最优化方法matlab作业
完整版优化设计Matlab编程作业

化设计hl4HU©0⑥ 3 hlu 凹内r d X1州fci-rU-fFF卢F ♦ 忡下¥为+1 —*— S-ll-« F41:Si —MATLABoftiHMirjirCfiffliiiiJ PHI■1**■ 温不平?」11,・—喜M - 〜FT 文词一时y 片 34ml 3F*L9TR0i. Jill!-LkftLgWf 1S1CSI掰f 1 ■ >A A A »W I % :k Dnfl w I ■ J k^lXMprfaMk tjn nn Alflhw初选 x0=[1,1] 程序:Step 1: Write an Mfle objfunl.m.function f1=objfun1(x)f1=x(1)人2+2*x(2)入2-2*x(1)*x(2)-4*x(1);Step 2: Invoke one of the unconstrained optimization routinesx0=[1,1];>> options = 0Ptimset('LargeScale','off);>> [x,fval,exitflag,output] = fminunc(@objfun1,x0,options)运行结果: x =4.0000 2.0000 fval = -8.0000exitflag =1 output = iterations: 3 funcCount: 12 stepsize: 1 firstorderopt: 2.3842e-007algorithm: 'medium-scale: Quasi-Newton line search message: [1x85 char]非线性有约束优化1. Min f(x)=3 x : + x 2+2 x 1-3 x 2+5 Subject to:g 2(x)=5 X 1-3 X 2 -25 < 0 g (x)=13 X -41 X 2 < 0 3 12g 4(x)=14 < X 1 < 130无约束优化 min f(x)=X 2 + x 2-2 x 1 x 2-4 x 1g5 (x)=2 < X 2 < 57初选x0=[10,10]Step 1: Write an M-file objfun2.mfunction f2=objfun2(x)f2=3*x(1)人2+x(2)人2+2*x(1)-3*x(2)+5;Step 2: Write an M-file confunl.m for the constraints. function [c,ceq]=confun1(x) % Nonlinear inequality constraints c=[x(1)+x(2)+18;5*x(1)-3*x(2)-25;13*x(1)-41*x(2)人2;14-x(1);x(1)-130;2-x(2);x(2)-57];% Nonlinear inequality constraints ceq=[];Step 3: Invoke constrained optimization routinex0=[10,10]; % Make a starting guess at the solution>> options = optimset('LargeScale','off);>> [x, fval]=...fmincon(@objfun2,x0,[],[],[],[],[],[],@confun1,options)运行结果:x =3.6755 -7.0744 fval =124.14952.min f (x) =4x2 + 5x2s.t. g 1(x) = 2X] + 3x2- 6 < 0g (x) = x x +1 > 0初选x0=[1,1]Step 1: Write an M-file objfun3.m function f=objfun3(x) f=4*x(1)人2 + 5*x(2)人2Step 2: Write an M-file confun3.m for the constraints. function [c,ceq]=confun3(x) %Nonlinear inequality constraints c=[2*x(1)+3*x(2)-6;-x(1)*x(2)-1];% Nonlinear equality constraints ceq口;Step 3: Invoke constrained optimization routinex0=[1,1];% Make a starting guess at the solution>> options = optimset('LargeScale','off);>> [x, fval]=...fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options)运行结果:Optimization terminated: no feasible solution found. Magnitude of search direction less than2*options.TolX but constraints are not satisfied.x =11fval =-13实例:螺栓连接的优化设计图示为一压气机气缸与缸盖连接的示意图。
Matlab最优化计算方法

Aeq=[]; beq=[];
vlb=[0;0;0;0;0;0]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
问题2 max z 7 x1 5x 2 解答
3 x1 2 x2 90 4 x 6 x 200 2 s.t. 1 7 x2 210 x1 0, x2 0
问题
min z 13 9 10 11 12 8X
0 0 0.4 1.1 1 0 800 X 0 0 0 0 . 5 1 . 2 1 . 3 900
x1 x2 x 3 ,X 0 x4 x 5 x 6
实验作业
某厂生产甲乙两种口味的饮料,每百箱甲饮料需用 原料6千克,工人10名,可获利10万元;每百箱乙饮料 需用原料5千克,工人20名,可获利9万元.今工厂共有 原料60千克,工人150名,又由于其他条件所限甲饮料 产量不超过8百箱.问如何安排生产计划,即两种饮料 各生产多少使获利最大.进一步讨论: 1)若投资0.8万元可增加原料1千克,问应否作这项 投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生 产计划.
返 回
解答
线性规划的基本算法——单纯形法
1.线性规划的标准形式:
min z = f ( x)
x
s.t . g i ( x ) 0 ( i 1,2,, m)
其中目标函数 f ( x) 和约束条件中gi ( x) 都是线性函数
2. 线性规划的基本算法——单纯形法
用单纯法求解时,常将标准形式化为:
结果:
x= 0.0000 600.0000 0.0000 400.0000 0.0000 500.0000 fval =1.3800e+004 即在甲机床上加工600个工件2,在乙机床上加工400个工件1、 500个工件3,可在满足条件的情况下使总加工费最小为13800。
matlab做最优化实验

min f ( x )
x
s .t
Ax b , aeq * x beq
( 线性约束
) )
g ( x ) 0 , ceq ( x ) 0 (非线性约束 lb x ub
其中,f(x)为多元实值函数;g(x)为向量函数,并且f(x),g(x)中至 少有一个函数是非线性函数的(否则成为线性规划问题)。
1、了解约束非线性规划问题的求解原理与方法; 2、会用Matlab软件求解约束非线性规划问题。
二、实验原理和方法
对于约束非线性规划,随着目标函数和约束条件的不同, 解法也不同,一般来说,有两类方法: (1)、将约束问题化为无约束问题的求解方法;
(2)、用线性规划来逼近非线性规划;
三、实验内容与步骤
同时返回fval=-2
对应到原来的线性规划中即知目标函数的最大值为2,此时 x1=4,x2=1,x3=9。
第二节 无约束规划计算方法
一、实验目的
1、了解无约束规划问题的求解原理与方法 ;
2、会用Matlab软件求解无约束规划问题。
二、实验原理和方法
无约束规划问题的解法一般按目标函数的形式分为两大类: 一类是一元函数的一维搜索法,如黄金分割法、插值法等; 另一类是求解多元函数的下降迭代法。
在Matlab优化工具箱中,fmincon函数是用SQP算法(SQP就是
sequential quadratic programming,序列二次规划法,用来求解有约束的非线 性规划问题的。)来解决一般的约束非线性规划的函数,它的命令
格式为:
x=fmincon(‘fun’,x0,A,b) x=fmincon(‘fun’,x0,A,b,Aeq,beq) x=fmincon(‘fun’,x0,A,b,Aeq,beq,lb,ub) x=fmincon(‘fun’,x0,A,b,Aeq,beq,lb,ub,nonlco n)
最优化方法实验

