x =-证明其在0,2π⎛⎫⎪⎝⎭单调递减,即可得sin 22x x ππ⎛⎫-<-⎪⎝⎭即可判断选项A ;作出2yx 和2x y =的函数图象可判断选项B ;作出()sin2xf x =,()224x h x x =+的图象可判断选项C ;构造函数()1ln 1x g x x =+-利用导数判断其在()0,1x ∈上的单调性即可判断选项D ,进而可得正确选项.【详解】对于选项A :因为()0,1x ∈,所以022x ππ<-<,令()sin f x x x =-,()cos 10f x x '=-≤,()sin f x x x =-在0,2π⎛⎫⎪⎝⎭单调递减,所以()()00f x f <=,即sin x x <,所以sin 22x x ππ⎛⎫-<- ⎪⎝⎭即cos 2x x π<-,可得cos 2x x π+<,故A 正确, 对于选项B :由图象可得()0,1x ∈,22x x <恒成立,故选项B 正确;对于选项C :要证22sin 24xx x >+, 令()sin 2x f x =,()224xh x x =+ ()()f x f x -=-,()sin2xf x =是奇函数, ()()h x h x -=,()224x h x x =+是偶函数, 令2224144x t x x ==-++ ,则y t =, 因为24y x =+在()0,∞+单调递增,所以2414t x =-+在()0,∞+单调递增,而y t =单调递增,由符合函数的单调性可知()224x h x x =+在()0,∞+单调递增, 其函数图象如图所示:由图知当()0,1x ∈时22sin 24xx x >+C 正确; 对于选项D :令()1ln 1x g x x =+-,()01x <<,()221110x g x x x x-'=-=<, 所以()1ln 1x g x x=+-在()0,1单调递减,所以()()1ln1110g x g >=+-=, 即1ln 10x x+->,可得1ln 1x x >-,故选项D 不正确.故选:ABC 【点睛】思路点睛:证明不等式恒成立(或能成立)一般可对不等式变形,分离参数,根据分离参数后的结果,构造函数,由导数的方法求出函数的最值,进而可求出结果;有时也可根据不等式,直接构成函数,根据导数的方法,利用分类讨论求函数的最值,即可得出结果.2.设函数()()()1f x x x x a =--,则下列结论正确的是( ) A .当4a =-时,()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为194B .当1a =时,函数()f x 的图像与直线427y =有2个交点 C .当2a =时,()f x 的图像关于点()1,0中心对称D .若函数()f x 有两个不同的极值点1x ,2x ,则当2a ≥时,()()120f x f x +≤ 【答案】BCD 【分析】运用平均变化率的定义可分析A ,利用导数研究()f x 的单调性和极值,可分析B 选项,证明()()20f x f x +-=可分析C 选项,先得出1x ,2x 为方程()23210x a x a -++=的两个实数根,结合韦达定理可分析D 选项. 【详解】对于A ,当4a =-时,()()()14f x x x x =-+,则()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为()()()119123192221412⎛⎫⨯-⨯--⨯-⨯ ⎪⎝⎭=---,故A 错误;对于B ,当1a =时,()()23212f x x x x x x =-=-+,()()()2341311f x x x x x '=-+=--,可得下表:因为327f ⎛⎫=⎪⎝⎭,()10f =,()2227f =>,结合()f x 的单调性可知,方程()427f x =有两个实数解,一个解为13,另一个解在()1,2上,故B 正确; 对于C ,当2a =时,()()()()()()()231211111f x x x x x x x x ⎡⎤=--=---=---⎣⎦, 则有()()()()()()33211110f x f x x x x x +-=---+---=,故C 正确; 对于D ,()()()1f x x x x a =--,()()()()()2121321f x x x a x x a x a x a '=--+--=-++,令()0f x '=,可得方程()23210x a x a -++=,因为()()22412130a a a ∆=-+=-+>,且函数()f x 有两个不同的极值点1x ,2x ,所以1x ,2x 为方程()23210x a x a -++=的两个实数根,则有()12122132x x a a x x ⎧+=+⎪⎪⎨⎪=⎪⎩,则()()()()()()1211122211f x f x x x x a x x x a +=--+--()()()()33221212121x x a x x a x x =+-++++()()()()()22212112212121212x x x x x x a x x x x a x x ⎡⎤=+-++++-++⎣⎦()()()22211221212221233a x x x x x x x x a ⎡⎤=+-+-+++⎢⎥⎣⎦()()()()()21242212113327a a a x x a a --⎡⎤=+-++=-+⋅⎢⎥⎣⎦因为2a ≥,所以()()120f x f x +≤,故D 正确; 故选:BCD . 【点睛】关键点点睛:本题考查利用导数研究函数的单调性,平均变化率,极值等问题,本题的关键是选项D ,利用根与系数的关系,转化为关于a 的函数,证明不等式.3.定义在R 上的函数()f x ,若存在函数()g x ax b =+(a ,b 为常数),使得()()f x g x ≥对一切实数x 都成立,则称()g x 为函数()f x 的一个承托函数,下列命题中正确的是( )A .函数()2g x =-是函数ln ,0()1,0x x f x x >⎧=⎨⎩的一个承托函数B .函数()1g x x =-是函数()sin f x x x =+的一个承托函数C .若函数()g x ax = 是函数()x f x e =的一个承托函数,则a 的取值范围是[0,]eD .值域是R 的函数()f x 不存在承托函数【分析】由承托函数的定义依次判断即可. 【详解】解:对A ,∵当0x >时,()ln (,)f x x =∈-∞+∞, ∴()()2f x g x ≥=-对一切实数x 不一定都成立,故A 错误;对B ,令()()()t x f x g x =-,则()sin (1)sin 10t x x x x x =+--=+≥恒成立, ∴函数()1g x x =-是函数()sin f x x x =+的一个承托函数,故B 正确; 对C ,令()xh x e ax =-,则()xh x e a '=-, 若0a =,由题意知,结论成立, 若0a >,令()0h x '=,得ln x a =,∴函数()h x 在(,ln )a -∞上为减函数,在(ln ,)a +∞上为增函数, ∴当ln x a =时,函数()h x 取得极小值,也是最小值,为ln a a a -, ∵()g x ax =是函数()x f x e =的一个承托函数, ∴ln 0a a a -≥, 即ln 1a ≤, ∴0a e <≤,若0a <,当x →-∞时,()h x →-∞,故不成立,综上,当0a e 时,函数()g x ax =是函数()xf x e =的一个承托函数,故C 正确;对D ,不妨令()2,()21f x x g x x ==-,则()()10f x g x -=≥恒成立, 故()21g x x =-是()2f x x =的一个承托函数,故D 错误. 故选:BC . 【点睛】方法点睛:以函数为载体的新定义问题,是高考命题创新型试题的一个热点,常见的命题形式有新概念、新法则、新运算等,这类试题中函数只是基本的依托,考查的是考生创造性解决问题的能力.4.已知函数()f x 的定义域为()0,∞+,其导函数()f x '满足()1f x x'<,且()11f =,则下列结论正确的是( ) A .()2f e > B .10f e ⎛⎫> ⎪⎝⎭C .()1,x e ∀∈,()2f x <D .1,1x e ⎛⎫∀∈ ⎪⎝⎭, ()120x f x f ⎛⎫+>⎪⎝⎭-【分析】令()()ln F x f x x =-,求导得:'1()()0F x f x x'=-<,可得函数的单调性,再结合(1)1f =,可得(1)1F =,对选项进行一一判断,即可得答案;【详解】令()()ln F x f x x =-,∴'1()()0F x f x x'=-<, ()F x ∴在(0,)+∞单调递减, (1)1f =,(1)(1)1F f ∴==,对A ,()(1)()11()2F e F f e f e <⇒-<⇒<,故A 错误;以B ,111(1)()110e F F f f e e ⎛⎫⎛⎫>⇒+>⇒> ⎪ ⎪⎝⎭⎝⎭,故B 正确;对C ,(1,)()(1)()ln 1x e F x F f x x ∈∴<⇒-<,()1ln f x x ∴<+,(1.),ln (0,1)x e x ∈∈, 1ln (1,2)x ∴+∈,()2f x ∴<,故C 正确;对D ,111,1,,()x x F x F e x x ⎛⎫⎛⎫∈>> ⎪ ⎪⎝⎭⎝⎭()1ln ln f x x f x x ⎛⎫⇒->+ ⎪⎝⎭1()2ln f x f x x ⎛⎫⇒-> ⎪⎝⎭,1,1,ln (1,0)x x e ⎛⎫∈∴∈- ⎪⎝⎭,1()2f x f x ⎛⎫∴->- ⎪⎝⎭1()20f x f x ⎛⎫⇒-+> ⎪⎝⎭,故D 正确; 故选:BCD. 