质谱
质谱工作原理
质谱工作原理
质谱(MS)是通过检测化合物中某种特定的元素而将化合物
中所有可能存在的原子(分子)以一定的顺序排列起来,从而对
化合物进行定性和定量分析。
质谱工作原理如下:
电离源是质谱的核心部件,它将离子从样品溶液中分离出来,再经加速和电离而得到高质量的离子束(离子源)。
常用的有分
子离子化源和化学离子化源。
分子离子化源有电喷雾质谱仪和喷雾质谱仪两种。
电喷雾质
谱的工作原理是用高压气体使样品溶液雾化,形成无数细小的液滴,在飞行时间质谱仪中被加速到一定速度后,使液滴撞击基质
中的离子发生碰撞而使样品离子与离子相碰撞而产生碎片离子。
这些碎片离子在进入质谱检测器前,会被扫描器滤除。
因此,分
子离子化源又称为滤去离子化源或滤除(filter)离子源。
这类
质谱仪以液体为工作介质。
化学离子化源是利用有机化合物分子在离子化过程中所发生
的化学反应而产生电离产物(主要是氢化物)。
这种质谱仪称为
化学电离质谱仪(CID)。
—— 1 —1 —。
质谱的原理及应用
质谱的原理及应用1. 质谱的基本原理质谱是一种重要的分析技术,它利用离子化技术将待测物质转化为离子,并通过对离子进行分析,得到物质的分子结构、组成和质量信息。
质谱的基本原理包括样品离子化、离子分离、离子检测和质量分析。
1.1 样品离子化样品离子化是质谱的第一步,常见的离子化方法包括电离和化学离子化。
电离通常采用电子轰击、电子喷雾和激光离化等方法。
1.2 离子分离离子分离是质谱的关键步骤,通过施加电场或磁场,可以将离子按照质荷比进行分离。
常见的离子分离方法包括质量过滤、离子阱和飞行时间法等。
1.3 离子检测离子检测是质谱的关键环节,常见的离子检测方法包括电子增强器、多极杆和检测器等。
离子检测器会将离子转化为电信号,并进行放大和信号处理。
1.4 质量分析质量分析是质谱的核心内容,通过质谱仪器对离子进行质量分析,可以得到物质的质量谱图。
常见的质谱分析方法包括质谱仪、质谱图和质谱库的利用。
2. 质谱的应用领域质谱作为一种高灵敏度和高分辨率的分析方法,已广泛应用于多个领域。
2.1 生物医药领域质谱在生物医药领域中主要应用于药物代谢动力学研究、蛋白质组学和分子诊断等。
通过质谱技术可以分析药物在体内的代谢途径、代谢产物和代谢酶等,对药物的疗效和安全性进行评估。
此外,质谱还可以用于分析蛋白质组的组成和结构,帮助研究蛋白质功能及其与疾病之间的关系。
2.2 环境监测领域质谱在环境监测领域中主要用于有机污染物和无机污染物的检测与分析。
通过质谱技术可以对空气、水体、土壤等中的污染物进行快速、准确的分析,有助于环境质量评估和环境治理。
2.3 食品安全领域质谱在食品安全领域中起着重要的作用,可以用于检测食品中的农药残留、重金属污染和毒素等。
通过质谱技术可以对食品样品进行快速筛查和定量分析,保障食品质量和食品安全。
2.4 新能源领域质谱在新能源领域中用于催化剂研究、电池材料分析和新能源开发等。
通过质谱技术可以研究催化剂的表面结构和反应机理,评估催化剂的催化活性和稳定性。
质谱的名词解释
质谱的名词解释质谱(Mass Spectrometry,简称MS)是一种分析化学技术,它通过将样品中的化合物分子或原子离子化,然后在电磁场中进行偏转、分离和检测,最终得到离子的质量和相对丰度信息。
质谱在生物学、化学、环境科学等领域广泛应用,被视为一项强大而多功能的实验技术。
1. 质谱的基本原理质谱的基本原理是离子分析。
它将待分析物分子通过电离源转化为离子,并利用不同质量、不同电荷的离子在电磁场中的偏转情况进行分离。
电荷离子在磁场中受到洛伦兹力的作用,偏转半径与质量和电荷量有关。
通过探测器对分离后的离子进行检测,可以得到不同离子的质量谱图。
2. 质谱的主要组成部分质谱仪主要由电离源、质量分析器和探测器组成。
电离源负责将待分析物转化为离子,常用的电离源包括电子轰击电离源、化学电离源和光电离源等。
质量分析器用于分离不同质量的离子,常见的质量分析器包括飞行时间质谱仪(Time-of-Flight Mass Spectrometer,简称TOF-MS)、电子能量分析器和磁扇形质谱仪等。
探测器则负责测量离子的相对丰度,常见的探测器有离子多道器、电子倍增管和微小通道板等。
3. 质谱的应用领域3.1 蛋白质组学质谱在蛋白质组学研究中扮演着重要的角色。
蛋白质质谱分析可以用于蛋白质结构的鉴定、定量分析以及功能研究。
利用质谱技术,可以对复杂的蛋白质样品进行分离、定性和定量分析,从而揭示蛋白质的组成、修饰和相互作用等信息。
3.2 代谢组学代谢组学研究生物体内代谢物的变化及相关的生理、病理过程。
质谱在代谢组学研究中被广泛应用,可以对细胞、组织和体液中的代谢产物进行定性和定量分析。
通过质谱技术,可以发现代谢物的新的生物标志物,并揭示代谢通路的变化,从而为疾病的诊断和治疗提供理论基础。
3.3 农残分析农残分析是农产品中残留农药的分析鉴定。
质谱在农残分析中被广泛采用,可以对食品样品中的农药残留进行快速、准确的检测和定量。
利用质谱技术,可以实现对多种农药的同时检测,提高快速筛查的效率和准确性。
质谱基本原理
质谱基本原理质谱(Mass Spectrometry,MS)是一种用于分析化合物分子结构和确定化合物分子量的重要分析技术。
它通过将化合物分子转化为离子,然后根据离子的质量和电荷比进行分析,从而得到化合物的质谱图谱。
