第一次模拟考数学
2024年中考数学第一次模拟试卷(南京卷)(全解全析)
2024年中考第一次模拟考试(南京卷)数学(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1.下列运算正确的是()A .235a b ab +=B .623a a a ÷=C .()326a a =D .()222141a a +=+【答案】C【分析】根据合并同类项法则,同底数幂相除法则,幂的乘方法则,完全平方公式计算即可.【详解】解:A .2a 与3b 不是同类项,不可以合并,故错误;B .624a a a ÷=,故原计算错误;C .()326a a =,原计算正确;D .()2221441a a a +=++,故原计算错误;故选:C .2.下列各式中计算正确的是()A 2(3)3-=-B 93=±C 33(3)3-=±D 3273=【答案】D【分析】本题主要考查了算术平方根及立方根.根据算术平方根及立方根进行求解即可.【详解】解:A 2(3)33-=≠-,故该选项不符合题意;B 933=≠±,故该选项不符合题意;C 33(3)33-=-≠±,故该选项不符合题意;D 3273=,故该选项符合题意;故选:D .3.若关于x 的一元一次不等式(2)2m x m -≥-的解为1x ≤,则m 的取值范围是()A .2m <B .2m ≤C .m>2D .2m ≥【答案】A【分析】本题主要考查不等式的解集,熟练掌握不等式的性质是解题关键.根据不等式的性质可知,两边同时除以2m -,不等式的符号发生改变,可知20m -<,求解即可.【详解】解: 关于x 的一元一次不等式(2)2m x m -≥-的解为1x ≤,20m ∴-<,2m <∴.故选:A .4.若()11,x y ,()22,x y 这两个不同点在y 关于x 的一次函数()11y a x =+-图象上,当()时,()()12120x x y y --<.A .0a <B .0a >C .1a <-D .1a >-【答案】C【分析】根据一次函数的性质知,当0k <时,判断出y 随x 的增大而减小.此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理是关键.【详解】解:∵()11,x y ,()22,x y 是一次函数()11y a x =+-图象上的两个不同点,且()()12120x x y y --<,∴12x x -与12y y -是异号,∴该函数y 随x 的增大而减小,∴10a +<,解得1a <-.故选:C .5.手影游戏利用的物理原理是:光是沿直线传播的.图中小狗手影就是我们小时候常玩的游戏.在一次游戏中,小明距离墙壁1米,爸爸拿着的光源与小明的距离为2米.在小明不动的情况下,要使小狗手影的高度增加一倍,则光源与小明的距离应()A .减少32米B .增加32米C .减少53米D .增加53米【答案】A【分析】根据题意作出图形,然后利用相似三角形的性质构建方程求解即可.【详解】解:如图,点O 为光源,AB 表示小明的手,CD 表示小狗手影,则AB CD ,过点O 作OE AB ⊥,延长OE 交CD 于F ,则OF CD ⊥,∵AB CD ,∴AOB COD ∽,则AB OECD OF=,∵1EF =米,2OE =米,则3OF =米,∴23AB OE D OF C ==,设2AB k =,3CD k=∵在小明不动的情况下,要使小狗手影的高度增加一倍,如图,即2AB k =,6C D k ''=,1EF '=米,AO B C O D ''''△∽△∴13AB O E C D O F ''=='''',则2O F O E O E EF '''''''-==,∴12O E ''=米,∴光源与小明的距离变化为:13222OE O E ''-=-=米,6.如图,在ABC 中,,36AB AC B =∠=︒.分别以点,A C 为圆心,大于12AC 的长为半径画弧,两弧相交于点D ,E ,作直线DE 分别交,AC BC 于点,F G .以G 为圆心,GC 长为半径画弧,交BC 于点H ,连结,AG AH .则下列说法错误的是()A .AG CG =B .2B HAB ∠=∠C .352CG AC -=D .51AGB AGC S S +=△△【答案】C【分析】根据基本作图得到DE 垂直平分AC ,GH GC =,再根据线段垂直平分线的性质得到AF CF =,GF AC ⊥,GC GA =,于是可对A 选项进行判断;通过证明FG 为∆ACH 的中位线得到FG AH ∥,所以AH AC ⊥,则可计算出18HAB ∠=︒,则2B HAB ∠=∠,于是可对B 选项进行判断;通过证明CAG CBA ∆∆∽,利用相似比得到2CA CG CB =⋅,然后利用AB GB AC ==,设BC x =,AB GB AC a ===,得2()a x a x =-,解之得512x -=,再计算出512CG AC -=512BG CG +=C 、D 选项进行判断.【详解】由作法得DE 垂直平分AC ,GH GC =,AF CF ∴=,GF AC ⊥,GC GA =,所以A 选项正确,不符合题意;CG GH = ,CF AF =,FG ∴为∆ACH 的中位线,FG AH ∴∥,AH AC ∴⊥,90CAH ∴∠=︒,AB AC = ,36C B ∴∠=∠=︒,180108BAC B C ∠=︒-∠-∠=︒ ,10818HAB CAH ∴∠=︒-∠=︒,2B HAB ∴∠=∠,所以B 选项正确,不符合题意;∴36C GAC ∠=∠=︒,∴72BGA C GAC ∠=∠+∠=︒,∴18072BAG B BGA ∠=︒-∠-∠=︒,∴=BG BA ,∴AB GB AC ==.GCA ACB ∠=∠ ,CAG B ∠=∠,CAG CBA ∴∆∆∽,::CG CA CA CB ∴=,2CA CG CB ∴=⋅,设BC x =,AB GB AC a ===,得2()a x a x =-,解之得152x a =(负舍),∴152BC +=∴155122CG BC BG a +-=-=-=,51512CGACa--==故C 选项不正确,符合题意;512512BGCGa =-,∴512AGB AGC S BG S CG +==△△所以D 选项正确,不符合题意.故选:C .二、填空题(本大题共10小题,每小题2分,共20分.)7.分式3121x x +-有意义,则x 的取值范围是.【答案】12x ≠【分析】本题考查的是分式有意义的条件,掌握分式分母不为0是解题的关键.【详解】解:∵分式3121x x +-有意义,∴210x -≠,解得:12x ≠,故答案为:12x ≠.8.2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星,北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超300000000000次,将数据300000000000用科学记数法表示为.【答案】11310⨯【分析】此题考查了科学记数法的表示方法,根据科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数即可求解,解题的关键要正确确定a 的值以及n 的值.【详解】解:11300000000000310=⨯,故答案为:11310⨯.9.因式分解:22218x y -=.【答案】()()233x y x y +-【分析】本题考查了提公因式法与公式法的综合运用,先提公因式,再利用平方差公式继续分解即可解答.【详解】解:22218x y -()2229x y =-()()233x y x y =+-,故答案为:()()233x y x y +-.10.已知2220x x --=,代数式()212019x -+=.【答案】2022【分析】本题考查配方法的应用,解题的关键是掌握()2222a ab b a b ±+=±,把2220x x --=变形为:()213x -=,再代入代数式,即可.【详解】∵2220x x --=,∴222x x -=,∴2213x x -+=,∴()213x -=,∴()212019320192022x -+=+=.故答案为:2022.11.如图,在ABCD Y 中,BF 平分ABC ∠,交AD 于点F ,CE 平分BCD ∠,交AD 于点E ,6AB =,9BC =,则EF 长为.【答案】3【分析】本题考查了平行四边形的性质,平行线的性质,角平分线的定义,等角对等边;熟练掌握平行四边形的性质,得出AF AB =是解题的关键.根据平行四边形的对边平行且相等可得AD BC ∥,6DC AB ==,9AD BC ==;根据两直线平行,内错角相等可得AFB FBC ∠=∠;根据从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线可得ABF FBC ∠=∠;推得ABF AFB ∠=∠,根据等角对等边可得6AF AB ==,6DE DC ==,即可列出等式,求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD BC ∥,6DC AB ==,9AD BC ==,∵AD BC ∥,∴AFB FBC ∠=∠,∵BF 平分ABC ∠,∴ABF FBC ∠=∠,则ABF AFB ∠=∠,∴6AF AB ==,同理可证:6DE DC ==,∵2EF AF DE AD =+-=,即669EF +-=,解得:3EF =;故答案为:3.12.如图,在平面直角坐标系中,点A ,B 都在反比例函数()0ky x x=>的图象上,延长AB 交y 轴于点C ,过点A 作AD y ⊥轴于点D ,连接BD .若2AB BC =,BCD △的面积是2,则k 的值为.【答案】4【分析】本题主要考查了反比例函数与几何综合,相似三角形的性质与判定,过点B 作BE AD ⊥于E ,设k k A a B b a b ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,先求出23AB AC =,证明ABE ACD ∽△△,得到23AE AB AD AC ==,即23a b a -=,由此可得3a b =;由BCD △的面积是2,2AB BC =,得到24ABD BCD S S ==△△,求出23k k kBE b a b=-=,则123423ABD k S AD BE b b=⋅=⨯⋅=△,即可得到4k =.【详解】解:如图所示,过点B 作BE AD ⊥于E ,设k k A a B b a b ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,∵2AB BC =,∴23AB AC =,∵AD y ⊥,BE AD ⊥,∴BE CD ,∴ABE ACD ∽△△,∴23AE AB AD AC ==,即23a b a -=,∴3a b =;∵BCD △的面积是2,2AB BC =,∴24ABD BCD S S ==△△,∵233k k k k kBE b a b b b=-=-=,∴123423ABD k S AD BE b b=⋅=⨯⋅=△,∴4k =,故答案为:4.13.如图,四边形ABCO 是正方形,顶点B 在抛物线()20y ax a =<的图象上,若正方形ABCO 2,且边OC 与y 轴的负半轴的夹角为15︒,则a 的值是.【答案】3【分析】本题主要考查二次函数、特殊三角函数、正方形的性质,正确做出辅助线,利用特殊角,应用特殊三角函数值进行求解是解题的关键.连接OB ,过B 作BD y ⊥轴于D ,则45BOC ∠=︒,可得30BOD ∠=︒,再由直角三角形的性质可得,OD BD 的长,进而得到点(1,3B --,即可求解.【详解】解:如图,连接OB ,过B 作BD y ⊥轴于D ,则90BDO ∠=︒,由题意得:45BOC ∠=︒,∵15COD ∠=︒,∴451530BOD ∠=︒-︒=︒,∵正方形OABC 2∴222OB OA AB =+=,∴在Rt OBD △中,∴112BD OB ==,∴22213OD =-=∴点(1,3B -,代入()20y ax a =<中,得:3a =-∴故答案为:314.