人教版七年级数学下册实数知识点复习过程
人教版数学七年级下册知识重点与单元测-第六章6-4《实数》章末复习(基础巩固)
第六章 实数6.4 《实数》章末复习(基础巩固)【要点梳理】要点一:平方根和立方根要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等; ②有特殊意义的数,如π; ③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式. (4)实数和数轴上点是一一对应的. 2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。
我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(30≥ (0a ≥). 非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.4.实数的运算:数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数 大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.【典型例题】类型一、有关方根的问题例1、下列命题:①负数没有立方根;②一个实数的算术平方根一定是正数;③一个正数或负数的立方根与这个数同号;④如果一个数的算术平方根是这个数本身,那么这个数是1或0;⑤如果一个数的立方根是这个数本身,那么这个数是1或0 ,其中错误的有( )A.2个B.3 个C.4 个D.5个 【答案】B ;【解析】①负数有立方根;②0的算术平方根是0;⑤立方根是本身的数有0,±1. 【总结升华】把握平方根和立方根的定义是解题关键. 举一反三:【变式】下列运算正确的是( )A 2=±B =2=- D .|2|2--= 【答案】C ;例210.1== 若7160.03670.03=,542.1670.33=,则_____________3673= 【答案】±1.01;7.16;【解析】102.01的小数点向左移动2位变成1.0201,它的平方根的小数点向左移动1位,变成1.01,注意符号;0.3670的小数点向右移动3位变成367,它的立方根的小数点向右移动1位,变成7.16【总结升华】一个数的小数点向左移动2位,它的平方根的小数点向左移动1位;一个数的小数点向右移动3位,它的立方根的小数点向右移动1位.类型二、与实数有关的问题 例3、把下列各数填入相应的集合: -1、3、π、-3.14、9、26-、22-、7.0 . (1)有理数集合{ }; (2)无理数集合{ }; (3)正实数集合{ };(4)负实数集合{ }.【思路点拨】首先把能化简的数都化简,然后对照概念填到对应的括号里. 【答案与解析】(1)有理数集合{-1、-3.14、9、7.0 };(2)无理数集合{ 3、π、26-、22-}; (3)正实数集合{ 3、π、9、26-、7.0 };(4)负实数集合{ -1、-3.14、22-}. 【总结升华】有理数是有限小数和无限循环小数,无理数是无限不循环小数.总结常见的无理数形式.举一反三:【变式】在实数0、π、、、﹣中,无理数的个数有( )A .1个B .2个C .3个D .4个 【答案】B ;例4、计算(1)233)32(1000216-++(2)23)451(12726-+- (3)32)131)(951()31(--+【思路点拨】先逐个化简后,再按照计算法则进行计算. 【答案与解析】解:(1)233)32(1000216-++=226101633++= (2)23)451(12726-+-23111112743412⎛⎫--=-+=- ⎪⎝⎭ (3)32)131)(951()31(--+=3314218121393327333⎛⎫⨯-=-=-=- ⎪⎝⎭.【总结升华】根据开立方和立方,开平方和平方互逆运算的关系,可以通过立方、平方的方法去求一个数的立方根、平方根.举一反三: 【变式】计算(1) 333000216.0008.012726---- (2) ()223323)3()21()4()4(2--⨯-+-⨯-【答案】 解:(1) 333000216.0008.012726---- ()310.20.0627=---- 29150=-(2) ()223323)3()21()4()4(2--⨯-+-⨯-()184434=-⨯+-⨯- 321336=---=-. 例5、已知:(a+6)2+=0,则2b 2﹣4b ﹣a 的值为 .【答案】12. 【解析】 解:∵(a+6)2+=0,∴a+6=0,b 2﹣2b ﹣3=0, 解得,a=﹣6,b 2﹣2b=3, 可得2b 2﹣4b=6,则2b 2﹣4b ﹣a=6﹣(﹣6)=12, 故答案为:12.【总结升华】本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.举一反三:【变式1】实数a 、b 在数轴上所对应的点的位置如图所示: 化简2a +∣a -b ∣= .【答案】 解:∵a <0<b , ∴a -b <0∴2a +∣a -b ∣=-a -(a -b )=b -2a .【变式2】实数a 在数轴上的位置如图所示,则2,1,,a aa a -的大小关系是: ;-1a【答案】21a a a a<<<-; 类型三、实数综合应用例6、现有一面积为150平方米的正方形鱼池,为了增加养鱼量,欲把鱼池的边长增加6米,那么扩建鱼池的面积为多少(最后结果保留4个有效数字)?【答案与解析】解:因为原正方形鱼池的面积为150平方米,根据面积公式, 15012.247≈ (米).由题意可得扩建后的正方形鱼池的边长为(12.247+6)米, 所以扩建后鱼池的面积为218.247≈333.0(平方米). 答:扩建后的鱼池的面积约为333.0(平方米).【总结升华】要求扩建后的鱼池的面积,应先求出其边长,而原鱼池的面积为150平方米,由此可得原鱼池的边长,再加上增加的6米,故新鱼池面积可求.举一反三:【变式】一个底为正方形的水池的容积是4863m ,池深1.5m ,求这个水池的底边长. 【答案】解:设水池的底边长为x ,由题意得2 1.5486x ⨯=2324x =18x =答:这个水池的底边长为18m .【巩固练习】一.选择题1. 下列说法正确的是( ) A .