【点睛】根据条件构造函数,再利用导数的工具性研究函数的性质,是求解此类抽象函数问题的关键.5.对于定义在1D 上的函数()f x 和定义在2D 上的函数()g x ,若直线y kx b =+(),k b R ∈同时满足:①1x D ∀∈,()f x kx b ≤+,②2x D ∀∈,()g x kx b ≥+,则称直线y kx b =+为()f x 与()g x 的“隔离直线”.若()ln xf x x=,()1x g x e -=,则下列为()f x 与()g x 的隔离直线的是( )A .y x =B .12y x =-C .3ex y =D .1122y x =- 【答案】AB 【分析】根据隔离直线的定义,函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方,并且可以有公共点,结合函数的图象和函数的单调性,以及直线的特征,逐项判定,即可求解. 【详解】根据隔离直线的定义,函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方,并且可以有公共点, 由函数()ln x f x x =,可得()21ln xf x x-'=, 所以函数()f x 在()0,e 上单调递增,在(),e +∞上单调递减,因为()10f =,()11f '=,此时函数()f x 的点(1,0)处的切线方程为1y x =-, 且函数()f x 的图象在直线1y x =-的下方; 又由函数()1x g x e-=,可得()1e0x g x -'=>,()g x 单调递增,因为()()111g g '==,所以函数()g x 在点(1,1)处的切线方程为11y x -=-,即y x =, 此时函数()g x 的图象在直线y x =的上方,根据上述特征可以画出()y f x =和()y g x =的大致图象,如图所示,直线1y x =-和y x =分别是两条曲线的切线,这两条切线以及它们之间与直线y x =平行的直线都满足隔离直线的条件,所以A ,B 都符合; 设过原点的直线与函数()y f x =相切于点00(,)P x y , 根据导数的几何意义,可得切线的斜率为021ln x k x -=, 又由斜002000ln 0y x k x x -==-,可得002100ln 1ln x x x x -=,解得0x =,所以12k e ==,可得切线方程为2x y e =,又由直线3xy e=与曲()y f x =相交,故C 不符合; 由直线1122y x =-过点()1,0,斜率为12,曲线()y f x =在点()1,0处的切线斜率为1,明显不满足,排除D. 故选:AB.【点睛】对于函数的新定义试题:(1)认真审题,正确理解函数的新定义,合理转化;(2)根据隔离直线的定义,转化为函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方.6.已知函数()e sin xf x a x =+,则下列说法正确的是( )A .当1a =-时,()f x 在0,单调递增B .当1a =-时,()f x 在()()0,0f 处的切线为x 轴C .当1a =时,()f x 在()π,0-存在唯一极小值点0x ,且()010f x -<<D .对任意0a >,()f x 在()π,-+∞一定存在零点 【答案】AC 【分析】结合函数的单调性、极值、最值及零点,分别对四个选项逐个分析,可选出答案. 