如图,在ABC 中,9043ACB AC BC ∠=︒==,,,将ABC 绕点B 旋转到DBE 的位置,其中点D 与点A 对应,点E 与点C 对应.如果图中阴影部分的面积为4.5,那么CBE ∠的正切值是.【答案】913【分析】本题考查了正切函数的定义,旋转的性质和勾股定理.作FG BD ⊥于点G ,利用旋转的性质以及面积法和勾股定理求得1EF =,10BF =,解得95FG =,再利用由旋转的性质求得CBE FBG ∠=∠,据此求解即可.【详解】解:作FG BD ⊥于点G ,∵9043ACB AC BC ∠=︒==,,,∴22345AB =+=,由旋转的性质得,3BE =,5BD =,90BED ∠=︒,由题意得11433 4.522S EF =⨯⨯-⨯⨯=阴影,解得1EF =,∴2210BF BE EF =+=,∵14.52BFD S S BD FG ==⨯⨯=阴影△,解得95FG =,∴22135BG BF FG =-=,由旋转的性质得,CBA EBD ∠=∠,则CBE FBG ∠=∠,∴CBE ∠的正切值995tan 13135FG FBG BG =∠===,故答案为:913.15.如图,在平面直角坐标系中,Q 与y 轴相切于点A ,与x 轴交于点B 、C ,连接BQ 并延长交Q 于点D ,交y 轴于点E ,连接DA 并延长交x 轴于点F ,已知点D 的坐标为()1,6,则点B 的坐标为.【答案】()9,0【分析】作DG OE ⊥于点G ,连接QA ,BA ,利用切线性质推出QA OB ∥,推出DAQ DFB ∽得出AQ 为DFB △的中位线,进而推出()AAS AFO ADG ≌,得到FO DG =,AO AG =,根据D 的坐标得到1FO =,3AO =,利用圆周角定理的推论,推出AFO BAO ∽,得到AO FO BO AO=,即可求出B 坐标.【详解】解:如图,作DG OE ⊥于点G ,连接QA ,BA,Q 与y 轴相切于点A ,QA OE ∴⊥,BO OE ⊥ ,QA OB ∴∥,DAQ DFB ∴ ∽,DQ AQ DB FB∴=,12DQ BQ BD == ,12AQ FB ∴=即12AQ FB =,AQ ∴为DFB △的中位线,DA FA ∴=,FAO DAG ∠=∠ ,90AOF AGD ∠=∠=︒,()AAS AFO ADG ∴ ≌,FO DG ∴=,AO AG =,点D 的坐标为()1,6,1DG ∴=,6OG =,1FO ∴=,3AO =,BD Q 是直径,90FAB ∴∠=︒,FAO BAO ABO BAO ∠+∠=∠+∠ ,AOF ABO ∴∠=∠,90AOF AOB ∠=∠=︒ ,AFO BAO ∴ ∽,AO FO BO AO∴=,313BO ∴=,9BO ∴=,B ∴的坐标为()9,0,故答案为:()9,0.16.如图,把Rt OAB 置于平面直角坐标系中,点A 的坐标为()04,,点B 的坐标为()30,,点P 是Rt OAB 内切圆的圆心.将Rt OAB 沿x 轴的正方向作无滑动滚动,使它的三边依次与x 轴重合,第一次滚动后圆心为1P ,第二次滚动后圆心为2P ,…,依此规律,第2023次滚动后,Rt OAB 内切圆的圆心2023P 的坐标是.【答案】()80931,【分析】作PD OA ⊥交OA 于D ,PF OB ⊥交OB 于F ,PE AB ⊥交AB 于E ,连接AP 、OP 、PB ,由A 、B 的坐标得出4OA =,3OB =,由勾股定理可得5AB =,再由内切圆的性质可得PD PE PF ==,设PD PE PF r ===,根据三角形的面积计算出1r =,从而得到()11P ,,根据旋转可得出2P 的坐标为:()35411++-,,即()111,,设1P 的横坐标为x ,根据切线长定理可得:331x -=-,即可得到2P 的坐标,从而得到每滚动3次为一个循环,最后根据202336741÷=⋯,进行计算即可得到答案.【详解】解:如图,作PD OA ⊥交OA 于D ,PF OB ⊥交OB 于F ,PE AB ⊥交AB 于E ,连接AP 、OP 、PB ,,点A 的坐标为()04,,点B 的坐标为()30,,3OB ∴=,4OA =,2222435AB OA OB ∴+=+=,点P 是Rt OAB 内切圆的圆心,PD OA ⊥,PF OB ⊥,PE AB ⊥,PD PE PF ∴==,设PD PE PF r ===,1134622AOB S OA OB =⋅=⨯⨯= ,111222AOB APB AOP OPB S S S S AB PE OA PD OB PF =++=⋅+⋅+⋅ ,1115436222r r r ∴⨯+⨯+⨯=,解得:1r =,()11P ∴,,将Rt OAB 沿x 轴的正方向作无滑动滚动,使它的三边依次与x 轴重合,第一次滚动后圆心为1P ,第二次滚动后圆心为2P ,∴由图可得2P 的坐标为:()35411++-,,即()111,,设1P 的横坐标为x ,根据切线长定理可得:331x -=-,解得:5x =,()151P ∴,,∴3P 的坐标为()35411+++,,即()131,,∴每滚动3次为一个循环,202336741÷=⋯ ,∴第2023次滚动后Rt OAB 内切圆的圆心2023P 的横坐标是:()67434558093⨯+++=,即2023P 的横坐标是8093,()202380931P ∴,,故答案为:()80931,.三、解答题(本大题共11小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(7分)已知210a a +-=,求代数式321121a a a a a a -⎛⎫-÷ ⎪--+⎝⎭的值.【详解】解:321121a a a a a a -⎛⎫-÷ ⎪--+⎝⎭()()()211111a a a a a a a -+=-+⨯--21a a =+,∵210a a +-=,∴21a a +=,∴原式111==.18.(7分)已知实数x ,y 满足43617x y x y -=⎧⎨+=⎩,求x y +的值.【详解】解:43617x y x y -=⎧⎨+=⎩①②,①6⨯+②得:24661817x y x y -++=+,解得75x =,将75x =代入①式,解得135y =,713455x y ∴+=+=.19.(8分)2023春节档电影《满江红》热映,进一步激发观众爱国之情.帝都南阳与名将岳飞有着一段传颂至今的历史——公元1138年,岳飞统军过南阳到武侯祠敬拜诸葛亮,雨夜含泪手书前后《出师表》,为南阳留下了千古绝唱“三绝碑”.某超市采购了两批同样的《出师表》纪念品挂件,第一批花了3300元,第二批花了4000元,已知第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进25个.(1)求第二批每个挂件的进价;(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?【详解】(1)解答:解:(1)设第二批每个挂件进价是每个x 元,根据题意得33004000251.1x x=-解得40x =,经检验,40x =是原方程的解,也符合题意,∴40x =,答:第二批每个挂件进价是每个40元;(2)设每个挂件售价定为m 元,每周可获得利润W 元,∵每周最多能卖90个,∴604010901m -+⨯≤,解得55m ≥,根据题意得()()260404010105214401m W m m -⎛⎫=-+⨯=--+ ⎪⎝⎭,∵100->,∴当52m ≥时,y 随x 的增大而减小,∵55m ≥,∴当55m =时,W 取最大,此时210555214401350W =-⨯-+=().∴当每个挂件售价定为55元时,每周可获得最大利润,最大利润是1350元.20.(8分)北京时间2023年10月3日,瑞典皇家科学院宣布,将诺贝尔物理学奖授予皮埃尔·阿戈斯蒂尼、费伦茨·克劳什、安妮·卢利耶.这3位获得者所做的实验,为人类探索原子和分子内部的电子世界提供了新的工具.在诺贝尔奖历史上,诺贝尔物理学奖是华人获奖最多的领域,共有6位华人科学家获奖,分别是杨振宁、李政道、丁肇中、朱棣文、崔琦、高锟.小轩家刚好有《杨振宁传》《李政道传》《丁肇中传》《高锟传》四本传记书,小轩阅读完后任选一本写读后感.(1)小轩选到《朱棣文传》是________事件.(填“随机”“必然”或“不可能”)(2)小轩的妹妹也从这四本传记书中任选一本写读后感,请用列表或画树状图的方法,求他们恰好选到同一本书写读后感的概率.【详解】(1)解:∵小轩家有《杨振宁传》《李政道传》《丁肇中传》《高锟传》四本传记书,∴小轩选到《朱棣文传》是不可能事件,故答案为:不可能;(2)解:由题意可得,树状图如图所示,总共有16种情况,他们恰好选到同一本书的有4种,∴41164P ==.21.(8分)2023年,教育部等八部门联合印发了《全国青少年学生读书先去实施方案》,某校为落实该方案,成立了四个主题阅读社团:A .民俗文化,B .节日文化,C .古曲诗词,D .红色经典.学校规定:每名学生必须参加且只能一个社团.学校随机对部分学生选择社团的情况进了调查.下面是根据调查结果绘制的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次随机调查的学生有名,在扇形统计图中“A ”部分圆心角的度数为;(2)通过计算补全条形统计图;(3)若该校共有1800名学生,请根据以上调查结果,估计全校参加“D ”社团的人数.【详解】(1)本次调查的总人数2440%60÷=(名),扇形统计图中,C 所对应的扇形的圆心角度数是63603660⨯=︒︒,故答案为:60,36︒;(2)606241812---=(人);补全条形统计图如答案图所示.(3)18180054060⨯=(名).答:全校1800名学生中,参加“D ”活动小组的学生约有540名.22.(8分)如图,在矩形ABCD 中,E 是BC 的中点,DF AE ⊥,垂足为F .(1)求证:ABE DFA △∽△;(2)若64AB BC ==,,求DF 的长.【详解】(1)证明:∵四边形ABCD 是矩形,∴90ABC BAD ∠=∠=︒,∵DF AE ⊥,∴90AFD EBA =︒=∠∠,∴90BAE FAD FAD FDA +=︒=+∠∠∠∠,∴BAE FDA ∠=∠,∴ABE DFA △∽△;(2)解:∵四边形四边形ABCD 是矩形,4BC =,∴4AD BC ==,∵E 是BC 的中点,∴122BE BC ==,∵6AB =,∴22210AE AB BE =+=∵ABE DFA △∽△,∴AB AE DF AD =,即62104DF =∴6105DF =23.(8分)随着人民生活水平的日益提高,许多农村的房屋普遍进行了改造,小明家改造时在门前安装了一个遮阳棚,如图,在侧面示意图中,遮阳篷AB 长为4米,与墙面AD 的夹角75.5BAD ∠=︒,靠墙端A 离地高AD 为3米,当太阳光线BC 与地面DE 的夹角为45︒时,求阴影CD 的长.(结果精确到0.1米;参考数据:sin 75.50.97cos 75.50.25tan 75.5 3.87︒≈︒≈︒≈,,)【详解】解:如图所示,过点B 作BG AD ⊥于点G ,BF CE ⊥于点F ,则四边形DGBF 是矩形,∴BF DG BG DF ==,,在Rt ABG △中,75.5904m BAD AGB AB ∠=︒=︒=,∠,,∴cos 4cos75.5 1.0m AG AB BAG =⋅∠=⨯︒≈,sin 4sin 75.5 3.9m BG AB BAG =⋅=⨯︒≈∠,∴ 2.0m BF DG AD AG ==-=,在Rt BCF 中, 2.0 2.0m tan tan 45BF CF BCF ===︒∠,∴ 3.9 2.0 1.9m CD DF CF BG CF =-=-=-=,∴阴影CD 的长为1.9m .24.(8分)如图,AB 是O 的直径,点E 是OB 的中点,过E 作弦CD AB ⊥,连接AC ,AD .(1)求证:ACD 是等边三角形;(2)若点F 是 AC 的中点,连接AF ,过点C 作CG AF ⊥,垂足为G ,若O 的半径为2,求线段CG 的长.