数轴上任一点表示唯一的有理数 B .数轴上任一点表示唯一的无理数 C .两个无理数之和一定是无理数 D .数轴上任意两点之间都有无数个点2.的算术平方根是( )A .2B .±2C .D .±3.已知a 、b 是实数,下列命题结论正确的是( ) A .若a >b ,则2a >2bB .若a >|b |,则2a >2bC .若|a |>b ,则2a >2b D .若3a >3b ,则2a >2b4. 3387=-a ,则a 的值是( ) A.87 B. 87- C. 87± D. 512343- 5. 若式子3112x x -+-有意义,则x 的取值范围是 ( ). A.21≥x B. 1≤x C.121≤≤x D. 以上答案都不对. 6. 下列说法中错误的是( )A.3a 中的a 可以是正数、负数或零.B.a 中的a 不可能是负数.C. 数a 的平方根有两个.D.数a 的立方根有一个. 7. 数轴上A ,B 两点表示实数a ,b ,则下列选择正确的是( ) A.0>+b a B. 0ab > C.0a b -> D.||||0a b ->8. 估算219+的值在 ( )A. 5和6之间B.6和7之间C.7和8之间D.8和9之间 二.填空题9. 若2005的整数部分是a ,则其小数部分用a 表示为 . 10.当x 时,32-x 有意义. 11. =--32)125.0( .12. 若12-x 是225的算术平方根,则x 的立方根是 . 13. 3343的平方根是 . 14.﹣64的立方根与的平方根之和是 .15. 2112- ,5- 22 , 33 216. 数轴上离原点距离是5的点表示的数是 . 三.解答题17. 一个正数x 的平方根是32-a 与a -5,则a 是多少?18. 已知x ﹣2的平方根是±2,2x+y+7的立方根是3,求x 2+y 2的平方根.19. 已知:表示a 、b 两个实数的点在数轴上的位置如图所示,请你化简()2b a b a ++-20. 阅读题:阅读下面的文字,解答问题.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知:10+3=y x +,其中x 是整数,且10<<y ,求y x -的相反数.【答案与解析】 一.选择题 1. 【答案】D ;【解析】数轴上任一点都表示唯一的实数. 2. 【答案】C 3. 【答案】B ;【解析】B 答案表明,||||a b a b >>且,故2a >2b . 4. 【答案】B ; 【解析】33378a a ⎛⎫-=-=-- ⎪⎝⎭.5. 【答案】A ;6. 【答案】C ;【解析】数a 不确定正负,负数没有平方根. 7. 【答案】C ; 8. 【答案】B ;【解析】4195<<,61927<+<. 二.填空题9. 【答案】2005a -; 10.【答案】为任意实数 ; 【解析】任何实数都有立方根. 11.【答案】25.0-;【解析】3233(0.125)0.250.25--=-=-. 12.【答案】3;【解析】x -12=15, x =27,3273=. 13.【答案】7±;【解析】 3343=7,7的平方根是7±.14.【答案】﹣2或﹣6. 【解析】∵﹣64的立方根是﹣4,=4,∵4的平方根是±2,∵﹣4+2=﹣2,﹣4+(﹣2)=﹣6,∴﹣64的立方根与的平方根之和是﹣2或﹣6.15.【答案】>;<;>;16.【答案】5【解析】数轴上离原点距离是5的点有两个,分别在原点的左右两边.三.解答题17.【解析】解:∵一个正数x 的平方根是32-a 与a -5,∴32-a 与a -5互为相反数,即32-a +a -5=0,解得2a =-.18.【解析】解:∵x ﹣2的平方根是±2,2x+y+7的立方根是3,∴x ﹣2=22,2x+y+7=27,解得x=6,y=8,∴x 2+y 2=62+82=100,∴x 2+y 2的平方根是±10.19.【解析】解:∵b <a <0 ∴()2b a b a ++-()||2a b a b a b a b b=-++=--+=- 20.【解析】解:∵11<10+3<12∴x =11,y =10+3-11=31∴()3111312x y y x --=-=-=.。
实数七下知识点总结
实数七下知识点总结一、实数的概念1、实数的定义实数就是有理数和无理数的总称啦。
有理数呢,就像是那些能写成两个整数之比的数,像1/2、3、 -4这些都是有理数哦。
无理数就有点调皮了,它是无限不循环小数,比如说圆周率π,还有根号2之类的。
你要是看到一个数,它小数点后面的数字没完没了又没有规律,那它很可能就是无理数啦。
2、实数的分类从正负性来分呢,可以分为正实数、零和负实数。
正实数就是大于零的那些实数,像2、3.5之类的;负实数就是小于零的数,比如 -1、 -2.5等;零比较特殊,它既不是正数也不是负数。
从有理数和无理数这个角度分呢,就分成有理数和无理数这两大类啦,前面我们也讲过它们各自的特点咯。
二、实数的相关性质1、实数的绝对值绝对值这个概念很有趣哦。
一个实数的绝对值表示这个数在数轴上离原点的距离。
比如说,3的绝对值是3, -3的绝对值也是3呢。
用数学式子表示就是,若a是一个实数,当a≥0时, a = a;当 a < 0时, a = -a。
这个性质在很多数学计算和问题解决中都超级有用的。
2、实数的相反数一个实数的相反数就是在这个数前面加上一个负号。
比如说,5的相反数是 -5, -2的相反数就是2。
而且啊,互为相反数的两个数它们的和是零呢。
就像3和 -3相加就等于0啦。
三、实数的运算1、加法运算实数的加法运算规则很简单的。
如果是同号的两个实数相加,那就把它们的绝对值相加,然后符号不变。
比如说,2 + 3 = 5, -2 + (-3) = -5。
要是异号的两个实数相加呢,就用较大绝对值减去较小绝对值,然后符号取绝对值较大的那个数的符号。
像3+(-2)=1,-3+2 = -1。
2、减法运算减法其实可以看成是加上一个数的相反数哦。
比如说,5 - 3就可以看成5+(-3)=2,这样就把减法转化成加法来计算啦,是不是很巧妙呢?3、乘法运算两个实数相乘,如果同号得正,异号得负,然后把它们的绝对值相乘。
像2×3 = 6, -2×(-3)=6,2×(-3)= -6。
第六章《实数》小结与复习
第六章《实数》小结与复习甘肃省镇原县上肖初级中学周晓刚教材分析《人教版义务教育课程标准实验教科书<数学>》七年级下册第六章实数小结与复习。