【详解】对于A ,当1a =-时,()e sin xf x x =-,()e cos xf x x '=-,因为()0,x ∈+∞时,e 1,cos 1xx >≤,即0fx,所以()f x 在0,上单调递增,故A 正确;对于B ,当1a =-时,()e sin x f x x =-,()e cos xf x x '=-,则()00e sin01f =-=,()00e cos00f '=-=,即切点为0,1,切线斜率为0,故切线方程为1y =,故B 错误;对于C ,当1a =时,()e sin xf x x =+,()e cos xf x x '+=,()e sin xf x x '=-',当()π,0x ∈-时,sin 0x <,e 0x >,则()e sin 0xx f x -'=>'恒成立,即()e cos x f x x '+=在()π,0-上单调递增,又ππ22ππe cos e 220f --⎛⎫⎛⎫'-=-= ⎪ ⎪⎝⎭⎝⎭+>,3π3π443π3πe cos e442f --⎛⎫⎛⎫'-=-= ⎪ ⎪⎝⎭⎝-⎭+,因为123π3π421e e 2e ---⎛⎫=<⎪⎭< ⎝,所以3π43πe 024f -⎛⎫'-= ⎪-⎭<⎝,所以存在唯一03ππ,42x ⎛⎫∈-- ⎪⎝⎭,使得()00f x '=成立, 所以()f x 在()0π,x -上单调递减,在()0,0x 上单调递增,即()f x 在()π,0-存在唯一极小值点0x ,由()000e cos 0xf x x +'==,可得()000000πe sin cos sin 4x f x x x x x ⎛⎫=+=-+=- ⎪⎝⎭,因为03ππ,42x ⎛⎫∈-- ⎪⎝⎭,所以0π3ππ,44x ⎛⎫-∈-- ⎪⎝⎭,则()00π4f x x ⎛⎫=- ⎪⎝⎭()1,0∈-,故C 正确;对于选项D ,()e sin xf x a x =+,()π,x ∈-+∞,令()e sin 0xf x a x =+=,得1sin ex xa -=, ()sin ex xg x =,()π,x ∈-+∞,则()πcos sin 4e e x xx x x g x ⎛⎫- ⎪-⎝⎭'==, 令0g x ,得πsin 04x ⎛⎫-= ⎪⎝⎭,则ππ4x k =+()1,k k ≥-∈Z ,令0g x,得πsin 04x ⎛⎫-> ⎪⎝⎭,则π5π2π,2π44x k k ⎛⎫∈++ ⎪⎝⎭()1,k k ≥-∈Z ,此时函数()g x 单调递减, 令0g x,得πsin 04x ⎛⎫-< ⎪⎝⎭,则5π9π2π,2π44x k k ⎛⎫∈++ ⎪⎝⎭()1,k k ≥-∈Z ,此时函数()g x 单调递增, 所以5π2π4x k =+()1,k k ≥-∈Z 时,()g x 取得极小值,极小值为5π5π2π2π445π5π2π5π4s 42in si πe e 4n k k g k k ++⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭++()1,k k ≥-∈Z , 在()g x 的极小值中,3π4sin 3π45π5π42π4eg g -⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝+⎭-最小,当3ππ,4x ⎛⎫∈--⎪⎝⎭时,()g x 单调递减,所以函数()g x的最小值为3π3π445πsin 3π144eg --⎛⎫-==- ⎪⎝⎭,当3π411a--<-时,即3π40a -<<时,函数()g x 与1=-y a无交点,即()f x 在()π,-+∞不存在零点,故D 错误.故选:AC. 【点睛】本题考查利用导数研究函数的极值、零点、最值,及切线方程的求法,考查学生的推理能力与计算求解能力,属于难题.7.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1222a b -<< B.34a b ==a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD 【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围. 【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<; B选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点, 所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-; D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可 ∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞ 故选:ACD【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.8.