《最优化方法》实验报告实验序号:01 实验项目名称:线性规划及MATLAB应用《最优化方法》实验报告实验序号:02 实验项目名称:0.618黄金分割法的应用结果分析:根据以上结果可知,在区间[0,3]上,函数g(x)=x^3-2*x+1的最小值点在x=0.9271处,此时最小值为0。
第二题:P50 例题3.1程序:function [t,f]=golden3(a,b) %黄金分割函数的m文件t2=a+0.382*(b-a);f2=2*(t2)^2-(t2)-1;t1=a+0.618*(b-a); %按照黄金分割点赋值,更准确可直接算f1=2*(t1)^2-(t1)-1;while abs(t1-t2)>0.16; %判定是否满足精度if f1<f2a=t2;t2=t1;f2=f1;t1=a+0.618*(b-a);f1=2*(t1)^2-(t1)-1;elseb=t1;t1=t2;f1=f2;t2=a+0.382*(b-a);f2=2*(t2)^2-(t2)-1;endendt=(t1+t2)/2; %满足条件取区间中间值输出第四题:P64 T3程序:function [t,d]=newtow2(t0)t0=2.5;t=t0-(4*(t0)^3-12*(t0)^2-12*(t0)-16)/(12*(t0)^2-24*(t0)-12);k=1;T(1)=t;while abs(t-t0)>0.000005t0=t;t=t0-(4*(t0)^3-12*(t0)^2-12*(t0)-16)/(12*(t0)^2-24*(t0)-12); k=k+1;T(k)=t;endt1=t0;d=(t1)^4-4*(t1)^3-6*(t1)^2-16*(t1)+4;kTend运行结果:当x(0)=2.5当x(0)=3四.实验小结:1.通过这次实验,加深了对0.618法的理解。
2.在学习0.618法的过程中,又巩固了倒数、求解函数值等相关知识。
最优化算法实验报告(附Matlab程序)

最优化方法(Matlab)实验报告—— Fibonacci 法一、实验目的:用MATLAB 程序实现一维搜索中用Fibonacc 法求解一元单峰函数的极小值问题。
二、实验原理:(一)、构造Fibonacci 数列:设数列{}k F ,满足条件:1、011F F ==2、11k k k F F F +-=+则称数列{}k F 为Fibonacci 数列。
(二)、迭代过程:首先由下面的迭代公式确定出迭代点:111(),1,...,1(),1,...,1n k k k k k n k n k k k k k n k F a b a k n F Fu a b a k n F λ---+--+=+-=-=+-=-易验证,用上述迭代公式进行迭代时,第k 次迭代的区间长度缩短比率恰好为1n kn k F F --+。
故可设迭代次数为n ,因此有 11121211221111223231()()......()()n n n n n n n n nF F F F F F b a b a b a b a b a F F F F F F F ------=-=⨯-==⨯-=- 若设精度为L ,则有第n 次迭代得区间长度 111()n n nb a Lb a LF -≤-≤ ,即就是111()nb a L F -≤,由此便可确定出迭代次数n 。
假设第k 次迭代时已确定出区间 [,]k k a b 以及试探点,[,]k k k k u a b λ∈并且k k u λ<。
计算试探点处的函数值,有以下两种可能: (1) 若()()k k f f u λ>,则令111111111,,()()()k k k kk k k k n k k k k k n ka b b f f F a b a F λλμλμμ++++--++++-=====+-计算 1()k f μ+的值。
(2)()()k k f f u λ≤,则令111121111,,()()()k k k kk k k k n k k k k k n ka ab f f F a b a F μμλμλλ++++--++++-=====+-计算1()k f λ+ 的值。
Matlab最优化编程例子