质谱技术在化学、生物、药学等领域具有广泛的应用,是一种非常重要的分析手段。
质谱的基本原理可以简单地概括为离子化、分离、检测和数据处理四个步骤。
首先,样品中的化合物分子被转化为离子,这一过程通常通过电离源完成。
常用的电离源包括电子轰击电离源、化学电离源和电喷雾电离源等。
不同的电离源适用于不同类型的化合物,选择合适的电离源对于获得准确的质谱数据至关重要。
接下来,离子经过质谱仪中的分析部分,根据其质荷比(m/z)进行分离。
质谱仪通常包括离子源、质量分析器和检测器。
质量分析器的种类有多种,包括飞行时间质谱仪、四级杆质谱仪和离子阱质谱仪等。
这些质谱仪能够根据离子的质荷比进行高效分离,从而得到高质量的质谱数据。
在检测部分,分离后的离子被检测器检测到,并转化为电信号。
这些信号随后被转化为质谱图谱,显示出离子的质荷比和相对丰度。
通过分析质谱图谱,可以得到化合物的分子量、结构信息以及相对丰度等重要数据。
最后,得到的质谱数据需要进行处理和解释。
数据处理包括质谱图谱的峰识别、质谱数据的校正和质谱图谱的解释等步骤。
这些步骤需要借助专业的质谱数据处理软件进行,以确保得到准确可靠的结果。
总的来说,质谱的基本原理是将化合物分子转化为离子,然后根据离子的质量和电荷比进行分析,最终得到化合物的质谱数据。
质谱技术在化学、生物、药学等领域具有广泛的应用,对于研究化合物的结构和性质具有重要意义。
随着质谱技术的不断发展,相信它将在更多领域展现出强大的应用潜力。
(完整版)质谱总结,推荐文档
第 5 章质谱质谱法(Mass Spectrometry, MS)是将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。
质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。
5.1质谱的基本知识5.1.1质谱仪1.质谱仪一般由四部分组成:进样系统——按电离方式的需要,将样品送入离子源的适当部位;离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束;质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离;检测器——用来接受、检测和记录被分离后的离子信号。
一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。
2.离子源离子源的性能决定了离子化效率,很大程度上决定了质谱仪的灵敏度。
常见的离子化方式有两种:一种是样品在离子源中以气体的形式被离子化,另一种为从固体表面或溶液中溅射出带电离子。
在很多情况下进样和离子化同时进行。
(1)电子轰击电离(EI)气化后的样品分子进入离子化室后,受到由钨或铼灯丝发射并加速的电子流的轰击产生正离子。
离子化室压力保持在10-4~10-6mmHg。
轰击电子的能量大于样品分子的电离能,使样品分子电离或碎裂。
电子轰击质谱能提供有机化合物最丰富的结构信息,有较好的重现性,其裂解规律的研究也最为完善,已经建立了数万种有机化合物的标准谱图库可供检索。
其缺点在于不适用于难挥发和热稳定性差的样品。
(2)化学电离(CI)引入一定压力的反应气进入离子化室,反应气在具有一定能量的电子流的作用下电离或者裂解。
质谱简介
质谱中离子的主要类型:
(1)分子离子 分子离子是分子失去一个电子所得到的离子,所以 其数值等于化合物的相对分子量,是所有离子峰中m/z 最大的(除了同位素离子峰外),分子离子用M 表示, 用于测定分子量。 (2)碎片离子 分子离子产生后可能具有较高的能量,将会通过进一 步碎裂或重排而释放能量,碎裂后产生的离子形成的峰 称为碎片离子峰,用于测定分子结构。
5.电喷雾电离(ESI)
ESI电离是很软的电离方法,通常没有碎片离子峰, 只有整体分子的峰。是最常用的液相离子源,适用于 极性较强的大分子有机化合物,可用于热不稳定化合 物的分析。
6.基质辅助激光解吸电离(MALDI)
通过激光束与固体样品分子的作用使其产生分 子离子和具有结构信息的碎片。 能使一些难于电离的样品电离,且无明显的碎 裂,得到完整的被分析物分子的电离产物,特别适 合生物大分子:肽类化合物、核酸等,主要与TOF 联用。 常用基质:2, 5-二羟基苯甲酸、芥子酸、烟酸等。
1 2 (1) zV mv 2
(质量m,电荷z,加速电压V)
5、当被加速的离子进入质量分析器时,磁场再对离 子进行作用(与其飞行方向垂直),使每个离子做弧 形运动。其半径决定于各离子的质量和所带电荷的比 值m/z。此时由离子动能产生的离心力(mv2/R)与由磁 场产生的向心力(Bzv)相等: (2) m 2 Bz R 将(1)、(2)合并得:
电极上加直流电压U和 射频交变电压V。当U/V一 定及场半径r固定时,对于 某一种射频频率,只有一 种m/z的离子可以顺利通过 电场区到达检测器,这种 离子称为共振离子,其它 非共振离子在运动中撞击 在圆筒电极上被过滤掉。
是一种无磁分析器,体积小,重量轻, 操作方便,扫描速度快,分辨率较高, 运用于色谱—质谱联用仪器。
质谱 ppt课件
Electron Impact (EI) Ionization
Reflector
e-
M+.
