定积分在实际问题中的应用
定积分求平面图形面积在实际生活中的应用
定积分求平面图形面积在实际生活中的应用定积分是数学中重要的概念,定积分可以用来计算函数在一定范围(定义域)内的积分值。
它是一种可以用来计算面积或计算曲线积分问题的一种技术。
在实际生活中,定积分用于求解平面图形面积的问题,广泛应用于水利、建筑、航空航天等各个领域。
首先,定积分可以用于求解椭圆面积的问题。
椭圆面积可以用定积分来计算,其计算公式为:S=[π/2*(a2-b2)],其中a是椭圆的长轴,b是椭圆的短轴。
这个公式能够准确地计算出椭圆的面积,在水利等领域中,椭圆管道的运用非常广泛,可以用定积分计算出椭圆管道的面积,从而帮助水利设计者准确地计算水利结构的尺寸。
其次,定积分可以用于求解三角形面积的问题。
三角形的面积也可以通过定积分进行计算,其计算公式为:S=*a*b*sin(C),其中a 和b是三角形的底边,C是三角形的内角。
这个公式可以准确的计算出三角形的面积,在建筑设计等领域中,三角形结构的运用非常广泛,可以用定积分计算出三角形结构的面积,从而帮助设计者准确地计算建筑结构的尺寸。
此外,定积分还可以用于求解复杂图形的面积。
复杂图形的面积可以用定积分来计算,例如可以用定积分计算圆柱体的表面积、圆柱管的表面积以及球的表面积等。
在航空航天等领域中,复杂图形的运用也非常广泛,例如飞机机身的设计、航天器的设计等,可以用定积分计算出复杂图形的面积,从而帮助设计者准确地计算机构的尺寸。
综上所述,定积分在实际生活中极具价值,它可以用于求解椭圆
面积、三角形面积以及复杂图形的面积等问题,在水利、建筑、航空航天等各个领域都有很广泛的应用,其准确的计算方法可以为实际生活中的设计者提供帮助。
例谈定积分的应用
例谈定积分的应用
定积分是利用积分技术来搭建企业系统的一种服务方式,通过定积分,企业可以解决营销,客户追踪,价格管理,订单跟踪等问题,让企业
既有资源利用效率,又能惠及消费者。
一、定积分的应用
1、促销活动:利用定积分可以创建各种丰富多彩的促销活动,满减、
团购、买赠、金币锁定等,激励消费者购买和积累积分。
2、客户管理:定积分能够建立细致复杂的客户档案,包括客户经理内容,购买次数,消费金额,积分余额等,更好地进行客户管理。
3、价格管理:通过定积分,可以根据不同客户的特征,设置特定的价格,比如会员价,大客户价等,更好地提高定价精确度和竞争力。
4、订单追踪:定积分的订单追踪系统可以记录客户的订单信息,有利
于企业更好地追溯客户信息以及及时为客户提供优质服务。
二、定积分的优势
1、可靠性:定积分系统可以提供可靠性能,降低前端和后端系统出现
的异常和故障,防止客户和企业受到损害。
2、安全性:定积分的安全性也得到有效保障,内部数据交换完全采用
加密技术,保证信息不受外部干涉。
3、兼容性:定积分具有可行性和兼容性,它可以按照各种不同环境定
制与企业系统相协调的服务,能够提供企业最适合的解决方案。
4、易用性:定积分使用界面简洁明了,业务流程简单可靠,容易上手,操作简单易懂,为客户提供更贴心的服务。
三、总结
定积分的引入为企业的经营活动带来了更多的便利,有效提高了企业
的经营效率,也让消费者能够从消费上受到更多的好处。
由此可见,
定积分不仅是企业的一种低成本的服务方式,也是一个更加有效的、
更加充分的消费积分服务体系,为企业和消费者都更好地搭建企业系统。
定积分的应用
定积分的应用定积分是微积分的重要概念之一,它在许多实际问题的求解中起着重要作用。
本文将介绍一些定积分的应用,并探讨它们在不同领域中的具体应用情况。
1. 几何学中的应用在几何学中,我们经常需要计算曲线与坐标轴之间的面积。
通过使用定积分,可以轻松解决这个问题。
以求解曲线 y = f(x) 与 x 轴之间的面积为例,我们可以将其划分为无穷多个宽度非常小的矩形,然后将这些矩形的面积相加,最终得到曲线与 x 轴之间的面积。
这个过程可以通过定积分来表示,即∫[a,b] f(x) dx,其中 a 和 b 分别是曲线的起始点和终止点。
2. 物理学中的应用在物理学中,定积分广泛应用于求解各种与物理量有关的问题。
例如,在动力学中,我们可以通过计算物体的位移和速度的定积分来求解物体的加速度。
同样地,在力学中,定积分可以用于计算物体所受的力的功。
这些应用都需要将物理量表示成关于时间的函数,并使用定积分来求解相关问题。
3. 经济学中的应用经济学也是定积分的应用领域之一。
在经济学中,我们经常需要计算一段时间内的总收益或总成本。
通过将这段时间划分为无数个非常小的时间段,然后计算每个时间段内的收益或成本,最后再将这些值相加,我们可以用定积分来表示这段时间内的总收益或总成本。
这种方法在经济学中有着广泛的应用,例如计算企业的总利润等。
4. 概率统计学中的应用在概率统计学中,定积分可以用于求解概率密度函数下的某个区间的概率。
在概率密度函数中,曲线下的面积表示了该事件发生的概率。
通过将概率密度函数在某个区间上的定积分,我们可以得到该区间内事件发生的概率。
这种方法在概率论和数理统计中具有重要的应用,例如计算正态分布下的概率,或者计算随机变量的期望值等。
综上所述,定积分在几何学、物理学、经济学和概率统计学等各个领域都有着重要的应用。
无论是计算面积、求解物理量、计算总收益还是计算概率,定积分都提供了一种有效的数学工具。
通过理解和掌握定积分的应用,我们可以更好地解决实际问题,并深入研究各个领域中的相关理论。
(完整版)定积分在经济中的应用
定积分在经济中的应用一、由经济函数的边际,求经济函数在区间上的增量根据边际成本,边际收入,边际利润以及产量x 的变动区间[,]a b 上的改变量(增量)就等于它们各自边际在区间[,]a b 上的定积分:()()()ba Rb R a R x dx '-=⎰ (1) ()()()ba Cb C a C x dx '-=⎰ (2) ()()()ba Lb L a L x dx '-=⎰ (3) 例1 已知某商品边际收入为0.0825x -+(万元/t ),边际成本为5(万元/t ),求产量x 从250t 增加到300t 时销售收入()R x ,总成本C ()x ,利润()I x 的改变量(增量)。
解 首先求边际利润()()()0.082550.0820L x R x C x x x '''=-=-+-=-+所以根据式(1)、式(2)、式(3),依次求出:300250(300)(250)()R R R x dx '-=⎰300250(0.0825)x dx =-+⎰=150万元 300300250250(300)(250)()C C C x dx dx '-==⎰⎰=250万元 300300250250(300)(250)()(0.0820)L L L x dx x dx '-==-+⎰⎰=-100万元二、由经济函数的变化率,求经济函数在区间上的平均变化率 设某经济函数的变化率为()f t ,则称2121()t t f t dt t t -⎰ 为该经济函数在时间间隔21[,]t t 内的平均变化率。
例2 某银行的利息连续计算,利息率是时间t (单位:年)的函数:()0.08r t =+求它在开始2年,即时间间隔[0,2]内的平均利息率。
解 由于2200()(0.08r t dt dt =+⎰⎰20.160.010.16=+=+所以开始2年的平均利息率为20()0.0820r t dtr ==+-⎰0.094≈例3 某公司运行t (年)所获利润为()L t (元)利润的年变化率为()310L t '=⨯/年)求利润从第4年初到第8年末,即时间间隔[3,8]内年平均变化率解 由于3885852333()310210(1)3810L t dt t '=⨯=⨯⋅+=⨯⎰⎰所以从第4年初到第8年末,利润的年平均变化率为853()7.61083L t dt'=⨯-⎰(元/年)即在这5年内公司平均每年平均获利57.610⨯元。
定积分求平面图形面积在实际生活中的应用
定积分求平面图形面积在实际生活中的应用把复杂的积分问题求解出来就可以计算出平面图形的面积,在实际生活中也可以看到它的很多应用。
其中有一类是涉及设计的,比如建筑设计中的空间分配、土地开发等;另一类是分析的,比如海洋表面的波浪分析等。
1、建筑设计建筑设计中,定积分可以用来求解空间分配问题。
比如,在房屋设计中,它可以用来确定楼层、楼梯、墙壁、门窗等占用了多少面积。
此外,它还可以用来求解不规则房间布局时,室外墙体和室内墙体的面积分配。
同样,在土地开发中也可以看到定积分的应用,如计算出道路两端的封闭区域面积,以及计算建筑的总面积。
定积分也可以帮助规划者精确计算出规划区域的面积,从而更好地管理规划区域的开发。
2、海洋表面的波浪分析定积分也可以用来求解海洋表面的波浪。
水波的主要性质是在洋流中运动,它的变化符合泊松方程,这是一个带积分的方程,可以用定积分来求解。
这种波浪分析可以更好地解释海洋表面的复杂性,进而指导航管理者和建筑者采取更安全有效的导航措施。
此外,在海岸线上,可以使用定积分来计算海岸线内各子区域的面积,以及海岸线及其各个部分的面积,为海洋管理者提供有形的参考数据。
3、农业此外,定积分在农业中也有非常广泛的应用。
比如,在种植作物时,可以使用定积分来计算出作物地的面积,以及需要灌溉地区的面积;在研究农田开发时,可以利用定积分来计算出耕作面积。
通过计算出具体的面积数据,可以更好地规划农田的分布和种植规模,从而节约农业资源,提高农作物的产量。
总结定积分是一种有用的数学技术,可以把复杂的数学问题转化成计算机可计算的简单形式,在计算平面图形面积上表现出很强的优势。
它在实际生活中有很多应用,比如建筑设计、土地开发、海洋洋面波浪分析,以及农业规划等。
定积分概念在工程中的应用教学设计
定积分概念在工程中的应用教学设计全文共四篇示例,供读者参考第一篇示例:定积分是微积分中的重要概念,它在工程领域中有着广泛的应用。
工程师常常利用定积分解决各种实际问题,例如计算物体的质心、求解曲线下的面积、计算流体力学中的压力、能量等。
本文将探讨定积分在工程中的应用,并设计一份关于定积分概念在工程中的教学内容。
一、定积分在工程中的应用:1. 计算物体的质心:在工程设计中,常常需要确定一个物体的质心位置。
利用定积分可以计算出物体的质心坐标,从而帮助工程师设计出更加平衡和稳定的结构。
2. 计算曲线下的面积:在工程中,有时需要计算曲线所围成的区域的面积,例如计算河流的净流量、计算土地的面积等。
定积分可以帮助工程师准确计算出这些面积。
3. 流体力学中的应用:在流体力学中,常常需要计算流体的压力、流速等参数。
定积分可以帮助工程师解决各种与流体有关的问题,例如计算管道中的流速、计算水压等。
4. 能量计算:在工程设计中,常常需要计算各种能量参数,例如机械能、热能等。
定积分可以帮助工程师计算出系统的总能量,从而更好地设计出节能的结构。
基于上述应用,可以设计一份关于定积分概念在工程中的教学内容。
以下是一份教学设计:1. 教学目标:学生能够理解定积分的概念,并能够应用定积分解决工程中的实际问题。
2. 教学内容:(1)定积分的定义和性质;(2)定积分在工程中的应用实例;(3)定积分在工程问题中的解决方法;(4)定积分的数值计算方法。
(1)介绍定积分的概念和性质,引导学生理解定积分的意义;(2)通过实际案例,展示定积分在工程中的应用,帮助学生理解定积分的实际意义;(3)讲解定积分的计算方法,例如积分的分解、定积分的数值计算方法等;(4)设计一些练习题,让学生通过计算来熟悉定积分的应用;(5)引导学生思考,如何将定积分应用到实际工程中的问题中。
通过课堂讨论、实验设计、小组合作等形式,评价学生对定积分概念的掌握程度,以及能否独立应用定积分解决工程中的实际问题。
2 定积分的物理应用
0
x + dx
x
y 28m
在[0,28]上任取一小区间 [0,28]上任取一小区间[x,x+dx] 上任取一小区间 此小区间对应的链条重为 µdx
x
将这小段链条拉至顶端所作的功近似地等于
5 dW = ( gµdx ) x = gxdx 7
积分的总功为: 积分的总功为:
W =∫
28 0
5 gxdx = 2744( J ) 7
例 2 一圆柱形蓄水池高为 h 米,底半径为 r 米,池内盛满了水 问要把池内的水全部吸 池内盛满了水.问要把池内的水全部吸 需作多少功? 出,需作多少功?