已知实数a ,b ,c ,d 满足2111a a e cb d --==-,其中e 是自然对数的底数,则()()22a c b d -+-的值可能是( ) A .7B .8C .9D .10【答案】BCD【分析】 由题中所给的等式,分别构造函数()2xf x x e =-和()2g x x =-+,则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,利用导数的几何意义可知当()01f x '=-时,切点到直线的距离最小,再比较选项.【详解】 由212a a a e b a e b-=⇒=-,令()2x f x x e =-,()12x f x e '∴=- 由1121c d c d -=⇒=-+-,令()2g x x =-+ 则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,设()y f x =上与()y g x =平行的切线的切点为()000,M x y由()0001210xf x e x '=-=-⇒=,∴切点为()00,2M -所以切点为()00,2M -到()y g x =的距离的平方为28=的距离为(),M a b 与(),N c d 的距离的平方的最小值.故选:BCD.【点睛】本题考查构造函数,利用导数的几何意义求两点间距离的最小值,重点考查转化思想,构造函数,利用几何意义求最值,属于偏难题型.。

高二数学(文)期末复习题《导数及其应用》带答案

高二数学(文)期末复习题《导数及其应用》带答案

高二数学(文)期末复习题《导数及其应用》题型一:考导数的几何意义及物理意义1. 一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒2.在曲线y =x 2上切线的倾斜角为π4的点是( )A .(0,0)B .(2,4) C.⎝ ⎛⎭⎪⎫14,116 D.⎝ ⎛⎭⎪⎫12,14 3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 4. 直线y x =是曲线ln y a x =+的一条切线,则实数a 的值为A .1-B .eC .ln 2D .1 5.(2014龙岗期末)函数3y x =的图象在点A (2,8)处的切线方程为 .6.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________7.(2013龙岗期末)曲线1y x =在点1,22⎛⎫⎪⎝⎭处的切线的斜率为 A .14B .14- C .4D .4-题型二:导数的计算8. 32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316 C .313 D .3109.若3'0(),()3f x x f x ==,则0x 的值为_________________; 10.函数sin xy x=的导数为_________________ 题型三:利用导数研究函数的单调性11. 函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 12.函数5523--+=x x x y 的单调递增区间是________________________13.(2013龙岗期末)设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是14.(2014龙岗期末)在R 上可导的函数f (x )的图象如图所示,则关于x 的不等式x f x '⋅()<0的解为A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-2,-1)∪(1,2)D .(-∞,-2)∪(2,+∞)题型四:利用导数研究函数的极值、最值 15.0()0f x '=是函数()f x 在点0x 处取极值的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件16.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( )A .2B .3C .4D .517.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示,则函数()f x 在(),a b 内有极小值点A .1个B .2个C .3个D .4个18.已知函数223)(a bx ax x x f +++=在x=1处有极值为10,则f (2)等于____________ 19.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .020.已知函数3()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 综合性解答题:21.