本章的主要内容是平方根、立方根的概念和求法,实数的有关概念和运算。
通过本章的学习,学生对数的认识就由有理数范围扩大到实数范围,本章之前的数学内容都是在有理数范围内讨论的,学习本章之后,将在实数范围内研究问题。
在中学数学中占有重要的地位,本章内容不仅是后面学习二次根式、一元二次方程以及解三角形等知识的基础,也为学习高中数学中的不等式、函数以及解析几何的大部分知识做好准备。
教学目标(一)教学知识点:1、经历小结与复习,建立本章知识框架图。
2、进一步复习本章知识,强调有关概念、运算的联系与区别及数的范围由有理数扩大到实数后,有关概念和运算的变化情况。
(二)能力训练要求:通过回顾与思考使学生能进一步掌握实数的相关知识并会灵活运用,体会归纳的数学思想方法。
(三)情感与价值观要求:1、培养学生学会归纳,整理所学知识的能力。
2、认识事物之间的内在联系及相互转化。
3、培养学生的数学应用意识。
教学重点有关概念、运算。
教学难点知识间的内在联系与区别。
教学方法教师引导学生进行归纳教具准备多媒体演示等教学过程一、知识要点回顾:(教师引导学生建立知识框架图)(一)算术平方根、平方根、立方根(二)实数的分类、有关概念及运算2、实数与数轴上的点的对应关系:是一一对应关系3、实数的相反数:a 的相反数是-a4、实数的绝对值:5、实数的运算:和在有理数范围内一样(包括运算顺序和运算律)二、知识题型演练:(教师利用多媒体展示题目,学生口答或板演) 1.选择:(1)下列说法正确的是( )416.±的平方根是A的算术平方根的相反数表示66.-B任何数都有平方.C一定没有平方根2.a D - A.2和3之间 B.4和6之间 C.6和8之间 D.7和9之间a 0,>a a 0,0=a 0,<-a a (2)估计8的值在()2.填空:3.判断:(1)实数不是有理数就是无理数。
七年级下册实数全章知识点
七年级下册实数全章知识点实数是指包括有理数和无理数在内的所有数的集合,是数学中一个重要的基础概念。
在七年级下册中,学生将接触到实数的相关知识点。
本文将对全章的实数知识进行详细介绍。
一、有理数在数轴上,有理数可以表示为有限小数或无限循环小数。
有理数包括正整数、负整数、正分数、负分数等。
下面是有理数的一些基本运算法则。
1、加减法:对于有理数a、b、c,有如下加减法法则:a +b = b + a(a + b) + c = a + (b + c)a + 0 = aa + (-a) = 0a -b = a + (-b)2、乘法:对于有理数a、b、c,有如下乘法法则:a · b = b · a(a · b) · c = a · (b · c)a · 1 = a0 · a = a · 0 = 0a · (-b) = (-a) ·b = -(a · b)3、除法:对于有理数a、b(c≠0),有如下除法法则:a/b = (a·c)/(b·c)当b=a时,有1/b=1/a二、无理数无理数是指不是有理数的数,无法表示成有限小数或无限循环小数。
常见的无理数有π、e、√2、√3等等。
下面是无理数的一些基本概念和性质。
1、无理数的加减法:无理数的加减法只能通过近似的方法来计算,即先将近似值带入计算,再将结果近似到足够的精度。
2、无理数的乘法:无理数的乘法可以进行近似计算,但无论多少次近似,都无法得到精确的结果。
因此,无理数的乘法可以用根式表示。
3、无理数的除法:无理数的除法同样需要用到根式表示。
三、实数运算实数运算包括加、减、乘、除等操作。
实数的基本性质如下:1、加法性质:对于任意实数a、b、c,有如下加法性质:a +b = b + a(a + b) + c = a + (b + c)存在“零元素”,即0+a=a对于任意实数a,存在一个元素-b,使得a+b=02、乘法性质:对于任意实数a、b、c,有如下乘法性质:a ·b = b · a(a · b) · c = a · (b · c)存在“单位元素”,即1 · a = a对于任意实数a(a≠0),存在一个元素1/a,使得a · 1/a = 1 3、分配律:对于任意实数a、b、c,有如下分配律:a · (b + c) = a · b + a · c(b + c) · a = b · a + c · a四、实数的大小比较实数的大小比较有以下三种情况:1、对于任意整数a、b,有a<b,当且仅当b-a是正整数;2、对于任意有理数a、b,有a<b,当且仅当a+b<0;3、对于任意实数a、b,有a<b,当且仅当a-b<0。
(完整版)人教版七年级数学下册第六章实数知识点汇总,推荐文档
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天
10.平方表:(自行完成)
5、区分( a )2=a(a≥0),与 a2 = a
建议收藏下载本文,以便随时学习! 12=
62=
112=
162=
212=
6.非负数的重要性质:若几个非负数之和等于 0,则每一个非负数都
22=
72=
C、 7 是 49 的平方根,即 49 7
D、 7 是 49 的平方根,即
建议49 7收藏下载本文,以便随时学习!
8.下列语句中正确的是( )
四、解答题
A、 9 的平方根是 3
B、 9 的平方根是 3
C、 9 的算术平方根是 3 D、 9 的算术平方根是 3
1、求 2 7 的平方根和算术平方根。 9
A.-2 是(-2)2 的算术平方根 B.3 是-9 的算术平方根 C16 的平方根 1、(-0.7)2 的平方根是
2、若 a 2 =25, b =3,则 a+b=
是±4 D 27 的立方根是±3
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天
3、已知一个正数的两个平方根分别是 2a﹣2 和 a﹣4,则 a 的值是 A. 4 =±2
【知识点四】实数大小的比较 1.对于数轴上的任意两个点,靠右边的点所表示的数较大. 2.正数都大于 0,负数都小于 0,两个正数,绝对值较大的那个正 数大;两个负数;绝对值大的反而小.
2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平 方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相 同。
2.绝对值 |a|≥0.