解
建立坐标系如图
取x 为积分变量, 为积分变量,x ∈ [0, h]
取任一小区间[ x , x + dx ],
dx ∴ Fy = −k mµ a ∫ 2 3 0 (a + x 2 ) 2
l
a dFx dFy α d F = k m2µ d x a + x2
x x + d xl x
x dx Fx = k mµ ∫ 2 3 0 (a + x 2 ) 2
l
o
引力大小为 F = F 2 + F 2 x y
内容小结
利用“微元法”思想求变力作功、 利用“微元法”思想求变力作功、水压 力和引力等物理问题. 力和引力等物理问题. (注意熟悉相关的物理知识) 注意熟悉相关的物理知识) Hw:p287 3,7,10,12. : 复习六: 复习六: 1,2,4,6,7,8.
如果物体在运动的过程中所受的力是变化 就不能直接使用此公式,而采用“微元法” 的,就不能直接使用此公式,而采用“微元法” 思想. 思想
应用数学论文---定积分在生活中的应用
定积分在生活中的应用引 言通过学习了定积分后,我了解到定积分在生活中有很重要的应用。
定积分作为大学里很重要的一部分,在生活有广泛的应用;微积分是与应用联系发展起来的,最初牛顿应用微积分是为了从万有引力导出行星三定律,此后,微积分极大的推动了数学的发展,同时也极大的推动了天文学、物理学、化学、工程学、经济学等自然科学的发展,而且随着人类知识的不断发展,微积分正指引着人类走向认知的殿堂。
一、定积分的概述1、定积分的定义设函数()f x 在区间[],a b 上有界,在[],a b 中任意插入若干个分点011n n a x x x x b -=<<<<=, 把区间[],a b 分成n 个小区间:有[][][]01121,,,,,,,n n x x x x x x -且各个小区间的长度依次为110x x x ∆=-,221x x x ∆=-,…,1n n n x x x -∆=-。
在每个小区间[]1,i i x x -上任取一点i ξ,作函数()i f ξ与小区间长度i x ∆的乘积()i i f x ξ∆(1,2,,i n =),并作出和()1ni i i S f x ξ==∆∑。
记{}12max ,,,n P x x x =∆∆∆,如果不论对[],a b 怎样分法,也不论在小区间[]1,i i x x -上点i ξ怎样取法,只要当0P →时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数()f x 在区间[],a b 上的定积分(简称积分),记作()baf x dx ⎰,即()baf x dx ⎰=I =()01lim ni iP i f x ξ→=∆∑,其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],a b ⎡⎣叫做积分区间。
2.定积分的性质.设函数()f x 和()g x 在[],a b 上都可积,k 是常数,则()kf x 和()f x +()g x 都可积,并且性质1 ()b akf x dx ⎰=()bak f x dx ⎰;性质2 ()()b a f x g x dx +⎡⎤⎣⎦⎰=()b a f x dx ⎰+()ba g x dx ⎰ ()()baf xg x dx -⎡⎤⎣⎦⎰=()b a f x dx ⎰-()ba g x dx ⎰.性质3 定积分对于积分区间的可加性设()f x 在区间上可积,且a ,b 和c 都是区间内的点,则不论a ,b 和c 的相对位置如何,都有()caf x dx ⎰=()baf x dx ⎰+()cbf x dx ⎰。
简述不定积分和定积分在经济生活中的应用
简述不定积分和定积分在经济生活中的应用经济学中不定积分和定积分是一种重要的计算工具,具有广泛的实际应用。
不定积分和定积分在经济生活中有着重要的意义,它可以帮助经济学家和经济管理者更好地了解和研究经济问题,有助于更好地推进经济发展和管理经济。
本文将简要介绍不定积分和定积分在经济生活中的应用。
不定积分在经济生活中的应用不定积分的应用在经济学中很广泛,可以用来解决许多经济中的问题。
首先,它可以用来计算价格。
不定积分可以用来计算出给定价格下消费者需求量和生产商供给量之间的关系,进而了解消费者和生产商在某一价格水平下多大程度上能够受到价格影响。
其次,不定积分可以用来计算投资成本。
不定积分可以用来计算投资成本,以判断投资成本究竟有多大,是否值得投入。
投资者也可以运用不定积分法来分析所考虑的投资项目的投资回报率,以更快地、更高效地学习投资过程的风险和收益。
定积分在经济生活中的应用定积分也在经济生活中有着重要的应用。
首先,它可以用来计算消费函数。
函数可以用来展示消费者在不同收入水平下的消费水平,这有助于经济学家和政策制定者更好地理解消费者的消费行为,推动经济发展。
其次,定积分也可以用来计算税收函数。
税收函数可以用来计算税收对投资的影响,以判断出税收的调节幅度,有助于政府制定出合理的税收政策,推动经济发展。
此外,定积分还可以用来计算产出函数。
产出函数可以用来计算不同生产要素投入水平下生产总量的大小,有助于计算出不同生产要素对总产出的贡献度,以及它们投入和产出间的关系。
结论从上述内容可以看出,不定积分和定积分在经济生活中有着重要的应用。
不定积分可以用来计算价格和投资成本,而定积分则可以用来计算消费函数、税收函数和产出函数。
因此,不定积分和定积分都是经济学上重要的工具,它们对经济管理者来说是不可或缺的。
它们的正确运用可以帮助经济学家和经济管理者更深入地理解和研究经济状况,有助于推动经济发展。
定积分的应用公式总结
定积分的应用公式总结定积分是微积分中的重要概念,它在许多领域都有着广泛的应用。
在本文中,我们将对定积分的应用公式进行总结,并举例说明其在实际问题中的应用。
1. 面积与定积分。
定积分最基本的应用之一就是计算曲线与坐标轴之间的面积。
设函数f(x)在区间[a, b]上连续,且f(x) ≥ 0,则曲线y = f(x)与x轴所围成的图形的面积为。
A = ∫[a, b] f(x) dx。
这就是定积分的几何意义,它表示曲线与x轴之间的面积。
2. 物理学中的应用。
在物理学中,定积分常常用来计算曲线下方的面积,从而得到某一变量的总量。
例如,如果我们知道一个物体在 t 时刻的速度 v(t)(单位时间内的位移),则该物体在时间区间 [a, b] 内的位移为。
S = ∫[a, b] v(t) dt。
这里的 S 就表示了物体在时间区间 [a, b] 内的总位移。
3. 概率统计中的应用。
在概率统计中,定积分也有着重要的应用。
例如,如果我们知道某一随机变量X 的概率密度函数为 f(x),则 X 落在区间 [a, b] 内的概率为。
P(a ≤ X ≤ b) = ∫[a, b] f(x) dx。
这里的 P(a ≤ X ≤ b) 表示了随机变量 X 落在区间 [a, b] 内的概率。
4. 工程中的应用。
在工程领域,定积分也有着广泛的应用。
例如,在计算流体的体积、质量、密度、压力等问题时,定积分常常是不可或缺的工具。
另外,在电路分析、信号处理、控制系统等领域,定积分也有着重要的作用。
5. 经济学中的应用。
在经济学中,定积分常常用来描述某一商品的总收益、总成本、总利润等。
例如,如果知道某一商品的需求函数为 D(p),则该商品在价格区间 [a, b] 内的总收益为。
R = ∫[a, b] p D(p) dp。
这里的 R 表示了商品在价格区间 [a, b] 内的总收益。
总结。
定积分的应用远不止以上几个领域,它在数学、物理、工程、经济等众多领域都有着重要的作用。
定积分的应用优秀案例名称
定积分的应用优秀案例名称定积分是微积分学中的一个重要概念,其应用范围广泛,涉及到数学、物理、工程学等多个学科领域。
下面将围绕定积分的应用优秀案例,通过分步骤阐述,从实际问题入手,深入探讨定积分的应用。
一、汽车行驶里程问题汽车行驶里程问题是定积分的一个典型应用案例。
假设一个汽车匀速行驶,行驶速度为v,行驶时间为t,我们想知道汽车行驶的总里程。
首先,我们需要通过公式来表示汽车的行驶里程。
行驶里程=速度*时间,即s=v*t。
由此得到定积分公式为:∫sdt=∫vtdt因为汽车是匀速行驶,速度v为常数,因此可将上公式化简为:∫sdt=vt+C其中C是常数项,表示汽车的起始点。
因此,我们只需知道汽车的起始点和行驶时间,就可根据上述公式计算出汽车的行驶里程。
二、物理问题定积分在物理学中也有重要的应用。
例如,假设一个物体受到力F,进行相应的位移d,则所做的功为:W=∫Fds其中,F为力的大小,ds为位移的微小距离元素。
通过定积分,可以计算出物体所做的总功。
例如,假设一个物体受到的力F=2x+10 N,在位移为x的时候对它进行功的计算,其功为:W=∫Fdx=∫(2x+10)dx解上式的不定积分:W=∫(2x+10)dx=x^2+10x+C其中,C为常数项,表示物体的起始点。
通过此公式,我们可以计算出物体受到力F在位移为x时所做的功。
三、金融问题除了数学和物理领域外,定积分在金融领域也有涉及。
例如,假设一家公司每年的营业额为f(x),其中x为年份。
我们想要计算该公司在某一时期内的总营业额。
由于营业额是一种累积变量,我们可以使用定积分来计算总营业额。
假设该公司在t1到t2年间营业额为f(x),则总营业额为:∫t1到t2 f(x)dx通过定积分公式,我们可以计算出该公司在t1到t2年间的总营业额。
综上所述,定积分的应用范围十分广泛,涉及到多个领域,例如,数学、物理、金融等等。
通过具体的实例,我们可以更好地理解定积分的应用,并进一步掌握定积分的求解方法。
定积分的应用公式总结
