算术平均数与加权平均数
算术平均数与加权平均数(平均数应用例说)
平均数应用例说平均数是反映数据的集中趋势的特征的量,它的应用十分广泛.现举例说明如下.例1检查一箱装有1250件包装食品的质量,按2%抽查一部分.在这个问题中,总体、个体、样本各是什么样本的容量是多少解析:总体是指这箱1250件包装食品的质量,个体是指每一个包装食品的质量,样本是按2%抽取的25袋包装食品的质量,样本的容量是25.点评:总体是指考察对象的某种数量指标的全体.因此回答问题时必须说明它的完整意义.还要注意样本的容量是没有单位的.例2从某校学生某次数学测验的成绩中,任抽了10名学生的成绩如下:125,120,129,107,125,107,120,125,133,129.估计这次参加数学测验的学生成绩的平均分.分析:本题是用样本的特性去估计总体的特性的正确理解,也初步考查平均数的计算.解:利用平均数计算公式,则:=122.即样本平均数为122.可以估计,这次数学测验中,参加的同学的平均分是122分.点评:用样本的特性估计总体的特性,在实际生活中应用颇多.用样本估计总体时,样本的容量越大,样本对总体的估计越精确,但相应地,搜集、整理、计算数据的工作量也就越大,实际生活中,要具体问题,具体分析例3下表是某班20名学生的一次语文测验的成绩分配表:成绩分50 60 70 80 90人数人 2 3 2分析:本题考查学生对加权平均数中的“权”的理解.解:由题意得:整理,得:解之,得:答:、的值分别为6和7.点评:当一组数据中有不少的数据重复时,可以使用加权平均数公式来计算平均数,其中尤其应注意各“权”之和等于样本的容量.例4某班第一小组有12人,一次数学测验成绩如下:85、96、74、100、96、85、79、65、74、85、65、80,试计算这12人的数学平均数.解法1:利用平均数的公式计算.分.解法2:建立新数据,再利用平均数简化公式计算.取,将上面各数据同时减去80,得到一组新数据:5,16,-6,20,16,5,-1,-15,-6,5,-15,0.∴分.解法3:利用加权平均数公式计算.分.解法4:建立新数据,再利用加权平均公式计算..∴分点评:①平均数公式是一个计算平均数的基本公式,在一般情况下,要计算一组数据的平均数可使用这个公式.②当数据较大,且大部分数据在某一常数左右波动,解法2可以减轻运算基,故此法比较简便,常数a通常取接近这组数据的平均数的较“整”的数,以达到简化计算过程的目的.常数a的取法并不惟一.③当一组数据中有不少数重复出现时,可用加权平均数公式来计算平均数.在加权平均数公式中,相同数据的个数叫做权,这个“权”含有所占份量轻重之意,越大,表明的个数越多,“权”就越大.例5车间某天生产一种工件情况如下:100个的7人,90个的15人,80个的18人,70个的6人,60个的2人,50个的2人,试计算车间的生产平均数精确到如果从上面的数据中,取出100个的3人,90个的5人,80个的6人,70个的2人,60个的1人,50个的1人,组成一个样本,试计算这个样本的平均数精确到解:将100、90、80、70、60、50分别减去80,得:20,10,0,-10,-20,-30.∴=.∴个.=.∴个.点评:一般地,用样本估计总体时,样本的容量越大,样本对总体的估计也就越精确.相应地,搜集、整理数据的工作量也就越大因此样本容量的确定既要考虑问题的需要,又要考虑实现可能性与付出代价的大小.。
几何算术加权平均数大小关系
几何算术加权平均数大小关系
几何平均数、算术平均数和加权平均数是常用的统计指标,表示一组数据的平均水平。
它们的大小关系可以通过以下推理进行分析:
1. 对于非负数数据集,几何平均数总是小于等于算术平均数。
这是因为几何平均数通过连乘求得,而算术平均数通过连加求得,连乘的结果往往小于或等于连加的结果。
2. 对于非负数数据集,几何平均数总是小于等于加权平均数。
这是因为加权平均数是通过给各项数据赋予不同的权重再求平均得到的,而几何平均数不考虑权重,将所有数据等权重处理。
3. 对于非负数数据集,算术平均数和加权平均数的大小关系取决于权重的分配和具体数据的取值。
如果权重分配合理,并且较大的数据具有较大的权重,那么算术平均数通常会大于加权平均数。
但如果权重的分配不合理或者某些较大的数据具有较小的权重,那么加权平均数可能会大于算术平均数。
需要注意的是,上述推理都是在非负数数据集上成立的。
对于包含负数的数据集,情况可能会有所不同,具体结果需要具体问题具体分析。
数学平均数的计算
数学平均数的计算平均数是数学中常用的统计指标之一,用于描述一组数据的集中趋势。
在实际生活中,我们经常需要计算平均数来得出某个群体或样本的典型数值。
本文将介绍常见的平均数计算方法,并详细说明它们的应用场景和计算步骤。