题目:分别用最速下降法、FR 共轭梯度法、DFP 法和BFGS 法求解问题:22112212min f (x)x 2x x 4x x 3x =-++-取初始点(1)T x (1,1)=,通过Matlab 编程实现求解过程。
公用函数如下:1、function f= fun( X )%所求问题目标函数f=X(1)^2-2*X(1)*X(2)+4*X(2)^2+X(1)-3*X(2); end2、function g= gfun( X )%所求问题目标函数梯度g=[2*X(1)-2*X(2)+1,-2*X(1)+8*X(2)-3]; end3、function He = Hess( X )%所求问题目标函数Hesse 矩阵n=length(X);He=zeros(n,n);He=[2,-2;-2,4];End解法一:最速下降法function [ x,val,k ] = grad( fun,gfun,x0 )%功能:用最速下降法求无约束问题最小值%输入:x0是初始点,fun 和gfun 分别是目标函数和梯度%输出:x 、val 分别是最优点和最优值,k 是迭代次数maxk=5000;%最大迭代次数rho=0.5;sigma=0.4;k=0;eps=10e-6;while (k<maxk)g=feval(gfun,x0);%计算梯度d=-g;%计算搜索方向if (norm(d)<eps)break ;endm=0;mk=0;while (m<20)if (feval(fun,x0+rho^m*d)<feval(fun,x0)+sigma*rho^m*g'*d) mk=m;break ;endm=m+1;endx0=x0+rho^mk*d;k=k+1;endx=x0;val=feval(fun,x0);end解法二:FR共轭梯度法function [ x,val,k ] = frcg( fun,gfun,x0 ) %功能:用FR共轭梯度法求无约束问题最小值%输入:x0是初始点,fun和gfun分别是目标函数和梯度%输出:x、val分别是最优点和最优值,k是迭代次数maxk=5000;%最大迭代次数rho=0.5;sigma=0.4;k=0;eps=10e-6;n=length(x0);while(k<maxk)g=feval(gfun,x0);%计算梯度itern=k-(n+1)*floor(k/(n+1));itern=itern+1;%计算搜索方向if(itern==1)d=-g;elsebeta=(g*g')/(g0*g0');d=-g+beta*d0;gd=g'*d;if(gd>=0.0)d=-g;endendif(norm(g)<eps)break;endm=0;mk=0;while(m<20)if(feval(fun,x0+rho^m*d)<feval(fun,x0)+sigma*rho^m*g'*d) mk=m;break;endm=m+1;endx0=x0+rho^mk*d;val=feval(fun,x0);g0=g;d0=d;k=k+1;endx=x0;val=feval(fun,x0);end解法三:DFP法function [ x,val,k ] = dfp( fun,gfun,x0 )%功能:用DFP法求无约束问题最小值%输入:x0是初始点,fun和gfun分别是目标函数和梯度%输出:x、val分别是最优点和最优值,k是迭代次数maxk=5000;%最大迭代次数rho=0.5;sigma=0.4;k=0;eps=10e-6;n=length(x0);Hk=inv(feval('Hess',x0));while(k<maxk)gk=feval(gfun,x0);if(norm(gk)<eps)break;enddk=-Hk*gk';dk=dk';m=0;mk=0;while(m<20)if(feval(fun,x0+rho^m*dk)<feval(fun,x0)+sigma*rho^m*gk'*dk) mk=m;break;endm=m+1;end%DFP校正x=x0+rho^mk*dk;sk=x-x0;yk=feval(gfun,x)-gk;if(sk'*yk>0)Hk=Hk-(((Hk*yk')*yk)*Hk)/(yk*Hk*yk')+(sk'*sk)/(sk*yk');endk=k+1;x0=x;endval=feval(fun,x0);end解法四:BFGS法function [ x,val,k ] = bfgs( fun,gfun,x0 )%功能:用BFGS法求无约束问题最小值%输入:x0是初始点,fun和gfun分别是目标函数和梯度%输出:x、val分别是最优点和最优值,k是迭代次数maxk=5000;%最大迭代次数rho=0.5;sigma=0.4;k=0;eps=10e-6;n=length(x0);Bk=eye(n);while(k<maxk)gk=feval(gfun,x0);if(norm(gk)<eps)break;enddk=-Bk*gk';m=0;mk=0;while(m<20)new=sigma*rho^m*gk*dk;old=feval(fun,x0);if(feval(fun,x0+rho^m*dk')<feval(fun,x0)+sigma*rho^m*gk*dk) mk=m;break;endm=m+1;end%BFGS校正x=x0+rho^mk*dk';sk=x-x0;yk=feval(gfun,x)-gk;if(yk'*sk>0)Bk=Bk-(((Bk*sk')*sk)*Bk)/(sk*Bk*sk')+(yk'*yk)/(yk*sk');endk=k+1;x0=x;endval=feval(fun,x0);end。
最优化方法matlab

最优化方法matlab
MATLAB提供了多种最优化方法的函数,可以根据具体问题选择最合适的方法。
以下是一些常用的最优化方法及其在MATLAB中的相关函数:
1. 无约束优化方法:
- 信赖域算法:`fminunc`
- 共轭梯度算法:`fmincg`
- BFGS算法:`fminunc`中的`Algorithm`参数设置为`'quasi-newton'`
- 雅可比法:`fminunc`中的`Algorithm`参数设置为`'trust-region'`
2. 约束优化方法:
- 线性约束的优化:`linprog`
- 非线性约束的优化:`fmincon`
- 二次规划问题:`quadprog`
- 整数规划问题:`intlinprog`
3. 全局优化方法:
- 遗传算法:`ga`
- 蜂群算法:`fminsearch`
- 随机搜索算法:`randomsearch`
4. 目标函数无法求导时的优化方法:
- 粒子群算法:`particleswarm`
- 模拟退火算法:`simulannealbnd`
- 遗传算法:`ga`
需要注意的是,不同的最优化方法适用于不同类型的目标函数和约束条件,需要根据具体问题选择合适的方法。
可根据MATLAB文档进一步了解每个函数的参数设置和使用方法。
最优化方法及其matlab程序设计习题答案

证明:根据严格凸函数定义证明。
定义:对任意x ̸= y,及任意实数λ ∈ (0, 1)都有f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y).
充分条件:∀x, y ∈ ℜn, 有f (x + y) ≤ f (x) + f (y)
对任意x ̸= y,及任意实数λ ∈ (0, 1)都有f (λx+(1−λ)y) ≤ f (λx)+f ((1−λ)y)
8
k= 2 (2)阻尼牛顿法 function He=Hesstwo(x) n=length(x); He=zeros(n,n); He=[8, 0; 0, 2]; ≫ x0=[0,1]’;[x val k]=dampnm(’funtwo1’,’gfuntwo1’,’Hesstwo’,x0) x= 1 2 val = -8 k= 1 第3题. function f=fun(x) f = (x(1) − 2)4 + (x(1) − 2 ∗ x(2))2; function gf=gfun(x) gf = [4 ∗ (x(1) − 2)3 + 2 ∗ (x(1) − 2 ∗ x(2)), −4 ∗ (x(1) − 2 ∗ x(2))]′; ≫clear all; ≫x0=[0 3]’;[v,val,k]=grad(’fun’,’gfun’,x0)
(1
−
λ)y)=
1 2
(λx
+
(1
−
λ)y)T
G(λx
+
(1
−
λ)y)
+
bT
(λx
+
(1
−
λ)y)
λf
(x)
最优化方法matlab作业