3.倒数 (1)0 没有倒数 (2)乘积是 1 的两个数互为倒数.a、b 互为 7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。
人教版数学七年级下册第六章实数基础知识点讲解+典型例题讲解.doc
【本文档由书林工作坊整理发布,谢谢你的下载和关注!】平方根(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】知识点一、平方根和算术平方根的概念 1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a a a 的算术平方根”,a 叫做被开方数.要点诠释:a a a 0,a ≥0. 2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为(0)a a ≥a 是a 的算术平方根.知识点二、平方根和算术平方根的区别与联系 1.区别:(1)定义不同;(2)结果不同:a a2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根. (2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质20||000a a a a a a a >⎧⎪===⎨⎪-<⎩()20a aa =≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.62500250=62525= 6.25 2.5=0.06250.25=.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4 D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为25=5,所以本说法正确;B.因为±1=±1,所以l 是l 的一个平方根说法正确;C.因为±()24-=±16=±4,所以本说法错误;D.因为0±=0,0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(2)164=±.( ) (3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×, 提示:(2)164=;(4)25是425的算术平方根. 2、 填空:(1)4-是 的负平方根. (2116表示 的算术平方根,116= . (3181的算术平方根为 . (43x =,则x = ,若23x =,则x = .【思路点拨】(3)181就是181的算术平方根=19,此题求的是19的算术平方根. 【答案与解析】(1)16;(2)11;164(3)13 (4) 9;±3【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个 【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1)325 (2)8136+(3)0.040.25- (4)40.36121⋅【答案】(1)15;(2)15;(3)-0.3;(4)6553、使代数式1x +有意义的x 的取值范围是______________. 【答案】x ≥1-;【解析】x +1≥0,解得x ≥1-.【总结升华】当式子a 有意义时,a 一定表示一个非负数,即a ≥0,a ≥0. 举一反三:【变式】(2015春•中江县期中)若+(3x+y ﹣1)2=0,求5x+y 2的平方根.【答案】解:∵+(3x+y ﹣1)2=0, ∴,解得,,∴5x+y 2=5×1+(﹣2)2=9,∴5x+y 2的平方根为±=±3.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x 值(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,两边同时除以169,得1442x=169开平方,得x=(2)(x﹣2)2﹣36=0,移项,得(x﹣2)2=36开平方,得x﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x·3x=132332x=1323x=±21x=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】立方根【学习目标】1. 了解立方根的含义;2. 会表示、计算一个数的立方根,会用计算器求立方根.【要点梳理】要点一、立方根的定义如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果3=,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.x a要点诠释:一个数a3a a是被开方数,3是根指数. 开立方和立方互为逆运算.要点二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.要点诠释:任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数. 要点三、立方根的性质33a a -=-33a a =()33a a =要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题. 要点四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.例如,30.000 2160.06=,30. 2160.6=,3 2166=,3216000 60=. 【典型例题】 类型一、立方根的概念1、(2016春•吐鲁番市校级期中)下列语句正确的是( ) A .如果一个数的立方根是这个数本身,那么这个数一定是0 B .一个数的立方根不是正数就是负数 C .负数没有立方根D .一个不为零的数的立方根和这个数同号,0的立方根是0 【思路点拨】根据立方根的定义判断即可. 【答案】D ;【解析】A .如果一个数的立方根是这个数本身,那么这个数一定是0或1或-1,故错误;B .一个数的立方根不是正数就是负数,错误,还有0;C .负数有立方根,故错误;D .正确.【总结升华】本题考查了立方根,解决本题的关键是熟记立方根的定义. 举一反三:【变式】下列结论正确的是( )A .64的立方根是±4B .12-是16-的立方根 C .立方根等于本身的数只有0和1D .332727-=-【答案】D.类型二、立方根的计算2、求下列各式的值:(1)327102-- (2)3235411+⨯ (3)336418-⋅ (4)23327(3)1-+--- (5)10033)1(412)2(-+÷-- 【答案与解析】解:(1)310227-- (2)3321145⨯+ (3)331864⋅-3642743==33=116425=729=9⨯+ 1=241=2⎛⎫⨯- ⎪⎝⎭-(4)23327(3)1-+---=331=1-++(5)310031(2)2(1)4--÷+-3=21247=1=33÷++【总结升华】立方根的计算,注意符号和运算顺序,带分数要转化成假分数再开立方.举一反三:【变式】计算:(1)30.008-=______;(2)=364611______; (3)=--312719______.(4)=-33511)(______. 【答案】(1)-0.2;(2)54;(3)23;(4)45. 类型三、利用立方根解方程3、(2015春•北京校级期中)(x ﹣2)3=﹣125.【思路点拨】利用立方根的定义开立方解答即可. 【答案与解析】 解:(x ﹣2)3=﹣125, 可得:x ﹣2=﹣5, 解得:x=﹣3.【总结升华】此题考查立方根问题,关键是先将x ﹣2看成一个整体. 举一反三:【变式】求出下列各式中的a :(1)若3a =0.343,则a =______;(2)若3a -3=213,则a =______; (3)若3a +125=0,则a =______;(4)若()31a -=8,则a =______.【答案】(1)a =0.7;(2)a =6;(3)a =-5;(4)a =3. 类型四、立方根实际应用4、在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱体烧杯中,并用一量筒量得铁块排出的水的体积为643cm ,小明又将铁块从水中提起,量得烧杯中的水位下降了169πcm .请问烧杯内部的底面半径和铁块的棱长各是多少?【思路点拨】铁块排出的643cm 水的体积,是铁块的体积,也是高为169πcm 烧杯的体积. 【答案与解析】解:铁块排出的643cm 的水的体积,是铁块的体积.设铁块的棱长为y cm ,可列方程364,y =解得4y =设烧杯内部的底面半径为x cm ,可列方程216649x ππ⨯=,解得x =6. 答:烧杯内部的底面半径为6cm ,铁块的棱长 4cm .【总结升华】应该熟悉体积公式,依题意建立相等关系(方程),解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合. 