一、算术平均数算术平均数也称为平均值,是最常见的一种平均数计算方法。
它适用于任何类型的数据,并用于总结一组数据的集中趋势。
计算算术平均数的步骤如下:1. 将一组数据的所有数值相加。
2. 将总和除以数据的数量,即可得到算术平均数。
例如,我们有一组数据:10,20,30,40,50。
将这些数据相加得到总和:10 + 20 + 30 + 40 + 50 = 150。
然后将总和150除以数据的数量5,即可得到算术平均数:150 ÷ 5 = 30。
因此,这组数据的算术平均数为30。
二、加权平均数加权平均数是一种根据不同变量的权重计算的平均数方法。
它适合有些数据对整体结果贡献更大的情况。
计算加权平均数的步骤如下:1. 将每个数据点与其对应的权重相乘。
2. 将所有乘积相加。
3. 将总和除以所有权重的总和,即可得到加权平均数。
例如,我们有一组数据:10,20,30,40,50,对应的权重分别是2,3,4,1,5。
将每个数据点与其对应的权重相乘得到:10×2 + 20×3 + 30×4 + 40×1 + 50×5 = 10 + 60 + 120 + 40 + 250 = 480。
然后将总和480除以所有权重的总和2+3+4+1+5=15,即可得到加权平均数:480 ÷ 15 ≈ 32。
因此,这组数据的加权平均数为32。
三、几何平均数几何平均数适用于非负数的乘积场景,在某些情况下可以更好地描述数据的整体趋势。
计算几何平均数的步骤如下:1. 将一组数据的所有数值相乘。
2. 将乘积开n次方,其中n为数据的数量。
例如,我们有一组数据:2,4,8。
6.1.1算术平均数与加权平均数(课件)北师大版数学八年级上册
例6:某商场销售A,B,C,D四种商品,它们的单价依次是10 元,20元,30元,50元.某天这四种商品销售数量的百分比如图 所示,则这天销售的四种商品的平均单价是___3_0_.5_元.
【题型三】和平均数有关的其他计算
例7:已知一组正数a,b,c,d的平均数为2,则a+2,b+2,c+2,
d+2的平均数为( C )
权平均数.其中f1,f2,…,fk分别叫做x1,x2,…,xk的权.
注意:各个数据对应的权,表示这个数据的重要程度,权越大表示 越重要.
知识点3:求平均数的两种方法(难点)
平均数反映了一组数据的集中趋势.如果要了解一组数据的平均 水平,就需要计算这组数据的平均数,常用的方法有以下两种:
(1)定义法:当所给数据x1,x2,x3,…,xn比较分散时,一般选用
问题导入
中国男子篮球职业联赛 2022~2023赛季冠、亚军球 队队员身高、年龄如下: 上述两支篮球队中,哪支 球队队员的身高更高?哪 支球队的队员更为年轻? 你是8页并回答以下问题. 1.一般地,对于n个数x1,x2,…,xn,我们把_n1_(_x_1_+__x_2+__…__+_ xn)
注意:一组数据的平均数是唯一的,与数据的排列顺序无关;另外 平均数要带单位,它的单位与原数据单位一致.
知识点2:加权平均数(重点)
如果n个数中,x1出现f1次,x2出现f2次,…,xk出现fk次(这里f1+
f2+…+fk=n),那么,根据平均数的定义,这n个数的平均数可
以表示为x=
1 n
(x1f1+x2f2+…+xkfk),这样求得的平均数就是加
分.若把读、听、写的成绩按5∶3∶2的比例计入个人的总 分,则小聪的个人总分为__8_8___分.
成绩平均分怎么算
成绩平均分怎么算
学生成绩平均分是把所有的数字相加,除以数字的个数,就可以得出平均数,最基本的是算术平均。
加权平均数把所有的分数乘以对应的权数然后全部加起来,再除以所有的权数之和,就可以得出加权平均数。
平均分的种类如下:
1、算术平均数
算术平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标。
所有科目一视同仁,但凡体现在成绩单上的课程,全部计入均分。
2、加权平均数
加权平均数是不同比重数据的平均数,加权平均数就是把原始数据按照合理的比例来计算。
加权平均分的特点恰好与算术平均分的特点相反。
前者以学分为导向的,间接说明了学分高低代表着这门课的成绩所占的比重。
3、GPA
英语:Grade Point Average,简称GPA,意思就是平均成绩点数(平均分数、平均绩点)。
GPA是大多数大学及高等教育院校采用的一种评估学生成绩的制度,同时也有小量中学采用这种制度。
平均数和加权平均数
