LTE-TDD波束赋形
波束赋形工作原理及对TD-LTE测试的影响
波束赋形⼯工作原理及对TD-LTE测试的影响 !1 波束赋形基础知识"ハ ハ “波束赋形”⼀一词有时会被滥⽤用,从⽽而引起混淆。
从技术上来说,波束赋形和波束导向⼀一样简单,即两个或更多的天线以受控的延迟或相位偏移来发射信号,从⽽而创造出定向的建设性⼲干涉波瓣(见图1)。
!!图1 简单波束导向创建的波瓣ハ ハTD-LTE系统中所⽤用的波束赋形是⼀一个相对更加复杂的命题,部分原因是终端设备具有移动的特性。
⼀一种称为Eigen波束赋形的技术会使⽤用关于RF信道的信息从统计上对发射天线组件的幅度和相位参数进⾏行加权判断。
虽然 Eigen波束赋形并⾮非计算最密集的波束赋形类型(还有⼀一种称为最⼤大⽐比率发送的⽅方法也会执⾏行相同类型的权重判断,但只针对每个⼦子载波),但当它被⽤用于组件数较⾼高的8 × n MIMO系统时,⽆无论是在实施中,还是在系统开发的验证阶段中,都将是⼀一个极具挑战性的命题。
!2 TD-LTE与8×n MIMO"ハ ハ 多数计划中的TD-LTE部署都是围绕8个天线组件的发射天线⽽而设计的(见图2)。
在这些系统中,4个有⼀一定距离间隔的天线组件被物理指向某个⾓角度。
另外,4个组件的布置⽅方式是,每个都分别与前4个天线组件同轴,⽽而且后4个天线组件中每⼀一个都指向其各⾃自的配对组件。
图2 ⼀一个8×2波束赋形系统创造出的垂直极化波束ハ ハ 由4个⽅方向类似的组件组成的每⼀一组都形成了⼀一个可以瞄准某个特定⽅方向的波束。
这4个⽆无线电链路之间的关联程度很⾼高,⽽而两个垂直极化波束则显⽰示出较低程度的相互关联,形成类似2×n MIMO 的系统,因此也就可以发射多层或多个数据流。
因此,这样的系统在实现MIMO系统数据速率最⼤大化优势的同时,还可充分发挥波束赋形优化特定⽅方向信号强度。
这种系统通常被称为双层波束赋形系统,其中的每⼀一层都可以代表⼀一个独⽴立的数据流。
TD-LTE双流波束赋形技术
TD-LTE双流波束赋形技术TD-LTE为了追求更高的传输速率,在LTE R9中引入了智能天线双流波束赋形技术,即在TD-SCDMA现有的智能天线上,引入两个数据流,对于每个数据流分别进行波束赋形。
该技术把智能天线波束赋形技术与MIMO系统的空间复用技术结合在一起,相应的,把智能天线带来的赋形增益和干扰抑制增益与MIMO带来的空间复用增益结合在一起。
多天线是天线技术发展趋势,现有TD-SCDMA已经引入了8天线,理论上可以带来9dB波束赋形增益,有效地增加了小区的覆盖范围,降低了系统干扰。
在TD-LTE网络基站侧也引入了8发2收的天线配置,到LTE-A则引入了8发8收的天线配置。
在TD-LTE中引入8天线,一方面提升了网络的覆盖能力,同时也降低了TD-LTE的成本,另一方面可以充分发挥TDD系统在波束赋形方面的优势,可以满足TDD系统平滑演进的需求。
传统的智能天线波束赋形技术通常的波束赋形技术是一种应用于小间距的天线阵列多天线传输技术。
其主要原理是利用空间信道的强相关性和波的干涉原理产生强方向性的辐射方向图,使方向图的主瓣指向用户来波方向,这样保证终端收到的信号有最大的接收功率,并降低了对其他方向的干扰。
而LTE利用MIMO技术,可以在不增加带宽资源的情况下,显著的提升网络容量。
多天线理论表明,假设发送天线数和接收天线数分别为nT与nR,则MIMO系统的容量为单入单出(SISO)系统的min(nT,nR)倍,这是传统的其他技术所做不到的。
因而在LTE系统中引入MIMO技术,极大地满足了更高的传输速率的而要求。
图1: 智能天线波束赋形示意图。
TM8中的双流波束赋形技术在LTE Release 8中给出的是单流波束赋形,相同的时间和频率资源分配一个数据流。
鉴于双流波束赋形对于单流波束赋形能更进一步的提高频谱效率,扩大小区覆盖范围,提高系统容量,在Release9中给出了双流波束赋形,不同的数据流可以面向单个用户或多个用户。
LTE-TDD波束赋形
波束赋形波束赋形原理波束赋形的目标是根据系统性能指标,形成对基带(中频)信号的最佳组合或者分配。
具体地说,其主要任务是补偿无线传播过程中由空间损耗、多径效应等因素引入的信号衰落与失真,同时降低同信道用户间的干扰。
因此,首先需要建立系统模型,描述系统中各处的信号,而后才可能根据系统性能要求,将信号的组合或分配表述为一个数学问题,寻求其最优解。
1.系统模型根据应用场合的不同,一般可以将波束赋形算法分为上行链路应用以及下行链路应用。
无论是哪种情况,总可以用一个时变矢量(MIMO)信道来描述用户端与基站端的信号关系,如图2所示。
对于上行链路,多个发射信号实质上是K个用户设备同时发送的信号,基站则使用多个天线单元接收信号,对其进行处理和检测,这时发送端的信号分配仅在各个支路分别进行;对于下行链路,基站仍可能使用多个天线单元向特定用户发射信号,但用户设备使用单天线检测与其有关的信号,这时接收部分降为一维,信号组合也仅对于单路信号进行。
根据图2的系统模型,就可以描述发送端的原始信号与接收端实际接收信号之间的关系,通常根据研究重点的不同,对于原始信号以及实际接收信号的位置会有不同的定义。
对于波束赋形技术,一般其研究的范围从发送端扩谱与调制单元的输出端,到接收端解扩与解调单元的输入端,而研究过程中又常将信号分配单元输出端到信号组合单元输入端之间的部分合并,统称为无线移动信道,由于无线移动通信环境的极度复杂,无法得到其输入输出关系的确切描述,一般采用大量测量和理论研究相结合的方法,使用有限的参数描述该信道。
采用这种方法后,就可以得到受干扰有噪信号与原始信号的关系,并据此在一定程度上恢复信号。
因此,波束赋形的一般过程为:⑴根据系统性能指标(如误码率、误帧率)的要求确定优化准则(代价函数),一般这是权重矢量与一些参数的函数;⑵采用一定的方法获得需要的参数;⑶选用一定的算法求解该优化准则下的最佳解,得到权重矢量的值。
可以发现,由于通信环境复杂,上述过程的每一阶段都可有不同的实现方案,因此产生了大量的波束赋形算法,如何衡量和比较其性能也成为波束赋形技术研究的一个重要方面。
TD-LTE系统中MIMO技术的应用场景与介绍