定积分的应用公式总结定积分是微积分中的重要概念,具有广泛的应用范围。
在实际问题中,定积分可以用于求解曲线下的面积、求解容积、质量、中心矩等问题。
接下来,我们将总结定积分的应用公式,包括面积、体积、质量、中心矩等几个重要应用。
1. 曲线下的面积定积分最常见的应用是求解曲线下的面积。
对于一个函数f(x),在区间[a, b]上,曲线y=f(x)与x轴所围成的面积可以通过定积分来计算。
公式为:S = ∫(a到b)f(x)dx其中S表示曲线下的面积,∫表示定积分,f(x)是函数曲线在x轴上的对应值。
2. 旋转体的体积定积分还可以用于计算旋转体的体积。
考虑一个曲线y=f(x),在[a, b]区间上绕x轴旋转一周,所形成的旋转体体积可以通过定积分来计算。
公式为:V = π∫(a到b)f(x)^2dx其中V表示旋转体的体积,π表示圆周率。
3. 弧长定积分可以用于计算曲线的弧长。
设有曲线y=f(x),在区间[a,b]上的弧长可以通过定积分来计算。
公式为:L = ∫(a到b)√(1+(f'(x))^2)dx其中L表示曲线的弧长,f'(x)表示f(x)的导数。
4. 质量和质心对于一条位于直角坐标系中的线密度分布曲线,其质量可以通过定积分来计算。
设密度函数为ρ(x),曲线上的质量可以表示为:m = ∫(a到b)ρ(x)dx其中m表示曲线上的质量,ρ(x)表示密度函数。
同时,还可以通过定积分来计算曲线的质心。
曲线的质心可以通过以下公式来计算:x_c = (1/m)∫(a到b)xρ(x)dxy_c = (1/m)∫(a到b)yρ(x)dx其中x_c和y_c表示曲线的质心的坐标。
以上的公式总结了定积分的一些重要应用,包括面积、体积、弧长、质量和质心等。
在实际问题中,我们可以根据具体的问题情况,选择适当的公式来计算所需的结果。
这些公式可以帮助我们更好地理解和应用定积分的概念,解决实际问题。
定积分的计算方法与应用
定积分的计算方法与应用定积分是微积分中的一个重要概念,具有广泛的应用领域。
本文将介绍定积分的计算方法以及它在实际问题中的应用。
一、定积分的计算方法定积分是求解曲线下面的面积或者曲线上某一区间的长度的数学工具。
在计算定积分时,我们可以使用以下方法:1. 几何解法:当曲线形状较简单且易于几何分析时,可以采用几何解法。
例如,计算一个常数函数在给定区间上的定积分,可以直接计算该区间内的矩形面积。
2. 分割求和法:定积分可以通过将曲线分割为若干个小区间,在每个小区间内取样点,并计算每个小区间的面积或长度,再将这些结果求和得到近似解。
随着小区间的数量增加,这种方法的近似解将逐渐接近准确值。
3. 定积分的定义:根据数学定义,定积分可以通过极限求和的方式得到准确解。
该方法需要将曲线分割为无穷多个微小的小区间,并进行求和。
具体的计算步骤可以参照定积分的定义公式。
二、定积分在实际问题中的应用定积分作为一种数学工具,在许多实际问题的求解中起到了重要作用。
以下是一些常见的应用场景:1. 几何应用:定积分可以用于计算曲线下的面积,例如求解两条曲线之间的面积或计算曲线所围成的区域的面积。
这在建筑设计、地理测量等领域中有广泛应用。
2. 物理学应用:定积分可以用于计算物体的质量、质心、转动惯量等物理量。
例如,在力学中,通过计算质点沿某一曲线的运动轨迹所做的功,可以使用定积分求得。
3. 统计学应用:定积分可以应用于计算概率密度函数下的概率。
在统计学中,通过计算概率密度曲线下的面积,可以得到某一区间内事件发生的概率。
4. 经济学应用:定积分可以用于计算经济学中的消费总额、产出总额等指标。
例如,计算某一产品的总销售额可以通过对销售函数进行定积分得到。
5. 工程学应用:定积分可以应用于计算工程中的功耗、能量损失等问题。
例如,计算电路中的功耗可以通过对电流和电压的乘积进行定积分来求解。
在实际问题中,我们可以根据具体情况将问题转化为曲线的面积或长度的计算,然后应用定积分的方法进行求解。
高数第五章 定积分的应用
第五章 定积分的应用在本章中,我们将利用学过的定积分理论来解决一些实际问题.首先介绍建立定积分数学模型的方法——微分元素法;再利用这一方法求一些几何量(如面积、体积、弧长等)和一些物理量(如功、液体静压力、引力等);并介绍定积分在经济学中的简单应用.第一节 微分元素法实际问题中,哪些量可用定积分计算?如何建立这些量的定积分表达式?本节中我们将回答这两个问题.由定积分定义知,若()f x 在区间,a b ⎡⎤⎣⎦上可积,则对于,a b ⎡⎤⎣⎦的任一划分:1<<<0n a x x x b == ,及1,i i x x -⎡⎤⎣⎦中任意点i ξ,有d Δ01()lim()nb i i aλi f x x f ξx →==∑⎰,(5-1-1)这里()-=-= 11,2,,i i i Δx x x i n ,}{≤≤=1m ax i i nλΔx . (5-1-1)式表明定积分的本质是一类特定和式的极限,此极限值与,a b ⎡⎤⎣⎦的分法及点i ξ的取法无关,只与区间,a b ⎡⎤⎣⎦及函数()f x 有关.基于此,我们可以将一些实际问题中有关量的计算归结为定积分来计算.例如,曲边梯形的面积、变速直线运动的位移等均可用定积分来表达.由上一章中分析曲边梯形面积用定积分来表示的过程,我们可概括地将此过程描述为“划分找近似,求和取极限”.也就是说,将所求量整体转化为部分之和,利用整体上变化的量在局部近似于不变这一辩证关系,局部上以“不变”代替“变”,这是利用定积分解决实际问题的基本思想.根据定积分的定义,如果某一实际问题中所求量U 符合下列条件:(1)建立适当的坐标系和选择与U 有关的变量x 后,U 是一个与定义在某一区间,a b ⎡⎤⎣⎦上的可积函数()u x 有关的量; (2)U 对区间,a b ⎡⎤⎣⎦具有可加性,即如果把,a b ⎡⎤⎣⎦任意划分成n 个小区间()-=-= 11,2,,i i i Δx x x i n ,则U 相应地分成n 个部分量i ΔU ,且1nii U U Δ==∑;(3) 部分量i ΔU 可近似地表示成()()1,i i i i i u ξΔx ξx x -∈⎡⎤⎣⎦,且i ΔU 与()i i u ξΔx 之差是iΔx 的高阶无穷小,即()()i i i i ΔU u ξΔx o Δx -=,那么,我们可得到所求量U 的定积分数学模型d ()b au x U x =⎰. (5-1-2)在实际建模过程中,为简便起见,通常将具有代表性的第i 个小区间1,i i x x -⎡⎤⎣⎦的下标略去,记为[,d ]x x x +,称其为典型小区间,相应于此小区间的所求量的部分量记作ΔU .因此,建立实际问题的定积分模型可按以下步骤进行:(1) 建立坐标系,根据所求量U 确定一个积分变量x 及其变化范围,a b ⎡⎤⎣⎦;(2) 考虑典型小区间[,d ]x x x +,求出U 相应于这一小区间的部分量ΔU ,将ΔU 近似地表示成,a b ⎡⎤⎣⎦上的某个可积函数()ux 在x 处的取值与小区间长度d Δx x =的积,即 d (d )()ΔU u x x o x =+, (5-1-3)我们称d ()u x x 为所求量U 的微分元素(简称微元或元素),记作d d ()U u x x=;(3) 计算所求量U ,即d =d ()b b aau x U x =⎰⎰U .上述建立定积分数学模型的方法称为微分元素法,这一方法的关键是步骤(2)中微分元素d U 的取得.第二节 平面图形的面积在上一章开头讨论过由连续曲线()()()0y =f x f x ≥,以及直线()x=a ,x =b a <b 和x 轴所围成的曲边梯形的面积()d baA f x x =⎰.如果()f x 在,a b ⎡⎤⎣⎦上不都是非负的,由定积分对区间的可加性,则所围图形的面积为()d b aA f x x =⎰.本节将讨论一般平面图形的问题,如果其边界曲线是由两条连续曲线()1y f x =, ()2y f x =()()21f x f x ⎡⎤≥⎣⎦及直线x =a ,x =b 所围成的平面图形,其面积便可用定积分来计算.下面我们运用定积分的微分元素法,建立不同坐标系下平面图形的面积计算公式.一、 直角坐标情形设一平面图形由曲线()()12,y f x y f x ==及直线x =a 和()x =b a b <围成(见图5-1).图5-1为求其面积A ,我们在,a b ⎡⎤⎣⎦上取典型小区间[,d ]x x x +,相应于该小区间的平面图形面积ΔA 近似地等于高为()()12f x f x -、宽为d x 的窄矩形的面积,从而得到面积微元()()d d 12A f x f xx =-.所以,此平面图形的面积为()()d 12b aA f x f xx =-⎰. (5-2-1)类似地,若平面图形由12(),()x φy x φy ==及直线y c =和()y d d c =>围成(见图5-2),则其面积为()()d 12d cA φy φy y =-⎰. (5-2-2)图5-2例1 计算由抛物线21y x =-+与2y x =所围图形的面积A . 解 解方程组221y x y x⎧=-+⎪⎨=⎪⎩得两抛物线的交点为122⎛⎫ ⎪⎝⎭和122⎫⎪⎝⎭,于是图形位于2x =-与2x =之间,如图5-3所示,取x 为积分变量,由(5-2-1)式得d 22222)A xxx x=--=-32022()3x x =-=图5-3例2 计算由直线4y x =-和抛物线22y x =所围平面图形的面积A . 解 解方程组224y xy x ⎧=⎪⎨=-⎪⎩得两线的交点为(2,-2)和(8,4),平面图形,如图5-4所示,位于直线2y =-和4y =之间,于是取y 为积分变量,由(5-2-2)式得d 24242yA y y -=+-⎰3242(4)26yyy -=+-18=.