1.知道算术平均数和加权平均数的意义,会求一组数据的算术平均数和加权平均数;(重点)2.理解“权”的差异对平均数的影响,算术平均数与加权平均数的联系与区别,并能利用它们解决实际问题.(教学重点)探索算术平均数和加权平均数的联系和区别.新课导入:1.数据2、3、4、5的平均数是 3 ,这个平均数叫做 算数 平均数2.一次数学测验,3名同学的数学成绩分别是60,80和100分,则他们的平均成绩是多少?你怎样列式计算?算式中的分子分母分别表示什么含义?⎺x=60+80+1003=80x,读作“新课讲解合作探究(探究加权平均数的概念及公式应用)乙的平均成绩为73+80+82+834=79.5显然甲的成绩比乙高,所以从成绩看,应该录取甲. 问题2 如果公司想招一名笔译能力较强的翻译,用算术平均数来衡量他们的成绩合理吗? 听、说、读、写的成绩按照2:1:3:4的比确定,应该录取谁?.(重要程度不一样)852*********7952134+++==.+++x ⨯⨯⨯⨯甲7328018238348042134+++==..+++x ⨯⨯⨯⨯乙 问题3如果公司想招一名口语能力较强的翻译,听、说、读、写的成绩按照3:3:2:2的比确定,则应该录取谁?解:⎺x甲=85×3+78×3+85×2+73×23+3+2+2=80.5⎺x乙=73×3+80×3+82×2+83×23+3+2+2=78.9一般地,若n个数x1,x2,…,xn的权分别是w1,w2,…,wn,则112212+++=+++n nnx w x w x wxw w w叫做这n个数的加权平均数.问题4与问题(1)、(2)、(3)比较,你能体会到权的作用吗?问题1 -----结果甲去;问题2 -----结果乙去;问题3 -----结果甲去.同样一张应试者的应聘成绩单,由于各个数据所赋的权数不同,造成的录取结果截然不同. 所以说:数据的权能够反映数据的相对重要程度例1 以下表格是我班某位同学在上学期的数学成绩如果按照如图所示的月考、期中、期末成绩的权重,那么该同学的期末总评成绩应该为多少分?解:先计算该同学的月考平均成绩(89+78+85)÷3 = 84 分再计算总评成绩84×10%+ 90×30%+ 87×60%÷(10%+30%+60%)= 87.6 (分)例2某班级为了解同学年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个班级学生的平均年龄(结果取整数).分析:13岁8人,14岁月16人,15岁24人,16岁2人,意思是这组数据中13岁出现8次,14岁出现16次,15岁出现24次,16岁出现2次.各个数据出现的次数,就是它们对应的权数.解:这个班级学生的平均年龄为:1381416152416214816242+++=+++x ⨯⨯⨯⨯≈所以,他们的平均年龄约为14岁.小结:算术平均数与加权平均数的比较 1. 平均数计算:算术平均数=各数据的和÷数据的个数 加权平均数=(各数据×该数据的权重)的和 2. 平均数的意义:算术平均数反映一组数据总体的平均大小情况 加权平均数反映一组数据中按各数据占有的不同. 权重时总体的平均大小情况. 3. 区别:算术平均数中各数据都是同等的重要, 没有相互间差异; 加权平均数中各数据都有各自不同的权重地位,彼此之间存在差异性的区别. 一)权的常见形式:1.数据出次的次数形式,如2,3,2,2. 2.比例的形式,如3:3:2:2.3.百分比的形式,如10%,30%,60%二)权数在计算加权平均数有什么具体涵义?在计算加权平均数时,权数可以表示总体中的各种成分所占的比例,权数越大的数据在总体中所占的比例越大,它对加权平均数的影响也越大.课堂练习课堂小结1.加权平均数的意义2.数据的权的意义权反映数据的重要程度,数据权的改变一般会影响这组数据的平均水平 3.加权平均数公式加权平均数反映一组数据中按各数据占有的不同权重时总体的平均大小情况.112212+++=+++n nnx w x w x w x w w w1122+++=k kx f x f x f xn。
21.1算术平均数与加权平均数
先计算小明的平时成绩: 解: 先计算小明的平时成绩 (89+78+85)÷3 = 84 (分) ÷ 再计算小明的总评成绩: 再计算小明的总评成绩 84×10%+ 90×30%+ 87×60%= 87.6 (分) × × × 分
一家公司对下面三名应聘者进行了创新、综合知识 一家公司对下面三名应聘者进行了创新、 创新 和语言三项素质测试 他们的成绩如下表所示: 三项素质测试, 和语言三项素质测试,他们的成绩如下表所示: 测试项目 专业知识 工作经验 仪表形象 王强 72 50 88 测试成绩 李莉 85 74 45 张英 67 70 67
典例分析
例1
植树节到了, 植树节到了,某单位 组织职工开展植树竞赛, 组织职工开展植树竞赛 ,人 12 10 图中反映的是植树量与 数 8 6 人数之间的关系。 人数之间的关系 。 请根 4 据图中的信息计算: 据图中的信息计算: 2 0 总共植树多少棵? (1)总共植树多少棵? (2)平均每人植树多少 棵?