【详解】(1)证明:如图,连接OC 、BC ,∵AB 是O 的直径,CD AB ⊥,∴AC AD = ,∴AC AD =,∵点E 是OB 的中点,CD AB ⊥,∴CD 是OB 的中垂线,∴OC BC =,∵OC OB =,∴OC OB BC ==,∴OBC 是等边三角形,∴60ABC ∠=︒,∴60ADC ABC ∠=∠=︒,∴ACD 是等边三角形;(2)解:如图,连接DF ,∵O 的半径为2,点E 是OB 的中点,∴3AE =,∵ACD 是等边三角形,CD AB ⊥,∴1122CE CD AC ==,在Rt ACE 中,3AE =,由勾股定理得:222AC CE AE -=,即22192AC AC ⎛⎫-= ⎪⎝⎭,则23AC =∵点F 是AC 的中点,∴AF CF =,∴1302ADF CDF ADC ∠=∠=∠=︒,∴30CAG CDF ∠=∠=︒,∵CG AG ⊥,∴90G ∠=︒,∴132CG AC ==.25.(8分)某龙舟队进行500米直道训练,全程分为启航,途中和冲刺三个阶段.图1,图2分别表示启航阶段和途中阶段龙舟划行总路程()m s 与时间()s t 的近似函数图象.启航阶段的函数表达式为()20s kt k =≠;途中阶段匀速划行,函数图象为线段;在冲刺阶段,龙舟先加速后匀速划行,加速期龙舟划行总路程()m s 与时间()s t 的函数表达式为()()2700s k t h k =-+≠.(1)求出启航阶段()m s 关于()s t 的函数表达式(写出自变量的取值范围),(2)已知途中阶段龙舟速度为5m/s .①当90s t =时,求出此时龙舟划行的总路程,②在距离终点125米处设置计时点,龙舟到达时,85.20s t ≤视为达标,请说明该龙舟队能否达标;(3)冲刺阶段,加速期龙舟用时1s 将速度从5m/s 提高到5.25m/s ,之后保持匀速划行至终点.求该龙舟队完成训练所需时间(精确到0.01s ).【详解】(1)把(20,50)A 代入2s kt =得50400k =,解得18k =,∴启航阶段总路程s 关于时间t 的函数表达式为21(020)8s t t =<≤;(2)①设5s t b =+,把(20,50)代入,得50520b =⨯+,解得50b =-,550s t ∴=-.当90t =时,45050400s =-=.∴当90t =时,龙舟划行的总路程为400m .②500125375-=,把375s =代入550s t =-,得85t =.8585.20< ,∴该龙舟队能达标.(3)加速期:由(1)可知18k =,把(90,400)代入21(70)8s t h =-+,得350h =.∴函数表达式为21(70)3508s t =-+,把91t =代入21(70)3508s t =-+,解得405.125s =.(500405.125) 5.2518.07∴-÷≈,90118.07109.07∴++=.答:该龙舟队完成训练所需时间为109.07s .26.(9分)如图,在ABC 中,90BCA ∠=︒,8AC =,4sin 5B =,点D 是斜边AB 的中点,点E 是边AC 的中点,连接CD ,点P 为线段CD 上一点,作点C 关于直线EP 对称点F ,连接EF PF 、,设DP 长为()0x x >.(1)AB 的长为.(2)求PF 长度(用含x 的代数式表示).(3)当点F 落在直线CD 上时,求x 的值.(4)当直线PF 与ABC 的边BC 或AC 垂直时,直接写出x 的值.【详解】(1)解:∵在ABC 中,90BCA ∠=︒,8AC =,4sin 5B =,∴8104sin 5ACAB B ===,故答案为:10;(2)解:∵点D 是斜边AB 的中点,∴152CD AB ==,∵DP x =,∴5CP CD DP x =-=-,∴由轴对称的性质可得5PF CP x==-(3)解:如图,当点F 落在直线CD上时,∵点E 是边AC 的中点,∴142CE AC ==,∵D 为AB 的中点,∴12CD AD AB ==,∴A ECP ∠=∠,∴4cos cos 5ACA ECP AB ∠=∠==,由轴对称的性质可得CPE FPE =∠∠,∵180CPE FPE +=︒∠∠,∴90CPE FPE ==︒∠∠,∴在Rt CPE △中,4cos 5CPECP CE ∠==,∴5445x-=,解得95x =;(4)解:当PF AC ⊥时,延长FP 交CA 于点G,在Rt ABC △中,226BC AB AC =-=,∴3sin 5BCA AB ==,由轴对称的性质可得F PCE A PC PF ∠=∠=∠=,,4EC EF ==,∴43cos cos cos sin sin 55F PCG A PCG A ∠=∠=∠=∠=∠=,,∴35PGPC =,∴()33555PG PC x ==-∴()855FG PF PG x =+=-,∵在Rt EFG △中,3cos 5FGF EF ∠==,∴()854545x -=,解得3x =;当PF BC ⊥时,延长FP 交BC 于点M ,则MF AC ∥,∴CEN F ACD A MPC ∠=∠==∠=∠∠,∴sin sin MPC A ∠=∠,∴Rt MPC △中,3sin 5MC MPC CP ==∠∴()33555MC PC x ==-∵在Rt CEN △中,44cos 5CE CE CEN NE =∠==,∴5EN =,∴223CN EN CE =-=,∴365495MN CM CN x NF =+=-=+=,,在Rt MNF △中,3sin 5MN F NF ∠==,∴363595x -=,解得1x =.综上所述,x 的值为1或3.27.(9分)如图,直线32y x =与双曲线()0k y k x=≠交于A ,B 两点,点A 的坐标为(),3m -,点C 是双曲线第一象限分支上的一点,连接BC 并延长交x 轴于点D ,且2BC CD =.(1)求k 的值并直接写出点B 的坐标;(2)点G 是y 轴上的动点,连接GB ,GC ,求GB GC +的最小值;(3)点P 是直线AB 上一个动点,是否存在点P ,使得OBC △与PBD △相似,若存在,求出此时点P 的坐标;若不存在,请说明理由.【详解】(1)将(),3A m -代入直线32y x =中,得332m -=,解得:2m =-,()2,3A ∴--,6(3)2k \--´==,∴反比例函数解析式为6y x =,由326y xy x⎧=⎪⎪⎨⎪=⎪⎩,解得23x y =-⎧⎨=-⎩或23x y =⎧⎨=⎩,∴点B 的坐标为()2,3;(2)如图,作BE x ⊥轴于点E ,CF x ⊥轴于点F ,则BE CF ∥,BE CF ∥,DCF DBE \ ∽,DCCF DFDB BE DE \==,2BC CD = ,13DCCFDFDB BE DE \===,∴3BE CF =,()2,3B ,3BE ∴=,1CF ∴=,∵点C 在反比例函数6y x =图象上,()6,1C ∴,作点B 关于y 轴的对称点B ',连接B C '交y 轴于点G ,则B C '即为BG GC +的最小值,()2,3B ¢-,()6,1C ,()()222631217B C ¢\=--+-=BG GC ∴+的最小值为217(3)根据点P 是直线AB :32y x =的上一个动点,则设点3,2P x x ⎛⎫ ⎪⎝⎭,∵()6,1C ,()2,3B ,∴37OC =13OB =25CB =在(2)中有:13DCCFDFDB BE DE ===,∴3DE DF =,即2EF DE DF DF =-=,()2,3B ,()6,1C ,∴2OE =,6OF =,∴4EF OF OE =-=,∴2DF =,即8OD OF DF =+=,∴()8,0D ,当OBC PBD ∽时,如图,∴BOC BPD ∠=∠,∴OC PD ∥,∴2BOBCOP CD ==,∵13OB =∴132OP =,∵3,2P x x ⎛⎫ ⎪⎝⎭,结合图象有0x <,∴2231322OP x x x 骣琪=+=-琪桫,131322==1x -,此时点31,2P ⎛⎫-- ⎪⎝⎭;当OBC DBP ∽时,如图,∴BOBCBD BP =,∵()8,0D ,()2,3B ,∴35BD =132535BP =,∴3013BP =,∵3,2P x x ⎛⎫⎪⎝⎭,()2,3B ,∴()222323213x x 骣骣琪琪-+-=琪琪桫桫,解得:18613x =,23413x =-,当8613x =时,点P 在点B 右侧,此时DBP 是钝角三角形,不可能与OBC △相似,故舍去;当23413x =-时,点3451,132P ⎛⎫-- ⎪⎝⎭;综上:满足条件的点P 的坐标为:3451,132⎛⎫-- ⎪⎝⎭或者31,2⎛⎫-- ⎪⎝⎭.。
辽宁省沈阳市东北育才学校2024-2025学年高三上学期第一次模拟考试暨假期质量测试数学试卷
辽宁省沈阳市东北育才学校2024-2025学年高三上学期第一次模拟考试暨假期质量测试数学试卷学校:___________姓名:___________班级:___________考号:___________三、填空题(2)当3n =时,求3号盒子里的红球的个数x 的分布列;(3)记n 号盒子中红球的个数为n X ,求n X 的期望()nE X .的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a 的范围【详解】由函数()()g x f x b =-有两个零点可得()f x b =有两个零点,即()y f x =与y b =的图象有两个交点,结合函数图象有以下几种情况,y x =与2y x =的图象如图1所示,则()y f x =在定义域内不能是单调函数,对于a 的值进行分类讨论,则:当a<0时,如图2所示;当0a =时,如图3所示;当01a <<时,如图4所示;当1a =时,如图5所示;当1a >时,如图6所示;对于图2,有可能有两个交点,因为存在y b =使得与二次函数有两个交点;对于图3,因为图象是单调的,故不可能有两个交点;对于图4,可能有两个交点,因为存在R b Î使得y b =与分段函数有两个交点;对于图5,不可能有两个交点;对于图6,不可能有两个交点;综上所述:当1a <且0a ¹成立;故选:B.ACD【分析】根据正态分布的对称性、线性相关性的性质,结合独立事件的定义、残差的公式逐一判断即可.【详解】因为()2~2,X N s ,且(6)0.4P X >=,所以有因此1(22)(2)0.12P X P X -<<=-<-=,所以选项根据线性相关有正相关和负相关,因此两个具有线性相关关系的变量的相关性越强,则线性相关系数r 的绝对值越接近于1,所以选项由()512()()()623P A B P A P B P AB È=+-Þ=+-。
2024年中考数学第一次模拟试卷(无锡卷)(全解全析)