实用最优化方法——matlab编程作业初值为[-1;1]其中g0、g1分别为不同x值下得导数,f0、f1为函数值MATLAB程序:x0=[-1;1];s0=[1;1];c1=0.1;c2=0.5;a=0;b=inf;d=1;n=0;x1=x0+d*s0;g0=[-400*(x0(2)-x0(1)^2)*x0(1)-2*(1-x0(1));200*(x0(2)-x0(1) ^2)];g1=[-400*(x1(2)-x1(1)^2)*x1(1)-2*(1-x1(1));200*(x1(2)-x1(1) ^2)];f1=100*(x1(2)-x1(1)^2)^2+(1-x1(1))^2;f0=100*(x0(2)-x0(1)^2)^2+(1-x0(1))^2;while((f0-f1<-c1*d*g0'*s0)||(g1'*s0<c2*g0'*s0))if ((f0-f1)<(-c1*d*g0'*s0))b=d;d=(d+a)/2;x1=x0+d*s0;g0=[-400*(x0(2)-x0(1)^2)*x0(1)-2*(1-x0(1));200*(x0 (2)-x0(1)^2)];g1=[-400*(x1(2)-x1(1)^2)*x1(1)-2*(1-x1(1));200*(x1 (2)-x1(1)^2)];f1=100*(x1(2)-x1(1)^2)^2+(1-x1(1))^2;f0=100*(x0(2)-x0(1)^2)^2+(1-x0(1))^2;elseif (((g1')*s0)<(c2*(g0')*s0))a=d;if(2*d<=(d+b)/2)d=2*d;elsed=(d+b)/2;endx1=x0+d*s0;g0=[-400*(x0(2)-x0(1)^2)*x0(1)-2*(1-x0(1));200*(x0(2) -x0(1)^2)];g1=[-400*(x1(2)-x1(1)^2)*x1(1)-2*(1-x1(1));200*(x1(2 )-x1(1)^2)];f1=100*(x1(2)-x1(1)^2)^2+(1-x1(1))^2;f0=100*(x0(2)-x0(1)^2)^2+(1-x0(1))^2;endx1df1=100*(x1(2)-x1(1)^2)^2+(1-x1(1))^2 计算结果:最优点:x1 = -0.99611.0039步长: d = 0.0039最优解:f1 = 3.9981目标函数:function f = fun2( x )f=x(1)^2-2*x(1)*x(2)+2*x(2)^2+x(3)^2-x(2)*x(3)+2*x(1)+3*x(2 )-x(3);end目标函数梯度:function g = gfun2( x )g=[2 -2 0;-2 4 -1;0 -1 2]*x+[2;3;-1];end源代码:(以初值为为(0;0;0))x0=[0;0;0]; %初始值eps=1.0e-5; %精度g0=gfun2(x0);s0=-g0;n=0;syms d1;while norm(g0)>epsif n<3g=gfun2(x0+d1*s0);d= double(solve(s0'*g));x1=x0+d*s0;g1=gfun2(x1);if norm(g1)<epsn=n+1;x0=x1;breakelses0=-g1+(norm(g1)^2/norm(g0)^2)*s0;x0=x1;g0=g1;endelseif n==3x0=x1;g0=gfun2(x0);s0=-g0;n=0;endn=n+1;x0nfun2(x0)计算结果:最优点:x0 = -4 -3 -1 迭代次数: n = 3 最优值: ans = -8(1)最速下降法:目标函数:function f= fun3_1(x )f=x(1)+2*x(2)^2+exp(x(1)^2+x(2)^2);end目标函数的梯度:function g= gfun3_1(x)g=[1+2*x(1)*exp(x(1)^2+x(2)^2);4*x(2)+2*x(2)*exp(x(1)^2+x(2 )^2)];end源代码(初值为(1;0)):x0=[1;0];%初始值eps=1.0e-5;%精度n=0;g0=gfun3(x0);syms d1;while norm(g0)>=epss0=-g0;g=gfun3(x0+d1*s0);d= double(solve(s0'*g));x1=x0+d*s0;g1=gfun3(x1);if( norm(g1)<eps)n=n+1;x0=x1;break;elsex0=x1;g0=gfun3(x0);endn=n+1;endf0=fun3(x0)x0n计算结果:最优值: f0 = 0.7729 最优点:x0 = -0.4194 0迭代次数:n = 1(2)牛顿法目标函数:function f= fun3_1(x )f=x(1)+2*x(2)^2+exp(x(1)^2+x(2)^2);end目标函数梯度:function g= gfun3_1(x)g=[1+2*x(1)*exp(x(1)^2+x(2)^2);4*x(2)+2*x(2)*exp(x(1)^2+x(2 )^2)];end目标函数的Hesse阵:function g2 = g2fun3(x)g2=[2*exp(x(1)^2+x(2)^2)+4*x(1)^2*exp(x(1)^2+x(2)^2),4*x(1) *x(2)*exp(x(1)^2+x(2)^2)4*x(1)*x(2)*exp(x(1)^2+x(2)^2),4+2*exp(x(1)^2+x(2)^2)+4*x(2 )^2*exp(x(1)^2+x(2)^2)];end源代码(初值为(1;0)):x0=[1;0];%初始值eps=1.0e-5;%精度n=0;g0=gfun3(x0);g20=g2fun3(x0);while norm(g0)>=epsd=-g20\g0;x1=x0+d;g1=gfun3(x1);if( norm(g1)<eps)n=n+1;x0=x1;break;elsex0=x1;g0=gfun3(x0);endn=n+1;endf0=fun3(x0)x0n计算结果:最优值:f0 = 0.7729最优点:x0 = -0.4194迭代次数:n = 63(3)利用BGFS法:目标函数:function f= fun3_1(x )f=x(1)+2*x(2)^2+exp(x(1)^2+x(2)^2);end目标函数梯度function g= gfun3_1(x)g=[1+2*x(1)*exp(x(1)^2+x(2)^2);4*x(2)+2*x(2)*exp(x(1)^2+x(2 )^2)];end源代码(初值为(1;0)):x0=[1;0];%初始值eps=1.0e-5;%精度n=0;g0=gfun3(x0);syms d1;h0=eye(2);while norm(g0)>=epss0=-h0*g0;g=gfun3(x0+d1*s0);d= double(solve(s0'*g));x1=x0+d*s0;g1=gfun3(x1);if( norm(g1)<eps)n=n+1;x0=x1;break;elseh0=h0-(h0*(g1-g0)*(g1-g0)'*h0)/((g1-g0)'*h0*(g1-g0))+...((x1-x0)*(x1-x0)')/((x1-x0)'*(g1-g0))+...((g1-g0)'*h0*(g1-g0))*((x1-x0)*(x1-x0)');x0=x1;g0=gfun3(x0);endn=n+1;endf0=fun3(x0)x0n计算结果:最优值:f0 = 0.7729最优点:x0 = -0.4194迭代次数:n = 1题四:求解子程序:function [x,lambda]=qsubp(H,c,Ae,be) ginvH=pinv(H);[m,n]=size(Ae);if(m>0)rb=Ae*ginvH*c + be;lambda=pinv(Ae*ginvH*Ae')*rb;x=ginvH*(Ae'*lambda-c);elsex=-ginvH*c;lambda=0;endend源代码:H=[2 0;0 2];%目标函数的hesse阵c=[-2,-4];Ae=[0 0];be=[0;0];Ai=[1/2 0;-1 3];bi=[1;2];x0=[-1;0];%初始值内部点eps=1.0e-9; %µ±ax-b=epsʱµ±×öax-b=0´¦Àíerr=1.0e-6;k=0;x0(1)=x0(1)+x0(2);x=x0;n=length(x);max=1.0e3;ne=length(be);ni=length(bi);lamk=zeros(ne+ni,1);index=ones(ni,1);for i=(1:ni)if(bi(i)-Ai(i,:)*x>eps)index(i)=0;。
大连理工大学庞丽萍最优化方法MATLAB程序