3. 区别 区别:
课堂小结
1. 平均数计算 平均数计算:
算术平均数=各数据的和÷ 算术平均数 各数据的和÷数据的个数 各数据的和 加权平均数=(各数据 该数据的权重)的和 各数据× 加权平均数 各数据×该数据的权重 的和
2. 平均数的意义 平均数的意义:
算术平均数反映一组数据总体的平均大小情况. 算术平均数反映一组数据总体的平均大小情况 加权平均数反映一组数据中按各数据占有的不同 权重时总体的平均大小情况. 权重时总体的平均大小情况 算术平均数中各数据都是同等的重要, 差异; 算术平均数中各数据都是同等的重要 相互没差异 加权平均数中各数据都有各自不同的权重地位, 加权平均数中各数据都有各自不同的权重地位 彼此之间存在差异性的区别. 彼此之间存在差异性的区别
高二上册算术平均数与加权平均数的知识点
高二上册算术平均数与加权平均数的知识点2016关于高二上册算术平均数与加权平均数的知识点导语:我的努力求学没有得到别的好处,只不过是愈来愈发觉自己的无知。
下面是小编为是大家整理的,数学知识点,希望对大家有所帮,欢迎阅读,仅供参考,更多相关的知识,请关该CNFLA学习网。
算术平均数与加权平均数的复习知识与技能1. 通过复习进一步理解并掌握算术平均数与加权平均数的意义。
2. 通过复习进一步理解并熟练计算算术平均数和加权平均数。
过程与方法经历数据的收集,加工整理的过程,更熟练地利用算术平均数与加权平均数解决一些实际问题,培养学生的数学应用能力。
情感态度与价值观体验数学来源于生活,又服务于生活,唤起学生学数学的兴趣。
教学重点:通过复习进一步理解并熟练计算算术平均数和加权平均数。
教学难点:对数据的加工,收集与处理教学方法:三疑三探教具:三角板、圆规、画好图的小黑板教学过程: 一、设疑自探(一)1、出示练习,引入本节某单位欲从内部招聘管理员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试成绩笔试面试甲 75 93 乙 80 70 丙 90 68(1) 如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.01)?(2)根据实际需要,单位将笔试、面试测试得分按6:4的比例确定个人的成绩,那么谁将被录用?你认为应用哪部分知识来解决上题(学生口答后,教师板书: 算术平均数与加权平均数的复习)?2、(学生用3分钟解决上题)在完成上题的过程中应用了哪些知识点,请以问题的形式提出来(学生自由提问)。
教师根据学生的回答,出示自学提示:(1)什么叫算术平均数?(2)计算算术平均数的方法是什么?如何用公式表示? (3) 什么叫加权平均数?(4) 计算加权平均数的方法是什么?如何用公式表示? (5) 算术平均数和加权平均数有什么区别和联系?(学生3分钟内完成,学生自探的同时,教师出示小组讨论要求)二、解疑合探(一)1、各小组学生根据要求进行讨论(学生讨论的'同时,教师出示展示及评价分工及要求)。
关于加权平均法和算术平均法区别
关于加权平均法和算术平均法区别
加权平均法
公式:(X1*F1+X2*F2+X3*F3+.....+Xn*Fn)/n
举例:
事例1 A产品34元一个,买了10个,B产品45元一个,买了20个,问买了A产品和B产品的平均价格是多少?
这时肯定不能用算术平均,直接(34+45)/2,因为他们买的数量不一样,因此要计算他们的平均价格,只能用所买的数量作为权数,进行加权平均:
(34×10+45×20)/(10+20)= 1240 /30 = 41.33元/个
事例2 数A有2个,数B有3个,数C有5个,求他们的加权算术平均数。
方法一:(2A+3B+5C)/(2+3+5),意思是各个数与它们各自个数的乘积之和,再除以总个数,这是初级时期所学的形式。
方法二:A*所占权数+B*所占权数+C*所占权数,这条公式由上面的式子变化而来,公式中的权数就是各数的个数在总个数中所占的比例。
A的权数是2/(2+3+5)=20%,B的权数是3/(2+3+5)=30%,C 的权数是5/(2+3+5)=50%,所以式子是20%A+30%B+50%C。
算术平均法
算术平均法是简易平均法中的一种。
设:X1,X2,X3,... ,Xn为观察期的n个资料,求得n个资料的算术平均数的公式为:
X=(X1+X2+X3+...Xn)÷n
或简写为: X(平均数)=∑x÷n
式中:n为资料期数(数据个数)
运用算术平均法求平均数,进行市场预测有两种形式:
(一)以最后一年的每月平均值或数年的每月平均值,作为次年的每月预测值。
(二)以观察期的每月平均值作为预测期对应月份的预测值。
求平均值的方法
求平均值的方法在数学和统计学中,平均值通常被定义为一组数字的总和除以它们的数量。
它是最基本的统计量之一,可用于描述数据集的中心位置。
一、算术平均数算术平均数是最常用的平均数,它是一组数据的总和除以数据的数量。
具体来说,计算公式如下:算术平均数 = 总和÷ 数量有下列数列:3,4,6,9,10。