举一反三:【变式】将棱长分别为和的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________.(不计损耗) 333a b +.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】实数(基础)【学习目标】1. 了解无理数和实数的意义;2. 了解有理数的概念、运算法则在实数范围内仍适用 . 【要点梳理】要点一、有理数与无理数有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数. 要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111…….③带有根号的数,但根号下的数字开方开不尽,如5.要点二、实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数2.实数与数轴上的点一一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.要点三、实数大小的比较对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大. 正实数大于0,负实数小于0,两个负数,绝对值大的反而小. 要点四、实数的运算有理数关于相反数和绝对值的意义同样适合于实数.当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用. 【典型例题】类型一、实数概念1、指出下列各数中的有理数和无理数: 332222,,,9,8,9,0,,12,55,0.1010010001 (7)3π-【思路点拨】对实数进行分类时,应先对某些数进行计算或化简,然后根据它的最后结果进行分类,不能仅看到根号表示的数就认为是无理数.π是无理数,化简后含π的代数式也是无理数.【答案与解析】有理数有3222,9,8,0,,73--无理数有32,,9,12,55,0.1010010001π-……【总结升华】有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数. 常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:0.1010010001…….③带有根号的数,但根号下的数字开方开不尽,如55,39,2,12-.举一反三: 【变式】(2015春•聊城校级月考)在下列语句中: ①无理数的相反数是无理数; ②一个数的绝对值一定是非负数; ③有理数比无理数小;④无限小数不一定是无理数. 其中正确的是( )A .②③B .②③④C .①②④D .②④ 【答案】C ;解:①因为实数包括有理数和无理数,无理数的相反数 不可能式有理数,故本选项正确; ②一个数的绝对值一定≥0,故本选项正确;③数的大小,和它是有理数还是无理数无关,故本选项是错误的; ④无限循环小数是有理数,故本选项正确.类型二、实数大小的比较2、比较520.5的大小. 【答案与解析】解:作商,得5250.5=51>,即5210.5>50.5>. 【总结升华】根据若a ,b 均为正数,则由“1a b >,1a b =,1ab<”分别得到结论“a b >,a b =,a b <,”从而比较两个实数的大小.比较大小的方法有作差法和作商法等,根据具体情况选用适当的方法.举一反三:【变式】比较大小___ 3.14π-- 7___54__2323___32 32 9___0- 3___10-- |43|___(7)--- 【答案】<; >; <; <; <; >; <.3、(2015•枣庄)实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .ac >bcB .|a ﹣b|=a ﹣bC .﹣a <﹣b <cD .﹣a ﹣c >﹣b ﹣c【答案】D ;【解析】解:∵由图可知,a <b <0<c , ∴A 、ac <bc ,故A 选项错误; B 、∵a <b , ∴a ﹣b <0,∴|a ﹣b|=b ﹣a ,故B 选项错误; C 、∵a <b <0,∴﹣a >﹣b ,故C 选项错误; D 、∵﹣a >﹣b ,c >0,∴﹣a ﹣c >﹣b ﹣c ,故D 选项正确. 故选:D .【总结升华】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.类型三、实数的运算4、化简:(1)|2 1.4|- (2)|7|74||-- (3)|12|+|23|+|32|--- 【答案与解析】 解:|2 1.4|-2 1.4=-|7|74||-- =|74+7|- =274-|12|+|23|+|32|---2132231=-+-+-=.【总结升华】有理数关于相反数和绝对值的意义同样适合于实数.有理数的运算法则及运算性质等同样适用.5、若2|2|3(4)0a b c ---=,则a b c -+=________.【思路点拨】由有限个非负数之和为零,则每个数都应为零可得到方程中a ,b ,c 的值.【答案】3; 【解析】解:由非负数性质可知:203040a b c -=⎧⎪-=⎨⎪-=⎩,即234a b c =⎧⎪=⎨⎪=⎩,∴ 2343a b c -+=-+=.【总结升华】初中阶段所学的非负数有|a |,2,a a ,非负数的和为0,只能每个非负数分别为0 . 举一反三:【变式】已知2(16)|3|30x y z ++++-=,求xyz 的值.【答案】解:由已知得1603030x y z +=⎧⎪+=⎨⎪-=⎩,解得1633x y z =-⎧⎪=-⎨⎪=⎩.∴xyz =(16)(3)312-⨯-⨯=.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】实数全章复习与巩固(基础)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围. 【知识网络】【要点梳理】类型项目平方根 立方根 被开方数 非负数任意实数符号表示a ±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a333333)(aa a a aa -=-==要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2532等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。
人教版七年级下册数学实数知识点总结
第一章 实数原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!新竹高于旧竹枝,全凭老干为扶持。
出自郑燮的《新竹》漂市一中 钱少锋考点一、实数的概念及分类 (3分)1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平根是零。
a (a ≥0) 0≥a ==a a 2 ;注意错误!未找到引用源。
人教版七年级数学下册第六章《实数》知识点复习与小结优秀教学案例
3.利用问题引导学生进行推理和证明,培养他们的逻辑思维能力。
4.鼓励学生主动寻找解决问题的方法,培养他们的自主学习能力和创新意识。
(三)小组合作1.将学生分为小ຫໍສະໝຸດ ,鼓励他们进行合作学习和讨论交流。
2.设计具有挑战性和综合性的任务,让学生在合作中解决问题,提高解决问题的能力。
(三)学生小组讨论
1.将学生分为小组,给出具有挑战性和综合性的任务,让学生在小组合作中解决问题。例如,可以让学生探讨实数的性质和运算规则,并尝试解决一些实际问题。
2.鼓励学生分享自己的观点和思考过程,培养他们的团队合作意识和沟通能力。例如,可以让每个小组成员依次发表自己的观点,并进行讨论交流。
(四)总结归纳
三、教学策略
(一)情景创设
1.利用生活实际问题,创设情境,引发学生对实数的兴趣和好奇心。
2.通过图形、模型等直观教具,帮助学生形象地理解实数的概念和性质。
3.设计具有挑战性和针对性的问题,激发学生的思考和探索欲望。
4.创设互动交流的平台,让学生分享自己的思考过程和解决问题的方法。
(二)问题导向
1.引导学生提出问题,培养他们的问题意识和解决问题的能力。
3.鼓励学生分享自己的观点和思考过程,培养他们的团队合作意识和沟通能力。
4.注重小组合作的过程和结果,对学生的合作学习和团队精神进行评价和反馈。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,发现自己的优点和不足,提高自我认知能力。
2.让学生通过自我评价和同伴评价,了解自己的学习进展和提高方向。
1.培养学生对数学学科的兴趣和热情,使他们愿意主动学习数学。
2.培养学生的团队合作意识,使他们能够在学习过程中相互帮助、共同进步。
七年级数学下册第六章实数小结与复习教学课件新人教版
(1)
Hale Waihona Puke -8 125;(2)0.027;(3)1-
7 8
(1) 2 ; 5
(2) 0.3;
(3) 10. (3) 1 .