Ions get kinetic energy
1mv2 2
zVET
V kV
Electron trap
13
EI 源的特点:
电离效率高,灵敏度高; 应用最广,标准质谱图基本都是采用EI源得到的; 稳定、操作方便,电子流强度10~240 eV可精密控制; 结构简单,控温方便。
8
II. 质 谱 仪
一、质谱的结构和工作原理 二、质谱联用技术 三、质谱性能指标
9
一、质谱的结构和工作原理
质谱分析法主要是通过对样品的离子的质荷比的分析而 实现对样品进行定性和定量的一种方法。因此,质谱仪必须 有电离装置把样品电离为离子,有质量分析装置把不同质荷 比的离子分开,经检测器检测之后可以得到样品的质谱图, 不管是哪种类型的质谱仪,其基本组成是相同,包括离子源、 质量分析器、检测器和真空系统。
10
1、离子源
离子源的作用是将欲分析样品电离,得到带有样品信息的离子。质 谱仪的离子源种类很多,主要有:
A. 电子轰击电离源(Electron Impact, EI) B. 化学电离源(Chemical Ionization, CI) C. 快原子轰击源(Fast Atomic bombardment, FAB) D. 场电离源(Field ionization Sources, FI) E. 电喷雾源(Electron spray Ionization, ESI) F. 大气压化学电离源(Atmospheric pressure chemical Ionization, APCI) G. 基 质 辅 助 激 光 解 吸 电 离 源 (Matrix Assisted Laser Description Ionization, MALDI)
质谱的应用范围
质谱(Mass Spectrometry,MS)是一种用于分析样品中化合物的技术,通过测量分子或离子的质量和相对丰度,可以提供关于样品的化学组成、结构、分子量、碎片信息等详细信息。
质谱在各个领域中有广泛的应用,包括但不限于以下几个方面:
生物医学研究:质谱可用于生物分子(如蛋白质、核酸、代谢物等)的鉴定、定量和结构解析,用于生物标志物的发现、药物代谢研究、蛋白质组学、蛋白质互作研究等。
药物分析:质谱可用于药物的分析、质量控制、药代动力学研究和药物代谢研究,以及毒物学研究中的药物检测和毒性分析。
环境监测:质谱可用于分析空气、水、土壤等环境样品中的有机物、无机物和污染物,例如挥发性有机化合物(VOCs)的监测和分析、水体中的重金属分析等。
食品和农产品安全:质谱可用于食品中的农药残留检测、添加剂分析、食品中的污染物检测,以及农产品质量控制和追溯等方面。
石油和能源行业:质谱可用于石油和天然气中的成分分析、燃料质量分析、石油产品中的污染物检测等。
法医学和毒理学:质谱可用于毒物分析、毒物代谢研究、尸体分析、毒品分析等领域,对犯罪调查、毒物鉴定和法医研究具有重要意义。
除了上述应用范围,质谱还广泛应用于材料科学、化学工艺、地质学、天文学等领域,为科学研究和工业应用提供了强大的分析工具和技术支持。
由于质谱技术的高灵敏度、高分辨率和多功能性,其应用领域不断拓展和深化。
质谱介绍
质量分析器
检测器
倍增器 SEM 微通道板 MCP
数据系统
真空系统
离子源(10-3 10 -5 Pa ) 质量分析器(10 -6 Pa )
How does it work?
ionise
accelerate
separate
ee+
+4000 V
0V
Magnetic and/or electric field
+
v a c u u m
heavy light
vapourise
eesample
A+
B
+ +
Mass spectrometry
C
A+
B+
C+
5
e-
二、质谱仪的结构
(一)进样系统 (二)离子源 (三)质量分析器 (四)检测系统 (五)真空系统 (六)数据处理系统
(一)进样系统
• 将样品引入到离子源中 (1) 间歇式进样系统
基质辅助激光解吸电离谱图
各种离子化方法的使用范围
离子 选择的依据 ESI或MALDI 热稳定性 极性 要求取得的 结构信息 极性 APCI
Thermospray
EI 或 CI 非极性
PB
分子量 (Da)
离子源的特点总结
离子化方法选择
● 碱性化合物宜用正离子方式 ● 酸性化合物宜用负离子方式 ● 如未知,可能正负都要做 ● 有些化合物正、负模式都出峰,选择灵敏度 高的方式,不明确的优先试用正离子方式
质谱分析
一、质谱的基本知识 二、仪器与结构 三、联用仪器
一、质谱的基本知识
1、什么是质谱?
质谱
子、碎片离子、亚稳离子、重排离子、多电荷离子
等组成,识别这些离子,弄清它们的形成和演变过 程以及峰与峰之间的相互关系是解析谱图的基础。
一.分子离子
有机分子在离子源中受到电子轰击,失去一个电 子而生成的离子称为分子离子(M+), 对应的峰称为分 子离子峰。M+在质量上等于分子量。分子离子是其它 离子的先驱。 M +e→ M++2e
质谱最基本的信息有两个,即离子的质量和它们 的相对丰度。
质谱的功能主要为:
1)测定分子量 分子量是化学结构的基础。高分 辨质谱仪能精确地测量离子质量,精度达1ppm,即 准确测到四位小数。 2)根据谱图全貌检测其分子结构,根据分子碎裂特 征可确定化合物类型和可能的官能团,从而确定分 子结构。
二.质谱仪器
3.灵敏度 绝对灵敏度:指仪器可以检测到的最小样品量 4.质谱图 仪器直接记录下来的质谱图,是一个个尖锐的 峰。但在文献上都将其简化成以相对强度表示的条 图(或棒图)。它的纵坐标是离子强度,以相对丰 度表示。所谓相对丰度,是以强度最大的峰(称基 峰)为100,其余的峰按与它的比例计算。
§2.有机质谱图中的离子
二.同位素离子
自然界中存在的元素,具有天然的同位素,这就意味着 含有某种元素的碎片在质谱图上不只呈现单峰,而是一组 峰。由天然同位素组成的化合物,在质谱图上常出现比分 子量大1,2,3或更多质量单位的峰。这些就是由重同位素 引起的同位素峰,其强度决定于分子中所含元素的原子数 目和该元素天然同位素的丰度。一般都是以该分子中各元 素中最轻的同位素,也就是丰度最大的同位素组成的峰为 分子离子峰。重同位素组成的峰为分子离子峰的同位素峰 (M+1) , (M+2)。