2024年中考第一次模拟考试(无锡卷)数学·全解全析(考试时间:120分钟试卷满分:140分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1.下列各组数中,互为相反数的组是()A .2023-和2023-B .2023和12023C .2023-和2023D .2023-和12023【答案】A【解析】解:A .20232023-=和2023-互为相反数,故A 选项符合题意;B .2023和12023互为倒数,故B 选项不符合题意;C .20232023-=和2023不互为相反数,故C 选项不符合题意;D .2023-和12023不互为相反数,故D 选项不符合题意;故选:A .2.已知114A a =-+,下列结论正确的是()A .当5a =-时,A 的值是0B .当4a >-时,A 的最小值为1C .若A 的值等于1,则4a =-D .若A 的值等于2,则5a =-【答案】D【解析】解:当5a =-时,1111254A =-=+=-+,A 选项错误;当4a >-时,40a +>,104a >+,104a -<+,1114a -<+,即A 的最小值小于1,B 选项错误;当1A =时,1114a =-+,解得4a =-,此时分式无意义,故不合题意,C 选项错误;当2A =时,1214a =-+,解得5a =-,D 选项正确,故选:D .3.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,1122,2∠=︒∠的度数为()A .32︒B .58︒C .68︒D .78︒【答案】B【解析】解:如图,根据题意得:a b ,c d ∥,∴13180∠+∠=︒,32∠=∠,∵1122∠=︒,∴258∠=︒.故选:B .4.下列计算错误的是()A .()21x x x x -=-B .325x x x ×=C .()236x x =D .()2224a a -=-【答案】D【解析】解:A 中()21x x x x -=-,正确,故不符合要求;B 中325x x x ×=,正确,故不符合要求;C 中()236x x =,正确,故不符合要求;D()2222444a a a a -=-+≠-,错误,故符合要求;故选:D .5.若点()()()112233A x y B x y C x y ,、,、,是反比例函数11y x=-图象上的点,且1230x x x <<<,则123y y y 、、的大小关系是()A .123y y y <<B .321y y y <<C .231y y y <<D .312y y y <<【答案】D【解析】解:根据题意画出函数图象得,可知,312y y y <<.故选:D .6.随着城际交通的快速发展,某次动车平均提速60km /h ,动车提速后行驶480km 与提速前行驶360km 所用的时间相同.设动车提速后的平均速度为x km /h ,则下列方程正确的是()A .36048060x x =+B .36048060x x =-C .36048060x x =-D .36048060x x=+【答案】B【解析】解:根据题意,得36048060x x=-.故选:B .7.将抛物线()215y x =-+通过平移后,得到抛物线的解析式为223y x x =++,则平移的方向和距离是()A .向右平移2个单位长度,再向上平移3个单位长度B .向右平移2个单位长度,再向下平移3个单位长度C .向左平移2个单位长度,再向上平移3个单位长度D .向左平移2个单位长度,再向下平移3个单位长度【答案】D【解析】解:抛物线()215y x =-+的顶点坐标为15(,),抛物线()222312y x x x =++=++的顶点坐标为()12-,,而点()15,向左平移2个,再向下平移3个单位可得到()12-,,所以抛物线()215y x =-+向左平移2个,再向下平移3个单位得到抛物线y=x 2+2x+3.故选:D .8.如图,正方形ABCD 和正方形AEFG ,当正方形AEFG 绕点A 逆时针旋转45︒时,如图,连接DG 、BE ,并延长BE 交DG 于点.H 若AE =228AB =,时,则线段BH 的长为()A 16105B 14105C .5210+D .610+【答案】A【解析】解:连结GE 交AD 于点N ,连结DE ,如图,正方形AEFG 绕点A 逆时针旋转45︒,AF ∴与EG 互相垂直平分,且AF 在AD 上,2AE = 22AN GN ∴==,826DN ∴=-=,在Rt DNG 中,DG =22DN GN +2=10;由题意可得:ABE 相当于逆时针旋转90°得到AGD ,2DG BE ∴==10,DEG S = 12GE ND ⋅=12DG HE ⋅,HE ∴=10=6105BH BE HE ∴=+=6101021055+=故选:A .9.如图,AB 是O 的一条弦,点C 是O 上一动点,且ACB θ∠=,点E ,F 分别是,AC BC 的中点,直线EF 与O 交于G ,H 两点,若O 的半径是r ,则GE FH +的最大值是()A .()2sin r θ-B .()2sin r θ+C .()2cos r θ-D .()2cos r θ+【答案】A【解析】解:作直径AP ,连接BP ,90ABP ∴∠=︒,,2P C PA r θ∠=∠== ,sin sin AB P APθ∴∠==,2sin AB r θ∴=⋅,∵E ,F 分别是,AC BC 的中点,EF ∴是ABC 的中位线,1sin 2EF AB r θ∴==⋅,GE FH GH EF +=- ,∴当GH 长最大时,GE FH +有最大值,∴当GH 是圆直径时,GH 最大.∴GE FH +最大值是()2sin 2sin r r r θθ-=-.故选:A .10.如图,在矩形ABCD 中,E 为AB 中点,以AE 为边向上作正方形AEFG ,边EF 交CD 于点H ,在边AE 上取点M 使AM AD =,作MN AG ∥交CD 于点L ,交FG 于点N ,记AE a =,EM b =,欧几里得在《几何原本》中利用该图解释了()()22a b a b a b +-=-.现以BM 为直径作半圆O ,恰好经过点H ,交CD 另一点于P ,记HPB △的面积为1S ,DLF △的面积为2S ,若1b =,则12S S -的值为()A .12B .22C .1D 2【答案】A【解析】解:依题意得:四边形AEFG AMLD ,均为为正方形,四边形AMNG MEFN MEHL MBCL EBCH ,,,,均为矩形,∵AE a EM b ==,,点E 为AB 的中点,∴EB AE CH a ===,AD AM DL EH BC a b =====-,DG LN HF ME HL b =====,ML EH BC ==,∴()211•22S DL HF a b b ==-,连接MH ,∵HC ME ∥,∴ MHBP =,∴MH BP =,在Rt MHL △和Rt BPC △中,ML BC MH BP=⎧⎨=⎩,∴()Rt Rt HL MHL BPC ≌△△,∴HL PC b ==,∴HP CH PC a b =-=-,∴()211122S HP BC a b =⨯=-,∵MB 为直径,∴90MHB ∠=︒,即90MHE BHE ∠+∠=︒,∵90MEH HEB ∠=∠=︒,∴90HME MHE ∠+∠=︒,∴HME BHE ∠=∠,∴HME BHE ∽,∴EH EB EM EH =::,∴2EH BE EM =⨯,即:()2a b ab -=,∴()211122S a b ab =-=,∴()212111222S S ab a b b b -=--=,∵1b =,∴1212S S -=.故选:A .二、填空题(本大题共8小题,每小题3分,共24分.)11.化学元素钉()Ru 是除铁()Fe 、钻()Co 和镍()NIi 以外,在室温下具有独特磁性的第四个元素.钉()Ru 的原子半径约0.000 000 000 189m .将0.000 000 000 189用科学记数法表示为.【答案】101.8910-⨯【解析】解:100.000 000 000 189 1.8910-=⨯,故答案为:101.8910-⨯12.若2a +与3b -互为相反数,则22a b =.2【解析】解:∵2a +与3b -互为相反数,∴230a b ++-=,即1a b +=,∴)2222a b a b =+=213.不等式组32122x x x x ≥-⎧⎪⎨+≥⎪⎩的解集是.【答案】113x -≤≤【解析】解:32122x x x x ≥-⎧⎪⎨+≥⎪⎩①②解不等式①得:1x ≥-解不等式②得:13x ≤,∴不等式组的解集为:113x -≤≤,故答案为:113x -≤≤.14.写出一个图象是曲线且过点()1,2的函数的解析式:.【答案】2y x=(答案不唯一)【解析】解:设反比例函数解析式为k y x=,依题意,2k =∴一个图象是曲线且过点()1,2的函数的解析式是:2y x=,故答案为:2y x=(答案不唯一).15.如图,某品牌扫地机器人的形状是“莱洛三角形”,它的三“边”分别是以等边三角形的三个顶点为圆心,边长为半径的三段圆弧.若该等边三角形的边长为3,则这个“莱洛三角形”的周长是.【答案】3π根据正三角形的有关计算求出弧的半径和圆心角,根据弧长的计算公式求解即可.【解析】解:如图:∵ABC 是正三角形,∴60BAC ∠=︒,∴ BC的长为:603180ππ⨯=,∴“莱洛三角形”的周长=33ππ⨯=.故答案为:3π.16.如图,已知平行四边形ABCD 中,E 为BC 边上一点,连接AE DE 、,若AD DE =,AE DC =,4BE =,tan 3B ∠=,则EC 的长为.【答案】6【解析】解:作,AF BE DG AE ⊥⊥,如图所示:∵,AE DC AB DC==∴,AB AE B AEB =∠=∠∵AD BC ∥∴AEB DAE ∠=∠∴B AEB DAE ∠=∠=∠∵4BE =∴2BF EF ==∵tan 3AFB BF∠==∴226,210AF AB AE AF BF ===+=∵AD DE =,DG AE ⊥∴10AG EG ==∵tan tan tan 3DAE AEB B ∠=∠=∠=∴22310,10DG AD DG AG ==+=∴10BC AD ==∵4BE =∴6EC BC BE =-=故答案为:617.我国魏晋时期的数学家刘徽(263年左右)首创“割圆术”,所谓“割圆术”就是利用圆内接正多边形无限逼近圆来确定圆周率,刘徽计算出圆周率 3.14π≈.刘徽从正六边形开始分割圆,每次边数成倍增加,依次可得圆内接正十二边形,圆内接正二十四边形,⋯,割得越细,正多边形就越接近圆.设圆的半径为R ,圆内接正六边形的周长66P R =,计算632P πR ≈=;圆内接正十二边形的周长1224sin15P R =︒,计算12 3.102PπR≈=;那么分割到圆内接正二十四边形后,通过计算可以得到圆周率π≈.(参考数据:sin150.258︒≈,sin 7.50.130)︒≈【答案】3.12【解析】解:圆内接正二十四边形的周长2448sin 7.5P R =⋅⋅︒,则48sin 7.5480.130 3.1222R R π⋅︒⨯≈≈≈,故答案为3.1218.如图,点A 是双曲线y=8x在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为.【答案】y=﹣8x .【解析】解:如图,连结OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,∵A 点、B 点是正比例函数图象与双曲线y=8x 的交点,∴点A 与点B 关于原点对称,∴OA=OB ,∵△ABC 为等腰直角三角形,∴OC=OA ,OC ⊥OA ,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE ,∵在△COD 和△OAE 中,CDO OEA DCO EOA CO OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△OAE (AAS ),设A 点坐标为(a ,8a ),则OD=AE=8a ,CD=OE=a ,∴C 点坐标为(﹣8a,a ),∵﹣8a a ∙=﹣8,∴点C 在反比例函数y=﹣8x图象上.故答案为:y=﹣8x .三、解答题(本大题共10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:()103127123π2-⎛⎫-+- ⎪⎝⎭;(2)用配方法解方程:24210x x --=.【解析】(1)解:原式()23211=--+23211=+-+52=(2)解:24210x x --=2421x x -=244214x x -+=+()2225x -=25x ∴-=±17x ∴=,23x =-20.计算:(1)()()22a b b a b -+-;(2)21241121x x x x +⎛⎫+÷ ⎪+++⎝⎭【解析】(1)解:()()22a b b a b -+-22222a ab b ab b =-++-2a =;(2)解:21241121x x x x +⎛⎫+÷ ⎪+++⎝⎭()21212(2)x x x x ++=⨯++12x +=21.如图,在ABC 中,过A 点作AD BC ∥,交ABC ∠的平分线于点D ,点E 在BC 上,DE AB ∥.