则该数列的算术平均数为:(3+4+6+9+10) ÷ 5 = 32 ÷ 5 = 6.4二、加权平均数加权平均数是一种平均数,它在计算时给不同的数据赋予不同的权值。
这种平均数通常用于计算成绩、股票组合的收益率等有加权因素的数据。
计算公式如下:加权平均数= Σ(数据×权重) ÷ Σ权重某个学生的各科成绩如下:语文 80 分,数学 90 分,英语 85 分,物理 70 分,化学 75 分,每门课程权重均为 1。
则该学生的加权平均数为:(80×1 + 90×1 + 85×1 + 70×1 + 75×1) ÷ (1+1+1+1+1) = 400 ÷ 5 = 80 分几何平均数 = (数据1×数据2×…×数据n) 的 1/n 次方某人从 2010 年到 2018 年底,每年的工资增长率如下:2%、3%、1.5%、5%、7%、4%、6%、2.5%、3%。
则该人的几何平均增长率为:(1+0.02)×(1+0.03)×(1+0.015)×(1+0.05)×(1+0.07)×(1+0.04)×(1+0.06)×(1+0.02 5)×(1+0.03) 的 1/9 次方= 1.04454…几何平均增长率为 (1.04454 − 1)×100% = 4.454%某人从 A 地到 B 地,前 3.5 小时的速度为 60 公里/小时,后 2.5 小时的速度为80 公里/小时。
数学求平均数
数学求平均数在数学中,求平均数是一个基本而重要的概念。
平均数可以用于描述一组数据的集中趋势。
本文将介绍如何求平均数,并探讨其在实际生活中的应用。
一、算术平均数算术平均数是指一组数据中所有数值的总和除以数据的个数。
用数学符号表示为:平均数 = (数据1 + 数据2 + … + 数据n) / n。
例如,现在有一组数据:4,7,9,12,15。
我们可以计算平均数:(4 + 7 + 9 + 12 + 15) / 5 = 9.4。
所以这组数据的算术平均数是9.4。
二、加权平均数在某些情况下,不同数据可能具有不同的重要性或权重。
此时,我们可以使用加权平均数来考虑这种不同的权重。
加权平均数的计算方法是将每个数据与其对应的权重相乘,然后将所有结果相加,并将总和除以权重的总和。
例如,考虑三门课程的分数和权重:数学(分数:85,权重:3),英语(分数:90,权重:5),物理(分数:80,权重:4)。
我们可以计算加权平均数:(85 * 3 + 90 * 5 + 80 * 4) / (3 + 5 + 4) = 85.7。
因此,这三门课程的加权平均数是85.7。
三、平均数的应用平均数在日常生活中有着广泛的应用。
以下是一些例子:1. 考试成绩的评定。
老师通常使用平均数来计算学生的考试成绩。
这能够客观地反映出整个班级的考试水平。
2. 统计数据的分析。
政府机构和企业常常使用平均数来分析数据。
例如,对于一组人口统计数据,可以计算平均年龄,以了解整个群体的年龄分布情况。
3. 社会调查数据的研究。
在社会科学研究中,平均数经常用来呈现和比较不同群体的观点和经验。
4. 股票市场的指数计算。
股票市场的指数通常是使用一组股票的平均价格计算出来的,这样可以反映出整个市场的走势。
总结:本文介绍了求平均数的概念和方法,重点讨论了算术平均数和加权平均数的计算方法。
同时,我们还探讨了平均数在实际生活中的应用。
通过了解平均数的概念和应用,我们可以更好地理解和分析数据,并将其应用于实际问题的解决中。
算术平均数与加权平均数
x x +x +....+x 算术平均数:一般地,对于n个数x1, x2, …, xn,我们把
x=
+
1
2
3
n
n
叫做这n个数的算术平均数,简称平均数.
加权平均数:在实际生活中,一组数据中各个数据的重要程度是不同的,所以我们在计算这组数据的平均数的时 候往往根据其重要程度,分别给每个数据一个“权”。这样,计算出来的平均数叫做加权平均数。
一般地,若n个数x1,x2,…,xn的权分别Biblioteka w1,w2,…,wn,则x=
x1w1+x2w2 + L +xnwn w1+w2+ L +wn
叫做这n个数的加权平均数.
某超市新进了三种糖果,应顾客要求,妈妈打算把糖果混合成杂拌糖 出售,具体进价和用量如下表:
种类
售价
质量
甲
24元/千克
2千克
乙
19元/千克
2千克
丙
28元/千克
6千克
你能计算出杂拌糖的售价吗?
想一想
种类
售价
甲
24元/千克
乙
19元/千克
丙
28元/千克
质量
2千克 2千克 6千克
24 19 28 23.7(元 / 千克) 3
思考:你认为小明的做法有道理吗?为什么?
正确解答: 24 2 19 2 28 6 25.4(元 / 千克)
226
小结 算术平均数与加权平均数的区别和联系 1.算术平均数是加权平均数的一种特殊情况(它特殊在各项的权相等);
2.在实际问题中,各项权不相等时,计算平均数时就要采用加权平均数, 当各项权相等时,计算平均数就要采用算术平均数.