质谱
一、质谱的基本原理
质谱的原理=质谱仪器的原理,不同的仪器,原理略有 差异。质谱仪一般分一下几个部分:
进样系统
离子源
质量分析器
高真空系统
检测器
数据处理显示
8
进样系统
在不破坏真空条件下,将样品引入离子源
离子源
是样品电离,形成各种离子。离子源是各类质谱仪的 重要区别部件之一。常见的离子源有:电子轰击电离源 (electron impact ionization, EI) , 化 学 电 离 源 (chemical ionization, CI),场电离源(field ionization),快原子轰击电 离源(fast atom bombardment ionization),基质辅助激光 解吸电离源(matrix assisted laser desorption ionization), 电喷雾电离源(electrospray ionization)等
质谱分析法
(Mass Spectroscopy,MS)
1
第一节 质谱的基本原理
质谱是一种质量分析方法,类似于天平称量分析方法。但 不是直接称量,而是先将分子在一定的条件下电离形成气 态的离子,(例如分子失去1个电子后,形成分子离子; 还有可能分子被粉碎形成许多带电荷的碎片离子)。一般 情况下,这些离子都带1个正电荷,但质量却不相同,也 就是说,各种离子的质量/电荷比(简称质荷比m/z)不同。 可利用仪器(质谱分析器)将质荷比不同的离子分开,然 后利用离子检测器逐一检测。最后,通过计算机处理,给 出各种质荷比不同的离子的相对强度。
2
Sample
+ _
Ionizer
Mass Analyzer
Detector
质谱基本原理
• 一、质谱仪
• 化合物旳质谱是由质谱仪测得旳。一般质谱仪由下列几种部分构 成:
进样系统 离子源 质量分析器 离子接收器 信号放大记录系统
高真空系统
• 最简朴旳质谱仪为单聚焦(磁偏转)质谱仪。它旳构造如下图。
f
真空泵
b
d
c
q
a
图12-26 单聚焦质谱仪示意图
i
样品
• 整个系统是高真空旳,气体样品从进样口a进入离解室,样品分
对 强
60
度 40
20
M 甲烷质谱图
M+1 12 13 14 15 16
m/z
• 12.8 相对分子质量和分子式确实定
• 一、分子离子和相对分子质量 • 分子失去一种电子生成旳自由基分子正离子叫做分子离子。因它
只带一种正电荷,质荷比(m/z)在数值上与分子旳质量相同,所以, 在质谱中,找到分子离子峰就可拟定相对分子质量。这是质谱旳 主要应用之一。它比用其他措施,如冰点降低、沸点升高法测定 相对分子质量简朴得多。 • 分子离子峰一般是质谱图中质荷比最大旳峰。但多数情况下其右 侧还伴随有弱旳同位素峰和反应离子峰。有些化合物旳分子离子 比较稳定,峰旳强度较大,在质谱图谱上轻易找到;但有些化合 物旳分子离子不够稳定,轻易生成碎片,此时,这些分子离子峰 很弱或几乎找不到(如带支链旳烷烃、醇类等)。这时,可采用降 低质谱仪撞击电子流旳能量旳措施,或以其他经验措施来拟定分 子离子峰。
• 含偶数电子旳离子裂分不能产生自由基,只能生成偶数电子旳中 性分子和正离子。
• 偶数电子规律:
M 奇数电子离子
M
A +B C + D (偶数电子分子)
偶数电子离子 A
E + F (偶数电子分子)
质 谱
称为质谱方程式, 式 (8-3) 称为质谱方程式 , 是设计质谱仪器的主 要依据。 要依据。
MS
由此式可见,离子在磁场内运动半径R与 m/z、 有关。因此只有在V m/z、H、V有关。因此只有在V及H一定的条件 下 , 某些具有一定质荷比的正离子才能以运动 的轨道到达检测器。 半径为 R 的轨道到达检测器。
MS
设离子作圆周运动的轨道半径( 设离子作圆周运动的轨道半径( 近似为磁场曲 率半径) 则运动离心力必然和磁场力相等, 率半径)为 R ,则运动离心力必然和磁场力相等, 故
mv Hzv = R ( 8 - 2)
为磁场强度。 式中 H 为磁场强度。
2
MS
合并式( 合并式(8-1)及(8-2),可得
MS
5. 离子回旋共振傅里叶质谱仪
由于傅里叶技术的发展, 由于傅里叶技术的发展 , 新型的 ICR-FTMS出现 与此同期发展的FT 出现, FTICR-FTMS出现,与此同期发展的FT-IR 和超导FT NMR, FT和超导 FT-NMR , 开辟了现代有机结构 傅里叶谱学分析的新时代。 ICR傅里叶谱学分析的新时代 。 ICR-FTMS 是一种具有超高分辨率和能测定大分 子量的质谱仪器。 子量的质谱仪器。
MS
四极质谱仪的突出优点是仪器结构简 体积小,价格较便宜, 单 , 体积小 , 价格较便宜 , 操作与维护容 因无磁铁作分析器,所以无磁滞效应, 易 , 因无磁铁作分析器 , 所以无磁滞效应 , 扫描响应速度快, 扫描响应速度快 , 特别适合于与气相色谱 GC的联用分析 的联用分析, GC 的联用分析 , 适合工厂质量控制等分 析应用。 析应用。 缺点是分辨率比较低, 缺点是分辨率比较低 , 所检测的质量一 般只在1000以内。 1000以内 般只在1000以内。
质谱的原理和结构
离子源。
➢难挥发旳液体或固体样品,经过探针直接 进入离子源。
离子源(Ion Source)
分子失去电子,生成带正电荷旳分子离子。 分子离子可进一步裂解,生成质量更小旳
碎片离子。
离子源(Ion Source)
电子电离 Electron Ionization, EI 化学离子 Chemical Ionization, CI 场电离,场解吸 Field Ionization FD, Field Desorption FD 快原子轰击 Fast Atom Bombardment, FAB 基质辅助激光解析电离 Matrix-Assisted Laser Desorption Ionization, MALDI 电喷雾电离 Electrospray Ionization, ESI 大气压化学电离 Atmospheric Pressure Chemical Ionization, APCI
质谱仪及工作原理
质谱仪旳构造
质谱仪构成
进样系统
真空系统
离子源
质量分析器
检测器
1.气体扩散 2.直接进样 3.气相色谱