图5-4注意:若在例1中取y 为积分变量,在例2中取x 为积分变量,则所求面积的计算会较为复杂.例如在例2中,若选x 为积分变量,则积分区间是[0,8].当(,2)0x ∈时,典型小区间(,d )x x x +所对应的面积微元是(d d A x=⎤⎦;而当(2,8)x ∈时,典型小区间所对应的面积微元是()d d 4A x x ⎤-⎦=. 故所求面积为(()d d 28024A x x x⎤⎤+-⎦=⎦⎰⎰.显然,上述做法较例2中的解法要复杂.因此,在求平面图形的面积时,恰当地选择积分变量可使计算简便.当曲边梯形的曲边为连续曲线,其方程由参数方程(),(),x φt y ψt =⎧⎨=⎩12t t t ≤≤ 给出时,若其底边位于x 轴上,()φt 在12[,]t t 上可导,则其面积微元为 ()()d d d A y x ψt φt t ==' d (0)t >. 从而面积为()()d 21t t A ψt φt t ='⎰. (5-2-3)同理,若其底边位于y 轴上,且()ψt 在12[,]t t 上可导,则其面积微元为 ()()d d d A x y φt ψt t ==' d (0)t > 从而面积为()()d 21t t A φt ψt t ='⎰. (5-2-4)例3 设椭圆方程为12222y x ab+= (,a b 为正的常数),求其面积A .解 椭圆的参数方程为cos ,sin ,x a t y b t =⎧⎨=⎩20t π≤≤. 由对称性知d 204sin (cos )A b t a t tπ'=⋅⎰d d 22201cos 24sin 42ta b t t a b t ππ-==⎰⎰a b=π.二、 极坐标情形设一平面图形,在极坐标系下由连续曲线()r r θ=及射线,θαθβ==所围成(称为曲边扇形,如图5-5所示.)为求其面积,我们在θ的变化区间[,]αβ上取一典型小区间[,d ]θθθ+,相应于此区间上的面积近似地等于中心角为d θ、半径为()r θ的扇形面积,从而得到面积微元()d d 212A r θθ=, 所以d 21()2βαA r θθ=⎰. (5-2-5)图5-5例4 计算阿基米德(Archimedes)螺线(>)0r a θa =上相应于θ从0到2π的一段弧与极轴所围成图形如图5-6所示的面积.解 由式(5-2-5)得d 22232302114()2630A a θθa θa ππ⎛⎫===π ⎪⎝⎭⎰.图5-6 图5-7例5 求由双纽线()()2222222x y a x y +=-所围成,且在半径为a 的圆内部的图形如图5-7所示的面积.解 由对称性,所求面积应等于第一象限部分面积的4倍,极坐标下双纽线在第一象限部分的方程为222co 2r a s θ=, 04θ≤≤π.圆的方程为r a =. 由 222cos 2r a θr a ⎧=⎪⎨=⎪⎩解得两曲线在第一象限交点为6,a ⎛⎫⎪⎝⎭π,由式(5-2-5)得所求面积d cos d 2264061142222A a θa θθπππ⎡⎤=+⎢⎥⎣⎦⎰⎰42262sin 23a a θπππ=+2(23aπ=+-.第三节 几何体的体积一、 平行截面面积为已知的立体体积考虑介于垂直于x 轴的两平行平面x a =与x b =之间的立体如图5-8所示,若对任意的[,]x a b ∈,立体在此处垂直于x 轴的截面面积可以用x 的连续函数()A x 来表示,则此立体的体积可用定积分表示.图5-8在[,]a b 内取典型小区间[,d ]x x x +,对应于此小区间的体积近似地等于以底面积为()Ax ,高为d x 的柱体的体积,故体积元素为()d d V A x x =, 从而d ()b aA x V x =⎰. (5-3-1)例1 一平面经过半径为R 的圆柱体的底圆中心,并与底面交成角α,如图5-9所示,计算此平面截圆柱体所得楔形体的体积V .解法1 建立坐标系如图5-9,则底面圆方程为222x y R +=.对任意的[,]x R R ∈-,过点x 且垂直于x 轴的截面是一个直角三角形,两直角边的长度分别为y =和tan y αα=,故截面面积为()()tan 2212x R x A α-=.于是立体体积为tan d 221()2R RV R x αx -=-⎰tan d tan 22302()3RαR x x R α=-=⎰.图5-9 图5-10解法2 在楔形体中过点y 且垂直于y 轴的截面是一个矩形如图5-10所示,其长为2x =tan y α,故其面积为()2A yy α=.从而,楔形体的体积为()d tan 322222an 3R R V αy αR y==--⎰tan 323R α=. 二、旋转体的体积由一平面图形绕这平面内一条定直线旋转一周而成的立体称为旋转体. 设一旋转体是由连续曲线()y f x =,直线x a =和x b =及x 轴所围成的曲边梯形绕x 轴旋转一周而形成的(图5-11),则对任意的[,]x a b ∈,相应于x 处垂直于x 轴的截面是一个圆盘,其面积为2()πf x ,于是旋转体的体积为 ()d 2ba V f x x =π⎰. (5-3-2)图5-11例2 计算由椭圆22221y x ab+=(,a b 为正的常数)所围图形绕x 轴旋转而成的旋转体(称之为旋转椭球体,见图5-12)的体积.图5-12解 这个旋转体实际上就是半个椭圆y =及x 轴所围曲边梯形绕x 轴旋转一周而成的立体,于是由式(5-3-2)得()2222a ab V axa-=π-⎰()d 22222a b axxa=π-⎰2322230ab x a x a ⎛⎫=π⋅- ⎪⎝⎭243a b =π.特别地,当a b =时便得到球的体积343πa .例3 求圆域222()()x b a y b a +-≤>绕x 轴旋转而成的圆环体的体积如图5-13所示.图5-13解 如图5-13,上半圆周的方程为2y b +=1y b -=对应于典型区间[,d ]x x x +上的体积微元为d d 2221()V y y x =π-πd 22((b b x ⎡⎤=π+--⎢⎥⎣⎦4x =π.所以4a aV x -=π⎰8b x =π⎰284ab π=π⋅22a b =2π.第四节 曲线的弧长和旋转体的侧面积一、 平面曲线的弧长首先,我们建立平面曲线弧长的概念.设有平面曲线 A B ,在其上任取分点:11,,,,0n n A M M M M B -== ,连接相邻的两个分点得到n 条线段1i i MM-,1,2,,i n = .以()1,i i iρρM M-=表示线段1i i M M -的长度(见图5-14),记1m ax{}i i nρλ≤≤=,若极限01lim niλi ρ→=∑存在,则定义此极限值为曲线 A B 的长度(即弧长),并称曲线 AB 是可求长的.图5-14下面用微分元素法来推导弧长的计算公式.设 A B 的方程为()y f x =,[,]x a b ∈,且()f x 在[,]a b 上有一阶连续导数.考虑[,]a b 内的典型小区间[,]x x Δx +,相应于此区间的弧长记为Δs ,Δs 近似地等于弦长,即22222()()()()[()()]Δs Δx Δy Δx f x Δx f x ≈+=++-.由微分中值定理,得,222()()[()]),(Δs ξx x Δx Δx f ξΔx ∈'+≈++,此处>0Δx ,故得弧长的微分元素(简称弧微分)为d s ==x =. (5-4-1)从而, AB 的长为as x =⎰. (5-4-2)若曲线弧 AB 的方程由参数方程 (),(),x φt y ψt =⎧⎨=⎩ αt β≤≤,给出,设()(),φt ψt 在[,]αβ上具有连续导数,由于()()d d d d ,x φt t y ψt t ='=',因此对于任意的[,]t αβ∈,典型小区间d []t t t +,上相应弧长元素为d s t =. (5-4-3)所以,曲线弧 AB 的弧长为αs t =⎰. (5-4-4)式(5-4-1)和(5-4-3)即为弧微分公式,这和第二章第五节所推导的弧微分公式是一致的.例1 两端固定于空中的线缆,由于其自身的重量而下垂成曲线形,称之为悬链线.设一悬链线的方程为e +e ()2sh xxa a y a x a a -== (a为正的常数),求其在[,]0a 上一段的长.解 d ds x x == =e +e d 1()2xxa a x -,故 e +e d e+e ee 101()()()2x xxx a a a aaas x a a ---===⎰-. 例2 如图5-15所示,计算摆线(sin ),(1cos ),x a t t y a t =-⎧⎨=-⎩()0a > 的一拱(20t π≤≤)的长度.图5-15解 由于d s t =t=d 2sin2ta t =, 所以d d 2202sin2sin22tts a t a t ππ==⎰⎰22(2cos )820t a a π=-=.如果曲线方程由极坐标方程()()r r θαθβ=≤≤给出,且()r θ存在一阶连续导数,则由 ()cos ,()sin ,x r θθy r θθ=⎧⎨=⎩()αθβ≤≤ 可得()[()cos ]()cos ()sin ,φθr θθr θθr θθ'''==- ()[()sin ]()sin ()cos ,ψθr θθr θθr θθ'''==+从而 ()()()()2222φθψθrθr θ'+'=+'. 所以αs θ=⎰. (5-4-5)例3 求心形线1 (cos )(0)r a θa =+>的全长(见图5-16).图5-16解 由(5-4-5)式有d s θ=θ=θ=.由对称性知02s θπ=⎰d 022cos2θa θπ=⎰ 8sin820θa a π==. *二、 旋转体的侧面积设一旋转体的侧面由一段曲线()()y f x a x b =≤≤绕x 轴旋转一周而得(图5-17).