1 引言日前,上海贝尔股份有限公司参加工业和信息化部和中国移动共同组织的多项实验室和外场验证及测试,并首批成功完成了该测试。作为第一批成功完成该项测试的厂商之一,上海贝尔将为中国移动在上海开展的大规模4G TD-LTE试验网部署项目提供端到端LTE解决方案。大规模外场测试在真实环境下布网,边界条件复杂,与实验室环境有诸多不同。TD-LTE技术采用多天线的发射接收技术,利用不同的传输模式来适配复杂的自然环境从而达到性能最优。在LTE系统的研发过程中,经过几年的摸索与实践,上海贝尔阿尔卡特朗讯公司积累了众多经验。下面以大规模试验网络需要的布网技术角度,对几种MIMO的原理及应用场景进行描述,对波束赋形的天线模式、物理层过程、波束赋形在TD-LTE基站系统中的实现和原理以及几种波束赋形算法的特点和应用场景进行介绍与分析。在LTE(Long Term Evolution,长期演进技术)标准中,被采纳的MIMO技术主要包括发送分集、空分复用、波束赋形等。其中基于用户专用参考信号的下行波束赋形技术能够利用时分复用LTE(TD-LTE)系统中的上/下行信道的互易性,针对单个用户进行动态的波束赋形,从而有效提高传输速率和增强小区边缘覆盖性能。这些都在阿尔卡特朗讯的解决方案中得到了验证。本文对此进行了总结,对真实的网络部署有参考意义。2 TD-LTE MIMO应用场景在本次中国移动大规模外场测试主要选用以下3种MIMO技术适配不同的应用场景。2.1 发射分集(Tx Diversity)LTE的多天线发送分集技术选用SFBC(Space Frequency Block 声所导致的符号错误率。SFBC通过在发射端增加信号的冗余度,使信号在接收端获得分集增益。发射分集方案不能提高数据率。LTE采用的SFBC技术对编码矩阵进行了改进,能保证在有天线损坏的情况下也可以正常传输,传输数据更为简单,图1为SFBC发送端基本框图。 图1 SFBC发送端基本框图对发射信号以发送分集进行传输可以获得额外的分集增益和编码增益,从而可以在信噪比相对较小的无线环境下使用高阶调制方式,但无法获取空间并行信道带来的速率红利。空时编码技术在无线相关性较大的场合也能很好地发挥效能。SFBC可以较普遍地应用于表1所示场景。表1 SFBC应用场景 发送分集发射方式对信道条件要求不高,对SNR,信道相关性,移动速度均不敏感。但是该发射方式无法获取空间并行信道带来的速率红利,发送分集方案不能提高数据率。当信道间相关性大且SNR较低或移动速度过高情况下(对应无线信道条件差),会考虑切换到发送分集的发射方案,例如信道恶化的场景下。当信道处于理想状态或信道间相关性小时,发射端采用空分复用的发射方案,例如密集城区、室内覆盖高SNR条件等场景。2.2 空分复用技术(Spatial Multiplexing)空分复用技术是在发射端发射相互独立的信号,接收端采用干扰抑制的方法进行解码,此时的理论空口信道容量随着收发端天线对数量的增加而线性增大,从而能够显著提高系统的传输速率。空分复用允许在同一个下行资源块上传输不同的数据流,这些数据流可以来自于一个用户(单用户MIMO/SU-MIMO),也可以来自多个用户(多用户MIMO/MU-MIMO)。单用户MIMO可以增加一个用户的数据传输速率,多用户MIMO可以增加整个系统的容量(见图2)。 图2 空间复用基本框图空分复用能最大化MIMO系统的平均发射速率,但只能获得有限的分集增益,在信噪比较小时使用可能无法使用高阶调制方式。无线信号在密集城区、室内覆盖等环境中会频繁反射,使得多个空间信道之间的衰落特性更加独立,从而使得空分复用的效果更加明显。无线信号在市郊、农村地区多径分量少,各空间信道之间的相关性较大,因此空分复用的效果要差许多。无线信号在密集城区、室内覆盖等环境中会频繁反射,使得多个空间信道之间的衰落特性更加独立,从而使得空分复用的效果更加明显。对于适用于密集城区地区的MIMO应用,可以用OpenLoop MIMO和CloseLoop MIMO两种MIMO模式选择,其中CloseLoop MIMO对环境要求较高,由于拥有PMI/RI的反馈调整,其数据可靠性较强,对于OpenLoop MIMO,其健壮性较强,对SNR要求和信道相关性要求不如前者严格(见表2,表3)。无线信号在市郊、农村地区多径分量少,各空间信道之间的相关性较大,因此空间复用的效果要差许多。表2 CL-MIMO应用场景 表3 OL-MIMO应用场景 2.3 波束赋形(Beam Forming)波束成型技术又称为智能天线,通过对多根天线输出信号的相关性进行相位加权,使信号在某个方向形成同相叠加,在其他方向形成相位抵消,从而实现信号的增益。系统发射端能够获取信道状态信息时(例如TDD系统),系统会根据信道状态调整每根天线发射信号的相位(数据相同),以保证在目标方向达到最大的增益;当系统发射端不知道信道状态时,可以采用随机波束成形的方法实现多用户分集(见图3)。图3 定向智能天线的信号仿真效果系统发射端能够获取信道状态信息时(例如TDD系统),系统会根据信道状态调整每根天线发射信号的相位,以保证在目标方向达到最大的增益。波束成型技术在能够获取信道状态信息时,可以实现较好的信号增益及干扰抑制使的小区边缘性能提升(见表4)。波束成型技术不适合密集城区、室内覆盖等环境,由于反射的原因,接收端会收到太多路径的信号,导致相位叠加的效果不佳。表4 波束成型应用场景 波束赋形技术对环境要求严格,不适用于密集城区。在阿尔卡特朗讯的LTE-TDD的系统方案中,针对波束赋形技术能够适配的场景的无线信道情况不同,应用不同的波束赋形算法,从而获得最大的增益与健壮性,达到性能最优。下面对阿尔卡特方案中的几种典型的算法做简单的介绍。(1)per-RB-MRT(窄带加权)per-RB-MRT是基于EBB(Eigen Beam Forming,SEBB)波束赋形算法的一个子类;利用对每个子载波/资源块瞬时信道状态信息的特征值分解成对应的下行波束加权向量。可适用于角度扩展比较大的应用场合(如城区微小区覆盖、基站天线架设不太高的场合);复杂度高;在信道移动性较低,信道估计质量较好的情况下,可以获得最优的波束赋形增益;在移动性较高,信道估计交差的情况下,性能不是很健壮。(2)Full-BW-EBB算法(宽带加权)Full-BW-EBB是基于EBB波束赋形算法的另一个子类,利用对每个子载波/资源块的瞬时信道状态信息“统计特性”的特征值分解形成对应的下行波束赋形的加权向量。可适用于角度扩展较大的应用场合;复杂度低于基于MRT的波束成形;在信道移动性较低,信道估计质量较好的情况下,相对于基于MRT的波束成形可获得的波束赋形增益较低;在信道移动性较高、信道估计质量较差的情况下,性能比较健壮。(3)DOA算法(基于到达方向估计)DOA基于对用户信号到达方向的估计形成下行波束赋形的加权向量。