班级:优化1班授课老师:庞丽萍姓名:学号:第二章12.(1)用修正单纯形法求解下列LP问题:>>clear>>A=[121100;123010;215001];[m,n]=size(A);b=[10;15;20];r=[-1-2-31];c=[-1-2-31];bs=[3:3];nbs=[1:4];a1=A(:,3);T=A(:,bs);a2=inv(T)*a1;b=inv(T)*b;A=[eye(m),a2];B=eye(m);xb=B\b;cb=c(bs);cn=c(nbs);con=1;M=zeros(1);while conM=M+1;t=cb/B;r=c-t*A;if all(r>=0)x(bs)=xb;x(nbs)=0;fx=cb*xb;disp(['当前解是最优解,minz=',num2str(fx)])disp('对应的最优解为,x=')disp(x)breakendrnbs=r(nbs);kk=find(rnbs==min(rnbs));k=kk(1);Anbs=A(:,nbs);yik=B\Anbs(:,k);xb=B\b;%yi0if all(yik<=0)disp('此LP问题无有限的最优解,计算结束',x)disp(xb)breakelsei=find(yik>0);w=abs(xb(i,1)./yik(i,1));l=find(w==min(w));rr=min(l);yrrk=yik(rr,1);Abs=A(:,bs);D=Anbs(:,k);Anbs(:,k)=Abs(:,rr);Abs(:,rr)=D;F=bs(rr);bs(rr)=nbs(k);nbs(k)=F;AA=[Anbs,Abs];EE=eye(m);EE(:,rr)=-yik./yrrk;Errk=EE;Errk(rr,rr)=1/yrrk;BB=Errk/B;B=inv(BB);cb=c(:,bs);xb=Errk*xb;x(bs)=xb;x(nbs)=0;fx=cb*xb;endif M>=1000disp('此问题无有限最优解')breakendend%结果当前解是最优解,minz=-15对应的最优解为,x=2.5000 2.5000 2.50000第三章30题DFP算法求函数极小点的计算程序function[x,val,k]=dfp(fun,gfun,x0)%功能:用DFP算法求解无约束问题:minf(x)%输入:x0是初始点,fun,gfun分别是目标函数及其梯度%输出:x,val分别是近似最优点和最优值,k是迭代次数.maxk=1e5;%给出最大迭代次数rho=0.55;sigma=0.4;epsilon=1e-5;k=0;n=length(x0);Hk=inv(feval('Hess',x0));%Hk=eye(n);while(k<maxk)gk=feval(gfun,x0);%计算梯度if(norm(gk)<epsilon),break;end%检验终止准则dk=-Hk*gk;%解方程组,计算搜索方向m=0;mk=0;while(m<20)%用Armijo搜索求步长if(feval(fun,x0+rho^m*dk)<feval(fun,x0)+sigma*rho^m*gk’*dk)mk=m;break;endm=m+1;end%DFP校正x=x0+rho^mk*dk;sk=x-x0;yk=feval(gfun,x)-gk;if(sk'*yk>0)Hk=Hk-(Hk*yk*yk'*Hk)/(yk'*Hk*yk)+(sk*sk')/(sk'*yk);endk=k+1;x0=x;endval=feval(fun,x0);%习题26的程序调用方式及结果:function y=fun(x)%UNTITLED Summary of this function goes here%Detailed explanation goes herey=(x(1)-1)^2+5*(x2-x(1)^2)^2endfunction y=gfun(x)%UNTITLED Summary of this function goes here%Detailed explanation goes herey=[diff(y,x1)diff(y,x2)]endx0=[20]’;[x,val,k]=dfp(fun,gfun,x0)%结果x=1.000001.00000val=k=6%习题27的程序调用方式及结果:function y=fun(x)%UNTITLED Summary of this function goes here %Detailed explanation goes herey=x1+2*x(2)^2+exp(x(1)^2+x(2)^2)endfunction y=gfun(x)%UNTITLED Summary of this function goes here %Detailed explanation goes herey=[diff(y,x1)diff(y,x2)]endx0=[10]’;[x,val,k]=dfp(fun,gfun,x0)%结果x=-0.419360val=0.77291k=536题编写Hooke-Jeeves方法求函数极小点的计算程序。
优化方法MATLAB编程——大连理工大学

优化方法上机大作业学院:姓名:学号:指导老师:肖现涛第一题源程序如下:function zy_x = di1ti(x)%di1ti是用来求解优化作业第一题的函数。
x0=x; yimuxulong=0.000001;g0=g(x0);s0=-g0;A=2*ones(100,100);k=0;while k<100lanmed=-(g0)'*s0/(s0'*A*s0);x=x0+lanmed*s0;g=g(x);k=k+1;if norm(g)<yimuxulongzy_x=x;fprintf('After %d iterations,obtain the optimal solution.\n \n The optimal solution is \n %f.\n\nThe optimal "x" is "ans".',k,f(x) )break;endmiu=norm(g)^2/norm(g0)^2;s=-g+miu*s0;g0=g; s0=s;x0=x;endfunction f=f(x)f=(x'*ones(100,1))^2-x'*ones(100,1);function g=g(x)g=(2*x'*ones(100,1))*ones(100,1)-ones(100,1);代入x0,运行结果如下:>> x=zeros(100,1);>> di1ti(x)After 1 iterations,obtain the optimal solution.The optimal solution is-0.250000.The optimal "x" is "ans".ans =0.005*ones(100,1).第二题1.最速下降法。
matlab 牛顿法 多维无约束最优化