1.电子轰击 2.化学电离 3.场致电离 4.激光
1.单聚焦 2.双聚焦 3.飞行时间 4.四极杆
显示
进样系统(sample inlet)
➢在不破坏真空度旳情况下,使样品进入离 子源。
检测器(Detector)
质量分析器分离并加以聚焦旳离子束,按m/z旳
大小依次经过狭缝,到达搜集器,信号经接受放大 后被统计。
质谱仪旳检测主要使用电子倍增器,也有旳使 用光电倍增管。
质谱计框图
真空系统
质谱技术的基本原理和应用
质谱技术的基本原理和应用质谱技术(Mass Spectrometry,简称MS)是一种广泛应用于化学、生物学、环境科学等领域的分析技术。
它通过测量化合物中的质荷比,确定元素的相对丰度以及化合物的分子结构,具有高灵敏度、高分辨率和多功能性等优点。
本文将介绍质谱技术的基本原理及其应用情况。
一、质谱技术的基本原理质谱技术基于电离-分析-检测的原理进行工作。
首先,样品中的化合物被电离成为带电离子,可以通过不同途径进行电离,如电子轰击电离和化学电离等。
然后,离子被分析装置进行分离,通常使用磁场或电场进行此操作,使不同质荷比的离子分开。
最后,离子被检测器接收和计数,生成质谱图,并通过数据处理得到分析结果。
二、质谱技术的应用领域1. 生物医学领域质谱技术在生物医学领域中被广泛应用于生物大分子的结构鉴定和定量分析。
例如,质谱技术可以用于蛋白质的标识与定量、肽段的鉴定以及糖类的结构分析等。
通过对生物大分子的质谱分析,可以深入研究疾病的发生机制,为疾病的早期诊断和治疗提供依据。
2. 环境科学领域质谱技术在环境科学领域中的应用主要包括环境污染物的检测和分析。
通过对大气、水体和土壤等样品进行质谱分析,可以确定有机污染物的种类和含量。
此外,质谱技术还可以用于监测环境中的重金属元素和微量元素,为环境保护和治理提供科学依据。
3. 新药研发领域质谱技术在新药研发过程中发挥着重要的作用。
它可以用于药物分子的质量验证和结构鉴定,帮助研发人员快速准确地确定药物的成分和质量。
此外,质谱技术还可以用于药物代谢动力学的研究,了解药物在体内的分布和代谢规律,为药物的合理使用提供参考。
4. 食品安全领域质谱技术在食品安全领域中的应用越来越重要。
它可以用于检测食品中的农药残留、添加剂和致癌物质等有害物质,确保食品的安全性和质量。
通过质谱分析,可以对食品中的成分进行准确鉴定和定量分析,为食品生产企业和监管部门提供科学依据。
5. 能源领域质谱技术在能源领域中的应用主要涉及石油和煤炭等化石能源的分析和检测。
质谱(MS)
• 〈3〉.根据断裂方式来判断分子离子峰:
• 例如:醇的分子离子峰往往看不到,但经 常可以看到最高质量的两个峰相差三个质 量单位,这是由M-CH3和M-H2O产生的,假定 这两个峰的m/e分别为M1和M2,则相对分子 量就是M1 + 15 或M2 +18
2021/3/12
• 〈4〉.注意M + 1峰和M – 1峰: • 醚、酯、胺、酰胺、腈、芳基酸
2021/3/12
• 2. 利用经验规律:
• 〈1〉.氮原子规则:
• 凡不含氮或含偶数氮原子的分子其分子量
必为偶数,而含奇数氮原子的分子其分子量必 然为奇数。
• 例如:
•
CH3NH2
•N
奇
CH3N=NCH3 偶
•M
31
58
• 如果不符合该规律就必然不是分子离子。
2021/3/12
〈2〉.判断最高质量峰与其他碎片离子峰之 间的质量差是否合理: 以下质量差不可能出现:4-13,19-25 (含F例外) 、 37、38、50-53、65、66, 如果出现这些质量差,最高质量峰的离子就 不是分子离子。 如果质量差为14(CH2或N),不可能失 去CH2或N,此种情况说明可能有同系物存在 。
. R +
2021/3/12
〈二〉、分子离子峰的识别:
用质谱研究过的化合物中,~75%的 化合物可以产生足够稳定的分子离子。
有时识别分子离子峰时会遇到困难 ,原因是: (1)分子离子不稳定; (2)分子离子与其他离子或分子碰撞而产 生质量数不同的离子; (3)由于杂质产生高质量的离子峰。
2021/3/12
•
• √氯 35Cl 34.9688 75.56
质谱的方法原理及应用
质谱的方法原理及应用1. 原理质谱(mass spectrometry)是一种分析技术,用于确定样品中化合物的分子质量和结构,以及分析样品中各种物质的相对丰度。
质谱的原理基于离子化和分离分析。
质谱仪由离子源、质量分离器和离子探测器组成。
样品通常需要被离子化,可以通过多种方法实现,例如电离、电子轰击和激光脱附等。
离子化后的样品离子被引入质量分离器,其中离子将按照其质量/电荷比(m/z)值分离,并到达离子探测器进行检测。
根据离子信号的强度和m/z值,可以确定化合物的分子质量和相对丰度。
质谱方法原理的核心是根据不同离子的m/z值进行分析和识别。
根据离子的m/z值,可以得到化合物的分子质量,进而推导出其可能的化学结构。
2. 应用质谱技术在许多领域都有广泛的应用。
以下是质谱在不同领域中的应用举例:a. 化学分析•质谱可用于化合物的结构鉴定。
通过比较质谱图上的峰值与数据库的对应数据,可以确定化合物的分子式和结构。
•质谱在分析环境中的化学物质时也非常有用。
例如,可以使用质谱来检测空气中的有害气体或水中的污染物。
b. 生物医学•质谱在药物开发中发挥重要作用。
通过质谱可以确定药物的分子结构,帮助药物设计和合成。
•在生物医学领域中,质谱被广泛用于研究蛋白质和代谢产物。
质谱可以用来分析蛋白质的氨基酸序列,研究蛋白质组学和代谢组学。
c. 环境科学•质谱在环境科学领域中被用于监测和检测有机污染物。
通过质谱技术,可以识别和定量分析环境样品中的各种有机化合物,如农药、有机溶剂和石油产品。
d. 食品安全•质谱在食品安全检测中有着重要的应用。
可以使用质谱来检测食品中的农药残留、毒素和添加剂等成分,确保食品的质量安全。
e. 能源与材料•质谱在能源和材料研究中也发挥着重要作用。
可以使用质谱技术来研究新型能源材料的组成和性质,从而提高能源的利用效率。
3. 结论质谱是一种重要的分析技术,具有广泛的应用领域。
通过离子化和分离分析,质谱可以确定化合物的分子质量和结构,进而支持化学、生物医学、环境科学、食品安全以及能源与材料等领域的研究和应用。
质谱的分类