为求其面积A ,我们在[,]a b 上取典型小区间[,d ]x x x +,相应于此区间上的窄带形侧面(图5-17中的阴影部分)可近似地看成弧微分d s 绕x 轴旋转一周而成.于是这一窄带形侧面可以用一个半径为()f x ,高为d s 的圆柱面来近似代替,从而得侧面积的微分元素()(d πd π22A f xs f x x ==.所以2(b aA f x x =π⎰.此处假设()f x 在[,]a b 上可导.图5-17例4 求半径为R 的球的表面积.解 以球心为原点建立一平面直角坐标系,则该球是平面上半圆盘0y ≤≤绕x 轴旋转一周而成的旋转体,其表面积为π2R RA x-=⎰πd π244R Rx -==⎰R R .第五节 定积分在物理学中的应用一、 变力沿直线所做的功由物理学知,若一个大小和方向都不变的恒力F 作用于一物体,使其沿力的方向作直线运动,移动了一段距离s ,则F 所做的功为·W F s =.下面用微分元素法来讨论变力做功问题.设有大小随物体位置改变而连续变化的力()F F x =作用于一物体上,使其沿x 轴作直线运动,力F 的方向与物体运动的方向一致,从x a =移至至>x b a = (见图5-18).在[,]a b 上任一点x 处取一微小位移d x ,当物体从x 移到d x x +时,()F x 所做的功近似等于d ()F x x ,即功元素d d ()W F x x =,于是d ()b aW F x x =⎰. (5-5-1)图5-18例1 一汽缸如图5-19所示,直径为0.20m ,长为1.00m ,其中充满了气体,压强为5981.0⨯Pa.若温度保持不变,求推动活塞前进0.5m 使气体压缩所作的功.图5-19解 根据波义耳(Boyle )定律,在恒温条件下,气体压强p 与体积V 的乘积是常数,即p V k =.由于压缩前气体压强为5981.0⨯Pa ,所以ππ52981198.00000k =⨯⋅⋅=.建立坐标系如图5-19所示,活塞位置用x 表示,当活塞处于x 处时汽缸中气体体积π211()(0.)V x =-,于是压强为2()(1)(0.1)k p x x =-π,从而活塞上的压力为()1k F x p S x==-.故推动活塞所作功为d 05ln 10.50.9800980010W x x π==-π(-)-⎰x 980000ln2 2.13104(J )=π≈⨯.例2 从地面垂直向上发射一质量为m 的火箭,求将火箭发射至离地面高H 处所作的功.解 发射火箭需要克服地球引力做功,设地球半径为R ,质量为M ,则由万有引力定律知地球对火箭的引力为2GM m F =r,其中r 为地心到火箭的距离,G 为引力常数.当火箭在地面时,r R =,引力为2G M m R.另一方面,火箭在地面时,所受引力应为m g ,其中g 为重力加速度,因此2m g =GM m R, 故有 2=gR G M,于是22=m gR F r.从而,将火箭从r R =发射至r R H =+处所做功为d 111222R H RW r RR H +⎛⎫==- ⎪+⎝⎭⎰m gRm gR r .例3 地面上有一截面面积为20A =m 2,深为4 m 的长方体水池盛满水,用抽水泵把这池水全部抽到离池顶3m 高的地方去,问需做多少功?图5-20解 建立坐标系如图5-20所示.设想把池中的水分成很多薄层,则把池中全部水抽出所做的功W 等于把每一薄层水抽出所做的功的总和.在[0,4]上取小区间[x ,x +d x ],相应于此小区间的那一薄层水的体积为2d 0x m 3,设水的密度1310ρ=⨯kg ·m -3,故这层水重为d 4210g x ⨯ kg ,将它抽到距池顶3m 高处克服重力所做功为d d 4210(3)x g x W ⨯⋅⋅=+.从而,将全部水抽到离池顶3m 高处所做的功为4023 1.9632424510()d 10x W x g x x ⎛⎫=⨯⋅+⋅=⨯⋅⨯+ ⎪⎝⎭⎰639210J .()=⨯ (其中-29.8m s g =⋅)二、液体静压力由帕斯卡(Pascal )定律,在液面下深度为h 的地方,液体重量产生的压强为p ρg h =,其中ρ为液体密度,g 为重力加速度.即液面下的物体受液体的压强与深度成正比,同一深度处各方向上的压强相等.面积为A 的平板水平置于水深为h 处,平板一侧的压力为p ρg h A =. 下面考虑一块与液面垂直没入液体内的平面薄板,我们来求它的一面所受的压力.设薄板为一曲边梯形,其曲边的方程为,()()y f x a x b =≤≤,建立坐标系如图5-21所示,x 轴铅直向下,y轴与液面相齐.当薄板被设想分成许多水平的窄条时,相应于典型小区间d [,]x x x +的小窄条上深度变化不大,从而压强变化也不大,可近似地取为ρg x ,同时小窄条的面积用矩形面积来近似,即为d ()f x x ,故小窄条一面所受压力近似地为d d ()p ρg x f x x=⋅.图5-21从而d ()b ap ρgx f x x =⎰. (5-5-2)例4 一横放的圆柱形水桶,桶内盛有半桶水,桶端面半径为0.6m ,计算桶的一个端面上所受的压力.图5-22解 建立坐标系如图5-22所示,桶的端面圆的方程为22360.x y +=.相应于[,d ]x x x +的小窄条上的压力微元d 2p ρg xx =,所以桶的一个端面上所受的压力为060.p x xx =⎰20633(.)ρg =314110N .≈⨯()其中3110ρ=⨯kg·m -3,98-2m s .g ⋅=. 三、引力由物理学知,质量分别为12,m m ,相距为r 的两质点间的引力的大小为122m m F Gr=,其中G 为引力系数,引力的方向沿着两质点的连线方向.对于不能视为质点的两物体之间的引力,我们不能直接利用质点间的引力公式,而是采用微元法,下面举例说明.例5 一根长为l 的均匀直棒,其线密度为ρ,在它的一端垂线上距直棒a 处有质量为m 的质点,求棒对质点的引力.图5-23解 建立坐标系如图5-23所示,对任意的[,0)x l ∈,考虑直棒上相应于d [,]x x x +的一段对质点的引力,由于d x 很小,故此一小段对质点的引力可视为两质点的引力,其大小为d d G 22m ρx F a x=+,其方向是沿着两点,(0)a 与(),0x 的连线的,当x 在(),0l 之间变化时,d F 的方向是不断变化的.故将引力微元d F 在水平方向和铅直方向进行分解,分别记为d ,d x y F F ,则d 32G d 22()x m ρxF F x x a ==+,d 32G d 22()y m ρa F F x xa =-=-+.于是,直棒对质点的水平方向引力为32d 022()l x x F G m ρx xa =+⎰32d 2222()()2l G m ρa x a x -=++⎰1222()0l G m ρa x -=-+1(G m ρa=-.铅直方向引力为d 30222()l y x F G m ρa a x =-+⎰12l G m ρa -=-G m ρl =.注意 此例如果将直棒的线密度改为()ρρx =,即直棒是非均匀的,当()ρx 为已知时,直棒对质点的引力仍可按上述方法求得. 四、平均值我们知道,n 个数值12,,,n y y y 的算术平均值为121()n y y y y n=+++ . 在许多实际问题中,需考连续函数在一个区间上所取值的平均值,如一昼夜间的平均温度等.下面将讨论如何规定和计算连续函数()f x 在[,]a b 上的平均值. 先将区间[,]a b n 等分,分点为1<<<0n a x x x b == ,每个小区间的长度为Δx b an=-,()f x 在各分点处的函数值记为1,2,,()()i i y f x i n == .当Δx 很小(即n 充分大)时,在每个小区间上函数值视为相等,故可以用12,,,n y y y 的平均值121()n y y y n+++ 来近似表达()f x 在[,]a b 上的所有取值的平均值.因此,称极限值121lim()n n y y y y n→∞=+++为函数()f x 在[,]a b 上的平均值.由于12lim n n y y y b ay b a n →∞+++-=-120limnx y y y x b a∆→+++=∆-011lim ()ni x i f x x b a ∆→==∆-∑,故1()d bay f x x b a =-⎰.(5-5-3)式(5-5-3)就是连续函数()f x 在[,]a b 上的平均值的计算公式.例6 计算纯电阻电路中正弦交流电sin m i I ωt =在一个周期π2T =ω上的功率的平均值(简称平均功率).解 设电阻为R ,则电路中的电压为m U iR I R tω==sin ,功率为2sin 2m N Ui t I R ω==.一个周期上的平均功率为d d 2221sin sin 2T ωI R ωN R ωt t ωt I t Tπ==π⎰⎰22m md()0220sin 2(1cos 2)442ωωR R ωt ωt ωt ωt I I ππ⎡⎤=-=-⎢⎥ππ⎣⎦⎰22m m22mU I R I ==2m m ,其中m m U I R =表示最大电压,也称为电压峰值,即纯电阻电路中正弦交流电的平均功率等于电流与电压的峰值的乘积的一半.通常交流电器上标明的功率就是平均功率,而交流电器上标明的电流值都是另一种特定的平均值,常称为有效值.一般地,周期性非恒定电流i 的有效值是这样规定的:当电流()i t 在一个周期T 内在负载电阻R 上消耗的平均功率等于取固定值I 的恒定电流在R 上消耗的功率时,称这个固定值为()i t 的有效值.