(1)求证:四边形ABED 是菱形;(2)当6BC =,4AB =时,求DF 的长.【解析】(1)证明:∵AD BC ∥,DE AB ∥,∴四边形ABED 是平行四边形,∵AD BC ∥,∴ADB CBD ∠=∠,∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∴ADB ABD ∠=∠,∴AD AB =,∴四边形ABED 是菱形;(2)解:∵四边形ABED 是菱形,4AB =,∴4DE BE AD AB ====,AD BC ∥,∴ADF CEF ∠=∠,∵AFD CFE ∠=∠,∴CEF ADF ∽△△,∴ADDFCE EF =,∵6BC =,∴2CE BC BE =-=,∴42DF EF=,∴2DF EF =,∴23DF DE =,∴83DF =.22.现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片A ,B ,C ,卡片除正面图案不同外,其余均相同,(1)若将三类卡片各10张,共30张,正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是___________.(2)现将三类卡片各一张,放入不透明箱子,小明随机抽取一张,看后,放回,再由小充随机抽取一张.请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到相同卡片的概率.【解析】(1)解;∵一共有30张卡片,其中琮琮的卡片有10张,且每张卡片被抽到的概率相同,∴从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是101303=,故答案为:13.(2)解:画树状图如下:由树状图可知,一共有9种等可能性的结果数,其中恰好摸到相同卡片的结果数有3种,∴恰好摸到相同卡片的概率为3193=.23.某校初三物理组为激发学生学习物理的热情,组织初三500名学生进行“水火箭”制作和演示飞行活动.为了解该年级学生自制水火箭的飞行情况,现随机抽取40名学生进行水火箭飞行测试,并将测试成绩(百分制)作为样本数据进行整理、描述和分析,下面给出了部分信息.①将样本数据分成5组:5060,6070,7080,8090,90100x x x x x ≤<≤<≤<≤<≤<,并制作了如图所示的不完整的频数分布直方图;②在8090x ≤<这一组的成绩分别是:80,81,83,83,84,85,86,86,86,87,8.8,89,根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是____________;(3)如果测试成绩达到80分及以上为优秀,试估计该年级500名学生中水火箭飞行测试为优秀的学生约有多少人?【解析】(1)解:在7080x ≤<这组的人数为:404612108----=(人),补全频数分布直方图如下:(2)中位数应为40个数据由小到大排列中第20,21个数据的平均数,∵数据处于较小的三组中有46818++=(个)数据,∴中位数应是8090x ≤<这一组第2,3个数据的平均数,∴中位数为:8183822+=(分),故答案为:82分;(3)∵样本中优秀的百分比为:1210100%55%40+⨯=,∴可以估计该校500名学生中对安全知识掌握程度为优秀的学生约有:55%500275⨯=(人),答:估计该校500名学生中对安全知识掌握程度为优秀的学生约有275人.24.如图,在四边形ABCD 中,90A C ∠=∠=︒.(1)经过点A 、B 、D 三点作O ;(2)O 是否经过点C ?请说明理由.【解析】(1)解:如图所示,O 即为所求;(2)O 经过点C ,理由如下:连接OC ,∵90BCD ∠=︒,点O 为BD 的中点,∴12CO BC OD OB ===,∴点C 在O 上.25.最佳视点如图1,设墙壁上的展品最高处点P 距底面a 米,最低处的点Q 距底面b 米,站在何处观赏最理想?所谓观赏理想是指看展品的视角最大,问题转化为在水平视线EF 上求使视角最大的点.如图2,当过P Q E ,,三点的圆与过点E 的水平线相切于点E 时,视角PEQ ∠最大,站在此处观赏最理想,小明同学想这是为什么呢?他在过点E 的水平线HM 上任取异于点E 的点E ',连接PE '交O 于点F ,连接QF ,…任务一:请按照小明的思路,说明在点E 时视角最大;任务二:若3 1.8a b ==,,观察者的眼睛距地面的距离为1.5米,最大视角为30︒,求观察者应该站在距离多远的地方最理想(结果精确到0.013 1.73≈).【解析】任务一:过点E 的水平线HM 上任取异于点E 的点E ',连接PE '交O 于点F ,连接QF ,∵PFQ ∠是QFE ' 的外角,∴PFQ PE Q '∠>∠,又∵PFQ ∠与PEQ ∠都是弧PQ 所对的圆周角,∴PFQ PEQ ∠=∠,∴PEQ PE Q '∠>∠,∴在点E 时视角最大.任务二:∵30PEQ ∠=︒,∴60POQ ∠=︒,又∵OP OQ =,∴OPQ △是等边三角形,OP OQ PQ ==.如图2,连接OE ,∵HE 是O 的切线,∴90OEH ∠=︒,∵90PHE ∠=︒,∴180OEH PHE ∠+∠=︒,∴//PQ OE ,又∵PQ OP OE ==,∴四边形PQOE 是平行四边形,∴30OPE PEQ ∠=∠=︒,∴603030EPH OPQ OPE ∠=∠-∠=︒-︒=︒.由题意得,3 1.5 1.5PH =-=(米),在Rt PHE △中,3•tan 1.50.873HE PH EPH =∠=⨯(米).答:观察者应该站在距离0.87米的地方最理想.26.在2024年元旦即将到来之际,学校准备开展“冬日情暖,喜迎元旦”活动,小星同学对会场进行装饰.如图1所示,他在会场的两墙AB 、CD 之间悬挂一条近似抛物线2435y ax x =-+的彩带,如图2所示,已知墙AB 与CD 等高,且AB 、CD 之间的水平距离BD 为8米.(1)如图2,两墙AB ,CD 的高度是米,抛物线的顶点坐标为;(2)为了使彩带的造型美观,小星把彩带从点M 处用一根细线吊在天花板上,如图3所示,使得点M 到墙AB 距离为3米,使抛物线1F 的最低点距墙AB 的距离为2米,离地面2米,求点M 到地面的距离;(3)为了尽量避免人的头部接触到彩带,小星现将M 到地面的距离提升为3米,通过适当调整M 的位置,使抛物线2F 对应的二次函数的二次项系数始终为15,若设点M 距墙AB 的距离为m 米,抛物线2F 的最低点到地面的距离为n 米,探究n 与m 的关系式,当924n ≤≤时,求m 的取值范围.【解析】(1)解:由题意得,抛物线的对称轴为4x =,则45422b x a a==-=-,解得:0.1a =;∴抛物线的表达式为0.10.83y x x =-+,则点(0,3)A ,即3AB CD ==(米),当4x =时,0.10.83 1.4y x x =-+=,即顶点坐标为(4,1.4),故答案为:3,(4,1.4);(2)解:设抛物线的表达式为2(2)2y a x ='-+,将点A 的坐标代入上式得23(02)2a ='-+,解得14a '=,∴抛物线的表达式为21(2)24y x =-+,当3x =时,21(2)2 2.254y x =-+=(米),∴点M 到地面的距离为2.25米;(3)解:由题意知,点M 、C 纵坐标均为4,则右侧抛物线关于M 、C 对称,∴抛物线的顶点的横坐标为11(8)422m m +=+,则抛物线的表达式为211(4)52y x m n =--+,将点C 的坐标代入上式得2113(84)52m n =--+,整理得21412055n m m =-+-;当2n =时,即214122055m m =-+-,解得85m =-;当9n 4=时,同理可得86m =故m 的取值范围为:8685m ≤≤27.定义:对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的四边形,则这样的四边形称为镶嵌四边形.(1)如图1,将ABC 纸片沿中位线EH 折叠,使点A 落在BC 边上的D 处,再将纸片分别沿EF ,HG 折叠,使点B 和点C 都与点D 重合,得到双层四边形EFGH ,则双层四边形EFGH 为______形.(2)ABCD Y 纸片按图2的方式折叠,折成双层四边形EFGH 为矩形,若5EF =,12EH =,求AD 的长.(3)如图3,四边形ABCD 纸片满足AD BC ∥,AD BC <,AB BC ⊥,8AB =,10CD =.把该纸片折叠,得到双层四边形为正方形.请你画出一种折叠的示意图,并直接写出此时BC 的长.【解析】(1)双层四边形EFGH 为矩形,理由如下:由折叠的性质可得AEH HED ∠=∠,BEF DEF ∠=∠,180AEH HED BEF DEF ∠+∠+∠+∠=︒ ,90HED DEF ∴∠+∠=︒,90HEF ∴∠=︒,同理可得90EHG EFD ∠=∠=︒,∴四边形EFGH 是矩形,故答案为:矩;(2) 四边形EFGH 为矩形,90FEH ∴∠=︒,EH FG =,EH FG ∥,222251213FH EF EH ∴=+=+=,EHM GFN ∠=∠,又ABCD 为平行四边形,A C ∴∠=∠,AD BC =,由折叠得A EMH ∠=∠,C GNF ∠=∠,EMH GNF ∴∠=∠,在EHM 与GFN 中,EH FGEHM GFN EMH GNF=⎧⎪∠=∠⎨⎪∠=∠⎩,(AAS)EHM GFN ∴ ≌,MH NF ∴=,由折叠得AH MH =,CF FN =,AH CF ∴=,又AD BC = ,DH BF FM ∴==,又AD AH DH =+ ,HF MH MF =+,13AD HF ∴==.(3)有以下三种基本折法:折法1中,如图所示:由折叠的性质得:AD BG =,142AE BE AB ===,152CF DF CD ===,GM CM =,90FMC ∠=︒, 四边形EFMB 是叠合正方形,4BM FM ∴==,2225163GM CM CF FM ∴=-=-=,1AD BG BM GM ∴==-=,7BC BM CM =+=;折法2中,如图所示:由折叠的性质得:四边形EMHG 的面积12=梯形ABCD 的面积,142AE BE AB ===,DG NG =,NH CH =,BM FM =,MN MC =,125GH CD ∴==, 四边形EMHG 是叠合正方形,5EM GH ∴==,正方形EMHG 的面积2525==,90B ∠=︒ ,2225163FM BM EM BE ∴=-=-=,设AD x =,则3MN FM FN x =+=+,梯形ABCD 的面积1()82252AD BC =+⨯=⨯,252AD BC ∴+=,252BC x ∴=-,2532MC BC BM x ∴=-=--,MN MC = ,25332x x ∴+=--,解得:134x =,134AD ∴=,251337244BC =-=.折法3中,如图所示,作GM BC ⊥于M ,则E ,G 分别为AB ,CD 的中点,则4AH AE BE BF ====,152CG CD ==,正方形的边长42EF GF ==4GM FM ==,2225163CM CG GM --=,11BC BF FM CM ∴=++=.综上所述:7BC =或11或374.28.如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且1OA =,4OB OC ==.(1)求抛物线的解析式;(2)若连接AC 、BC .动点D 从点A 出发,在线段AB 上以每秒1个单位长度向点B 做匀速运动;同时,动点E 从点B 出发,在线段BC 2个单位长度向点C 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接DE ,设运动时间为t 秒.在D 、E 运动的过程中,当t 为何值时,四边形ADEC 的面积最小,最小值为多少?(3)点M 是抛物线上位于x 轴上方的一点,点N 在x 轴上,是否存在以点M 为直角顶点的等腰直角三角形CMN ?若存在,求出点M 的坐标,若不存在,请说明理由.【解析】(1)解:∵4OB OC ==,1OA =,则()0,4C ,()4,0B ,()0,1A -∴抛物线解析式为2(1)(4)34y x x x x =-+-=-++;(2)解:∵4OB OC ==,∴OBC △是等腰直角三角形,由点的运动可知:2BE t =,过点E 作EF x ⊥轴,垂足为F ,∴22tBE BF t t ==,又∵()0,1A -,则5AB =,∴ADEC ABC BDES S S =- 1145(5)22t t=⨯⨯-⨯-⨯21555(228t =-+,∵当其中一点到达终点时,另一点随之停止运动,∴224442AC =+=5AB =,∴04t ≤≤,当52t =时,四边形ADEC 的面积最小,即为558;(3)解:存在,(15,15)M +或(222,222)M -,当点M 在CN 的右侧时,如图所示,过点M 作y 轴的平行线PQ ,交x 轴于点Q ,过点C 作CP PQ ⊥,∵CMN 是以M 为直角为直角顶点的等腰直角三角形,∴CM MN =,90CMN ∠=︒,∴90PCM PMC NMQ ∠=︒-∠=∠,又90CPM MQN ∠=∠=︒∴CPM MQN ≌,∴CP MQ =,设2(,34)M m m m -++,∴234m m m -++=,解得:51m =或15m =∴(15,15)M ;当点M 在CN 的右侧时,同理可得234m m m -++=-,解得:222m =-22m =(舍去)∴(222,222)M -,综上所述,(15,15)M 或(22,22)M -.。