质谱的分类质谱是一种仪器分析技术,广泛应用于化学、生物、环境科学等领域。
根据不同的质谱仪原理和应用范围,质谱可以分为多种类型。
本文将对质谱的分类进行详细介绍。
一、按质谱仪原理分类1. 电离质谱电离质谱是质谱技术的基础,它将样品中的分子或原子气化,并将其电离成为带正或负电的离子,通过加速器和质量分析器分离和检测离子的种类和数量。
电离质谱的种类非常多,包括电子轰击电离质谱、化学电离质谱、MALDI-TOF质谱等。
2. 高能量离子撞击质谱高能量离子撞击质谱是将高能离子束照射到样品表面或统一粒子中,用来分析样品化合物的组成和结构。
该技术主要包括静电喷射(ESI)、电喷雾(API)和多重离子分解(MS/MS)。
3. 磁共振质谱磁共振质谱是一种基于核磁共振原理进行分析的质谱仪。
该技术主要应用于原子核、电子自旋共振谱、亚硫酸盐及氧化物等化合物的结构分析。
4. 时间飞行质谱时间飞行质谱是一种利用质谱仪对带电粒子进行测量的技术。
它将离子束激发成带电状态后通过匀强电场进行加速,然后通过不同速度的运动到达检测器,利用不同时间上的到达时间来进行质量分析。
5. 快速原子轰击质谱快速原子轰击质谱(FAB)是一种将阴离子和低能质子轰击到样品表面来进行质量分析的技术。
它主要应用于有机化合物、天然产物等的分析,具有灵敏度高、分析时间短等优点。
6. 等离子体质谱等离子体质谱(ICP-MS)是一种利用带电离子束进行分析的质谱技术。
该技术主要应用于分析地质、环境、食品等样品中的微量量级元素。
二、按应用范围分类1. 生物质谱生物质谱是指质谱技术在生物化学和生物医学领域中的应用。
它主要应用于蛋白质、糖类、核酸等生物分子的分析和结构确定。
2. 化学质谱化学质谱是指在化学研究和分析中使用的质谱技术。
它主要应用于有机化合物、天然产物等的结构鉴定和分析。
3. 环境质谱环境质谱是指质谱技术在环境科学中的应用。
它主要应用于大气、水体、土壤等环境样品中污染物的分析和检测。
质谱-ppt
200 pg 六氯苯 71
107 142 179 214 249
60 ng 六氯苯 107 100 142 177 150 214 200 249 250
在TRACE MS EI/70获得的结果
CI谱图
Scan EI+
100
% 51 0 100 % 0
105 77 76 78 182 苯甲酮, EI
99 113
142 m/z
正癸烷
EI的优缺点
• 优点 • 1.高的灵敏度 • 2.有达10万个化合物的 数据库可快速检索 • 3.可根据碎片方式鉴定 未知物 • 4.从碎片离子判定结构 • 缺点 • 1.质量范围小 • 2.有可能汽化前发生解 离 • 3.碎片过多有时看不到 分子离子
(2)化学电离源
2 质谱仪的发展史
1912年:
40年代:
世界第一台质谱装置
质谱仪用于同位素测定
50年代: 分析石油 60年代: 研究GC-MS联用技术 70年代: 计算机引入
90年代:由于生物分析的需要,一些新的离子 化方法得到快速发展,如快原子轰击离子源, 基质辅助激光解吸电离源,电喷雾电离源,大 气压化学电离源等。 目前:出现了比较成熟的液相色谱-质谱联用 仪,感应耦合等离子体质谱仪,富立叶变换质 谱仪等。质谱分析法已广泛地应用于化学、化 工、材料、环境、地质、能源、药物、刑侦、 生命科学、运动医学等各个领域。
特点:
得到一系列准分子离子(M+1)+,(M-1)+, (M+29)+等等; CI源的的碎片离子峰少,图谱简单,易于解释; 不适于难挥发成分的分析。
甲烷 异丁烷 氨
I35 / I18 = 0.05 I57 / I43 = 1 I35 / I18 = 0.05
质谱的主要指标和定义
质谱的主要指标和定义一、质谱技术简介质谱技术是一种高灵敏度、高特异性的生物分子检测技术,通过测量样品分子在电场和磁场中的质量-电荷比,实现对样品中分子的定性和定量分析。
质谱技术广泛应用于生命科学、医学、药物研发、环境监测等领域,是现代分析化学的重要工具之一。
二、质谱的主要指标质谱的主要指标包括分辨率、灵敏度、定量范围、重现性和动态范围等。
这些指标用于描述质谱仪的性能特点,评估其在实际应用中的优劣。
1.分辨率:分辨率是指质谱仪区分相近质量数的能力。
高分辨率质谱仪能够更精确地区分相近质量数的分子,有助于区分同位素峰和其他杂峰,提高检测的准确性。
2.灵敏度:灵敏度是指质谱仪检测特定分子的能力。
高灵敏度质谱仪能够检测到更低浓度的样品分子,有助于发现低丰度表达的生物标志物,提高检测的灵敏度和可靠性。
3.定量范围:定量范围是指质谱仪能够测定的样品浓度范围。
宽的定量范围使得质谱仪能够适应不同浓度的样品,实现不同样本间的可比性分析。
4.重现性和动态范围:重现性是指质谱数据在不同时间或不同实验条件下的一致性。
高重现性能够确保实验结果的可靠性。
动态范围是指质谱仪检测不同浓度样品的能力。
宽的动态范围使得质谱仪能够适应不同浓度的样品,提高检测的准确性。
三、质谱定义质谱是一种分离和检测气相或液相样本中元素的电子或离子的方法,并通过测量这些元素的特征能量来提供有关样本组成的信息。
在质谱分析中,样本首先被离子化,然后利用离子在电场和磁场中的行为来分离和检测不同质量的离子。
通过这种方式,可以获得关于样本中存在的元素和其相对丰度的信息。
四、质谱的应用质谱技术在许多领域中都有着广泛的应用,例如:1.在环境监测领域中,质谱可以用于测量大气、水体和土壤中的污染物,如重金属、有机物和农药等。
通过分析这些污染物的种类和浓度,可以为环境保护和治理提供重要的数据支持。
2.在生命科学领域中,质谱可以用于蛋白质组学、代谢组学和糖组学的研究。
通过对生物样本进行质谱分析,可以了解生物体内各种分子的组成和变化,揭示生命活动的奥秘和疾病发生发展的机制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广泛的人群: 老人、儿童、 病人、 亚健康人群、 更年 期女性、 神经衰弱或亢奋 者、 生活压力大的学生 和 职场精英
市场需求
现有检测分三个项目检测,只能为基本营养及代谢提供评 估 质谱除一次性检测50种全谱氨基酸外,还能提供疾病评估 依据
3
药物浓度监测
治疗药物检测的临床意义
哪些情况需要监测TDM呢?