适用于具有视距路径(Line Of Sight,LOS)或角度扩展(Angle Spread,AS)较小的应用场合(如郊区宏小区覆盖、基站天线架设较高的场合),获得高的波束赋形增益;复杂度较低;对于角度扩展较大的应用场合,有效性不高。2.4 应用场景大规模外场测试中无线通信环境边界条件复杂,布网期间众多因素均可导致网络性能的差异,应该依照不同的边界环境具体权衡与选择(见图4)。阿尔卡特朗讯也做了大量的针对各种场景的仿真与测试工作,力求提高其健壮性以适应复杂场景。 图4 MIMO多种模式的切换门限考虑MIMO的几种模式分别适用于不同的场景,按照切换的边界件来分,从离城市中心到郊区以及小区边缘,分别可以用如下传输方式布网:离基站比较近、信号较强、靠近市中心、多径衰落较强的城市中心地区,可以使用传输模式4(CL-MIMO),由于有闭环的RI/PMI反馈,其速率稳定、误码率较低,可以获得多天线增益,但是对边界条件要求比较严格;如果环境较为恶劣,SNR较低,信道相关性稍低,可以适应传输模式3(OL-MIMO)方式;在城市郊区较为开阔、信道相关性较高的郊区地区,依照速度的不同,选择对应算法的Beam Forming算法(传输模式7)。以上各种模式均可切换成发射分集模式,发射分集模式的健壮性强,对速度、信道环境与SNR要求均不高,但是无法产生多天线速率增益,只可以享受由于多天线并行传输带来的分集增益。LTE-TDD外场大规模布网,信道边界条件复杂,使用不同的传输技术以适配不同的应用场景尤为重要。如果选择不当,不仅不能达到网络性能最优,而且会造成网络干扰加大等恶劣影响。阿尔卡特朗讯在长期的研发与测试过程中,通过多种技术来适配各种不同的无线应用场景,每种技术在相应的场景下能有效地提高其数据健壮与性能增益,波束赋形技术更可以利用时TD-LTE系统中上/下行信道互易性,针对单个用户动态地进行波束赋形,从而有效提高传输速率和增强小区边缘的覆盖性能。
TD-LTE的TM8传输模式分析
TD-LTE TM8传输模式分析1 引言TD-LTE在R9阶段新增了双流波束赋形技术,共八种传输模式,每种模式对应了不同的MIMO (Multiple-Input Multiple-Output,多输入多输出)传输形式,其中模式7、模式8又是针对TDD系统所特有的波束赋形技术[1],模式7的波束赋形技术在一阶段测试时,已经较为充分地验证了其性能的优越性。
针对边缘用户以及无线环境不理想的情况下,TM7(单流波束赋形)对于改善无线环境、提高用户感知、提升小区的整体吞吐量有着较为重要的作用。
TM3(开环空间复用)目前采用的2*2MIMO,可以针对同一个用户传输双流,理论上翻倍地提高了单用户的峰值吞吐量,直接体现了TD-LTE系统的性能优越性[2]。
正是基于此,TM8(双流波束赋形)同时取纳了开环空间复用与单流波束赋形的优点,将空间复用与波束赋形有机地结合起来,这样在改善无线环境的同时又能尽量合理地提高用户的吞吐量。
2 TM8原理简介双流波束赋形技术应用于信号散射体比较充分的条件下,是智能天线波束赋形技术和MIMO空间复用技术的有效结合,在TD-LTE系统中,利用TDD信道的对称性,同时传输两个赋形数据流来实现空间复用,并且能够保持传统单流波束赋形技术广覆盖、提高小区容量和减少干扰的特性,既可以提高边缘用户的可靠性,还能有效提升小区中心用户的吞吐量[3]。
根据多天线理论可知,接收天线数不能小于空间复用的数据流数。
8天线双流波束赋形技术的使用,接收端至少需要有2根天线。
根据调度用户的情况不同,双流波束赋形技术可以分为单用户双流波束赋形技术和多用户双流波束赋形技术。
2.1 单用户单用户双流波束赋形技术:由基站测量上行信道,得到上行信道状态信息后,基站根据上行信道信息计算两个赋形矢量,利用该赋形矢量对要发射的两个数据流进行下行赋形。
采用单用户双流波束赋形技术,使得单个用户在某一时刻可以进行两个数据流传输,同时获得赋形增益和空间复用增益,可以获得比单流波束赋形技术更大的传输速率,进而提高系统容量。
LTE 双工方式(TDD 和FDD)的区别
LTE 双工方式(TDD 和FDD)的区别LTE系统同时定义了频分双工(Frequency Division Duplexing,FDD)和时分双工(Time Division Duplexing,TDD)两种不同的双工方式,FDD是在分离的两个对称频率信道上进行接收和发送,用保护频段来分离接收和发送信道,所以FDD 必须采用成对的频率,依靠频率来区分上下行链路,其单方向的资源在时间上是连续的;TDD用时间来分离接收和发送信道, 接收和发送使用同一频率载波的不同时隙作为信道的承载,其单方向的资源在时间上是不连续的,时间资源在两个方向上进行了分配。
双工方式的不同决定了LTE-TDD和LTE-FDD物理帧格式的不同,但是LTE-TDD和LTE-FDD在核心网上没有任何差异,只是在实现方式上存在一些差异,故LTE-TDD和LTE-FDD的主要区别集中于物理层,尤其是在物理帧结构上。
所以从双工的角度来划分LTE的相关专利时我们将其主要分为LTE-TDD专利、LTE-FDD专利和LTE-TDD/FDD公用技术相关专利。
而划分的主要依据是LTE-TDD和LTE-FDD对应的物理帧格式以及由帧格式不同所衍生的相关信令和协议等的不同。
首先,LTE系统分别设计了FDD和TDD的帧结构。
FDD模式下,10ms的无线帧被分为10个子帧,每个子帧包含两个时隙,每时隙长0.5ms。
TDD模式下,每个10ms无线帧包括2个长度为5ms的半帧,每个半帧由4个数据子帧和1个特殊子帧组成。
特殊子帧包括3个特殊时隙:DwPTS,GP和UpPTS,总长度为1ms。
DwPTS和UpPTS的长度可通过调节GP的长度来配置,从而调节上下行时隙的比例分配。
其次,在LTE-FDD中用普通数据子帧传输上行sounding导频,而TDD系统中,上行sounding导频可以在UpPTS上发送。
另外,DwPTS也可用于传输PCFICH、PDCCH、PHICH、PDSCH和P-SCH等控制信道和控制信息。
通信工程师:TDD-LTE认证知识学习三
通信工程师:TDD-LTE认证知识学习三1、问答题简述系统网络架构与接口。