加权平均值和算术平均值的区别
加权平均值和算术平均值的区别
加权平均值和算术平均值的区别
(一)定义的区别
(1)算术平均数,又称均值,是统计学中最基本、最常用的一种
平均指标,分为简单算术平均数、加权算术平均数。
(2)加权平均数:即将各数值乘以相应的权数,然后加总求和得
到总体值,再除以总的单位数。
(二)公式的区别
(1)算术平均数的公式:M=(X1+X2+...+Xn)/n
(2)加权平均数的公式:M=(X1f1+X2f2+...+XnXn)/(f1+f2+...+fn)(三)用法的区别
(1)在实际问题中,当各项权相等时,计算平均数就要采用算术
平均数。
(2)在实际问题中,当各项权重不相等时,计算平均数时就要采
用加权平均数。
(四)影响因素的区别
(1)算术平均数易受极端值的影响。
(2)加权平均数受到两个因素的影响:
①总体中各单位的数值(变量值)的大小;
②各数值出现的次数(频数)。
算术平均数与加权平均数
§21.1 算术平均数与加权平均数第一课时21.1.1算术平均数的意义学习目标:1、知道平均数的意义,会计算一组数据的算术平均数。
2、学会根据统计图计算平均数。
3、能利用算术平均数解决一些实际问题。
学习过程:一、读一读:自学课本第128-130页,思考下列问题后小组交流讨论。
1、算术平均数的计算公式是。
2、怎样观察统计图表,使用统计表有什么好处?3、例1中求平均数为什么不能这样计算:每个人的种树数量3、4、5、6、7、÷(棵)?8棵的都有,所以平均的种树量为:(345678)6 5.5+++++=4、植树总量、植树量的平均数与人数之间有什么关系?5、例2中各扇形的百分比有什么关系?二、查一查:1、数据5,6,3,9,7的平均数是。
2________分.3、已知下面的一组数据:1,7,10,8,x,6,0,3,它们的平均数是5,那么x等于()A、6B、5C、4D、34、为了增强市民的环保意识,某初中八年级(二)班的50名学生在星期天调查了各自家庭丢弃旧塑料袋的情况.统计数据如下表:请根据以上数据回答:⑴50户居民每天丢弃废旧塑料袋的平均个数是_____个. ⑵该校所在的居民区有1万户,则该居民区每天丢弃的废旧塑料袋约____万个. 三、学一学:自学下面例题,注意总结解题思路与方法。
例:若一组数据54321x ,x ,x ,x ,x 的平均数是12,那么另一组数据11,x +22,x +33,x +44,x +5x 5+的平均数是多少?分析:平均数是将各个数据的和除以数据的个数求得的,因此,我们可以先求出已知数据的总数,再找出另一组数据与它的联系,从而求解.解:因为123455x x x x x ++++=12.所以12345x x x x x ++++=60.所以12345123455x x x x x +++++++++=12345155x x x x x +++++=60155+=15.四、练一练:完成后小组交流,每组指派一人展示。
平均数的概念和计算
平均数的概念和计算平均数是数学中常见的统计量之一,用于描述一组数据的中心趋势。
计算平均数的过程可以帮助我们更好地理解数据的总体情况,从而进行更准确的分析和决策。
一、平均数的概念平均数,又称均值,是指一组数据中各数值的总和除以数据的个数,用于反映数据的集中趋势。
它是最基本、常用的统计指标之一。
平均数可以帮助我们了解一组数据的中心位置。
在统计学中,有两种常见的平均数:算术平均数和加权平均数。
1. 算术平均数算术平均数是最常见也是最简单的计算方法,它是将一组数据中的数值相加后再除以数据的个数。
例如,对于数据集{2, 4, 6, 8, 10},算术平均数的计算公式为:(2 + 4 + 6 + 8 + 10) / 5 = 6。
2. 加权平均数加权平均数在计算时给不同数值赋予不同的权重,使得某些数值对平均值的贡献更大或更小。
例如,加权平均数常用于计算学分绩点、股票指数等。
其计算公式为各数值乘以对应的权重后再相加,最后除以所有权重的总和。
二、平均数计算的步骤计算平均数的步骤相对简单,以下是一般的计算过程:1. 首先,将给定的一组数据按照一定的顺序排列。
2. 然后,将所有数据的数值相加,得到总和。
3. 最后,将总和除以数据的个数,得到平均数。
举例来说,假设有一组数据{2, 4, 5, 6, 8},我们可以按照上述步骤进行计算:总和 = 2 + 4 + 5 + 6 + 8 = 25,个数 = 5,平均数 = 25 / 5 = 5。
三、平均数的应用场景平均数广泛应用于各个领域中,以下是一些常见的应用场景:1. 统计学在统计学中,平均数用于描述数据分布的中心位置。
通过计算样本或总体的平均数,我们可以了解数据的整体特征,比较不同数据集之间的差异,从而得出更准确的结论。
2. 经济学在经济学中,平均数被用来衡量经济指标的变化趋势。
例如,GDP、通货膨胀率等经济指标的平均数可以反映出一个国家或地区经济的总体状况和发展趋势。
3. 教育在教育中,平均数常被用于评估学生的学业水平。
如何快速计算平均数
如何快速计算平均数平均数是统计学中常用的一种数学概念,用来表示一组数据的集中趋势。
计算平均数的方法有很多种,下面我将介绍几种常用的方法,帮助你快速计算平均数。
一、算术平均数算术平均数是最常用的平均数计算方法,也是我们平时常说的平均数。
它的计算方法是将一组数据的所有数值相加,再除以数据的个数。
例如有一组数据:5,8,10,12,15计算这组数据的算术平均数的步骤如下:首先将所有数值相加,得到:5 + 8 + 10 + 12 + 15 = 50然后将求和的结果除以数据的个数,即:50 ÷ 5 = 10所以这组数据的算术平均数为10。
二、加权平均数加权平均数是一种对不同数据赋予不同权重的平均数计算方法。
在某些情况下,不同数据的重要性是不同的,此时可以使用加权平均数。
计算加权平均数的方法是将每个数据乘以相应的权重,然后将所有结果相加,再除以所有权重的总和。