已知函数23bx ax y +=,当1x =时,有极大值3; (1)求,a b 的值;(2)求函数y 的极小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学《导数及其应用》同步练习题(含答案)1. 一个物体的运动方程为s=1−t+2t2其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是()A.9米/秒B.10米/秒C.11米/秒D.12米/秒2. 若函数f(x)=lnx−ax2在区间(1, 2)内单调递增,则实数a的取值范围是( )A.(−∞, 18] B.(−∞, 18) C.[18, 12] D.(18, 12)3. 若关于x的不等式x(1+lnx)+2k>kx的解集为A,且(2, +∞)⊆A,则整数k的最大值是()A.3B.4C.5D.64. 定义在R上的函数f(x)满足:f′(x)>1−f(x),f(0)=3,f′(x)是f(x)的导函数,则不等式e x f(x)>e x+2(其中e为自然对数的底数)的解集为()A.{x|x>0}B.{x|x<0}C.{x|x<−1或x>1}D.{x|x<−1或0<x<1}5. 一质点做直线运动,由始点经过ts后的距离为s=13t3−6t2+32t,则速度为0的时刻是()A.t=4sB.t=8sC.t=4s与t=8sD.t=0s与t=4s6. 曲线y=x3−3x2+1在点(1, −1)处的切线方程为( )A.y=3x−4B.y=−3x+2C.y=−4x+3D.y=4x−57. 函数y=sinx的图象上一点(π3,√32)处的切线的斜率为()A.1B.√32C.√22D.128. 函数f(x)=−2x+ax3,若f′(2)=1,则a=()A.4B.14C.−4 D.−149. 已知函数y=f(x)的图象在点M(1, f(1))处的切线方程是y=12x+2,则f(1)+f′(1)的值等于()A.1B.52C.3D.010. 若曲线y=x3+px+q与x轴相切,则p,q之间的关系满足()A.(p3)2+(q2)2=0 B.(p2)2+(q3)3=0C.2p−3q2=0D.2q−3p2=011. 已知函数f(x)=e x+x2,则f′(1)=________.12. 已知函数f(x)=f′(π2)sinx−cosx,则f(π6)=________.13. 定义在R上的函数f(x)满足:f′(x)>1−f(x),f(0)=6,f′(x)是f(x)的导函数,则不等式e x f(x)>e x+5(其中e为自然对数的底数)的解集为________.14. y=xcosx在x=π3处的导数值是________.15. 已知f(x)=e kx,则f′(x)=________.16. 函数f(x)=ln(x2−3x−4)的单调递减区间是________.17. 已知函数f(x)=txx2+1,其中t>0,则函数的单调增区间________.18. 若函数f(x)=sin(3−5x),则f′(x)=________.19. 若函数f(x)=x3−12x+a的极大值为11,则f(x)的极小值为________.20. 若函数f(x)=x+1−a(x−1x+1)在x=1处取得极值,则实数a的值为________.21. 已知定义在R上的函数f(x)=x3+(k−1)x2+(k+5)x−1.(1)若k=−5,求f(x)的极值;(2)若f(x)在区间(0,3)内单调,求实数k的取值范围.22. 已知函数f(x)=lnx−ax+a,a∈R.(1)求函数f(x)的单调区间;(2)当x≥0时,函数g(x)=(x+1)f(x)−lnx的图象恒不在x轴的上方,求实数a的取值范围.23. 已知函数f(x)=x−1−alnx(a<0).(1)讨论函数f(x)的单调性;(2)若对于任意的x1,x2∈(0,1],且x1≠x2,都有|f(x1)−f(x2)|<4|1x1−1x2|,求实数a的取值范围.24. 已知函数f(x)=x3+ax2+bx+2(a,b∈R)的图象在点M(1,f(1))处的切线方程为12x+y−3=0.(1)求a,b的值并求函数f(x)的单调区间;(2)求f(x)在[−2,4]的最值.25. 设x=1和x=2是函数f(x)=x5+ax3+bx+1的两个极值点.(1)求a和b的值;(2)求f(x)的单调区间.26. 已知函数f(x)=x3+ax+b.(1)若f(x)在x=0处取得极值为−2,求a、b的值;(2)若f(x)在(1, +∞)上是增函数,求实数a的取值范围.27. 