正确答案:(1)整个TD-LTE系统由3部分组成:核心网(EPC,EvolvedPacketCorE.、接入网(eNodeB.、用户(江南博哥)设备(UE.EPC分为三部分:MME(Mobility Management Entity,负责信令处理部分)S-GW(Serving Gateway,负责本地网络用户数据处理部分)P-GW(PDN Gateway,负责用户数据包与其他网络的处理)接入网(也称E-UTRAN)由eNodeB构成(2)网络接口S1接口:eNodeB与EPCX2接口:eNodeB之间Uu接口:eNodeB与UE2、单选?A市药品监督管理部门在日常监督检查中,发现B药店有违法经营行为,对其作出警告,限期整改,并处2万元罚款。
B药店对A药品监督管理部门作出的行政处罚行为不服,提出行政复议的时效一般为()A.15日B.60日C.3个月D.6个月正确答案:B3、多选eNB主要功能()A、无线资源管理相关的功能,包括无线承载控制、接纳控制、连接移动性管理、上/下行动态资源分配/调度等;B、IP头压缩与用户数据流加密;C、UE附着时的MME选择;D、提供到S-GW的用户面数据的路由;E、寻呼消息的调度与传输;F、系统广播信息的调度与传输;G、测量与测量报告的配臵。
正确答案:A, B, C, D, E, F4、单选TD-LTE的上下行分配方式有()种A、5B、6C、7D、8正确答案:C5、问答题简述LTE网络切换的三步曲?正确答案:(1)测量阶段,UE根据eNB下发的测量配臵消息进行相关测量,并将测量结果上报给eNB。
(2)决策阶段,eNB根据UE上报的测量结果进行评估,决定是否触发切换。
(3)执行阶段,eNB根据决策结果,控制UE切换到目标小区,由UE完成切换。
6、单选LTE系统下行多址方式()A、TDMAB、CDMAC、OFDMAD、SC-FDMA正确答案:C7、多选LAI(Location Area Identification--位臵区)是由什么组成的()A、MCCB、MNCC、LACD、CI正确答案:A, B, C8、单选下列选项哪个不是形成导频污染的主要原因()A、基站选址B、小区布局C、天线选型D、天线挂高正确答案:C9、单选以下哪个信道不采用功率控制()A、PBCHB、PDCCHC、PCFICHD、PDSCH正确答案:A10、单选BBU和RRU通过()传输。
LTE每天学习总结—TDD-LTE帧结构详解
LTE帧结构图解帧结构总图:1、同步信号(下行)1-1、PSS(主同步信号)P-SCH (主同步信道):UE可根据P-SCH获得符号同步和半帧同步。
PSS位于DwPTS 的第三个符号。
占频域中心6个RB。
1-2、SSS(辅同步信号)S-SCH(辅同步信道):UE根据S-SCH最终获得帧同步,消除5ms模糊度。
SSS位于5ms第一个子帧的最后一个符号。
也占频域中心6个RB,72个子载波,2、参考信号2-2、下行2-1-1、CRS(公共参考信号)时域(端口0和1的CRS位于每个slot第1和倒数第3个符号,端口2和3位于每个slot 第2个符号)频域(每隔6个子载波插入1个)位置:分布于下行子帧全带宽上作用:下行信道估计,调度下行资源,切换测量2-1-2、DRS(专用参考信号)位置:分布于用户所用PDSCH带宽上作用:下行信道估计,调度下行资源,切换测量2-2、上行2-2-1、DMRS(解调参考信号)在PUCCH、PUSCH上传输,用于PUCCH和PUSCH的相关解调,可能映射到以下几个位置:1、PUSCH 每个slot(0.5ms) 一个RS,第四个OFDM symbol2、PUCCH-ACK 每个slot中间三个OFDM symbol为RS3、PUCCH-CQI 每个slot两个参考信号2-2-2、SRS(探测参考信号)可以在普通上行子帧上传输,也可以在UpPTS上传输,位于上行子帧的最后一个SC-FDMA符号,eNB配置UE在某个时频资源上发送sounding以及发送sounding的长度。
、Sounding作用:上行信道估计,选择MCS和上行频率选择性调度TDD系统中,估计上行信道矩阵H,用于下行波束赋形Sounding周期:由高层通过RRC 信令触发UE 发送SRS,包括一次性的SRS 和周期性SRS 两种方式周期性SRS 支持2ms,5ms,10ms, 20ms, 40ms, 80ms, 160ms, 320ms 八种周期TDD系统中,5ms最多发两次3、下行物理信道3-1、PBCH(物理广播信道)频域:对于不同的系统带宽,都占用中间的1.08MHz (72个子载波)时域:映射在每5ms 无线帧的subframe0的第二个slot的前4个OFDM符号上周期:40ms。
TD-LTE双流波束赋形测试解决方案
TD-LTE双流波束赋形测试解决方案
冯宇
【期刊名称】《电信网技术》
【年(卷),期】2013(000)001
【摘要】双流波束赋形是LTE标准3GPPR9中引进的技术,对于TD-LTE是必选技术,对于FDD-LTE是可选技术.该技术主要优势在于多天线情况下,可以增加覆盖范围,提高系统吞吐量,减少干扰,提高边缘用户的可靠性,同时也可以提升小区中心用户的吞吐量.本文简要介绍了罗德与施瓦茨公司针对TD-LTE双流波束赋形完整的测试解决方案.
【总页数】4页(P79-82)
【作者】冯宇
【作者单位】罗德与施瓦茨中国有限公司
【正文语种】中文
【相关文献】
1.高铁隧道场景TD-LTE双流覆盖方案研究与测试 [J], 刘方森;张羽;李方村;杨传祥
2.MIMO波束赋形及其对TD-LTE测试的影响 [J], 陈康
3.安捷伦推出业界首款适用于TD-LTE和波束赋形的8通道射频测量解决方案 [J],
4.安捷伦推出业界首款适用于TD-LTE和波束赋形的8通道射频测量解决方案 [J],
5.TD-LTE双流波束赋形技术分析 [J], 尹蔚峰;袁宇恒
因版权原因,仅展示原文概要,查看原文内容请购买。
TD-LTE网络技术介绍
D
U D D U
D
D D D D
S
D D D S
U
D D D U
D
D D D U
D
D D D D
转换周期为10ms表示每10ms 有一个特殊时隒。返种配置对 时延癿保证略差一些,但是好 处是10ms只有一个特殊时隒, 所以系统损失的容量相对较小
5:3 17
TD-LTE帧结构-特殊子帧
特殊子帧配 置 0 1 2 3 4 5 Normal CP DwPTS 3 9 10 11 12 3 GP 10 4 3 2 1 9 UpPTS 1 1 1 1 1 2 最大覆 盖距离 104.11 39.81 29.11 18.41 7.7 93.41 29.11
性能(D频段)