体内不能合成,或每天合成的量不能满足身体的需要,
必须要从食物中获取正常合理饮食理论正确但很难做到, 且围产期妇女、孩子等由于阶段不同营养需求不同;
人体每天仅需微量,参与维持机体正常生
理功能,当机体缺乏时,将会表现出缺乏症
在体内不提供能量,不参与机体组织的构成,
主要参与机体代谢的调节
维 生 素 缺 乏 导 致 的 疾 病
质谱的优势
免疫法
质谱法检测( LC-MS/MS)
VD_160725-1-serum-014 Sm (Mn, 1x1)
100
3.72
MRM of 4 Channels ES+ 401.302 > 383.315 (25OH-Vitamin D3) 6.33e3
%
4.06 0.92 1.09 0 -0.00 0.50 1.00 1.50 1.731.96 2.00 2.49
VA缺乏导致的干眼病
VD缺乏导致的佝偻病
VC缺乏导致的感染
VB9缺乏导致神经管缺陷
VB2缺乏导致的舌炎
VB1缺乏导致的脚气病
VE缺乏导致的皮肤干燥
VK缺乏导致的凝血障碍
维生素的生理功能
维生素A
类别
维生素 B1
名称
维生素 B2
维生素 B9
维生素 D
维生素 E
维生素 K
食物来源
动物内脏、鱼肝油、胡 萝卜等 深色菜类 鱼肝油、强化奶等,在 皮肤经紫外线照射合成 植物油脂、麦胚、豆类、 坚果类及绿色植物等 肠道细菌合成、绿色蔬 菜、大豆、动物肝脏、 鱼类等
质谱的优势
质谱高灵敏度、高特异性检测的优势,使之成为现代生物医药领域最富有生命力的定量分析技 术之一。 在临床研究的应用方面,质谱已成为国际公认的定量分析首选技术。
质谱-精密检测仪器
为什么选择质谱
妇 儿 健 康 恶 性 肿 瘤
我国每年新生儿数量 对营养元素和遗传疾病的 我国每年新增癌症病人
维生素检测方法的改进与发展
我们的产品
第一代 微生物鉴定法 • 灵敏度高 • 实验周期长,批 次检测结果重复 性差
第二代 酶联免疫吸附测定法 • 操作简单、快速、 敏感性高、特异 性强、实验设备 要求简单 • 需要特定的抗体, 干扰因素较多
第三代 液相色谱-质谱联用 • 灵敏度高、特异 性好、同时检测 多种维生素、准 确度高 • 设备昂贵,操作 要求高
2
氨基酸谱检测
氨基酸的重要性
氨基酸是生命的基石,疾病与健康状况都与氨基酸有着直
接或间接的关联。氨基酸涉及代谢、肿瘤、免疫、心血管、
神经系统、肾病、糖尿病、亚健康、老年病等各类疾病和 人体生长发育、营养健康、肌肉骨骼生长、激素分泌、解 毒功能等各个健康环节。目前,氨基酸代谢障碍所引起的 疾病已超过400多种。氨基酸的检测已经成为健康诊断和 疾病筛查的重要手段,同时又可以作为各类人群治疗、营
质谱检查项目
什么是质谱
质谱(又叫质谱法,Mass Spectrometry)是一 种通过制备、分离、检测气相离子来鉴定化合物
的专门技术,广泛地应用于各个领域中。在众多
的分析测试方法中,质谱学方法被认为是一种同 时具备高特异性和高灵敏度的且被广泛应用的普 适性方法。质谱法在一次分析中可提供丰富的结 构信息,将分离技术与质谱法相结合是分离科学 中的一项重要突破。
血药浓度测定方法的发展
我们的产品
质谱检测的优势
免疫 制剂 抗抑郁 药抗精 神病药 靶向药 物中检 测
目前,同时检测几种血药浓度很低的免疫抑制剂(例如西罗莫司、依维莫司、他克莫 司和环孢素)是非常具有挑战性的。因此,采用灵敏度和特异性较高的UPLC-MS/MS 法同时监测是最正确的检测方法。 精神类药物常需要同时检测原型化合物和活性代谢物,不同药物间常具有相似的结构, 常规检测方法难度大。采用能够实现多指标同时检测的UPLC-MS/MS法监测是最有效 的检测方法。 目前,靶向药物由于其特异性而常被忽略其对身体其他脏器的毒性,而且其在体内血 药浓度很低,因此检测非常困难。 因此,采用灵敏度和特异性较高的UPLC-MS/MS法同时检测几种靶向药物。
万 未来三年将以400万逐年递增 才能保证下一代健康 万 癌症总数占世界四分之一
、早干预仍然是各心血管疾病包括心脏病、糖尿病和肾病等患者近 对病情的 对治疗至关重要
1
全谱维生素检测
维生素的重要性
维生素又名维他命,即维持生命的物质是维持人体
生命活动必须的一类物质也是保持人体健康的重要活 性物质
2.69 2.84 2.91
4.67 4.94
5.30 6.12
3.44 3.50
4.31 4.51
2.50
3.00
4.00
4.50
5.00
5.50
6.00
6.50
Time 7.00
一种物质
多种物质
一个指标
易受干扰 方法建立不灵活
多种标志物
特异性好 方法建立灵活
全 谱 维 为 生 了 素 您 和 孩 子 的 健 康
全谱维生素的意义
全国每年新生儿出生数量为2000万左右,但病残儿占4%—6%
健康聪明的宝宝是每个父母的心愿 围产期妇女的营养均衡尤为重要 如何判断维生素缺乏or过量?