matlab 牛顿法多维无约束最优化在MATLAB中,你可以使用内置的优化工具箱函数来使用牛顿法进行多维无约束最优化。
具体来说,你可以使用fminunc函数,该函数使用一种基于牛顿法的优化算法。
以下是一个示例:
MATLABfunction [x,fval,exitflag,output] = multidimensional_unconstrained_optimization()
% 定义目标函数
fun = @(x) x(1)^2 + x(2)^2 - 4*cos(x(1)) - 2*cos(x(2));
% 定义初始点
x0 = [0.5,0.5];
% 调用fminunc函数
options = optimoptions('fminunc','Algorithm','quasi-newton');
[x,fval,exitflag,output] = fminunc(fun,x0,options);
end在这个例子中,我们定义了一个目标函数fun,它是一个多维函数,然后我们定义了一个初始点x0。
然后我们调用fminunc函数,并指定我们想要使用的算法为quasi-newton(一种牛顿法)。
最后,我们得到了优化问题的解x,以及目标函数在最优解处的值fval。
注意:这个例子中的目标函数是一个简单的二次函数,其最小值在原点。
因此,对于更复杂的目标函数,你可能需要更精细地调整初始点或选项。
matlab程序优化的常用方法

matlab程序优化的常用方法
1. 代码结构优化:合理的代码结构可以提高代码的可读性和可维护性。
2. 向量化:使用向量运算代替循环可以显著提高代码的效率。
3. 矩阵预分配:在使用循环更新矩阵时,预先为矩阵分配足够的内存空间可以提高效率。
4. 减少内存分配:避免在循环中频繁分配内存空间,可以显著提高效率。
5. 减少函数调用:函数调用的开销较大,应尽量避免不必要的函数调用。
6. 并行计算:利用Matlab 的并行计算能力,可以显著提高代码的效率。
7. JIT 编译:启用Matlab 的JIT 编译功能可以加速代码的执行。
8. 关闭debug 模式:在执行代码时关闭debug 模式可以加速代码的执行。
9. 使用矩阵运算代替逐元素运算:矩阵运算比逐元素运算效率更高。
10. 使用Mex 文件:使用Mex 文件可以显著提高代码的效率。
matlab最优化问题的经典例题

matlab最优化问题的经典例题MATLAB最优化问题的经典例题之一是线性规划问题。
线性规划是一种数学优化方法,用于寻找一组给定线性约束条件下使得目标函数达到最大或最小值的变量值。
假设有以下线性规划问题:最大化目标函数:Z = c1*x1 + c2*x2 + ... + cn*xn在满足约束条件:A*x <= bx >= 0下,求解变量x1, x2, ..., xn的最优解。
使用MATLAB求解该线性规划问题的代码如下:```% 定义目标函数系数向量cc = [c1; c2; ...; cn];% 定义不等式约束条件系数矩阵A和右侧常数向量bA = [A11, A12, ..., A1n;A21, A22, ..., A2n;...,Am1, Am2, ..., Amn];b = [b1; b2; ...; bm];% 定义变量的下界和上界lb = zeros(n, 1); % 下界为0,即 x >= 0ub = Inf(n, 1); % 上界为无穷大,即无上界% 求解线性规划问题[x, fval] = linprog(-c, A, b, [], [], lb, ub);% 输出最优解和最优值disp('最优解:')disp(x)disp('最优值:')disp(-fval)```在上述代码中,我们将目标函数系数向量c、不等式约束条件系数矩阵A和右侧常数向量b、变量的下界和上界lb、ub传递给linprog函数进行求解。
linprog函数返回最优解x和最优值-fval(由于linprog默认求解最小化问题,我们使用-c作为目标函数系数向量,将最大化问题转化为最小化问题)。
通过以上代码,我们可以求解线性规划问题的最优解和最优值,并使用MATLAB进行验证和分析。
这个例题可以帮助我们理解和掌握MATLAB中最优化问题的求解方法。
如何在MATLAB中进行最优化设计

如何在MATLAB中进行最优化设计引言:在科学研究和工程设计中,最优化设计是一个非常重要的任务。
通过优化设计,我们可以找到满足特定目标的最优解。
在MATLAB中,有多种优化算法和工具可以帮助我们进行最优化设计。
本文将介绍如何在MATLAB中进行最优化设计,包括问题建模、选择适当的优化算法以及优化结果的分析和评估。
一、问题建模在进行最优化设计之前,我们需要清晰地定义问题。
问题可以是单目标优化问题,也可以是多目标优化问题。
在MATLAB中,我们可以使用优化工具箱中的函数来进行问题建模。
首先,我们需要定义目标函数。
目标函数是我们希望进行优化的函数,可以是一个简单的代数公式,也可以是一个复杂的模型。
例如,我们希望最小化一个函数f(x),其中x是一个向量,可以是实数向量或整数向量。
在MATLAB中,我们可以使用函数handle来定义目标函数。
其次,我们需要定义约束条件。
约束条件是对变量x的限制,可以是等式约束或不等式约束。
例如,我们希望在一定的约束条件下最小化目标函数f(x),可以表示为g(x)<=0和h(x)=0的形式。
在MATLAB中,我们可以使用函数handle来定义约束条件。
最后,我们需要定义优化变量的初始值。
在MATLAB中,我们可以使用变量的初始值来帮助优化算法以更好地搜索最优解。
二、选择优化算法在MATLAB中,有多种优化算法可以选择。
例如,有线性规划、非线性规划、遗传算法等。
选择适当的优化算法可以提高设计效率和准确性。
线性规划适用于目标函数和约束条件均为线性的优化问题。
在MATLAB中,我们可以使用线性规划函数linprog来进行线性规划问题的求解。
非线性规划适用于目标函数或约束条件中至少有一个是非线性的优化问题。
在MATLAB中,我们可以使用非线性规划函数fmincon来进行非线性规划问题的求解。
遗传算法是一种模拟自然选择和遗传机制的优化算法。
在MATLAB中,我们可以使用遗传算法工具箱中的函数来进行遗传算法的求解。
matlab 最优化方法