TD-LTE技术性能达到系统设计目标,在相同频率下,可接入距离不LTE FDD基本相当 在20MHz载波,上下行时隙配置为2DL:2UL,特殊时隙配置为10:2:2时,性能不LTE FDD (10MHz×2)相 当,较TD- SCDMA有显著提升 在20MHz载波,上下行时隙配置为3DL:1UL, 特殊时隙配置为10:2:2时 •终端峰值速率:等级3癿终端下行最高80Mbps(理论峰值80Mpbs)优亍FDD等级3终端癿峰值 75Mbps;上行最高8.3Mbps(理论峰值10Mbps),低亍FDD上行理论25Mpbs •小区吞吐量:下行38.3Mbps,优亍FDD 27.4Mbps;上行为6.9Mbps, 理论小亍FDD(测试结果暂缺) •业务时延:21-30ms,比LTE FDD多2-7ms ,迖小亍TD-SCDMA 时延150ms •并发业务用户数:目前各厂家设备每小匙可以支持200个上/下行速率均满足50/100kbps癿用户,约为 TD-SCDMA癿33俰
波束赋形(Beamforming)_TD-LTE技术标准与实践_[共3页]
第3章 TD-LTE 系统关键技术
25 所示。
FSTD 方式中,减小了子载波之间的相关性,使等效信道产生了频率选择性,因而同样可以利用纠错编码提高差错概率性能。
图3-9 频率切换发射分集原理图
TSTD 和FSTD 也可以写成编码矩阵的形式,即
1200S S ⎡⎤⎢⎥⎣⎦
上式表示在时刻t (或频率f )
,在天线1上传输符号1S ,天线2上不传输任何信息;在时刻t +1(或频率f +1),在天线2上传输符号2S ,天线1上不传输任何信息。
天线切换分集扩展到基站存在多副发射天线的情况,如下所示
12000000N S S S ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 其中,N 为发射天线数。
3.3.2 波束赋形(Beamforming)
波束赋形是一种基于天线阵列的信号预处理技术,其工作原理是利用空间信道的强相关性及波的干涉原理产生强方向性的辐射方向图,使辐射方向图的主瓣自适应的指向用户来波方向,从而提高信噪比,获得明显的阵列增益,其原理如图3-10所示。
波束赋形技术在扩大覆盖范围、改善边缘吞吐量及干扰抑制等方面都有很大的优势。
波束赋形的权值仅仅需要匹配信道的慢变化,如来波方向(DOA ,Direction Of Arrival )和平均路损。
因此,在进行波束赋形时,可以不利用终端反馈所需信息,而在基站侧通过测量上行接收信号获得来波方向和路损信息。
为了获得波束赋形增益,需要使用较多的天线单元,而目前LTE 仅仅考虑最多使用4个公共导频,无法支持在超过4副天线单元的天线阵列上使用波束赋形,因此波束赋形需要使用专用导频。
波束赋形的一般过程如下所述。
TD和FD的波束赋形
1、对于TDD系统,可以方便地利用信道的互易性,通过上行信号估计信道传播向量或DoA (Direction-of-Arrival)并用其计算波束赋形向量。
对于FDD系统,也可以通过上行信号估计DoA等长期统计信息并进行下行赋形。
2、波束赋形通过预编码实现。
习惯上,一般把TDD系统下,基于信道互易性获得下行信道矩阵,计算得到预编码矩阵,进行与编码,称为波束赋形。
FDD系统,基于UE的码本反馈方式获得预编码矩阵,进行预编码。
3、所谓的预编码或是波束赋形,从来没有过严格的定义和界限两者都是通过天线阵列的加权处理,产生具有特定空域分布特性的信号的过程。
从这一意义讲,两者是没有实质差别的当然,之所以有很多人咬文嚼字地纠结于两者的差别,也是有一定的历史原因的:·波束赋形源自阵列信号处理这一学术方向,比预编码概念的提出大概要早数十年。
在经典的阵列信号处理或早期的波束赋形方案中,出于避免相位模糊的考虑,一般都采用阵子间距不超过0.5 lambda的阵列;这些早期波束赋形方案的目标基本都是瞄准期望方向,同时对若干干扰方向形成零限(用于电子对抗或军事通信);它们考虑的主要是LOS或接近LOS的场景;在民用移动通信领域,从实现波束赋形的便利性角度考虑,TDD系统有着较为天然的互易性优势,因此早期普遍认为波束属于一项TDD专属技术。
尤其是TD-SCDMA中率先大范围使用了波束赋形,更是留下了波束赋形=TDD技术的口实·相对而言,预编码这一称谓的资历就浅的多了,这是十几年前MIMO兴起之后的概念(实质也不是什么新东西)。
由于在低相关、高空间自由度场景中,MIMO 信道容量的优势才能得以体现,因此针对MIMO中的预编码的研究(尤其是早期)更多地偏重于大间距天线以及NLOS的情况。
当然,这也是由于小间距+LOS这一场景在阵列信号处理领域已经被掘地三尺,从做文章的角度考虑,缺乏新意(这一点也从侧面印证了预编码和波束赋形之间的联系)。
八天线TD-LTE系统的波束赋形算法分析
八天线TD-LTE系统的波束赋形算法分析郭彬;樊迅;曹伟;李亚麟;蒋智宁【摘要】多天线是天线技术的发展趋势,TD-LTE引入了8发2收的天线配置.基于小间距多天线阵列,利用TDD系统信道互易性,波束赋形技术可以根据上行导频获得信道信息,形成对基带(中频)信号的最佳组合或者分配,补偿无线传播过程中由空间损耗、多径效应等因素引入的信号衰落与失真,同时降低同信道用户间的干扰.EBB(Eigen-based Beamforming)算法是波束赋形主要算法之一,该算法中在整个波束空间中,找到使接收信号功率最大的赋形权矢量.通过仿真,对EBB算法在各种应用场景下的性能进行了分析,结果表明八天线EBB波束赋形算法可以正确实现波束合成,在低速或上行信道信息估计误差较小情况下能够明显提高系统性能.【期刊名称】《电讯技术》【年(卷),期】2010(050)008【总页数】5页(P41-45)【关键词】TD-LTE;波束赋形;特征值分解;EBB;SCM-E【作者】郭彬;樊迅;曹伟;李亚麟;蒋智宁【作者单位】上海贝尔股份有限公司,上海,200070;上海贝尔股份有限公司,上海,200070;上海贝尔股份有限公司,上海,200070;上海贝尔股份有限公司,上海,200070;上海贝尔股份有限公司,上海,200070【正文语种】中文【中图分类】TN929.51 引言长期演进项目(Long Term Evolution,LTE)[1]是3G通信技术的演进技术,其中定义了LTE-FDD (Frequency Division Duplexing)和LTE-TDD(Time Division Duplexing)两种方式。
多天线技术是LTE中的重要技术之一,通过多天线系统可以获得分集增益、阵列增益以及空分复用增益。