举个例子,假设有一组数据和对应的权重如下:数据:4,6,8,10,12权重:1,3,2,4,2计算这组数据的加权平均数的步骤如下:首先将每个数据与对应的权重相乘,得到:4 × 1 = 46 × 3 = 188 × 2 = 1610 × 4 = 4012 × 2 = 24然后将这些结果相加,得到:4 + 18 + 16 + 40 + 24 = 102最后将求和的结果除以权重的总和,即:102 ÷ (1 + 3 + 2 + 4 + 2) = 102 ÷ 12 = 8.5所以这组数据的加权平均数为8.5。
三、几何平均数几何平均数是一种用于计算一组数据的平均值的方法,在一些特定的情况下较为常用,比如计算复利增长率。
计算几何平均数的方法是将一组数据的所有数值相乘,然后再将相乘的结果开根号,次数等于数据的个数。
举个例子,假设有一组数据:2,4,8,16计算这组数据的几何平均数的步骤如下:首先将所有数值相乘,得到:2 × 4 × 8 × 16 = 1024然后将相乘的结果开根号,次数等于数据的个数,即:√1024 = 32所以这组数据的几何平均数为32。
探索平均数算术平均与加权平均的计算
探索平均数算术平均与加权平均的计算探索平均数——算术平均与加权平均的计算在统计学和数据分析中,平均数是最常用的统计量之一。
它常被用来描述一组数据的集中趋势,并提供了一种衡量数据整体特征的方法。
这篇文章将探讨平均数的两种主要计算方法:算术平均与加权平均,并介绍它们的应用和计算公式。
一、算术平均算术平均是最常见的平均数计算方法,它被广泛应用于各个领域。
计算算术平均的方法非常简单:将一组数据中的所有值相加,然后除以数据的个数。
若给定一组数据 x1, x2, x3, ..., xn,则其算术平均数(mean)为:mean = (x1 + x2 + x3 + ... + xn) / n例如,假设我们要计算某班级学生的考试成绩的算术平均分,其中有10位学生的成绩如下:85, 90, 92, 78, 80, 87, 95, 88, 93, 91我们将这些成绩相加,得到总和:859。
然后将总和除以学生人数10,即可得到算术平均数:859 / 10 = 85.9。
算术平均的计算方法简单直观,适用于各种数据类型和分布。
然而,算术平均的一个缺点是它对异常值(离群值)比较敏感,即一个极端值可能会对整个数据集的结果产生较大影响。
二、加权平均当我们需要考虑不同数据的权重时,算术平均可能无法准确反映数据的整体特征。
这时,我们可以采用加权平均的方法来计算。
加权平均是在算术平均的基础上,为不同数据赋予不同的权重,以反映其在整体中的相对重要性。
计算加权平均的方法是,将每个数据值与其对应的权重相乘,然后将所有结果相加,并除以所有权重的总和。
若给定一组数据 x1, x2, x3, ..., xn 和对应的权重 w1, w2, w3, ..., wn,则其加权平均数(weighted mean)为:weighted_mean = (x1 * w1 + x2 * w2 + x3 * w3 + ... + xn * wn) / (w1 + w2 + w3 + ... + wn)举个例子,假设某商品的销售量在不同时段的增长速度不同,我们就需要考虑每个时段的权重,以计算该商品的整体增长速度的加权平均值。
算术平均数与加权平均数
15
的数量和
10
5
相等
0 1班
2班 3班
4班
5班 班级
算术平均数的意义
算术平均数是表示一组数据中数据总体的平 均大小的情况. 各数据对平均数的上下偏差的总 和为零(就是高出的和等于低落的和).
例1 丁丁所在的初二(1)班共有40人,如图是该校初 二年级各班学生人数分布情况。
请计算该校初二年级每班平 均人数;
主题 演讲技巧
80
85
75
80
从得分表可以看出,比赛按服装、普通话、主题、演讲技 巧等四个项目打分,根据比赛的性质,主题和演讲技巧两个 项目比其他两个项目显得更重要,为了突出这种重要性,通 常的做法是:按这四个项目的不同要求适当地设置一组权数, 用权数的大小来区分不同项目的重要程度,用加权平均的方 法计算总分,然后进行比较.
项目 选手
小红 小明
服装
85 90
普通话
70 75
主题 演讲技巧
80
85
75
80
算出 85 70 80 85 320 90 75 75 80 320
作为演讲比赛的选手,你认为小明和小红谁更优秀?你用什 么方法说明谁更优秀?
项目 选手
小红 小明
服装
85 90
普通话
70 75
评定总分时服装占5%,普通话占15%,主题占40%, 演讲技巧占40%
项目 选手
小红 小明
服装
85 90
普通话
70 75
主题 演讲技巧
80
85
75
80 加权平均数
小红的总分:85×5℅+70×15℅+80×40℅+85×40℅=80.75 小明的总分: 90×5℅+75×15℅+75×40℅+80×40℅=77.75
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.1 算术平均数与加权平均数 同步练习
【基础知识训练】
1.如果一组数据5,x ,3,4的平均数是5,那么x=_______.
2.某班共有学生50人,平均身高为168cm ,其中30名男生平均身高为170cm ,•则20名女生的平均身高为________.
3.某校八年级(一)班一次数学考试的成绩为:100分的3分,90分的13人,80•分的17人,70分的12人,60分的2人,50分的3人,全班数学考试的平均成绩是_______.(• 结果保留到个位)
4一个最高分和一个最低分后的平均分是________分. 5.(2005,宁波市)在航天知识竞赛中,包括甲同学在内的6•名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为_______分. 【创新能力应用】
6.如果一组数据x 1,x 2,x 3,x 4的平均数是x ,那么另一组数据x 1,x 2+1,x 3+2,x 4+3的平均数是( )
A .x
B .x +1
C .x +1.5
D .x +6
7.有m 个数的平均数是x ,n 个数的平均数是y ,则这(m+n )个数的平均数为( ) A .