现有的检测方法只能检测VD和叶酸(VB9)
有一种营养缺乏,叫做你觉得你缺 还有一种营养缺乏,叫做他们都说你缺
所以,你需要一种可以精准监测人体全谱维生素含量的方法!
(PKU)n MS/MS (AA, AC)n 0.1-1000 μM
序 号 1
项目
指标列表
项目意义
适应人群
10种必需氨基 组氨酸、苏氨酸、精氨酸、赖氨酸、甲硫氨酸、缬氨酸、异亮氨酸、亮 简单的营养评估 酸代谢分析 氨酸、苯丙氨酸、色氨酸 丝胺酸、甘氨酸、组氨酸、苏氨酸、谷氨酸、谷氨酰胺、天门冬氨酸、 20种蛋白类氨 2 天门冬酰胺、丙氨酸、精氨酸、脯氨酸、半胱氨酸、赖氨酸、甲硫氨酸、基本的营养评估 基 酸代谢分析 缬氨酸、酪氨酸、异亮氨酸、亮氨酸、苯丙氨酸、色氨酸 丝胺酸、甘氨酸、组氨酸、苏氨酸、谷氨酸、谷氨酰胺、天门冬氨酸、 33种常见氨基 3 天门冬酰胺、丙氨酸、精氨酸、脯氨酸、半胱氨酸、赖氨酸、甲硫氨酸、 较全面的代谢评估 酸 代谢分析 缬氨酸、酪氨酸、异亮氨酸、亮氨酸、苯丙氨酸、色氨酸、牛磺酸等 4
市场需求
现有的检测方法只能实现单次单药 我们的产品可以一次抽血同时检测多种药物
3
儿茶酚胺谱检测
嗜铬细胞瘤与高血压
嗜铬细胞瘤为起源于神经外胚层嗜铬组织的肿瘤;是一种分泌儿茶酚胺的肿瘤,位于肾上腺髓
质。
特征:间歇性分泌儿茶酚胺及其代谢产物 临床表现: 发作性高血压(占高血压病患者的0.5%~1%) 三联征:头疼(80%)、多汗(63%)、心慌(60%) 90%为良性且可通过切除治愈,恶性约为10%
5
6
7
8
丝胺酸、甘氨酸、组氨酸、苏氨酸、谷氨酸、谷氨酰胺、天门冬氨酸、 50种全谱氨基 天门冬酰胺、丙氨酸、精氨酸、脯氨酸、半胱氨酸、赖氨酸、甲硫氨酸、 酸 功能营养代 全面的氨基酸功能营养代谢医学评估 缬氨酸、酪氨酸、异亮氨酸、亮氨酸、苯丙氨酸、色氨酸、磷酸丝胺酸、 谢分 析 磷酸乙醇胺、牛磺酸、羟基脯氨酸、乙醇胺等 10种尿素循环 基本的尿素循环代谢评估,可用于防 谷氨酸、谷氨酰胺、天门冬氨酸、天门冬酰胺、精氨酸、瓜氨酸、同型 中老年人、更年期 女性、 氨 基酸代谢分 治肝、肾、脾疾病、治疗胃溃疡和胃 瓜氨酸、鸟氨酸、精氨基琥珀酸、 γ- 氨基丁酸 亚健康患、泌尿系统疾病 析 液缺乏等 13种神经递质 基本的神经递质评估,提高机能抗氧 丝胺酸、甘氨酸、谷氨酸、天门冬氨酸、酪氨酸、色氨酸、磷酸乙醇胺、 中老年人、更年期女性、亚 氨 基酸代谢分 化能力、促进血红蛋白的合成、抗衰 牛磺酸、乙醇胺、γ- 氨基丁酸、5-羟色胺 、5-羟色氨酸、犬尿氨酸 健康患者、神经系统疾病 析 老、抗抑郁、减轻焦虑、治疗失眠等 基本的硫代谢评估,降血脂、降胆固 5种含硫氨基 半胱氨酸、甲硫氨酸、牛磺酸、同型半胱氨酸、胱硫醚 醇、防治高血压、防止动脉硬化、治 心血管高危人群 酸代谢分析 疗心肌梗塞、心绞痛、心力衰竭等 丝胺酸、甘氨酸、组氨酸、苏氨酸、谷氨酸、谷氨酰胺、天门冬氨酸、 天门冬酰胺、丙氨酸、精氨酸、脯氨酸、半胱氨酸、赖氨酸、甲硫氨酸、 33种氨基酸代 缬氨酸、酪氨酸、异亮氨酸、亮氨酸、苯丙氨酸、色氨酸、牛磺酸、羟 新筛样本氨基酸精确定量 新生儿筛查 谢 分析 基脯氨酸、乙醇胺、瓜氨酸、同型瓜氨酸、鸟氨酸、精氨基琥珀酸、肌
一 治疗指数低的 药物
具有非线性动 力学特征的药 物
治疗作用与毒 性反应难以区 分
肝肾心功能不 全
合并用药
临床上检测的药物
药物分类
免疫抑制剂 强心苷类 心率失常药
具体药物
环孢霉素A、他克莫司、霉芬酸、西罗莫司、咪唑立宾、依维莫司 地高辛、洋地黄毒素、毒毛花苷K、西地兰 普鲁卡因酰胺、异丙酸胺、普萘洛尔、奎宁丁、利多卡因
微采血 + 色谱-质谱联用
检测和监测体内维生素
少量
10
滴血
分钟
7 项目
38 元/项
两项医保
市场需求
☺VK专利
☺社区医院
妊娠前6月需在社区医院建档,每月检查 减轻社区医院药占比的压力
☺二级以上医院
提供孕产妇、儿童均衡衡营养需求依据 提供有需求的亚健康人群检测,全科室覆盖 弥补现有检测方法的不足