2
【归纳拓展】解题时,要注意题目的要求,是求平方 根、立方根还是求算术平方根.
【迁移应用1】求下列各式的值:
① 400 ;
③ 49 100
② 16 81
④ 3 1 63 64
a 0b
【归纳拓展】
1.实数与数轴上的点是一一对应的关系; 2.在数轴上表示的数,右边的数总是比左边的数大.
【迁移应用3】如图所示,数轴上与1, 对应的点分 别是为A、B,点B关于点A的对称点为C,设点C表示的 数为x,则 x 2 = 2 2 2 .
CAB
0
1
2
专题四 实数的运算
【例4】(1)
60
【例5】已知 ,则
(2)
y-1
,
,
= 0.08138,
= 37.77 .
【例6】计算:
=
.
【归纳拓展】开立方运算时要注意小数点的变化规律,开立方 是三位与一位的关系,开平方是二位与一位的关系.
【迁移应用4】计算: 答案:(1)5.79;(2)5.48
课堂小结
1.通过对本章内容的复习,你认为平方根和立方根之 间有怎么样的区别与联系?
4.求下列各式中的x.
(1) (x-1)2=64;
(2)
x 2
3
729
0
(x=9或-7 )
(x=-18)
5.比较大小: 2 5 与 2 3 .
解:∵(-2+ 5 )-(-2+ 3)= -2+ 5 +2- 3 = 5 - 3 >0 ∴-2+ 5 >-2+ 3 另解:直接由正负决定-2+ 5 >-2+ 3
人教版七年级数学下册第六章实数的整理与复习教学设计
针对人教版七年级数学下册第六章“实数的整理与复习”,学生在学习过程中已具备以下基础:掌握了有理数的概念和运算方法,了解简单的无理数,如π和√2等。在此基础上,学生对实数的认识逐步深入,但在实际应用和综合运用方面仍存在一定困难。
在此基础上,学情分析如下:
1.学生对实数的概念理解尚不透彻,容易混淆有理数和无理数的分类,需要通过具体实例和典型题目的讲解,帮助他们巩固和拓展实数的概念。
3.拓展题:设置一些综合性的题目,培养学生的创新思维和问题解决能力。
4.针对不同水平的学生,设计不同难度的题目,使每个学生都能在练习中得到有效的提高。
(五)总结归纳
在总结归纳环节,我将:
1.引导学生回顾本节课所学的实数知识,总结实数的概念、分类、运算性质和实际应用。
2.强调实数知识在日常生活中的重要性,激发学生学习数学的兴趣。
-研究实数运算的规律,总结乘方和开方运算的技巧,以报告的形式进行分享。
4.小组作业:
-以小组为单位,共同完成一份实数知识总结,包括概念、分类、运算性质和实际应用等方面,要求图文并茂,简洁明了。
-小组内互相出题、互相解答,开展实数知识竞赛,提高团队协作能力。
5.创新作业:
-鼓励学生利用实数知识解决自己感兴趣的问题,如科学探究、社会调查等,培养学生的创新思维和问题解决能力。
1.采用问题驱动的教学方法,激发学生的求知欲,引导学生通过自主探究、合作交流等方式,理解和掌握实数的概念和性质。
2.设计丰富的例题和练习,让学生在解题过程中,逐步掌握实数的运算方法和技巧,提高解题能力。
3.创设生活情境,让学生在实际问题中运用实数知识,感受数学与生活的紧密联系,培养学以致用的意识。
4.通过对实数知识点的整理和复习,引导学生总结规律,形成知识体系,提高数学思维能力。
七年级下册实数单元知识点
七年级下册实数单元知识点实数是数学中一个重要的概念,是我们在学习数学的过程中必须要掌握的知识点之一。
本文将为大家详细介绍七年级下册实数单元的知识点。
一、实数的定义实数是指有理数和无理数的总称,可以表示为小数的数称为有限小数或无限循环小数。
无法表示为小数的称为无理数。
二、实数的分类实数可以根据其性质分为正数、负数和零三类。
其中,正数是指大于零的实数;负数是指小于零的实数;零是指数值为零的实数。
三、实数的运算实数的运算包括加、减、乘、除以及乘方等多种计算方式。
在实数的运算过程中,需要注意运算顺序和运算法则。
1. 加法实数的加法规则为“同号相加,异号相减”,即两个正数相加为正数,两个负数相加为负数,正数和负数相加时结果的符号取决于绝对值的大小。
2. 减法实数的减法可以转化为加法,即 a-b = a+(-b)。
3. 乘法实数的乘法规则为“同号得正,异号得负”,即两个正数相乘为正数,两个负数相乘为正数,正数和负数相乘时结果为负数。
4. 除法实数的除法也有规则,除法的计算需要根据具体的数字进行计算。
需要注意的是,除数不能为零。
5. 乘方实数的乘方是指将一个数自乘两次、三次等操作。
乘方有多种形式,如 2²表示为 2的平方,2³表示为2的立方。
四、实数的绝对值实数的绝对值是指实数对应的数轴上到原点的距离。
对于一个实数 a,其绝对值为 |a|,始终为正数。
五、实数的比较实数的比较是指在数轴上比较两个实数的大小关系。
当两个实数在数轴上的位置不同,我们可以通过数轴上的大小关系来进行比较。
以上就是七年级下册实数单元的知识点。
掌握好实数的概念和各种运算规则,能够更好地理解和应用数学知识。
人教版七年级数学下册课件第六章《实数》单元复习
②按正负分类:
正实数
正有理数
正无理数
实数 0
负实数
负有理数
负无理数
(3)实数与数轴上的点是一一对应的.
6.把下列各数填入相应的大括号中(只填序号):
①-3,②
·
,③ ,④0,⑤0.7,⑥ ,⑦π,⑧-1..