陕西省2025届高三数学第一次模拟联考试卷文含解析
陕西省2025届高三第一次模拟联考文科数学试题一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|-1≤x<2},B={x|0≤x≤3},则A∩B=()A. B. C. D.【答案】B【解析】【分析】利用集合的交集的定义,干脆运算,即可求解.【详解】由题意,集合A={x|-1≤x<2},B={x|0≤x≤3},∴A∩B={x|0≤x<2}.故选:B.【点睛】本题主要考查了集合的交集运算,其中解答中熟记集合的交集定义和精确运算是解答的关键,着重考查了运算与求解实力,属于基础题.2.复数i(1+2i)的模是()A. B. C. D.【答案】D【解析】【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式,即可求解.【详解】由题意,依据复数的运算可得,所以复数的模为,故选D.【点睛】本题主要考查了复数代数形式的乘除运算,考查复数模的求法,其中解答中熟记复数的运算,以及复数模的计算公式是解答的关键,着重考查了运算与求解实力,属于基础题。
3.若抛物线y2=2px的焦点坐标为(2,0),则准线方程为()A. B. C. D.【答案】A【解析】【分析】抛物线y2=2px的焦点坐标为(2,0),求得的值,即可求解其准线方程.【详解】由题意,抛物线y2=2px的焦点坐标为(2,0),∴,解得p=4,则准线方程为:x=-2.故选:A.【点睛】本题主要考查了抛物线的标准方程及其性质,其中解答中熟记抛物线的标准方程,及其简洁的几何性质,合理计算是解答的关键,着重考查了运算与求解实力,属于基础题.4.一个空间几何体的三视图如图所示,则该几何体的表面积为()A. 64B.C. 80D.【答案】B【解析】【分析】依据三视图画出几何体的直观图,推断几何体的形态以及对应数据,代入公式计算即可.【详解】几何体的直观图是:是放倒的三棱柱,底面是等腰三角形,底面长为4,高为4的三角形,棱柱的高为4,所求表面积:.故选:B.【点睛】本题主要考查了几何体的三视图,以及几何体的体积计算,其中解答中推断几何体的形态与对应数据是解题的关键,着重考查了推理与计算实力,属于基础题。
精品解析:2024学年重庆市第八中学校九年级下学期第一次模拟(学月)考试数学模拟试题(解析版)
重庆八中2023—2024学年(下)九年级第一次模拟(学月)考试数学试题(全卷共三个大题,满分150分,考试时间120分钟)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号 右侧正确答案所对应的方框涂黑.1. 的绝对值是( )A. 2024B. C. D. 【答案】A【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值是它的相反数,即可得出结果.【详解】解:的绝对值是2024.故选:A .2. 如图是由5个完全相同的小正方体堆成的物体,从正面看它得到的平面图形是( )A.B. C. D.【答案】A【解析】【分析】本题考查了从不同方向看简单组合体.根据从正面看得到的图形判断即可.【详解】解:该几何体从正面看到的平面图形是故选:A .3. 已知点在反比例函数的图象上,则m 的值是( )A. B. C. D. 4【答案】B【解析】2024-2024-1202412024-2024-()3,M m -12y x =6-4-36-【分析】本题考查了反比例函数图象上点的坐标特征,根据反比例函数图象上点的坐标特征进行解答判断即可.【详解】解:∵点在反比例函数的图象上,∴,∴.故选:B .4. 如图,已知与位似,位似中心为点,若的周长与的周长之比为,则是( )A. B. C. D. 【答案】C【解析】【分析】本题考查了图象位似与相似的关系和性质,根据周长比知道相似比,从而得出位似比,掌握位似比和相似比的关系是解题的关键.【详解】解:的周长与的周长之比为故选:C .5. 若要调查下列问题,你认为适合采用全面调查的是( )A. 对全国中学生每天睡眠时长情况的调查B. 对某市中小学生周末手机使用时长的调查C. 对新都区居民知晓“一盔一带”交通法规情况的调查D. 对“神舟十七号”载人飞船发射前各零部件质量情况的调查【答案】D【解析】【分析】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调()3,M m -12y x=312m -=4m =-ABC DEF O ABC DEF 3:2:OA OD 9:43:53:25:2ABC DEF 3:2:3:2AC DF ∴=::3:2OA OD AC DF ∴==查,对于精确度要求高的调查,事关重大的调查往往选用普查.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A .对全国中学生每天睡眠时长情况的调查,适合抽样调查,故A 不符合题意;B .对某市中小学生周末手机使用时长的调查,适合抽样调查,故B 不符合题意;C .对新都区居民知晓“一盔一带”交通法规情况的调查,适宜采用抽样调查,故C 不符合题意;D .对“神舟十七号”载人飞船发射前各零部件质量情况的调查,适合全面调查,故D 符合题意.故选:D .6. “绿色电力.与你同行”,我国新能源汽车销售量逐年增加,据统计,年新能源汽车年销售量为万辆,预计年新能源汽车手销售量将达到万辆,设这两年新能源汽车销售量年平均增长率为x ,则所列方程正确的是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了一元二次方程的应用.根据题意正确的列方程是解题的关键.由题意知,年新能源汽车手销售量将达到万辆,年新能源汽车手销售量将达到万辆,然后依据题意列方程即可.【详解】解:依题意得,,故选:A .7. 有机化学中“烷烧”的分子式如CH 4、C 2H 6、C 3H 8…可分别按下图对应展开,则C 100H m 中m 的值是( )A. 200B. 202C. 302D. 300【答案】B【解析】【分析】本题考查图形变化的规律,能根据所给图形发现字母“”和“”个数变化的规律是解题的关键.202269020241166()269011166x +=()211661690x -=()269069011166x ++=()116612690x -=2023()6901x +2024()26901x +()269011166x +=C H【详解】解:由所给图形可知,第1个图形中字母“”的个数为:1,字母“”的个数为:;第2个图形中字母“”的个数为:2,字母“”的个数为:;第3个图形中字母“”的个数为:3,字母“”的个数为:;,所以第个图形中字母“”的个数为,字母“”的个数为,当时,(个,即中的值是.故选:B .8. 如图,为的直径,C ,D 是上在直径异侧的两点,C 是弧的中点,连接,,交于点P ,若,则的度数为( )A. B. C. D. 【答案】A【解析】【分析】本题考查的是圆周角定理的应用,三角形的外角的性质的应用,先求解,再利用三角形的外角的性质可得答案.【详解】解:如图,连接,∵为直径,C 是弧的中点,∴,C H 4122=⨯+C H 6222=⨯+C H 8322=⨯+⋯n C n H (22)n +100n =2221002202n +=⨯+=)100m C H m 202AB O O AB AB AD CD CD AB 22BAD ∠=︒DPB ∠67︒44︒60︒66︒45D ∠=︒OC AB AB =90AOC ∠︒∴,∵,∴,故选A9. 如图,在正方形中,为对角线的中点,连接,为边上一点,于点,若,,则的长为( )A. B. C. 3 D. 【答案】D【解析】【分析】本题考查了全等三角形的性质与判定,正方形的性质,正切的定义;过点作交于点,证明,进而求得,得出,即可求解.【详解】解:如图所示,过点作交于点,∵为正方形对角线的中点,∴∴∵1245ADC AOC ∠=∠=︒22BAD ∠=︒67BPD BAD D ∠=∠+∠=︒ABCD O BD OC E AB CF DE ⊥F OF =5CF =AE 2O OG OF ⊥DE G ()ASA GOD FOC ≌DC AD ==tan tan ADE DCF ∠=∠AE FD AD DC=O OG OF ⊥DE G O ABCD BD 90,COD CD OD∠=︒=COF DOG∠=∠CF DE⊥∴又∵,∴∴∴,∴又∵∴∴∵∴∴故选:D .10. 对于式子,按照以下规则改变指定项的符号(仅限于正号与负号之间的变换):第一次操作改变偶数项前的符号,其余各项符号不变;第二次操作:在前一次操作的结果上只改变3的倍数项前的符号;第三次操作:在前一次操作的结果上只改变4的倍数项前的符号;第四次操作:在前一次操作的结果上只改变6的倍数项前的符号.下列说法:①第二次操作结束后,一共有51项的符号为正号;②第三次操作结束后,所有10的倍数项之和为;③第四次操作结束后,所有项的和为.其中正确的个数是( )A. 0B. 1C. 2D. 3【答案】B【解析】【分析】本题主要考查数字规律,通过倍数关系找到变量以及变量之间的关系,①通过每次操作后均可得到需要改变符号的项数,结合正负改变得数量关系求解即可;②找到10的倍数每次操作的倍数关系,确定其正负后即可求得和;③第一次操作后所有项的和为,第二次操作后根据改变项相邻两项和为,且最后一个改变项为,即可求得本次改变量以及与上一次操作后的关系,第三次操作后第一改变项为,且改变项项后相邻三项为的倍数,即可求得本次改变量以及与上一次操作后的关系,第四次操作90DCF FDA ADE∠=︒-∠=∠45ADE GDB ∠=︒-∠45FCD OCF∠=︒-∠GDO FCO∠=∠()ASA GOD FOC ≌OG OF ==GD FC =2GF =5CF =523FD GD GF =-=-=DC ===tan tan ADE DCF∠=∠AE FD AD DC=AD FD AE DC ⨯==23499100x x x x x x ++++⋯++170x 825x 50x -3x 99x -4x 12x后可得改变项相邻两项的改变量,即可求得本次改变量,以及与上一次操作后的关系.【详解】解:①第一次操作结束后,所有奇数项的符号为正号,偶数项的符号为负号,此时正负各50个;第二次操作结束后,100项中有33个3的倍数,则33个数要改变符号,且偶数为16个,奇数为17个.