s
利用F(x)的一组离散数据作函数分解(3),可以利用最小二 乘拟合处理。设给定F(x)的一组数据(光盘中数据文件 data1.dat 中的数据xdata ydata),将其分解成三个不同 峰函数的叠加
相应的程序为 c=ones(7,1); A=-[60*eye(4),[zeros(1,3);65*eye(3)]]; b=-[10000-65*120;11500;12000;8500]; Aeq=[0.85*eye(3),[0,-1,0,0;0,0.85,1,0;0,0,0.85,-1]]; beq=[-0.85*120;0;0]; z=linprog(c,A,b,Aeq,beq,zeros(7,1)) 运行结果:z = 36.6667 47.4028 33.7256 0.0000 133.1667 153.4840 159.1282
例:求解以下最优化问题:
min st.
解:
4 0 0 Q 0 2 0 0 0 2
2 x2 y 2 z 2 x y z 1
Aeq 1 1 1 beq 1
程序:Q=[4,0,0;0,2,0;0,0,2]; Aeq=[1 1 1]; beq=1; R=quadprog(Q,[],[],[],Aeq,beq);
y的目标值(记作y0为1.50。当y偏离 时,产品为次品,质量损失为1, 000(元); 当y偏离 时,产品为废品,损失为9,000(元)。 零件参数的标定值有一定的容许变化范围;容差分为A、B、C三个等级, 用与标定值的相对值表示,A等为 ,B等为 ,C等为 。7个零件参数标定 值的容许范围,及不同容差等级零件的成本(元)如下表(符号/表示无 此等级零件):
其中 c,A,b,Aeq,beq,l,u是模型中对应的矩阵和向量,x 是输出的数值解,f是对应的最优目标函数值。 注:当缺少后面几个输入参数时,可以直接略去,如
最优化课程设计matlab

作业:1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。
确定货箱的长x 1、宽x 2和高x 3。
试列出问题的数学模型。
解:假设钢板为单位厚度,不考虑钢板焊接或连接耗钢量及相关劳工费用。
设y 为货箱的钢板消耗量,则此问题的数学模型如下:min y= x 1 x 2+2 x 1 x 3+2 x 2 x 3s.t. x 1 x 2 x 3=5x 1>4 x 1 ,x 2 ,x 3>02.将下面的线性规划问题表示为标准型并用单纯形法求解max f=x 1+2x 2+x 3s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化为标准型:首先,将第二个约束条件两边乘以(-1),再分别对三个约束不等式添加非负的松弛变量654,,x x x ,即可化为如下标准型:3212min x x x f ---=⎪⎪⎩⎪⎪⎨⎧=≥=+++=++-=+-+6,5,4,3,2,1,06465222..632153214321i x x x x x x x x x x x x x t s i 列成表格:2 ○1 -1 1 0 0 2 2 -1 5 0 1 0 6 4 1 1 0 0 1 6 -1 -2* -1 0 0 0 0可见此表已具备1、2、3三个特点。
首先从底行中选元素-2,再在第二列三个元素中,由2/1,6/1,6/1最小者决定选第一行第二列的元素1,标以记号,迭代一次得2 1 -1 1 0 0 2 4 0 ④ 1 1 0 8 2 0 2 -1 0 1 43 0 -3* 2 0 0 4再从底行中选元素-34再迭代一次得3 1 0 5/4 1/4 0 4 1 0 1 1/4 1/4 0 2 0 0 0 -3/2 -1/2 1 0 6 0 0 11/4 3/4 0 10此时,所有的检验数均为正,停止迭代,最优解为:()0,0,0,2,4,0*=x ,最优值为:102142*-=⨯-+⨯-=Z ;3. 试用DFP 变尺度法求解下列无约束优化问题。
matlab第六章最优化方法3