(1)整数:{ ②③④ …};
(2)负分数:{ ①⑧ …};
(3)无理数:{ ⑥⑦ …}.
所示:
化简:2 (b-a)2 +|b+c|- (a-c)2 -2|a|.
解:原式=2(b-a)+b+c+a-c+2a
=2b-2a+b+c+a-c+2a
=3b+a.
A.0.09 的平方根是 0.3
B. 16=±4
C.0 的立方根是 0
D.1 的立方根是±1
3
5.计算: -8= -2
.
知识点三:实数
(1)实数的概念:有理数和 无理
数统称为实数.
(2)实数的分类
①按定义分类:
实数
正有理数
有理数 0
有限小数或无限循环小数
负有理数
无理数
正无理数
负无理数
无限不循环小数
第六章
实数
单元复习
知识要点
知识点一:算术平方根与平方根
(1)算术平方根:a 的算术平方根记为 a.
①正数有 1
②负数 没有
个算术平方根;
算术平方根;
③0的算术平方根是 0 .
(2)平方根:正数 a 的平方根记为± a.
①一个正数有 2
②负数 没有
个平方根,它们互为 相反
平方根;
③0的平方根是 0 .
(1)实数之间不仅可以进行加、减、乘、除(除数不为0)、乘
人教版七年级下册第6章 实数整理和复习课件共22张
没有
负数(一个)
开方
求一个数的平方根 求一个数的立方根 的运算叫开平方 的运算叫开立方
是本身
0,1
0
0,1,-1
题型一 开方运算
习题:
1、求下列各数的平方根:
解解::32?651的285平的方立根方根是是? 3
25
8
?
-31625
??
5
2
-65
2、求下列各数的立方根:
06.0142的7的平立方方根根是是?
题型二 实数的有关概念及分类
2、在- ,0.618, , ,
中,负有理数的个
数是( B )
A. 1个
B. 2个
C.3个
D.4个
3、下列实数 , , ,3.1415, , 中,正分
数的个数是( B )
A. 1个
B. 2个
C.3个
D.4个
【注意】 , 不属于分数,而是无理数.
题型二 实数的有关概念及分类
实数ɑ 的绝对值记作:
题型三 实数的相反数和绝对值
习题:
2
2
3 ? 2 ? ?( 3 ? 2) ? ? 3 ? 2
题型三 实数的相反数和绝对值
习题:
8或-6
题型三 实数的相反数和绝对值
其中:
题型三 实数的相反数和绝对值
(5)如图所示,数轴上与1, 对应的点分
别是为 A、B,点 B关于点 A的对称点为 C,设点C
3
2045.0?27?
5
2?
0.3
(?11?0)72的平立方根根是是
?3
1(- 7-
1?0)32 1?
??
1
10
8
8 82
七年级下册数学知识点归纳:第六章实数
七年级下册数学知识点归纳:第六章实数人教版七年级下册数学知识点归纳第六章实数6.1 平方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算;0的平方根是0.(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.(6)a x =2 <—> a x ±=a 是x 的平方 x 的平方是ax 是a 的平方根 a 的平方根是x2、算术平方根(1)算术平方根的定义:一般地,如果一个正数x 的平方等于a ,2个正数x 叫做a 的算术平方根.a “根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。
(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。
(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。
(4)夹值法及估计一个(无理)数的大小(5)a x =2 (x≥0) <—> a x =a 是x 的平方 x 的平方是ax 是a 的算术平方根 a 的算术平方根是x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0)a ≥0(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
七年级-人教版-数学-下册-[教学设计]实数的知识结构梳理
教学基本信息课题实数的知识结构梳理学科数学学段:第三学段年级七年级教材书名:数学七年级下册出版社:人民教育出版社出版日期:2012年10月教学目标及教学重点、难点通过本节课复习进一步理解平方根、立方根、实数及有关概念,建立这些概念之间的联系;明确算术平方根和平方根之间的区别和联系,平方根和立方根的之间的区别和联系,有理数和无理数之间的区别,实数与数轴的关系.由于数的扩充的一致性,本章很多内容可以类比有理数的有关内容得出,引导学生注意体会类比的研究方法.因此,应该通过本节课的教学,让学生进一步体会数系扩充的一致性和发展性.实数与数轴是一一对应的,因此可以利用数轴把“数”与“形”联系起来,让学生初步认识数形结合的思想方法作用.学习目标:(1)梳理本章的相关概念,通过回顾平方根、立方根、实数及有关的概念,强化概念之间的联系.(2)会进行开平方和开立方运算,会有理数估计无理数大致范围,会实数的相反数、绝对值,会进行实数运算.重点:(1)进一步加强学生对平方根、立方根以及实数概念的认识.(2)进一步强化平方根、立方根的联系,有理数与实数运算的联系.难点:无理数概念的理解,无理数大致范围估计及实数的运算.教学过程(表格描述)教学环节主要教学活动设置意图引入同学们:我们今天复习第六章实数,老师将从本章知识结构梳理,知识回顾,典型例题解析,三方面和大家一起做一复习.开门见山,点明复习思路复习知识本章知识结构开平方知识回顾平方根、算术平方根的概念:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二梳理本章知识,引导学生整体把握本章知识,形成知识系统.开立方有理数无理数乘方开方立方根实数平方根实数的概念实数的运算实数在数轴上的表示互逆9. =±x65. =±x复习知识知识回顾无理数和有理数的比较定义举例有理数整数和分数(有限小数或无限循环小数)3,-1,0,0.6,3.0.,911等无理数无限不循环小数π,3,35,-0.2020020002…(相邻两个2之间依次多一个0)等实数的概念和分类:有理数和无理数统称为实数.{实数与数轴上的点有什么关系?实数与数轴上的点是一一对应的.实数的相反数:数a的相反数是-a这里的a表示任意一个实数.实数的绝对值:实数的运算:运算:加、减、乘、除(除数不为0)、乘方运算、而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.运算律:加法交换律和结合律、乘法的交换律和结充分理解无理数与有理数区别,从而进一步理解实数的定义、分类.利用数轴联系起“数”与“形”,从而进一步帮助学生理解实数有关概念和运算.帮助学生理解随着数扩充,数的运算的发展.有理数无理数实数正有理数负有理数{{正无理数负无理数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、本章共3小节共8个课时(3.10~3.21第5、6周)
章节内容课时备注第六章实数8 8
6.1 平方根 3
6.2 立方根 2
6.3 实数 2
单元小结 1
二、本章概念
1.算术平方根
2.被开方数
3.平方根(二次方根)
4.开平方
5.立方根(三次方根)
6.开立方
7.根指数
8.无理数
9.实数
10.实数与数轴上的点一一对应.