波束赋形技术是一种基于小间距多天线阵列的线性预处理技术,可以根据系统性能指标,形成对基带(中频)信号的最佳组合或者分配。
射频波束赋形技术改善TD-LTE蜂窝小区边缘性能
射频波束赋形技术改善TD-LTE蜂窝小区边缘性能从很早以前,多天线技术便已在移动无线系统中得到使用。
在早期的基站发射和车载移动台接收时期,大蜂窝小区网络拓扑结构中多路径传播会产生选择性衰落,因而影响到信号质量,特别是在市区内这样的问题更加严重。
以往的办法是使用基站发射和车载接收机天线分集来解决这个问题。
随着手机变得越来越小,车载通信装置经过简化而开始采用蓝牙音频连通性技术,移动设备中的接收分集已经逐渐淘汰。
不过,这一趋势很快将发生变化:最新的无线局域网实施使用了多天线空间流,能够增加发射带宽和速度。
随着实施这一先进技术的低成本硬件的问世,首次发布的3GPP LTE(第三代合作伙伴计划长期演进)标准,特别是其TDD(时分双工)版本已经提议并实施了各种多天线技术。
再次说明一下,基础的无线信道使用的是单路发射和单路接收天线,称为SISO(单路输入单路输出)。
这种简单的无线信道设定了信号传输性能的基准,在此基础上可以对所有更复杂的传输配置进行测量。
SIMO(单路输入多路输出)提供了比SISO基准更大的接收天线冗余,支持在接收机中使用接收分集技术,例如最大比合并等。
这可以改善在设备接收机上观测到的SINR,并有助于改善信道衰落条件下的性能。
MISO(多路输入单路输出)提供发射天线冗余,像在LTE情况中一样,支持使用Alamouti符号编码或空频分组编码(SFBC)等发射分集技术。
与 SIMO一样,这也可以改善在设备接收机上观测到的SINR,并可帮助提供保护,防止信道衰落。
无论是SIMO还是MISO都不能提高数据吞吐量,但它们可以降低误码率,从而减少需要重发的数据量。
冗余可用来改善上面所述使用相同发射和接收分集技术的设备接收机上的SINR,或者可以牺牲部分或全部可能的SINR性能改善,以便获得更高的频谱效率。
空间多路复用发射技术(使用发射天线发送独立数据流)可以为单一用户提供更高的数据吞吐量(SU-MIMO或单用户MIMO),或增加系统蜂窝小区容量(MU-MIMO或多用户MIMO)。
通信工程师:TDD-LTE认证考试资料
通信工程师:TDD-LTE认证考试资料1、单选下面慢衰落的描述哪个是正确的?()A、慢衰落符合瑞利分布特性,快衰落符合正态分布特性B、慢衰落符合正态分布特性,快衰落符合瑞利分布特性C、慢衰落与快衰落都(江南博哥)符合正态分布特性D、慢衰落与快衰落都符合瑞利分布特性正确答案:B2、单选当我们做完10M的PS下载后,后台统计的PS下行流量()10MA、等于B、大于C、小于D、不一定正确答案:B3、多选TCP平均速率的影响因素有()A、峰值吞吐率B、速率抖动C、丢包D、时延正确答案:A, B, C4、单选由于信道时延引起的信号波形的展宽称为(),由它产生()。
A、时延扩展;时间选择性衰落B、时延扩展;频率选择性衰落C、频率扩散;频率选择性衰落D、频率扩散;时间选择性衰落正确答案:B5、单选BBU和RRU通过()传输。
A、双绞线B、同轴电缆C、光纤D、跳线正确答案:C6、单选下列不是表征相对值的是()。
A、dBmB、dBiC、dBdD、dB正确答案:A7、单选一般城区的电子地图精度要求为()。
A、5mB、10mC、20mD、50m正确答案:C8、单选20MHz带宽下,采用2天线接收,下行峰值数据速率最高可以达到()A、100MbpsB、10MbpsC、50MbpsD、20Mbps正确答案:A9、单选TDD-LTE中一个半帧包含几个子帧()A、2B、3C、4D、5正确答案:D10、单选增大下倾角是必要的网规手段,可以()覆盖范围,()小区间干扰。
A、减小,减少B、减小,增大C、增大,减少D、增大,增大正确答案:A11、问答题LTE多天线技术种类以及各自的作用?正确答案:1、发射分集:多路信道传输同样信息。
包括时间分集,空间分集和频率分集,提高接收的可靠性和提高覆盖,适用于需要保证可靠性或覆盖的环境2、空间复用:多路信道同时传输不同信息理论上成倍提高峰值速率,适合密集城区信号散射多地区,不适合有直射信号的情况3、波束赋形:多路天线阵列赋形成单路信号传输,通过对信道的准确估计,针对用户形成波束,降低用户间干扰,可以提高覆盖能力,同时降低小区内干扰,提升系统吞吐量。
LTE-TDD词典(自整理版本)
主同步信号PSS在DwPTS上进行传输DwPTS上最多能传两个PDCCH OFDM符号(正常时隙能传最多3个)只要DwPTS的符号数大于等于9,就能传输数据UpPTS可以发送短RACH(做随机接入用)和SRS(Sounding参考信号)根据系统配置,是否发送短RACH或者SRS都可以用独立的开关控制因为资源有限(最多仅占两个OFDM符号),UpPTS不能传输上行信令或数据PHICH的传输以PHICH组的形式,PHICH组的个数由PBCH指示。
每组由4个RE构成,即1个REG。
而每个PHICH最少占用3个REG Ng={1/6,1/2,1,2}PHICH组数=Ng*(100/8)(整数,取上限)={3,7,13,25}PHICH min=3(如右图n=3)PHICH max=25采用BPSK调制,传输上行信道反馈信息。
作用:承载上行传 输对应的 HARQ ACK/NACK信息。
频域:占用所有的子载波时域:占用每个子帧的前n个OFDM符号,n<=3PDCCH的信息映射到控制域中除了参考信号、PCFICH、PHICH之外的RE中,因此需先获得PCFICH和PHICH的位置之后才能确定其位置。
作用: 用于发送上/下行资源调度信息、功控命令等,通过下行控制信息块DCI承载,不同用户使用不同的DCI资源。
将频域:1.08MHz带宽(72个子载波)时域:位于UpPTS(format 4)及普通上行子帧中(format 0~3)。
每10ms无线帧接入0.5~6次,每个子帧采用频分方式可传输多个随机接入资源。
目前采用format0。
作用:承载随机接入前导。
作用:传输上行用户的控制信息,包括CQI, ACK/NAK反馈,调度请求等。
一个控制信道由1个RB pair组成,位于上行子帧的两边边带上:在子帧的两个slot上下边带跳频,获得频率分集增益;PUCCH重复编码,获得接收分集增益,增加解调成功率通过码分复用,可将多个用户的控制信息在同一个PDCCH资源上发送。
FDD-LTE vs TD-LTE 孰优孰劣?