电流()i t 在电阻R 上消耗的功率为()()()()N t U t i t i t R =⋅=2.它在[0,T )上的平均值为d d 221()()T T R N i t R t i t tTT==⎰⎰.而固定值为I 的电流在R 上消耗的功率为2N I R =,因此d 22()T R I R i t t T =⎰, 即I =.例7 求正弦电流s (n )i m i I t t ω=的有效值.解12221s i n 2ωI ωt ωπ⎛⎫ ⎪=⎪π ⎪⎝⎭⎰2m I122sin 242ωωt ωt π⎡⎤⎡⎤⎢⎥=-⎢⎥π⎣⎦⎢⎥⎣⎦2mI=.叫做函数()f x 在[,]a b 上的均方根.第六节 定积分在经济学中的应用一、 最大利润问题设利润函数()()()πx =R x C x -,其中x 为产量,()R x 是收益函数,()C x 是成本函数,若()π,(),()x R x C x 均可导,则使()πx取得最大值的产量x 应满足()()()π0x R x C x '='-'=,即()().R x C x '='因此总利润的最大值在边际收入等于边际成本时取得.例1 设某公司产品生产的边际成本2181()00C x x x '=-+,边际收益为23()00R x x '=-,试求公司的最大利润.解 由于d ππd ()()()()x x R x C x x'''==-223181(00)(00)x x x =---+215100x x=-+,故利润微分元素为d πd 2151()(00)x x xx =-+.产量为0x 时,利润为πd 0200()(15100)x x x xx =-+⎰.另一方面,令π()0x '=,得21525x ±==(负值舍去). 又当20x =时,()π152<0x x "=-,故20x =时,利润取得最大值,最大利润为πd 202(20)(15100)x xx =-+⎰322015(100)230x xx =-+ 23333.≈.二、资金流的现值与终值1. 连续复利概念设有一笔数量为0A 元的资金存入银行,若年利率为r ,按复利方式每年计息一次,则该笔资金t 年后的本利和为0(1)(1,2,)tt A A r t =+= .如果每年分n 次计息,每期利率为r n,则t 年后的本利和为*01(1,2,)n tt r A A t n ⎛⎫=+= ⎪⎝⎭ .当n 无限增大时,由于e lim (1)n r n r n→∞+=,故e *00lim lim (1)n t r t t n n r A A A n→∞→∞=+=.称公式e 0r tt A A = (5-6-1)为0A 元的现值(即现在价值)在连续复利方式下折算为t 年后的终值(将来价值)的计算公式.公式(5-6-1)可变形为e0r tt A A -= (5-6-2)称(5-6-2)式为t 年末的t A 元的资金在连续复利方式下折算为现值的计算公式.建立资金的现值和终值概念,是为了对不同时点的资金进行比较,以便进行投资决策. 2. 资金流的现值与终值.将流出企业的资金(如成本、投资等)视为随时间连续变化,称之为支出流.类似地,将流入企业的资金(如收益等)视为随时间连续变化,称之为收入流.资金的净流量为收入流与支出流之差.企业单位时间内,资金的净流量称为收益率.设某企业在时段[]0T ,内的t 时刻的收益率为连续函数()f t ,下面我们按连续复利(年利率为r )方式来求该时段内的收益总现值和总终值. 在[]0T ,上取典型小区间[,d ]t t t +,该时段内收益近似为d ()f t t ,其t 时刻现值为 ed ()r tf t t -.这就是收益总现值的微分元素,故收益总现值为ed 0()T r tP f t t -=⎰. (5-6-3)又由于[,d ]t t t +时段内收益d ()f t t 折算为t T =时刻的终值为 ed ()()T t rf t t -,故收益总终值为ed ()0()T T t rF f t t -=⎰. (5-6-4)当收益率()f t k =(k 为常数)时,该资金流称为稳定资金流或均匀流.例2 某公司投资100万元建成1条生产线,并于1年后取得经济效益,年收入为30万元,设银行年利率为10%,问公司多少年后收回投资.解 设T 年后可收回投资,投资回收期应是总收入的现值等于总投资的现值的时间长度,因此有ed 0.1030100T tt -=⎰,即 0.1300(1e )100t --=. 解得455.0T =,即在投资后的4.055年内可收回投资.习 题 五1.求下列各曲线所围图形的面积:(1)212y x =与228x y += (两部分都要计算); (2)1y x=与直线y x =及2x =;(3)e e ,x x y y -==与直线1x =;(4)ln y x =,y 轴与直线()ln ,ln 0y a y b b a ==>>; (5)抛物线2y x =和22y x =-+;(6)sin ,cos y x y x ==及直线,44x x ππ=9=;(7)抛物线243y x x =-+-及其在3(0,)-和3,(0)处的切线;(8)摆线sin 1cos (),()x a t t y a t =-=-的一拱2(0)t π≤≤与x 轴; (9)极坐标曲线3ρa si n φ=; (10)极坐标曲线2cos ρa φ=.2.求下列各曲线所围成图形的公共部分的面积: (1)()1cos r a θ=+及2cos r a θ=;(2)r θ=及22in r θ=.3.已知曲线2()f x x x =-与()g x ax =围成的图形面积等于29,求常数a .4.设有一截锥体,其高为h ,上、下底均为椭圆,椭圆的轴长分别为2a ,2b 和2A ,2B 求这截锥体的体积.5.计算底面是半径为R 的圆,而垂直于底面一固定直径的所有截面都是等边三角形的立体体积.6.求下列旋转体的体积:(1)由2y x =与23y x =围成的平面图形绕x 轴旋转;(2)由3,2,0y x x y ===所围图形分别绕x 轴及y 轴旋转; (3)星形线222333x y a +=绕x 轴旋转. 7.求下列曲线段的弧长: (1)22,20y x x =≤≤;(2)ln ,y x x =≤≤(3)2,22x y t x π-π-≤=≤π⎰, . 8.设星形线的参数方程为33,,cos sin 0x a t y a t a ==>,求(1)星形线所围面积;(2)绕x 轴旋转所得旋转体的体积; (3)星形线的全长.9.求对数螺线e a θr =相应于0θ=到θφ=的一段弧长.10.求半径为R ,高为h 的球冠的表面积.11.求曲线段31(0)y x x =≤≤绕x 轴旋转一周所得旋转曲面的面积:12.把长为10m ,宽为6m ,高为5m 的储水池内盛满的水全部抽出,需做多少功? 13.有一等腰梯形闸门,它的两条底边各长10m 和6m ,高为20m ,较长的底边与水面相齐,计算闸门的一侧所受的水压力.14.半径为R 的球沉入水中,球的顶部与水面相切,球的密度与水相同,现将球从水中取离水面,问做功多少.15.设有一半径为R ,中心角为φ的圆弧形细棒,其线密度为常数ρ,在圆心处有一质量为m 的质点,试求细棒对该质点的引力.16.求下列函数在[,]a a -上的平均值.(1)()f x =(2)()2f x x =. 17.求正弦交流电sin 0i I ωt =经过半波整流后得到电流00sin 0.I ωt t ωi t ωωπ⎧≤≤⎪=⎨π2π⎪≤≤⎩,,, 的平均值和有效值.18.已知电压3sin2()u t t =,求(1)()u t 在02π⎡⎤⎢⎥⎣⎦,上的平均值; (2)电压的均方根值.19.设某企业固定成本为50,边际成本和边际收入分别为2()14111,()1002C x x x R x x ''=-+=-.试求最大利润.20.设某工厂生产某种产品的固定成本为零,生产x (百台)的边际成本为2()C x '=(万元/百台),边际收入为72()R x x '=-(万元/百台)):(1)求生产量为多少时总利润最大?(2)在总利润最大的基础上再生产100台,总利润减少多少?21.某企业投资800万元,年利率为5%,按连续复利计算,求投资后20年中企业均匀收入率为200万元/年的收入总现值及该投资的投资回收期.22.某父母打算连续存钱为孩子攒学费,设银行连续复利为5%(每年),若打算10年后攒够5万元,问每年应以均匀流方式存入多少钱.。
高等数学定积分在物理中的应用
2010.12
D6_all
21
二、典型例题
例1
y
1.已知星形线
x y
a cos3 t (a
a sin 3 t
0)
求 10 它所围成的面积 ;
a
o
ax
20 它的弧长;
30 它绕轴旋转而成的旋转 体体积.
2010.12
D6_all
22
解 10 设面积为 A. 由对称性,有
a
A 4 ydx 0
P y 4x x2 du
1 5
(x2
2x)2
5d x
o dx 2
故所求旋转体体积为
2010.12
V
2 0
15( x 2
2x)2 5d
D6_all
x
16 75
5
du 2dx d x33
a x xdx b x
因此变力F(x) 在区间 上所作的功为
b
W a F (x) dx
2010.12
D6_all
2
例1. 在一个带 +q 电荷所产生的电场作用下, 一个单
位正电荷沿直线从距离点电荷 a 处移动到 b 处 (a < b) ,
求电场力所作的功 . 解: 当单位正电荷距离原点 r 时,由库仑定律电场力为
k m a
x
l 2
a2 a2 x2 0
2k m l 1
l 2
a
4a2 l 2
y a M d Fx d Fay
dF
xdx O x lx
2
利用对称性
棒对质点引力的水平分力 Fx 0 .