三、分类的数学思想
1.
2.
四、估算
下列各数分别界于哪两个整数之间
1.28
2.271
3.399
【知识要点】
1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”.
2. 如果x2=a,则x叫做a的平方根,记作“±a”
(a称为被开方数).
3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根.
4. 平方根和算术平方根的区别与联系:
区别:正数的平方根有两个,而它的算术平方根只有一个.
联系:
(1)被开方数必须都为非负数;
(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根.
(3)0的算术平方根与平方根同为0.
5. 如果x3=a,则x叫做a的立方根,记作“3a”(a称为被开方数).
6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根.
7. 求一个数的平方根(立方根)的运算叫开平方(开立方).
8. 立方根与平方根的区别:
一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.
9. 一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如
=.
25=
50
,5
2500
10.平方表:(自行完成)
题型规律总结:
1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1.
2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同.
3≥0a≥0.
4、公式:⑴)2=a(a≥0)=(a取任何数).
5、区分2=a (a ≥0),与 2a =a
6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握).
【典型例题】
1.下列语句中,正确的是( D )
A .一个实数的平方根有两个,它们互为相反数
B .负数没有立方根
C .一个实数的立方根不是正数就是负数
D .立方根是这个数本身的数共有三个
2. 下列说法正确的是( C )
A .-2是2的算术平方根
B .3是-9的算术平方根
C .16的平方根是±4
D .27的立方根是±3
3. 已知实数x ,y 满足(y +1)2=0,则x -y 等于
解答:根据题意得,x -2=0,y +1=0,解得x=2,y=-1,
所以,x -y=2-(-1)=2+1=3.
4.求下列各式的值
(1)81±;(2)16-;(3)259
;(4)2)4(-
解答:(1)因为8192=,所以±81=±9.
(2)因为1642=,所以-416-=.
(3)因为2
53⎪⎭⎫
⎝⎛=259,所以259=53
.
(4)因为22)4(4-=,所以4)4(2=-.
5. 已知实数x ,y 满足(y +1)2=0,则x -y 等于
解答:根据题意得,x -2=0,y +1=0,
解得x=2,y=-1,所以,x -y=2-(-1)=2+1=3.
6. 计算
(1)64的立方根是 4
(2)下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±.其中正确的有 ( B )
A 、1个
B 、2个
C 、3个
D 、4个
7.易混淆的三个数(自行分析它们)
(1)2a (2)2)(a (3)33a
综合演练
一、填空题
1、(-0.7)2的平方根是
2、若2a =25,b =3,则a +b=
3、已知一个正数的两个平方根分别是2a -2和a -4,则a 的值是
4、ππ-+-43= ____________
5、若m 、n 互为相反数,则n m +-5=_________
6、若 a a -=2,则a______0
7、若73-x 有意义,则x 的取值范围是
8、16的平方根是±4”用数学式子表示为
9、大于-2,小于10的整数有______个.
10、一个正数x 的两个平方根分别是a +2和a -4,则a=__ ___,x=___ __.
11、当_______x 时,3x -有意义.
12、当_______x 时,32-x 有意义.
13、当_______x
有意义.
14、当________x 时,式子2x -有意义. 15、若14+a 有意义,则a 能取的最小整数为
二、选择题
1. 9的算术平方根是( )
A .-3
B .3
C .±3
D .81
2.下列计算正确的是( )
A
±2 B C.636=± D.992-=-
3.下列说法中正确的是( )
A .9的平方根是3 B
2
2
4. 64的平方根是( )
A .±8
B .±4
C .±2 D
5. 4的平方的倒数的算术平方根是( )
A .4
B .18
C .-14
D .14
6.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 251625162
=⎪⎪⎭⎫ ⎝⎛-- 7.以下语句及写成式子正确的是( )
A 、7是49的算术平方根,即749±=
B 、7是2)7(-的平方根,即7)7(2=-
C 、7±是49的平方根,即749=±
D 、7±是49的平方根,即749±=
8.下列语句中正确的是( )
A 、9-的平方根是3-
B 、9的平方根是3
C 、 9的算术平方根是3±
D 、9的算术平方根是3
9.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的
平方根是3,其中正确的有( )
A .3个
B .2个
C .1个
D .4个
10.下列语句中正确的是( )
A 、任意算术平方根是正数
B 、只有正数才有算术平方根
C 、∵3的平方是9,∴9的平方根是3
D 、1-是1的平方根
三、利用平方根解下列方程.
(1)(2x -1)2-169=0; (2)4(3x +1)2-1=0;
四、解答题
1、求972
的平方根和算术平方根.
2、计算
33841627-+-+的值
3、若0)13(12=-++-y x x ,求25y x +的值.
4、若a 、b 、c 满足01)5(32=-+++-c b a ,求代数式a c b -的值.
5、已知
052522=-++-x x x y ,求7(x +y )-20的立方根.
6、阅读下列材料,然后回答问题. 在进行二次根式去处时,我们有时会碰上如35,
32,1
32+一样的式子,其实我们还可以将其进一步化简:
35=35
33333=⨯⨯;
(一) 32=363332=⨯⨯(二)
132+=))(()-(1313132-+⨯=131
313222---=)()((三)
以上这种化简的步骤叫做分母有理化.
1
32+还可以用以下方法化简: 132+=131
313131313131322-+-++-+-=))((=)(=(四) (1)请用不同的方法化简
352+: ①参照(三)式得
352+=__________________; ②参照(四)式得
352+=___________________. (2)化简:
12121...571351131-+++++++++n n。