13/16
360 b 200 300
c=[-7;-12]; A=[9 5;4 5;3 10]; b=[360;200;300]; x=linprog(c,A,b) z=-c'*x
完整的线性规划程序: c=[-7;-12]; A=[9 5; 4 5; 3 10]; b=[360;200;300]; Aeq=[]; beq=[]; Lb=[0;0]; Ub=[inf;inf]; [x,fval]=linprog(c,A,b,Aeq,beq,Lb,Ub) fval=-fval
6/16
(2)求多元函数最小值(无约束) f (X ) min n
X R
命令:X=fminsearch(fun, X0) 这里,fun是目标函数,X0是起始迭代点。 例6.5 求二元函数f(x,y) = 2x3+4xy3-10xy+y2的最小值. f=inline('2*x(1)^3+4*x(1)*x(2)^3-10*x(1)*x(2)+x(2)^2'); X=fminsearch(f,[0;0]) X= 1.0016 0.8335
15/16
5. 某厂生产两种产品;生产一吨甲产品需要用A资源 3吨、B资 源 4m3;生产一吨乙产品用A资源 2吨、B资源 6m3、C资源 7个 单位;已知一吨甲产品和乙产品分别价值7万元和5万元;三种 资源分别限制为90吨、200m3和210个单位;试问如何安排生产 计划,使得工厂获得的总价值最高?
求解线性规划命令使用格式 x=linprog(C, A, b) [x,fval] = linprog(C, A, b) x=linprog(C,A,b,Aeq,beq) [x,fval]=linprog(c,A,b,Aeq,beq) x=linprog(C,A,b,Aeq,beq,Lb,Ub)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用最优化方法——matlab编程作业初值为[-1;1]其中g0、g1分别为不同x值下得导数,f0、f1为函数值MATLAB程序:x0=[-1;1];s0=[1;1];c1=0.1;c2=0.5;a=0;b=inf;d=1;n=0;x1=x0+d*s0;g0=[-400*(x0(2)-x0(1)^2)*x0(1)-2*(1-x0(1));200*(x0(2)-x0(1) ^2)];g1=[-400*(x1(2)-x1(1)^2)*x1(1)-2*(1-x1(1));200*(x1(2)-x1(1) ^2)];f1=100*(x1(2)-x1(1)^2)^2+(1-x1(1))^2;f0=100*(x0(2)-x0(1)^2)^2+(1-x0(1))^2;while((f0-f1<-c1*d*g0'*s0)||(g1'*s0<c2*g0'*s0))if ((f0-f1)<(-c1*d*g0'*s0))b=d;d=(d+a)/2;x1=x0+d*s0;g0=[-400*(x0(2)-x0(1)^2)*x0(1)-2*(1-x0(1));200*(x0 (2)-x0(1)^2)];g1=[-400*(x1(2)-x1(1)^2)*x1(1)-2*(1-x1(1));200*(x1 (2)-x1(1)^2)];f1=100*(x1(2)-x1(1)^2)^2+(1-x1(1))^2;f0=100*(x0(2)-x0(1)^2)^2+(1-x0(1))^2;elseif (((g1')*s0)<(c2*(g0')*s0))a=d;if(2*d<=(d+b)/2)d=2*d;elsed=(d+b)/2;endx1=x0+d*s0;g0=[-400*(x0(2)-x0(1)^2)*x0(1)-2*(1-x0(1));200*(x0(2) -x0(1)^2)];g1=[-400*(x1(2)-x1(1)^2)*x1(1)-2*(1-x1(1));200*(x1(2 )-x1(1)^2)];f1=100*(x1(2)-x1(1)^2)^2+(1-x1(1))^2;f0=100*(x0(2)-x0(1)^2)^2+(1-x0(1))^2;endx1df1=100*(x1(2)-x1(1)^2)^2+(1-x1(1))^2 计算结果:最优点:x1 = -0.99611.0039步长: d = 0.0039最优解:f1 = 3.9981目标函数:function f = fun2( x )f=x(1)^2-2*x(1)*x(2)+2*x(2)^2+x(3)^2-x(2)*x(3)+2*x(1)+3*x(2 )-x(3);end目标函数梯度:function g = gfun2( x )g=[2 -2 0;-2 4 -1;0 -1 2]*x+[2;3;-1];end源代码:(以初值为为(0;0;0))x0=[0;0;0]; %初始值eps=1.0e-5; %精度g0=gfun2(x0);s0=-g0;n=0;syms d1;while norm(g0)>epsif n<3g=gfun2(x0+d1*s0);d= double(solve(s0'*g));x1=x0+d*s0;g1=gfun2(x1);if norm(g1)<epsn=n+1;x0=x1;breakelses0=-g1+(norm(g1)^2/norm(g0)^2)*s0;x0=x1;g0=g1;endelseif n==3x0=x1;g0=gfun2(x0);s0=-g0;n=0;endn=n+1;x0nfun2(x0)计算结果:最优点:x0 = -4 -3 -1 迭代次数: n = 3 最优值: ans = -8(1)最速下降法:目标函数:function f= fun3_1(x )f=x(1)+2*x(2)^2+exp(x(1)^2+x(2)^2);end目标函数的梯度:function g= gfun3_1(x)g=[1+2*x(1)*exp(x(1)^2+x(2)^2);4*x(2)+2*x(2)*exp(x(1)^2+x(2 )^2)];end源代码(初值为(1;0)):x0=[1;0];%初始值eps=1.0e-5;%精度n=0;g0=gfun3(x0);syms d1;while norm(g0)>=epss0=-g0;g=gfun3(x0+d1*s0);d= double(solve(s0'*g));x1=x0+d*s0;g1=gfun3(x1);if( norm(g1)<eps)n=n+1;x0=x1;break;elsex0=x1;g0=gfun3(x0);endn=n+1;endf0=fun3(x0)x0n计算结果:最优值: f0 = 0.7729 最优点:x0 = -0.4194 0迭代次数:n = 1(2)牛顿法目标函数:function f= fun3_1(x )f=x(1)+2*x(2)^2+exp(x(1)^2+x(2)^2);end目标函数梯度:function g= gfun3_1(x)g=[1+2*x(1)*exp(x(1)^2+x(2)^2);4*x(2)+2*x(2)*exp(x(1)^2+x(2 )^2)];end目标函数的Hesse阵:function g2 = g2fun3(x)g2=[2*exp(x(1)^2+x(2)^2)+4*x(1)^2*exp(x(1)^2+x(2)^2),4*x(1) *x(2)*exp(x(1)^2+x(2)^2)4*x(1)*x(2)*exp(x(1)^2+x(2)^2),4+2*exp(x(1)^2+x(2)^2)+4*x(2 )^2*exp(x(1)^2+x(2)^2)];end源代码(初值为(1;0)):x0=[1;0];%初始值eps=1.0e-5;%精度n=0;g0=gfun3(x0);g20=g2fun3(x0);while norm(g0)>=epsd=-g20\g0;x1=x0+d;g1=gfun3(x1);if( norm(g1)<eps)n=n+1;x0=x1;break;elsex0=x1;g0=gfun3(x0);endn=n+1;endf0=fun3(x0)x0n计算结果:最优值:f0 = 0.7729最优点:x0 = -0.4194迭代次数:n = 63(3)利用BGFS法:目标函数:function f= fun3_1(x )f=x(1)+2*x(2)^2+exp(x(1)^2+x(2)^2);end目标函数梯度function g= gfun3_1(x)g=[1+2*x(1)*exp(x(1)^2+x(2)^2);4*x(2)+2*x(2)*exp(x(1)^2+x(2 )^2)];end源代码(初值为(1;0)):x0=[1;0];%初始值eps=1.0e-5;%精度n=0;g0=gfun3(x0);syms d1;h0=eye(2);while norm(g0)>=epss0=-h0*g0;g=gfun3(x0+d1*s0);d= double(solve(s0'*g));x1=x0+d*s0;g1=gfun3(x1);if( norm(g1)<eps)n=n+1;x0=x1;break;elseh0=h0-(h0*(g1-g0)*(g1-g0)'*h0)/((g1-g0)'*h0*(g1-g0))+...((x1-x0)*(x1-x0)')/((x1-x0)'*(g1-g0))+...((g1-g0)'*h0*(g1-g0))*((x1-x0)*(x1-x0)');x0=x1;g0=gfun3(x0);endn=n+1;endf0=fun3(x0)x0n计算结果:最优值:f0 = 0.7729最优点:x0 = -0.4194迭代次数:n = 1题四:求解子程序:function [x,lambda]=qsubp(H,c,Ae,be) ginvH=pinv(H);[m,n]=size(Ae);if(m>0)rb=Ae*ginvH*c + be;lambda=pinv(Ae*ginvH*Ae')*rb;x=ginvH*(Ae'*lambda-c);elsex=-ginvH*c;lambda=0;endend源代码:H=[2 0;0 2];%目标函数的hesse阵c=[-2,-4];Ae=[0 0];be=[0;0];Ai=[1/2 0;-1 3];bi=[1;2];x0=[-1;0];%初始值内部点eps=1.0e-9; %µ±ax-b=epsʱµ±×öax-b=0´¦Àíerr=1.0e-6;k=0;x0(1)=x0(1)+x0(2);x=x0;n=length(x);max=1.0e3;ne=length(be);ni=length(bi);lamk=zeros(ne+ni,1);index=ones(ni,1);for i=(1:ni)if(bi(i)-Ai(i,:)*x>eps)index(i)=0;。