.
.
.
2
2
x y x y mx ny mx ny
B C D m n
m n
++++++ 8.x 1,x 2,x 3,……,x 10的平均数是5,x 11,x 12,x 13,……,x 20的平均数是3,则x 1,x 2,x 3,……,x 20的平均数是( )
A .5
B .4
C .3
D .8
9.某居民院内月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均每户用电( )
A .41度
B .42度
C .45.5度
D .46度
10.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,•乙种10千克,丙种3千克混在一起,则售价应定为每千克( ) A .6.7元 B .6.8元 C .7.5元 D .8.6元
11.为了增强市民的环保意识,某初中八年级(二)班的50名学生在今年6月5日(•世
请根据以上数据回答:(1)50户居民每天丢弃废旧塑料袋的平均个数是______个.(2)该校所在的居民区有1万户,则该居民区每天丢弃的废旧塑料袋约_____万个.12.某商场四月份随机抽查了6天的营业额,结果分别如下(单位:万元):2.8,•3.2,3.4,3.0,3.1,3.7,试估算该商场四月份的总营业额,大约是______万元.
13.某班进行个人投篮比赛,受污染的下表记录了在规定时间内投进n•个球的人数分布情况,同时,已知进球3个或3个以上的人平均每人投进3.5个球;进球4个或4个
14.(2006
其中,w≤50100<w≤150时,空气质量为轻微污染.
(1)请用扇形统计图表示这30天中空气质量的优、良、轻微污染的分布情况;
(2)估计该城市一年(365)天有多少空气质量达到良以上.
15.老王家的鱼塘中放养了某种鱼1500条,若干年后,准备打捞出售,为了估计鱼塘中
(1)鱼塘中这种鱼平均每条重约多少千克?
(2)若这种鱼放养的成活率是82%,鱼塘中这种鱼约有多少千克?
(3)如果把这种鱼全部卖掉,价格为每千克6.2元,那么这种鱼的总收入是多少元?
若投资成本为14000元,这种鱼的纯收入是多少元?
16.(2006,淄博,枣庄)某单位欲从内部招聘管理员一名,对甲、乙、丙三名候选人进
根据录用程序组织200三人得票(没有弃权票,每位职工只能推荐1人)如上图所示,每得一票记作1分.
(1)请算出三人的民主评议得分;
(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.01)?
(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3•的比例确定个人的成绩,那么谁将被录用?
【三新精英园】
17.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人
(1)该风景区称调整后这5个景点门票的平均收费不变,平均日总收入持平,问风景区是怎样计算的?
(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,•实际上增加了约9.4%,问游客是怎样计算的?
(3)你认为风景区和游客哪一个说法较能反映整体实际?
答案:
1.8 2.165cm 3.79分4.80 5.71
6.C 7.C 8.B 9.C 10.B
11.3.7 •3.7 12.96
13.设投进3个球的人数为a,投进4个球的人数为b,
根据已知有345201122734
3.5,
2127
a b a b
a b a b
⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯
=
++++++
=2.5,
即
0.50.539
0.5 1.593
a b a
a b b
-==⎧⎧
⎨⎨
+==⎩⎩
解得
14.(1)设30天中空气质量分别为优、良、轻微污染的扇形图的圆心角依次为n1、n2、
n3,n1=
3
30
×360°=36°,n2=
12
30
×360°=144°,n3=
15
30
×360°=180°.•
扇形统计图为:
(2)一年中空气质量达到良以上的天数约为:
3
30
×365+
12
30
×365=182.5(天)
15.•解:(1)2.815 3.020 2.510
152010
⨯+⨯+⨯
++
≈2.821(kg)
(2)2.82×1500×82%≈3468(kg)
(3)总收入为3468×6.2≈21500(元)纯收入为21500-14000=7500(元)16.(1)甲、乙、•丙的民主评议得分分别为:50分,80分,70分.
(2)甲的平均成绩为:
759350218
33++=≈72.67(分),
乙的平均成绩为:807080230
33++=≈76.67(分),
丙的平均成绩为:906890228
33
++=≈76.00(分).
由于76.67>76>72.67,所以候选人乙将被录用.
(3)如果将理论考试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,
那么甲的个人成绩为:
475393350
433
⨯+⨯+⨯++=72.9(分),
乙的个人成绩为:480370380
433
⨯+⨯+⨯++=77(分).
丙的个人成绩为:490368370
433
⨯+⨯+⨯++=77.4(分).
由于丙的个人成绩最高,所以候选人丙将被录用 17.(1)风景区的算法是:调整前的平均价格为:
1
5
×(10+10+15+20+25)=16(元); 调整后的平均价格为:
1
5
×(5+•5+15+25+30)=16(元), 而日平均人数没有变化,因此风景区的总收入没有变化; (2)•游客的计算方法:
调整前风景区日平均收入为:10×1+10×1+15×2+20×3+25×2=•160(千元); 调整后风景区日平均收入为:5×1+5×1+15×2+25×3+30×2=175(千元), 所以风景区的日平均收入增加了
175160
160
-×100%≈9.4%;
(3)游客的说法较能反映整体实际.。