故棒对质点的引力大小为
F
2k m
a
简述定积分在轨道交通学科中的计算案例应用
简述定积分在轨道交通学科中的计算案例应用
定积分在轨道交通学科中的计算案例应用:
1、计算轨道交通车辆的行驶时间
定积分可以用来计算轨道交通车辆行驶时间,即通过给定积分,可对特定车辆内部或者外部状态参数进行计算,从而得到车辆实际行驶距离和时间,即车辆的实际的行驶参数。
2、计算车辆的最佳行驶路径
定积分还可以被用来计算最佳车辆行驶路径,因为可以根据给定的积分原理,通过计算获得的系数,可以分析出一条最优的行驶路径,大大提高了车辆的行驶速度和效率。
3、优化轨道交通系统途经小区
定积分还可以用于优化轨道交通系统经过小区的路线,因为根据定积分,可以得到相关的系数,从而可以优化车辆线路走向,由于乘客出行习惯有许多复杂性,这些优化行驶路线有利于用户的出行需求。
4、优化车辆分配
定积分也可以用于优化轨道交通中的车辆运行模式,设计的车辆运行路线,分配车辆的任务模式及时间间隔等都非常重要。
通过分析和计算给定积分,得出更加合理、有效的车辆分配模式,可以更好地利用
车辆资源,提升系统效率。
5、优化轨道交通系统总体运行状态
定积分还可以用于优化轨道交通系统的总体运行状态,比如安全性,分析车辆调度模式,优化交通速度,进行拥堵前瞻性分析等等,都可以用定积分的原理进行计算,优化轨道交通系统的总体运行状态。
浅析定积分解决生活中的中的实例
浅析定积分解决生活中的中的实例
定积分是一种很重要的数学工具,应用广泛,为我们解决很多问题提供了大量的计算方法,能在很多生活中发挥着集中隐晦的作用。
我们可以通过它来计算物品总量或期限内的累计值,这些应用都离不开定积分的计算技巧。
首先,在体育领域中,比如排球项目,很多犯规行为要根据累计时间来进行判定。
持续犯规超过一定时间之后,才算成犯规。
而根据时间累计判断所需要用到的,就是定积分。
类似于在医学领域,医生们要求病人持续服用某种药物,服药的长度和数量都是要根据定积分的计算来确定的。
其次,在化学领域,定积分同样可以发挥重要作用。
比如,有一种物体在某段时间里放射
某种辐射,放射的量要根据这段时间的累计值来确定。
另外,对于某些反应,其速率与温
度或浓度有关,换言之,期间内物质在实验中产生的量也都需要用定积分算出来。
最后,定积分也可以应用于金融领域。
比如用定积分很容易计算投资本金多少时候才会变
成定期给息中利息的累计值。
还有存款利息,这也需要根据定积分来计算并确定本金的期
限和收益率。
以上就是定积分在生活中的应用,它的用途非常广泛,从体育到化学,再到金融,都会用
到定积分的计算方法。
定积分的重要性在于能够准确快速的计算出累计值,这一近乎不可
或缺的计算技巧正让它在各个领域中发挥着重要的作用。
定积分在物理中的应用
探究:变力做功
如果物体在变力F(x)的作用下做直线运 动,并且物体沿着与F(x)相同的方向从 xБайду номын сангаасa移动到x=b(a<b),那么如何计算变力 y F(x)所做的功W呢? y=F(x)
f(b) f(a)
由”四步曲”能得到
W F ( x)dx
a
b
O
a
b
x
例题讲解:变力作功
例2 在弹性限度内,将一弹簧从平衡 位置拉到离平衡位置L米处,求克服弹 力所作的功.
0
10
40
60
t
(30+60) 30 1350(m) 2 不是所有的路程题都适用定积分的几何 意义求解
练习1:现学现用 一物体沿直线以v=2t+3(t 的单位:s,v的 单位:m/s)的速度运动,求物体在3s~5s 间行进的路程。
方法一:s
2
5
3
(2t 3) dt 5 3
2
(t 3t )
3 3 2 1050 ( 60 90 60) ( 402 90 40) 4 4
1350(m)
小结 :做变速直线运动的物体所经过 答:汽车 1分钟行驶了 1350m. b 的路S, s v(t )dt (v(t ) 0)
a
例题讲解:变速直线运动的路程
1
1 3 1 3 (5 2 2 ) (5 1 1 ) 3 3 8 3
练习3:能力提升
一物体在变力F(x)=5-x2作用下,沿与 F(x)成300方向作直线运动,则由x=1运 4 3 动到x=2时F(x)作的功为( (J ) ) 2 3 2 0 W (5 x ) cos30 dx F(x)
定积分在物理中的某些应用
检疫
注册申请
条件:申办注册登记的出口动物饲养场,应具备独立法人资格, 不具独立法人资格的,由其拥有独立法人资格的上级主管单位
提出注册登记申请。 受理单位:所在地直属检验检疫机构。 所需材料及数量:申请注册时,需提交《申请表》和《企业法 人营业执照》复印件、饲养场平面图和彩色照片(包括场区全 貌、进出场区及生产区消毒通道、栏舍内外景、兽医室、发病 动物隔离区、死亡动物处理设施、粪便处理设施、隔离检疫舍 等)以及饲养管理制度和动物卫生防疫制度等资料,一式3份。 实施一场一证制度。同一企业所属的位于不同地点的饲养场应
W a F ( x)dx
2022年9月1日10时36分
上一页 下一页 主 页 返回 退出
14
例8. 弹簧在拉伸过程中,需要的力 F (单位:N)与弹 簧的伸长量 s (单位:cm)成正比,即F=ks (k是比例常 数) 如果把弹簧由原长拉伸6cm,计算所做的功。 解: 当弹簧从x拉伸至x+dx,可认为外力近似于F=kx
O x
64g (kJ )
x+dx
x
2022年9月1日10时36分
上一页 下一页 主 页 返回 退出
19
例13. 半径为R的球沉入水中, 球的上部与水面相切,球
的密度为1,现将球从水中取出,需作多少功?
解:建立坐标系如图所示。
x
相应于区间[x,x+dx]的球体中
的薄片(球台)的体积约为
R+x
dV (R2 x2 )dx
v =1吨/米3 ,于是受到的静压力 为 P 2vx 9 x2 dx 从而闸门受到的总压力为
3
o x
y
x dx
P
3
2vx
定积分定义取中点
定积分定义取中点摘要:一、定积分的定义二、定积分的基本性质三、定积分的计算方法四、定积分在实际问题中的应用正文:一、定积分的定义定积分是微积分学中的一个重要概念,用于描述函数在某一区间上的累积效果。
具体来说,给定一个函数f(x),在区间[a, b] 上取n 个点,分别记为x1, x2, ..., xn,那么函数在这些点上的值可以表示为:f(x1) + f(x2) + ...+ f(xn)随着n 的增大,我们希望找到一个极限,使得当n 趋向于无穷大时,这个和式能够表示函数在区间[a, b] 上的累积效果。
这个极限值就是这个函数在区间[a, b] 上的定积分,记作:∫[a, b] f(x) dx其中,∫表示积分符号,a 和b 分别表示积分的下限和上限,f(x) 表示被积函数。
二、定积分的基本性质定积分具有以下基本性质:1.线性性质:对于任意常数k,有∫[a, b] kf(x) dx = k∫[a, b] f(x) dx。
2.保号性:若f(x) 在区间[a, b] 上为正,则∫[a, b] f(x) dx 为正;若f(x) 在区间[a, b] 上为负,则∫[a, b] f(x) dx 为负。
3.可积函数的有界性:若f(x) 在区间[a, b] 上可积,则∫[a, b] |f(x)| dx 是有界的。
4.绝对值函数的积分性质:∫[a, b] |f(x)| dx = ∫[a, b] f(x) dx(当f(x) 在区间[a, b] 上非负)或-∫[a, b] f(x) dx(当f(x) 在区间[a, b] 上负)。
5.奇函数和偶函数的积分性质:对于奇函数,有∫[a, b] f(x) dx = -∫[b, a] f(x) dx;对于偶函数,有∫[a, b] f(x) dx = ∫[b, a] f(x) dx。
三、定积分的计算方法定积分的计算方法主要有以下几种:1.不定积分法:利用导数和原函数的关系求解定积分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 定积分在实际问题中的应用 Application of Definite Integral教学目的: 熟练掌握求解平面图形的面积方法,并能灵活、恰当地选择积分变量;会求平行截面面积已知的立体的体积,并能求解旋转体的体积;能够解决物理应用中变力作功、液体压力方面的问题.内 容: 定积分几何应用;定积分在物理中的应用. 教学重点: 求解平面图形的面积;求旋转体的体积.教学难点: 运用定积分求平面图形的面积和旋转体的体积教学方法: 精讲:定积分的几何应用;多练:用定积分求平面图形的面积和立体的体积 教学内容:一、定积分的几何应用1. 平面图形的面积设函数12(),()y f x y f x ==均在区间[,]a b 上连续,且12()(),[,]f x f x x a b ≥∈,现计算由12(),(),,y f x y f x x a x b ====所围成的平面图形的面积.分析求解如下:(1) 如图6-3所示,该图形对应变量x 的变化区间为[,]a b ,且所求平面图形的面积S 对区间[,]a b 具有可加性.(2) 在区间[,]a b 内任取一小区间[,]x x dx +,其所对应的小曲边梯形的面积,可用以dx 为底,12()()f x f x -为高的小矩形的面积(图6-3)中阴影部分的面积)近似代替.即面积微元为12[()()]dS f x f x dx =-(3) 所求图形的面积22[()()]baS f x f x dx =-⎰图6-3【例1】 求曲线xy e =,直线0,1x x ==及0y =所围成的平面图形的面积.解 对应变量x 的变化区间为[0,1],在[0,1]内任取一小区间[,]x x dx +,其所对应小窄条的面积用以dx 为底,以()()0xxf xg x e e -=-=为高的矩形的面积近似代替,即面积微元x dS e dx =于是所求面积1101x xS e dx e e ===-⎰【例2】 求曲线2y x =及22y x =-所围成的平面图形的面积.解 由222y x y x⎧=⎨=-⎩求出交点坐标为(1,1)-和(1,1),积分变量x 的变化区间为[1,1]-,面积微元 [()()]dS f x g x dx =-即222(2)2(1)dS x x dx x dx=--=-于是所求面积12112022(1)4(1)1140383S x dxx dxx x -=-=-⎛⎫=- ⎪⎝⎭=⎰⎰若平面图形是由连续曲线(),(),(()()),,x y x y y y y c y d ϕψψϕ==≤==所围成的,其面积应如何表达呢?分析求解如下:(1) 对应变量y 的变化区间为[,]c d ,且所求面积S 对区间[,]c d 具有可加性.(2) 在y 的变化区间[,]c d 内任取一小区间[,]y y dy +,其所对应的小曲边梯形的面积可用以()()y y ϕψ-为长,以dy 为宽的矩形面积近似代替,即面积微元为[()()]dS y y dy ϕψ=-于是所求面积[()()]dcS y y dy ϕψ=-⎰【例3】 求曲线2x y =,直线2y x =-所围成的平面图形的面积.