已知函数f(x)=ln(x+1)与函数g(x)=x2+ax+b在x=0处有公共的切线.(1)求实数a,b的值;(2)记F(x)=f(x)−g(x),求F(x)的极植.28. 已知函敦f(x)=ax2+blnx,其中ab≠0,求函数有极值时,a、b满足的条件.29. 已知函数f(x)=x(x−1)(x−a)有绝对值相等,符号相反的极大值和极小值,试确定常数a的值.30. 已知函数f(x)=x3+ax2+3x+b(a, b∈R),若f(x)的图象上任意不同两点连线的斜率均大于2,求实数a的取值范围.参考答案一、 选择题1.C2.A3.B4.A5.C6.B7.D8.B9.C 10.B 二、 填空题 11.e+2 12.√3−12 13.(0, +∞) 14.12−√3π615.ke kx 16.(−∞, −1) 17.(−1,1) 18.−5cos(3−5x) 19.−21 20.2 三、 解答题21.解:(1)k =−5时,f(x)=x 3−6x 2−1,f′(x)=3x 2−12x. 令f′(x)=0,即3x 2−12x =0,解得x =0或x =4. 下面分两种情况讨论:当f′(x)>0,即x <0或x >4时; 当f′(x)<0,即0<x <4时.当x 变化时,f′(x),f(x)的变化情况如下表:因此,当x =0时,f(x)有极大值,并且极大值为f(0)=−1;当x =4时, f(x)有极小值,并且极小值为f(4)=−33.(2)f′(x)=3x 2+2(k −1)x +k +5=3(x −1−k 3)2−(1−k)23+k +5,f′(x)的图象是开口向上的抛物线,对称轴是直线x =1−k 3.当1−k 3≤0,即k ≥1时,f′(0)=k +5>0且f′(x)在(0,3)上单调递增,∴ f′(x)>0在(0,3)内恒成立,∴ f(x)在(0,3)上单调递增,即k ≥1时满足题意. 当1−k 3≥3,即k ≤−8时,f′(0)=k +5<0且f′(x)在(0,3)上单调递减,∴ f′(x)<0在(0,3)内恒成立,∴ f(x)在(0,3)上单调递减. 即k ≤−8时满足题意. 当0<1−k 3<3即−8<k <1时,若−8<k ≤−5,则f′(0)=k +5≤0,只需f′(3)=7k +26≤0即k ≤−267, 此时f′(x)≤0在(0,3)内恒成立.即f(x)在(0,3)上单调递减.∴ −8<k ≤−5时满足题意.若−5<k <1,则f′(0)=k +5>0,此时只需f′(1−k 3)=−(1−k)23+k +5≥0,解得−2≤k ≤7,即−2≤k <1时,f′(x)≥0在(0,3)内恒成立. 即−2≤k <1时f(x)在(0,3)上单调递增. 综上,若f(x)在区间(0,3)内单调,实数k 的取值范围是(−∞,−5]∪[−2,+∞).22.解:(1)由题意得函数f(x)的定义域是(0,+∞). ∵ f(x)=lnx −ax +a ,∴ f ′(x)=1x −a .当a ≤0时,f ′(x)>0,函数f(x)在定义域(0,+∞)上是增函数; 当a >0时,令f ′(x)=−a(x−1a)x ,当x >1a 时,f ′(x)<0,函数f(x)在(1a ,+∞)上是减函数,当0<x <1a 时,f ′(x)>0,函数f(x)在(0,1a )上是增函数. ∴ 当a ≤0时,f(x)的单调递增区间是(0,+∞);当a >0时,f(x)的单调递增区间是(0,1a ),单调递减区间是(1a ,+∞).(2)当x ≥1时,函数g(x)=(x +1)f(x)−lnx =xlnx −a (x 2−1)的图象恒不在x 轴的上方等价于g(x)max ≤0(x ≥1).由g(x)=xlnx −a (x 2−1),得g ′(x)=lnx +1−2ax . 令ℎ(x)=lnx +1−2ax ,则ℎ′(x)=1x −2a .①若a ≤0,则ℎ′(x)>0,故ℎ(x)在[1,+∞)上单调递增,∴ ℎ(x)≥ℎ(1),即g ′(x)≥g ′(1)=1−2a ≥0,∴ g(x)在[1,+∞)上单调递增, ∴ g(x)≥g(1)=0,从而xlnx −a (x 2−1)≥0,不符合题意; ②若0<a <12,当x ∈[1,12a)时,ℎ′(x)>0,故ℎ(x)在x ∈[1,12a )上单调递增, ∴ ℎ(x)≥ℎ(1),即g ′(x)≥g ′(1)=1−2a >0,∴ g(x)在x ∈[1,12a )上单调递增,∴ g(x)≥g(1)=0,从而xlnx −a (x 2−1)≥0,不符合题意;③若a ≥12,则ℎ′(x)≤0在[1,+∞)上恒成立,∴ ℎ(x)在[1,+∞)上单调递减,∴ ℎ(x)≤ℎ(1),即g ′(x)≤g ′(1)=1−2a ≤0,∴ g(x)在[1,+∞)上单调递减,∴ g(x)≤g(1)=0,从而xlnx −a (x 2−1)≤0恒成立. 