此时正号有个不改变符号,负号有个不改变符号,则正号有个不改变符号,负号有个,故①错误;②第三次操作结束后,10的倍数第一次均为负,第二次操作后只有30、60和90为正,第三次操作后为20、40、60、80和100改变符号,则,故②正确;③第一次操作后所有项的和为;第二次操作后33个项要改变符号,所有项的改变量为,此时所有项的和为;第三次操作时有25个数改变符号,所有项的改变量为,此时所有项的和为;第四次操作后16个数要改变符号,所有项的改变量为,此时所有项的和为,故③错误.故选:B .二.填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上11. =___________.【答案】【解析】【分析】本题考查了负指数幂和0指数幂,熟悉相关的知识是解题的关键;根据,即可求解.【详解】解:;故答案为:.12. 已知正n 边形的每一个内角都等于,则n 的值为______.【答案】10【解析】【分析】本题主要考查了多边形的内角和定理.根据多边形的内角和定理:求解即可.6x 501733-=501634-=331649+=341751+=102030405060708090100170x x x x x x x x x x x -+++---+++=50x -()216399102x x ⨯+-=-⎡⎤⎣⎦()50102152x x x -+-=-()24122436485062748698872x x ⨯+++++++++=152872720x x x -+=()26896x x ⨯⨯=72096816x x x +=0223π-+-54()10n n a a a-=≠()010a a =≠0221152311244π-+-=+=+=54144︒()2180n -︒【详解】解:由题意可得:,解得:,故答案为:10.13. 如图,函数和的图象交于点,则关于x 的不等式的解集为___________.【答案】##【解析】【分析】本题主要考查了一次函数与不等式之间的关系,根据函数图象找到函数的图象在函数的图象上方时,自变量的取值范围即可得到答案.【详解】解:由函数图象可知,当函数的图象在函数的图象上方时,自变量的取值范围为,∴关于x 的不等式的解集为,故答案为:.14. 有四张背面完全相同,正面分别是“诚”、“勤”、“立”、“达”的卡牌,洗匀后背面朝上,小明随机抽取一张卡牌后记录卡牌上的汉字并放回,洗匀后再随机抽取一张卡牌,小明第二次抽取的卡牌上的汉字和第一次相同的概率是___________.【答案】【解析】【分析】本题考查概率公式,列出全部的情况,利用概率公式计算即可.【详解】解:全部的情况(诚,勤)、(诚,立)、(诚,诚)、(诚,达)、(勤,勤)、(勤,诚)、(勤,立)、(勤,达)、(立,诚)、(立,勤)、(立,立)、(立,达)、(达,诚)、(达,勤)、(达,立)、(达,达)共16种情况,其中第一二次卡片汉字相同的有(诚,诚)、(勤,勤)、(立,立)、(达,达)共4种情况,()2180144n n -︒=⨯︒10n =3y x =-y kx b =+()2A m -,3x kx b ->+<2x -2x->3y x =-y kx b =+3y x =-y kx b =+<2x -3x kx b ->+<2x -<2x -14故所求的概率为.故答案为:.15. 如图,在扇形中,点为半径的中点,以点为圆心,的长为半径作弧交于点.点为弧的中点,连接、.若,则阴影部分的面积为___________.【答案】【解析】【分析】本题考查扇形的面积,四边形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.【详解】解:如图,连接,,,交于.,,,,,,,,,,41164=14AOB 90AOB ∠=︒C OA O OC CD OB D EAB CE DE 4OA=4π-AB CD OE OE CD J OC AC = OD DB =//CD AB ∴ AE BE =OE AB ∴⊥CD OE ∴⊥2OC OD == CJ OJ ∴=90COD ∠=︒ CD ∴===,,故答案为:.16. 如图,中,是的角平分线,,垂足为,过作交于点,过作交于点,连接,已知,,则_____.【解析】【分析】由是的角平分线,得,根据平行线的性质可求,从而有,通过同角或等角的余角相等得出,即可证明,由相似三角形的性质得,再通过勾股定理即可求出的长.【详解】∵是的角平分线,∴,∵,∴,∴,∴,∵,,∴,∴,,∴,∴,∴,∴,∵,,12OCED S CD OE ∴=⋅⋅=四边形21444AOB OCED S S S ππ∴=-=⋅⋅-=-阴扇形四边形4π-ABC AD BAC ∠BD AD ⊥D D ∥D E A C AB E D DF DE ⊥AC F EF 4AB =3BD =EF =AD BAC ∠BAD CAD ∠=∠BAD EDA ∠=∠EA ED =BDE ADF ∠=∠ABD ADF ∽AB BD AD DF=EF AD BAC ∠BAD CAD ∠=∠DE AC ∥EDA CAD ∠=∠BAD EDA ∠=∠EA ED =BD AD ⊥DF DE ⊥90BDA AFD ∠=∠=︒90BAD ABD ∠+∠=︒90EDA EDB ∠+∠=︒EDB ABD ∠=∠EB ED =EB ED EA ==122DE AB ==90BDE ADE ∠+∠=︒90ADE ADF ∠+∠=︒∴,∴,∴∴,∴,∴,在中,由勾股定理得:,,∴在中,由勾股定理得:.【点睛】本题考查了角平分线定义,勾股定理, 平行线的性质,等腰三角形的判定与性质,相似三角形的判定与性质和同角或等角的余角相等,熟练掌握以上知识点的应用是解题的关键.17. 若关于x 的一元一次不等式组有且仅有6个整数解,且使关于y 的分式方程有整数解,则所有满足条件的整数a 的值之和是___________.【答案】20【解析】【分析】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键;不等式组整理后,根据已知解集确定出的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出的值,求出之和即可.【详解】解:原不等式组的解集为:;BDE ADF ∠=∠90FAD ADF ∠+∠=︒90AFD ∠=︒90ADB AFD ︒∠=∠=ABD ADF ∽AB BD AD DF=Rt △ABD AD ===3DF=DF =Rt DEF △EF ===()()211232352x x x a x ⎧+>+⎪⎨⎪+≤-+⎩82222ay y y y ++=--a a 6106x a x >-⎧⎪-⎨≤⎪⎩∵有且仅有6个整数解;∴;即:;∴整数为:;∵关于的分式方程;∴整理得:;∵有整数解且;∴满足条件的整数的值为:;∴所有满足条件的整数的值之和是;故答案为:.18. 对于任意一个四位数,若它的千位数字与百位数字的和比十位数字与个位数字的和大,则称这个四位数根为“差双数”,记为的各个数位上的数字之和.例如:,,是“差双数”, ;,, 不是“差双数”.若与都是“差双数”,且,则“差双数”是_____;已知M ,N 均为“差双数”,其中, ,,,,,,,,,是整数,已知能被整除,且为整数,则满足条件的所有的的值之和为___________.【答案】①. ②. 【解析】【分析】根据“差双数”的定义可得的值为,;根据,可得和的另一个关系,进而求得和的值,即可求得差双数”;判断出和的各个数位上的数字,根据它们都是“差双数”得的各个数位上的数字的关系,得到和并化简,根据能被6106x a x >-⎧⎪-⎨≤⎪⎩10016a -≤<410a <≤a 5,6,7,8,9,10y 82222ay y y y ++=--66y a =-82222ay y y y ++=--626a ≠-a 5,7,8a 2020m 2()F m m 1632m =()16322+-+= 1632∴()1632163212F =+++=6397m =()639772+-+=-≠ 6397∴541k 32st (F 541k )(F =32st )32st 200010010M abcd =+++N 1000300x b =++40(14d a -≤≤03b ≤≤09c ≤≤19d ≤≤19x ≤≤a b c d x )()()2F M F N +-6()()F N F M M 343212740k 21s t -=(F 541k )(F =32st )s t s t “32st M N ()F M ()F N ()()2F M F N +-6整除,且为整数,得到可能的各个数位上的数字,计算得到所有的,相加即可.【详解】解:与都是“差双数”,,即则为:.,均为“差双数”,其中, ,,,,,,,,,是整数,即,能被整除,即是整数,又是整数,,且为整数,是整数,或或.当时,为整数或;()()F N F M M 541k 32st ∴()()5412,321k s t +-+=+-+=∴2k =1s t -=(F 541k )(F =32st )∴54132k s t +++=+++7s t +=∴4,3s t ==32st 3432M N 200010010M a b c d =+++N 1000300x b =++40(14d a -≤≤03b ≤≤09c ≤≤19d ≤≤19x ≤≤a b c d x )∴()()22,33102a b c d x b d ⎡⎤+-+=+-+-=⎣⎦22,315a b c d x b d +--=++=()222F M c d ∴=++()282.F N d =- ()()2F M F N +-2153102c d c d d d =+++++-++--228c =+62282463c c ++=+()()282142221F N d d F M c d c d --==++++09c ≤≤ c 2282463c c ++=+1c ∴=4c =7c =1c =()()141412F N d d F M c d d--==+++2d ∴=6d =当时,为整数,不存在;当时,为整数,不存在;①,.,.,,,或,.或.②,.,.,,,..满足条件的所有的的值之和为:.故答案为:,.三、解答题:(本大题共8个小题,19题8分,20-26题每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19. 计算:(1);(2).【答案】(1)(2)【解析】【分析】(1)先利用完全平方公式,单项式乘以多项式计算,然后合并同类项即可;(2)先通分,利用完全平方公式,平方差公式计算,然后进行除法运算即可.4c =()()141415F N d d F M c d d --==+++d 7c =()()141418F N d d F M c d d --==+++d 1c =2d =22a b c d +=++ 25a b ∴+=14a ≤≤ 03b ≤≤1a ∴=3b =2a =1b =2000100102312M a b c d ∴=+++=4112M =1c =6d =22a b c d +=++ 29a b ∴+=14a ≤≤ 03b ≤≤3a ∴=3b =2000100106316M a b c d ∴=+++=∴M 23124112631612740++=343212740()()22x y y y x ---219422a a a a -⎛⎫++÷ ⎪++⎝⎭2x 33a a +-【小问1详解】解:;【小问2详解】解:.【点睛】本题考查了完全平方公式,平方差公式,单项式乘以多项式,分式的化简.熟练掌握完全平方公式,平方差公式,单项式乘以多项式,分式的化简是解题的关键.20. 如图,在中,, 平分,F 是的中点,连接, 是的一个外角.(1)用尺规完成以下基本作图:作的角平分线,交的延长线于点G ,连接.(保留作图痕迹,不写作法)(2)在(1)问所作的图形中,求证:四边形是矩形.证明:∵平分,平分∴ , ① .∴∵是等腰三角形顶角的角平分线∴(“三线合一”)∴ ②.