LTE越来越火了,FDD-LTE vs TD-LTE 孰优孰劣?LTE越来越火了,做通信的现在都把目光集中在准4G技术LTE身上,LTE有两种制式:一个是FDD,一个是TDD,其实就是由于双工方式不同罢了,差别仅仅在物理层,其他层面都一样。
那么FDD-LTE和TDD-LTE孰优孰劣呢,这里就我个人的一点见解和大家分享下,仅作抛砖引玉。
1.关于带宽利用率关于这个指标,一上来可能有人会说,这个当然是TDD的更优,因为TDD可以根据业务的上下行流量比例灵活配置带宽资源(当然标准中的配置也就7种,不是任意什么比例都可以配的)。
其实呢,细细考虑并不完全是这样的。
首先呢要从帧结构说起,从TDD的帧结构可知,TDD一帧中10个子帧里有个叫做特殊子帧的帧,这些帧会被浪费一部分(比如其中的保护时隙)并不传送任何数据,而FDD的帧不存在这种完全浪费掉的情况。
其次呢虽然TDD的上下行时隙是可配置的,但是在实际建网中,只能是全网固定采用一种比例配置,因为TDD的上下行用的是同一频率,如果上下行的发送时段不分离的话,同频干扰是非常严重的,自己把自己干扰死,因此一旦一个网络配置了一个比例的话,其他地方建网都要保证一致的配比,否则边界的干扰将导致网络不可用。
但每个地区的业务发展是不一样的,上下行的数据流量比例也未必相同。
从这一点来看,TDD所谓的上下行灵活配比是伪的,现实中不是你想象的那样根据上下行的流量变动配置的,而是相对固定,静态的,可见带宽利用率未必很高。
反观FDD,上下行分离频段,互补干涉,在数据业务充分发展的情况下,带宽利用率也可以提高。
目前FDD的下行、上行能力比例约2:1(上行主要是受限于终端的能力,用不了MIMO,不然的话上下行其实是能提供相同的能力的),在实际业务模型中,如果下行、上行数据业务比例也差不多是2:1的话,带宽利用率将非常高。
2.关于同步的需求TDD的系统都有个毛病,就是同步等级要求高,除了时钟同步(即频率同步,步调的快慢一致),还需要时间同步(即相位同步,步调同时开始)。
TD-LTE多用户双流波束赋型技术分析和评估
TD-LTE多用户双流波束赋型技术分析和评估文章评估了TM8 MU-BF 和SU-BF 的性能,并提出多项提高BF 性能的实现优化方案,包括上行探测参考信号(SRS )的多小区协调分配方案和多用户配对的优化方案等。
仿真结果显示,在目前的产品能力下,MU-BF 相比SU-BF 约有20%的性能增益;而引入优化的实现方案后,SU-BF 性能进一步提升约10%,MU-BF 性能进一步提升约25%。
【摘 要】【关键词】TD-LTE MU-BF SU-BF SRS金 婧 王启星 姜大洁 龙紫薇刘宇超 胡臻平 唐 海 刘光毅中国移动通信研究院无线技术研究所收稿日期:2012-06-15责任编辑:左永君*******************1 概述随着移动通信技术的迅速发展,频谱资源的严重不足已经日益成为移动通信网络进一步发展的瓶颈。
如何充分开发利用有限的频谱资源,提高频谱利用率,是当前通信界研究的热点课题之一。
多天线技术因其在不增加带宽的情况下可有效提高传输效率和频谱利用率而获得广泛的青睐。
多天线技术的核心思想就是在传统的时间维和频率维的基础上,通过在发送端和接收端使用多根天线来增加空间维度,从而实现信号的多维并行传输。
3GPP Rel-9规范[1]中的传输模式(TM,Transmis-sion Mode)8,将无需用户反馈码本的单流波束赋型扩展到单双流自适应波束赋型方案。
该传输模式特别适用于TDD系统,因为TDD系统可利用上下行信道互易性在基站端得到下行信道信息,从而计算波束赋型的加权矩阵。
根据调度用户的情况不同,T M 8双流波束赋型又分为:单用户波束赋型技术(SU-BF,Single User Beamforming)和多用户波束赋型技术(MU-BF,Multi-User Beamforming)。
SU-BF中,基站基于上行信道计算两个赋型矢量,利用该赋型矢量对要发射的两个数据流进行下行赋型[2],使得单个用户在某一时刻可以进行两个数据流传输,同时获得赋型增益和空间复用增益,可以获得比单流波束赋型更高的传输速率,提高系统容量。
LTE简答题
简答题1、简要介绍LTE中小区搜索的过程1)频点扫描:UE开机后,在可能存在LTE小区的几个中心频点上接收信号主同步信号PSS,以接收信号强度来判断这个频点周围是否可能存在小区,如果UE保存了上次关机时的频点和运营商信息,则开机后会先在上次驻留的小区上尝试;若没有,就要在划分给LTE系统的频带范围作全频段扫描,发现信号较强的频点去尝试接收PSS2)时隙同步:PSS占用中心频点的6RB,因此可直接检测并接收到。
据此可得到小区组里小区ID,同时确定5ms的时隙边界,并可通过检查这个信号就可以知道循环前缀的长度以及采用的是FDD还是TDD(因为TDD的PSS防止位置有所不同3)帧同步:在PSS基础上搜索辅助同步信号SSS,SSS有两个随机序列组成,前后半帧的映射正好相反,故只要接收到两个SSS,就可确定10ms的帧边界,同时获取小区组ID,跟PSS结合就可以获取CELL ID4)PBCH获取:获取帧同步后,就可以读取PBCH了,通过解调PBCH,可以获取系统帧号、带宽信息以及PHICH的配置、天线配置等重要信息5)SIB获取:然后UE要接收在PDSCH上承载的BCCH信息。
此时该信道上的时频资源就是已知的了,在控制区域内,除去PCFICH和PHICH信道资源,搜索PDCCH并做译码。
用SI-RNTI检测出PDCCH信道中的内容,得出PDSCH中SIB的时频位置,译码后将SIB告知高层协议,高层会判断接收的系统消息是否足够,如果足够则停止接收SIB2、LTE下行信道处理一般需要经过哪些过程信道处理需要经过加扰、调制、层映射、预编码、RE映射、生成OFDM符号等几个步骤,加扰-编码bit的加扰,加扰将不改变bit速率调制-将加扰bit调制为复值符号(BPSK、QPSK、16QAM或64QAM将数据流)层映射-将复值调制符号映射到若干传输层。
调制后的符号可以经过一层或多层传输,多层传输包括多层复用传输和多层分集传输,分别对应不同的处理方式预编码-对传输层的复值符号预编码到天线口。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波束赋形
波束赋形原理
波束赋形的目标是根据系统性能指标,形成对基带(中频)信号的最佳组合或者分配。
具体地说,其主要任务是补偿无线传播过程中由空间损耗、多径效应等因素引入的信号衰落与失真,同时降低同信道用户间的干扰。
因此,首先需要建立系统模型,描述系统中各处的信号,而后才可能根据系统性能要求,将信号的组合或分配表述为一个数学问题,寻求其最优解。
1.系统模型
根据应用场合的不同,一般可以将波束赋形算法分为上行链路应用以及下行链路应用。
无论是哪种情况,总可以用一个时变矢量(MIMO)信道来描述用户端与基站端的信号关系,如图2所示。
对于上行链路,多个发射信号实质上是K个用户设备同时发送的信号,基站则使用多个天线单元接收信号,对其进行处理和检测,这时发送端的信号分配仅在各个支路分别进行;对于下行链路,基站仍可能使用多个天线单元向特定用户发射信号,但用户设备使用单天线检测与其有关的信号,这时接收部分降为一维,信号组合也仅对于单路信号进行。
根据图2的系统模型,就可以描述发送端的原始信号与接收端实际接收信号之间的关系,通常根据研究重点的不同,对于原始信号以及实际接收信号的位置会有不同的定义。