解 由22x y y x ⎧=⎨=-⎩解得交点坐标为(1,1)-和(4,2),则对应变量y 的变化区间为[1,2]-,此时2()2,()y y y y ϕψ=+=,则面积微元2[()()](2)dS y y dyy y dyϕψ=-=+-于是所求面积2221123(2)211212392S dS y y dyy y y --==+-⎛⎫=+- ⎪-⎝⎭=⎰⎰ 【例4】 求由2y x =及y x =所围成的平面图形的面积.解 为了确定积分变量的变化范围,首先求交点的坐标.由2y x y x⎧=⎨=⎩得交点(0,0),(1,1). 方法一选x 为积分变量,则对应x 的变化区间为[0,1],此时(),f x x =2()g x x =面积微元2[()()]()dS f x g x dx x x dx =-=-于是12023()111111023236S x x dxx x =-⎛⎫=-=-=⎪⎝⎭⎰方法二选y 为积分变量,对应y 的变化区间为[0,1],此时()y ϕ=,()y y ψ=则面积微元[()()])dS y y dy y dy ϕψ=-=于是1322)121032211326S y dyy y =⎛⎫=- ⎪⎝⎭=-=⎰注:由此例可知,积分变量的选取不是唯一的,但在有些问题中,积分变量选择的不同,求解问题的难易程度也会不同.【例5】 求椭圆22221x y a b+=的面积.解 椭圆关于x 轴,y 轴均对称,故所求面积为第一象限部分的面积的4倍,即1044aS S ydx ==⎰利用椭圆的参数方程cos sin x a ty b t=⎧⎨=⎩ 应用定积分的换元法,sin dx a tdt =-,且当0x =时,,2t x a π==时,0t =,于是222024sin (cos )4sin 1cos24214sin 22240S b t a t dtab tdttab dt t ab t abπππππ=-=-=⎛⎫=-= ⎪⎝⎭⎰⎰⎰2. 空间立体的体积(1) 平行截面面积为已知的立体的体积设某空间立体垂直于一定轴的各个截面面积已知,则这个立体的体积可用微元法求解. 不失一般性,不妨取定轴为x 轴,垂直于x 轴的各个截面面积为关于x 的连续函数()S x ,x 的变化区间为[,]a b .该立体体积V 对区间[,]a b 具有可加性.取x 为积分变量,在[,]a b 内任取一小区间[,]x x dx +,其所对应的小薄片的体积用底面积为()S x ,高为dx 的柱体的体积近似代替,即体积微元为()dV S x dx =于是所求立体的体积()baV S x =⎰【例6】 一平面经过半径为R 的圆柱体的底圆中心,并与底面交成角α,计算这个平面截圆柱体所得契形体的体积.解 取该平面与底面圆的交线为x 轴建立直角坐标系,则底面圆的方程为222x y R +=,半圆的方程即为y = 在x 轴的变化区间[,]R R -内任取一点x ,过x 作垂直于x 轴的截面,截得一直角三角形,其底长为y ,高度为tan y α,故其面积2221()tan 21tan 21()tan 2S x y y y R x ααα=⋅⋅==- 于是体积2222233()1tan ()21tan ()211tan ()232tan 3RR RR R R V S x dxR x dx R x dx R R x x R R αααα---==-=-=--=⎰⎰⎰(2) 旋转体的体积 类型1:求由连续曲线()y f x =,直线,x a x b ==及x 轴所围成的曲边梯形绕x 轴旋转一周而成立体的体积. 过任意一点[,]x a b ∈作垂直于x 轴的平面,截面是半径为()f x 的圆,其面积为2()()S x f x π=,于是所求旋转体的体积2()()ba baV S x dxf x dxπ==⎰⎰【例7】 求由2y x =及1,0x y ==所围成的平面图形绕x 轴旋转一周而成立体的体积.解 积分变量x 轴的变化区间为[0,1],此处2()f x x =,则体积511224001()055x V x dx x dx ππππ====⎰⎰【例8】 连接坐标原点O 及点(,)P h r 的直线,直线x h =及x 轴围成一个直角三角形,求将它绕x 轴旋转一周而成的圆锥体的体积.解 积分变量x 的变化区间为[0,]h ,此处()y f x =为直线OP 的方程ry x h=,于是体积222202322033hh r V x dxh r x dx h h r x r hh ππππ⎛⎫= ⎪⎝⎭==⋅=⎰⎰类型2:求由连续曲线()x y ϕ=,直线,y c y d ==及y 轴所围成的曲边梯形绕y 轴旋转一周而成的立体的体积()c d <.过任意一点[,]y c d ∈,作垂直于y 轴的平面,截面是半径为()y ϕ的圆,其面积为2()()S y y πϕ=,于是所求旋转体的体积2()()d dccV S y dy y dy πϕ==⎰⎰【例9】 求由3,8y x y ==及y 轴所围成的曲边梯形绕y 轴旋转一周而成的立体的体积.解 积分变量y 的变化区间为[0,8],此处()x y ϕ==.于是体积828358339655V dyy dyy ππππ====⎰⎰【例10】求椭圆22221x y a b+=分别绕x 轴、y 轴旋转而成椭球体的体积.解 若椭圆绕x 轴旋转,积分变量x 的变化区间为[,]a a -,此处()y f x ==于是体积2222222322()1433a x aa a V dxb a x dx aa b a x x ab a a ππππ--==-⎡⎤=-=⎢⎥-⎣⎦⎰⎰若椭圆绕y 轴旋转,积分变量y 的变化区间为[,]b b -,此处()x y ϕ==,于是体积2222222322()1343by bb b V dya b y dybb a b y y bb a b ππππ--==-⎛⎫=- ⎪-⎝⎭=⎰⎰二、定积分在物理中的应用 1. 变力所做的功 如果一个物体在恒力F 的作用下,沿力F 的方向移动距离s ,则力F 对物体所做的功是 W F S =⋅. 如果一个物体在变力()F x 的作用下作直线运动,不妨设其沿Ox 轴运动,那么当物体由Ox 轴上的点a 移动到点b 时,变力()F x 对物体所做的功是多少? 我们仍采用微元法,所做的功W 对区间[,]a b 具有可加性.设变力()F x 是连续变化的,分割区间[,]a b ,任取一小区间[,]x x dx +,由()F x 的连续性,物体在dx 这一小段路径上移动时, ()F x 的变化很小,可近似看作不变的,则变力()F x 在小段路径上所做的功可近似看作恒力做功问题,于是得到功的微元为()dW F x dx =将微元从a 到b 积分,得到整个区间上力所做的功()baW F x dx =⎰【例11】将弹簧一段固定,令一段连一个小球,放在光滑面上,点O 为小球的平衡位置.若将小球从点O 拉到点()M OM s =,求克服弹性力所做的功. 解 由物理学知道,弹性力的大小和弹簧伸长或压缩的长度成正比,方向指向平衡位置O ,即F kx =-其中k 是比例常数. 若把小球从点O (0)x =拉到点()M x s =,克服弹性力F ,所用力f 的大小与F 相等,但方向相反,即f kx =,它随小球位置x 的变化而变化.在x 的变化区间[0,]s 上任取一小段[,]x x dx +,则力f 所做的功的微元dW kxdx =于是功22sk W kxdx s ==⎰【例12】某空气压缩机,其活塞的面积为S ,在等温压缩的过程中,活塞由1x 处压缩到2x 处,求压缩机在这段压缩过程中所消耗的功. 解 由物理学知道,一定量的气体在等温条件下,压强p 与体积V 的乘积为常数k ,即pV k =由已知,体积V 是活塞面积S 与任一点位置x 的乘积,即V Sx =,因此k k p V Sx == 于是气体作用于活塞上的力k k F pS S Sx x==⋅=活塞作用力kf F x=-=-,则力f 所做的功的微元 kdW dx x=-于是所求功211212ln ln x x x x k W dxxx k xk x =-==⎰【例13】一圆柱形的贮水桶高为5米,底圆半径为3米,桶内盛满了水.试问要把桶内的水全部吸出需做多少功. 解 取深度x 为积分变量,则所求功W 对区间[0,5]具有可加性.应用微元法,在[0,5]上任取一小区间[,]x x dx +,则所对应的小薄层的质量239dx dx πρπρ==. 将这一薄层水吸出桶外时,需提升的距离近似为x ,因此需做功的近似值,即功的微元为99dW x dx xdx πρπρ=⋅=于是所求功52952259022W xdxx πρπρπρ=⎛⎫== ⎪⎝⎭⎰将339.810/N m ρ=⨯,得62259800 3.46102W J π=⋅≈⨯ 2.液体压力现有面积为S 的平板,水平置于密度为ρ,深度为h 的液体中,则平板一侧所受的压力(F pS h S p ρ==为水深为h 处的压强值)若将平板垂直放于该液体中,对应不同的液体深度,压强值也不同,那么平板所受压力应如何求解呢? 设平板边缘曲线方程为(),()y f x a x b =≤≤,则所求压力F 对区间具有可加性,现用微元法来求解. 在[,]a b 上任取一小区间[,]x x dx +,其对应的小横条上各点液面深度均近似看成x ,且液体对它的压力近似看成长为()f x 、宽为dx 的小矩形所受的压力,即压力微元为()dF x f x dx ρ=⋅于是所求压力()baF x f x dx ρ=⋅⎰【例14】有一底面半径为1米,高为2米的圆柱形贮水桶,里面盛满水.求水对桶壁的压力. 解 积分变量x 的变化区间为[0,2],在其上任取一小区间[,]x x dx +,高为dx 的小圆柱面所受压力的近似值,即压力微元为212dF x dx xdx ρππρ=⋅⋅=于是所求压力为22222402x F xdx πρπρπρ⎛⎫=== ⎪⎝⎭⎰将339.810/N m ρ=⨯代入3449.810 3.9210F N ππ=⨯⨯=⨯【例15】有一半径3R =米的圆形溢水洞,试求水位为3米时作用在闸板上的压力.解 如果水位为3米,积分变量x 的变化区间为[0,]R ,在其上任取一小区间[,]x x dx +,所对应的小窄条上所受压力近似值,即压力微元22dW x ydxx ρρρ=⋅=⋅= 于是所求压力()0220322203212()22323RRRF R x R x R ρρρρ=⎛=-- ⎝=--=⎰⎰ 将339.810/,3N m R m ρ=⨯=代入得51.76410F N =⨯课堂练习:1. 求由曲线y x =与y =.2. 求由3,1,0y x y x ===所围成的平面图形绕x 轴旋转一周而成立体的体积.3. 有一截面积220S m =,深为5m 的水池盛满了水.用抽水泵把这水池中的水全部抽出需做多少功?小结: 学习了定积分的几何应用和物理应用,要求能熟练应用定积分求平面图形的面积和旋转体的体积.作业:P123-2(2),(6).4(3),11。