综上,实数a 的取值范围是[12,+∞). 23.解:(1)由题意知f ′(x)=1−ax =x−a x(x >0),∵ x >0,a <0,∴ f ′(x)>0,∴ f(x)在(0,+∞)单调递增.(2)不妨设0<x 1<x 2≤1,则1x 1>1x 2>0, 由(1)知f (x 1)<f (x 2),∴ |f (x 1)−f (x 2)|<4|1x 1−1x 2|⇔(x 2)−f (x 1)<4(1x 1−1x 2)⇔f (x 1)+4x 1>f (x 2)+4x 2.设g(x)=f(x)+4x ,x ∈(0,1],易知g(x)在(0,1]上单调递减, ∴ g ′(x)≤0在(0,1]恒成立⇔1−ax −4x2=x 2−ax−4x 2≤0在(0,1]恒成立⇔a ≥x −4x 在(0,1]恒成立,易知y =x −4x 在(0,1]上单调递增,其最大值为−3.∵a<0,∴−3≤a<0,∴实数a的取值范围为[−3,0).24.解:(1)函数f(x)=x3+ax2+bx+2的导数为f′(x)=3x2+2ax+b,图象在点M(1,f(1))处的切线方程为12x+y−3=0,可得3+2a+b=−12,3+a+b=−9,解得a=−3,b=−9.由f(x)=x3−3x2−9x+2的导数为f′(x)=3x2−6x−9,可令f′(x)>0,可得x>3或x<−1,f′(x)<0,可得−1<x<3,则函数f(x)单调递增区间为(−∞,−1),(3,+∞),单调递减区间为(−1,3).(2)由f′(x)=0,可得x=−1或x=3,则f(−1)=7,f(3)=−25,f(−2)=0,f(4)=−18,可得f(x)在[−2,4]的最小值为−25,最大值为7.25.解:(1)因为f′(x)=5x4+3ax2+b由假设知:f′(1)=5+3a+b=0,f′(2)=24×5+22×3a+b=0解得a=−253,b=20(2)由(1)知f′(x)=5x4+3ax2+b=5(x2−1)(x2−4)=5(x+1)(x+2)(x−1)(x−2)当x∈(−∞, −2)∪(−1, 1)∪(2, +∞)时,f′(x)>0当x∈(−2, −1)∪(1, 2)时,f′(x)<0因此f(x)的单调增区间是(−∞, −2),(−1, 1),(2, +∞)f(x)的单调减区间是(−2, −1),(1, 2)26.解:(1)根据题意得:f′(0)=a=0,f(0)=b=−2.(2)f′(x)=3x2+a当a≥0,f′(x)>0,f(x)在R上递增,满足题意;当a<0,f′(x)=3x2+a=0,x2=−a3,x1=−√−a3,x2=√a−3∴√a−3≤1,∴0>a≥−3∴综上,a的取值范围是a≥−3.27.解:(1)f′(x)=1x+1,g′(x)=2x+a,由题意得:f′(0)=g′(0),f(0)=g(0),∴a=1,b=0;(2)F(x)=f(x)−g(x)=ln(x+1)−x2−x,F′(x)=1x+1−2x−1=−2x2+3xx+1=−x(2x+3)x+1(x>−1),令F′(x)>0,解得:−1<x<0,令F′(x)<0,解得:x>0,∴F(x)在(−1, 0)上单调递增,在(0, +∞)上单调递减,∴F(x)极大值=F(0)=0,无极小值.28. 解:∵函敦f(x)=ax2+blnx,其中ab≠0,∴f(x)的定义域为(0, +∞),f′(x)=2ax+bx=2ax2+bx.∵函数有极值,∴f′(x)=0有解,即2ax2+b=0有解.∴△>0即ab<0,两根为x1=√−b2a,x2=−√−b2a(舍去),f(x)在x1=√−b2a处取得极值.∴只需ab<0即可.29.解:f(x)=x(x−1)(x−a)=x3−(a+1)x2+ax,∴f′(x)=3x2−2(a+1)x+a,令f′(x)=0,得3x2−2(a+1)x+a=0,由题意,该方程必定有不相等两实根,可分别设为m,n,则m+n=23(a+1),mn=a3,∴f(m)+f(n)=m3+n3−(a+1)(m2+n2)+a(m+n)=(m+n)3−3mn(m+n)−(a+1)[(m+n)2−2mn]+a(m+n) =−227(a+1)(a−2)(2a−1)=0∴a=−1或a=2或a=12.30.解:由题意得,f′(x)=3x2+2ax+3,因为f(x)的图象上任意不同两点连线的斜率均大于2,所以3x2+2ax+3>2恒成立,即3x2+2ax+1>0,则△=4a2−4×3×1<0,解得−√3<a<√3,所以实数a的取值范围是(−√3, √3).。

相关文档
最新文档