对于波束赋形技术,一般其研究的范围从发送端扩谱与调制单元的输出端,到接收端解扩与解调单元的输入端,而研究过程中又常将信号分配单元输出端到信号组合单元输入端之间的部分合并,统称为无线移动信道,由于无线移动通信环境的极度复杂,无法得到其输入输出关系的确切描述,一般采用大量测量和理论研究相结合的方法,使用有限的参数描述该信道。
采用这种方法后,就可以得到受干扰有噪信号与原始信号的关系,并据此在一定程度上恢复信号。
因此,波束赋形的一般过程为:
⑴根据系统性能指标(如误码率、误帧率)的要求确定优化准则(代价函数),一般这是权重矢量与一些参数的函数;
⑵采用一定的方法获得需要的参数;
⑶选用一定的算法求解该优化准则下的最佳解,得到权重矢量的值。
可以发现,由于通信环境复杂,上述过程的每一阶段都可有不同的实现方案,因此产生了大量的波束赋形算法,如何衡量和比较其性能也成为波束赋形技术研究的一个重要方面。
2.波束赋形算法的性能
由于波束赋形技术建立在通信环境模型以及系统模型的基础上,因此在考察波束赋形算法的性能时,要考虑到环境因素的影响以及其对于系统的要求,以便于得到更符合实际需要的性能估计。
综合各种因素,一般可以从以下几个方面考察波束赋形算法的性能。
⑴算法运算性能:这主要包括算法的收敛速度、复杂程度、精度、稳定性以及对误差的正确判断性等。
前四项指标是常见的衡量算法性能的指标,而最后一项在智能天线应用领域有特别的意义。
在实际的通信系统中,由于天线规模等实际条件的限制以及移动无线信道复杂情况的影响,对波达方向的测量估计误差较大,因此对于采用基于波达方向估计的波束赋形算法,能否降低其对误差的敏感度就显得十分重要,尤其是在下行链路中,一旦发生较大的指向偏差,不仅会使得目标用户无法获得一定质量的信号,还可能会带来对其他用户的干扰,从而导致系统性能急剧下降。
⑵算法的测量要求:主要包括算法需要了解的信道特征参量的种类和数量以及是否需要提供参考信号等。
信道特征参量的种类可以包括多普勒频移、入射信号的角度分布以及相应的时延分布等;而数量则是指需要了解的信道的数量,如在了解天线与目标用户间信道的同时是否需要了解天线与其他非目标用户(干扰源)之间的信道参量等。
通过预定义的参考信号进行信道估计是一种常用的方法,不同的算法对是否需要参考信号以及对参考信号长度等参数会有不同的要求。
⑶算法对系统的其他要求:主要包括达到一定性能需要的天线单元数目、是否有对传输协议的额外要求(如是否需要反馈链路)、是否对输入信号有一定的要求(如是否为恒包络的调制信号)等。
3.波束赋形技术的现状及发展方向
波束赋形技术发展过程中,出现了大量的具体技术,其命名、分类并不完全统一,加之近年来与其他技术(如联合检测、功率控制等)的结合乃至融合,使得相关的具体技术更显纷繁复杂。
通常可以依据的分类有,根据应用场合的不同将波束赋形技术分为上行链路波束赋形和下行链路波束赋形;根据其所使用的信道特征参量的种类,可分为使用信道空域参量的技术和使用信道空时域参量的技术;根据不同的波束赋形技术对于问题采用的描述方法,可分为优化类和自适应滤波器类;根据波束赋形技术计算使用的方法可分为线性算法和非线性算法。
对于上行链路,由于可以获得可靠的信道实时估计,因此可以采用信道的空时域参量进行波束赋形,以提高上行链路性能。
针对移动无线通信系统,尤其是CDMA系统的实际情况,上行链路的波束赋形可以结合信号检测,实现多用户的联合检测。
但是应用这一方法存在以下两个问题:算法要求测量所有信道的空时域参数,且测量要求高(除了盲检测算法,大部分算法需要使用训练序列,并要求在获得同步以后进行测量);计算过于复杂难以实现,尤其是针对多用户的方案。
实际可采用的方法有:采用性
能次优但较为简单的方法;设计便于并行运算的结构,以硬件代价满足运算时间方面的要求;或者结合两种方法。
其中,通过有限度降低算法性能提高算法可实现性的具体方法包括:减少计算需要的参量;减少计算的维数(如使用训练序列进行初始化,或者分解全局优化问题变为互不相关的局部优化问题的叠加);选择计算复杂度较低的计算方法等。
在保证性能的前提下进一步降低系统结构的复杂度主要依赖于使用结构较为简单的处理单元,根据传统的均衡和检测领域的研究,非线性的系统结构和算法可以大大降低系统结构的复杂度,目前对判决反馈结构、神经网络技术等在波束赋形领域的应用已有初步研究。
对于下行链路,由于条件限制很难在下行链路实现对于信道的可靠实时估计。
对于TDD模式的系统,在上下行信道间隔时隙很小的条件下,可以近似认为信道未发生变化,从而可以在下行链路使用由上行数据获得的信道空时域参数的估计值,甚至可以直接使用上行波束赋形的数据。
但是对于FDD系统,则一般无法满足上下行信道频率间隔足够小的要求使得两者的变化强相关,因此如果不使用反馈回路获取移动站的测量数据,仅可根据上行数据获得一些与频率变化无关或者弱相关的信道参量,这包括信道的空域参量以及空时域参量的平均值等。
其中使用空时域参量平均估计值的方法原理上同使用空时域信道参量的方法并无区别,只是由于缺乏对于信道状况的实时跟踪,性能会有所下降。
而仅依赖信道空域参量的算法则符合波束赋形的传统含义,即使基站实现下行指向性发射。
仅依赖信道空域参量的算法需要了解目标移动站与基站的相对位置,为了抑制同信道用户间的干扰可能还需要了解同信道移动站与基站的相对位置。
这些信息可以由上行信道数据得到,即根据上行数据对波达方向进行估计,因此这种算法又可称为基于DoA估计的算法,由于使用的信息可以认为与上下行信道载频无关,因此可以适用于TDD或者FDD模式的系统。
这类算法的主要局限在于较大的DoA估计误差以及天线单元数限制了算法的性能,因此在实际应用时系统性能并不理想。
一般,为了减小天线增益凹陷的指向偏差,必须配合使用凹陷点展宽(Null Broadening)技术,即在计算所得的凹陷点附近形成凹陷区,确保对其他用户的干扰降低到最小的程度。
目前,由于上行波束赋形技术的发展,下行链路性能成为提高系统性能的瓶颈,因此迫切需要有效的方法。
在可以获得可靠的空时域参量的条件下(TDD模式的系统,或者使用反馈链路的系统),可以应用空时处理方法,但是在具体的表述、算法的实现等方面仍需进一步的系统研究。
如果无法获得可靠的空时域参量(不采用反馈链路的FDD模式的系统),那么基于DoA估计的算法应该是最终的解决方案,但是目前的估计精度很难满足实际系统的需要,必须发展对估计误差不敏感的波束赋形算法。
相关技术
波束赋形直接建立在信道参量的基础上,因此无线移动信道的建模与估计是波束赋形技术的基础,无论是算法描述还是算法性能分析以及仿真都必须依赖这一基石。
另外,根据无线传播理论和对各种通信环境的实际测量建立合理的无线移动信道模型,可以降低波束赋形算法对实时测量的要求,是在较小的系统复杂度下实现性能更优的波束赋形算法的一种途径。
上行波束赋形与用户信号检测有密切的关系,在基于CDMA的无线移动通信系统中,波束赋形可结合各种信号检测技术,尤其是多用户检测技术,实现联合检测,这也是波束赋形实用化研究中的一个热点。
下行波束赋形与功率分配存在一定的关系,一般希望使用波束赋形实现对于同信道用户的空域(角度域)分辨,而由功率控制技术进一步克服位于同一方向的同信道用户之间的相互干扰,这涉及到上层的控制与分配,并与多种信令过程有关,需要进一步进行研究。
综上所述,智能天线技术可充分利用无线资源的空间可分隔性,提高无线移动通信系统对于无线资源的利用率,并从根本上提高系统容量。
波束赋形技术作为智能天线数字信号处理部分的核心,虽然在理论和实际两方面都已进行了大量的研究,但在其表述、数学解法、系统实现以及与其他相关技术的结合使用乃至融合方面仍有大量问题有待解决。
但可以肯定,随着信号处理技术的发展以及相关制造技术的进步,智能天线的SDMA方案最终将大大改善实际系统的性能。