()()22x y y y x ---22222x xy y y xy=-+-+2x =219422a a a a -⎛⎫++÷ ⎪++⎝⎭()()()()4213322a a a a a a ++++-=÷++()()()232233a a a a a ++=⋅++-33a a +=-ABC AC BC =CE BCA ∠AC EF ACD ∠ABC ACD ∠CG EF AG AECG CE ACB ∠CG ACD∠12ACE ACB ∠=∠()1902ECG ACE ACG ACB ACD ∠=∠+∠=∠+∠︒=CE 90AEC ∠=︒∴∴ ③ .∴在和中∴∴ ④ .∴四边形是平行四边形(有一组对边平行且相等的四边形是平行四边形)∴∴四边形是矩形( ⑤ )【答案】(1)见详解;(2);;;;有一个角是直角的平行四边形是矩形【解析】【分析】本题考查作图-基本作图,平行四边形的判定和性质,矩形的判定,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题;(1)根据题意作图即可;(2)先证明四边形是平行四边形,再根据有一个角是直角的平行四边形是矩形即可.【小问1详解】解:如图即为所求:【小问2详解】证明:∵平分,平分;∴ ,;∴;∵是等腰三角形顶角的角平分线;∴(“三线合一”);AE CG∥AFE △CFG △AFE CFG AF CFEAF GCF ∠=∠⎧⎪=⎨⎪∠=∠⎩()AFE CFG ASA ≌AECG 90ECG ∠=︒AECG 12ACG ACD ∠∠=180AEC ECG ∠+∠=︒EAF GCF ∠=∠AE CG =AECG CE ACB ∠CG ACD ∠12ACE ACB ∠=∠12ACG ACD ∠=∠()1902ECG ACE ACG ACB ACD ∠=∠+∠=∠+∠=︒CE 90AEC ∠=︒∴;∴;∴;∴在和中;;∴;∴;∴四边形是平行四边形(有一组对边平行且相等的四边形是平行四边形);∴;∴四边形是矩形(有一个角是直角的平行四边形是矩形);故答案为:;;;;有一个角是直角的平行四边形是矩形.21. 为了提高学生课外海量阅读,某中学开展了一系列课外阅读活动,组织七,八两个年级全体学生进行课外阅读知识竞赛,学校从七,八两个年级中各随机抽取a 名同学的竞赛成绩,并对他们的竞赛成绩进行收集、整理、分析,过程如下:(调查数据用x 表示,共分为四个等级:A 等:,B 等,C 等:,D 等:,其中A 等级为优秀,单位:分)收集数据:七年级抽取的C 等学生人数是A 等学生人数的3倍;八年级抽取的B 等学生成绩为:81,83,88,85,82,89,88,86,88抽取七,八年级学生竞赛成绩的平均数、中位数、众数、优秀人数如下表所示:七年级八年级平均数8585中位数86b 众数8688优秀人c 5180AEC ECG ∠+∠= AE CG ∥EAF GCF ∠=∠AFE △CFG △AFE CFG AF CFEAF GCF ∠=∠⎧⎪=⎨⎪∠=∠⎩()AFE CFG ASA ≌AE CG =AECG 90ECG ∠=︒AECG 12ACG ACD ∠∠=180AEC ECG ∠∠+= EAF GCF ∠=∠AE CG =90100x ≤≤8090x ≤<7080x ≤<6070x ≤<数(1)根据以上信息,解答下列问题:以上数据中: _______, _______, _______,并补全条形统计图:(2)根据以上数据,你认为该校七,八年级中哪个年级学生竞赛成绩更好?并说明理由(说明一条理由即可);(3)若该校七,八年级共有1600人,估计两个年级学生的竞赛成绩被评为优秀的总人数是多少?【答案】(1)20;87;2(2)八年级;理由:七年级学生知识竞赛成绩的中位数86小于八年级学生知识竞赛成绩的中位数87 (3)280人【解析】【分析】(1)用八年级的的人数除以它对应的所占的百分比,求出的值,再将数值排序,运用中位数的定义,得出的值,运用七年级的总人数减去的人数,再结合七年级抽取的C 等学生人数是A 等学生人数的3倍,列方程计算即可作答.(2)在平均数相同的基础上,比较中位数,易得七年级学生知识竞赛成绩的中位数86小于八年级学生知识竞赛成绩的中位数87,即可作答.(3)用1600乘以优秀占比,即可作答.【小问1详解】解:依题意,(人)结合扇形图,八年级各个等级的占比情况,得A 等级人数为,B 等级的人数为9人∴中位数在B 等级内,且排序后为81,82,83,85,86,88, 88,88,89,则;∵七年级抽取的C 等学生人数是A 等学生人数的3倍;设A 等学生人数为,则C等学生人数为=a b =c =B a b B D ,945%20a =÷=90205360︒⨯=︒()8688287b =+÷=x 3x则解得∴补全条形统计图如下:【小问2详解】解:八年级;理由:平均数都相等,但七年级学生知识竞赛成绩的中位数86小于八年级学生知识竞赛成绩的中位数87;【小问3详解】解:(人)【点睛】本题考查了条形统计图与扇形统计图的综合,画条形统计图,样本估计总体、中位数,运用中位数作决策等内容,难度适中,是常考题,正确掌握中位数的定义是解题的关键.22. 大地回春,春暖花开,正是植树好时节,市政决定完成鹿山公园的植树计划.市政有甲、乙两个植树工程队,原计划甲工程队每天比乙工程队多植树10棵,且甲工程队植树600棵和乙工程队植树360棵所用的天数相等.(1)求甲、乙两工程队原计划每天各植树多少棵?(2)风和日丽,甲、乙两个工程队工作效率也得到提升,甲工程队实际每天比原计划多植树20%,乙工程队每天比原计划多植树40%.因其他公园有不少树木需要补植,甲工程队需要中途离开去执行补植任务.已知在鹿山公园的植树任务中,乙工程队植树天数刚好是甲工程队植树天数的2倍,且鹿山公园的植树任务不少于1080棵,则甲工程队至少在鹿山公园植树多少天可以完成任务?【答案】(1)甲工程队原计划每天植树25棵,乙工程队原计划每天植树15棵(2)15天【解析】【分析】本题考查了解分式方程的应用,一元一次不等式的应用,找到数量关系列出方程与不等式是关83420x x +++=2x =2c =52716001600280202040+⨯=⨯=+键.(1)设乙工程队每天植树棵,则甲工程队每天植树棵,根据时间相等列出分式方程,求解即可,注意检验;(2)设甲工程队植树天可以完成任务,则乙工程队天,根据:植树任务不少于棵,列出不等式并解之即可.【小问1详解】解:设乙工程队每天植树棵,则甲工程队每天植树棵;由题意可得:;解得:;经检验,是原方程的解,且符合题意;则;答:甲工程队原计划每天植树棵,乙工程队原计划每天植树棵;【小问2详解】设甲工程队植树天可以完成任务,则乙工程队天;由题意得:;解得:;答:甲工程队至少在鹿山公园植树天可以完成任务.23. 如图,在中,,, ,点为的中点,于点,点从点出发沿折线运动(含、两点),当动点在上运动时,速度为每秒个单位,当动点在上运动时,速度变为每秒个单位,到达点停止运动,设点的运动时间为秒,线段的长度记为(1)请直接写出关于的函数表达式,并注明自变量的取值范围;x ()10x +m 2m 1080x ()10x +60036010x x=+15x =15x =1025x +=2515m 2m ()()120251401521080m m +⨯++⨯⨯≥%%15m ≥15ABC 6AB =10AC =90ABC ∠=︒D AC PM AB ⊥M P A A D B →→A B P AD 54P DB 58B P x PM 1y 1y x x(2)若函数,在给定的平面直角坐标系中分别画出函数和的图象,并写出该函数的一条性质;(3)结合函数图象,请直接估计时的取值范围.(保留一位小数,误差不超过)【答案】(1) (2)详见解析性质:当时,随的增大而增大(3)或【解析】【分析】本题考查了勾股定理,动点函数图象,利用图象法求函数自变量取值范围.利用分类讨论思想解决问题是解题的关键.(1)分两种情况,即在上还是上,利用勾股定理求得的长,即可解答;(2)根据描点法画出图象即可,再根据图象写出的一条性质;(3)根据图象得到的解析式,根据题意列方程即可解答.【小问1详解】解:当在上运动时,,,,,在中,,,即,当在上运动时,,,,,()260y x x=>1y 2y 1y 12y y <x 0.2()()104164122x x y x x ⎧≤≤⎪=⎨-+<≤⎪⎩04x ≤≤y x 0 2.5x <<11.012x <≤AD DB PM P AD 54AP x =152AD AC ==5054x ∴≤≤04x ∴≤≤Rt ABC 8BC ==8sin 10BC MP A AC AP ∴===MP x ∴=()104y x x =≤≤P BD ()548PD x =-()515554828PB x x =--=-()50458x <-≤ 412x ∴<≤,,,即,;【小问2详解】如图,性质:当时,随的增大而增大【小问3详解】,的函数图像在图像的下面,则根据图像即可得到或.24. 如图,车站A 在车站B 的正西方向,它们之间的距离为100千米,修理厂C 在车站B 的正东方向.现有一辆客车从车站B 出发,沿北偏东方向行驶到达D 处,已知D 在A 的北偏东方向,D 在C 的北偏西方向.(1)求车站B 到目的地D 的距离(结果保留根号)(2)客车在D 处准备返回时发生了故障,司机在D 处拨打了救援电话并在原地等待,一辆救援车从修理厂C 出发以35千米每小时的速度沿方向前往救援,同时一辆应急车从车站A 以60千米每小时的速度沿方向前往接送滞留乘客,请通过计算说明救援车能否在应急车到达之前赶到D 处.(参考数据:MBP A ∠∠ =sin MP BC MBP BP AC ∴∠==162MP x ∴-=()1164122y x x =-<≤()()104164122x x y x x ⎧≤≤⎪∴=⎨-+<≤⎪⎩04x ≤≤y x 12y y < 1y ∴2y 0 2.5x <<11.012x <≤45︒60︒30︒CD AD)【答案】(1)千米(2)能【解析】【分析】本题考查了解直角三角形的应用-方向角问题:(1)过点D 作于点E ,得出,,设千米,则千米,在中,千米,根据列方程求出,从而可求出;(2)分别求出的长,再求出应急车和救援车从出发地到目的地行驶时间,再进行比较即可得出答案【小问1详解】解:过点D 作于点E ,如图,则由题意知,∴是等腰直角三角形,∴设千米,则千米,在中,,∴,∵,∴,解得:,2.45≈≈≈+DE AC ⊥BE DE=BD =BE DE x ==BD =Rt ADE△AE =AE AB BE =+50x =+BD ,AD CD DE AC ⊥90,DEB ∠=︒60,ADE Ð=°904545,DBE ∠=︒-︒=︒DBE,,DE BE BD ==BE DE x ==BD =Rt ADE△tan tan 60AE ADE DE ∠==︒=AE ==AB BE AE +=100+x=50x =∴千米,即车站B 到目的地D 的距离为千米;【小问2详解】解:根据题意得,又∴千米,又∵∴千米,救援车所用时间为:(时);应急车所用时间为:(时)∵,∴救援车能在应急车到达之前赶到D 处.25. 如图1,二次函数的图象与轴相交于、两点,其中点的坐标为,与轴交于点,对称轴为直线.(1)求该二次函数的解析式;(2)是该二次函数图象上位于第一象限上的一动点,连接交于点,连接,,.若和的面积分别为、,请求出的最大值及取得最大值时点的坐标;)(50BD ==+=+30,CDE Ð=°cosDE EDC CD ∠==()50100CD ⎛==+= ⎝30,DAE ∠=︒()()2250100AD DE ==⨯+=+10035 4.5⎛÷≈ ⎝()10060 4.55÷≈4.5 4.55<()20y ax bx c a =++≠x A B B ()6,0y ()0,4C 2x =P PA BC E BP CP AC PBC PAC △1S 2S 12S S +P(3)如图2,将抛物线沿射线,为新抛物线上一点,作直线,当点到直线的距离是点到直线的距离的倍时,直接写出点的横坐标.【答案】(1) (2); (3【解析】【分析】本题考查二次函数的综合应用,涉及待定系数法,二次函数图像上点坐标的特征,相似三角形等知识,解题的关键是用含字母的式子表示相关点坐标和相关线段的长度.(1)直接将点坐标带入即可求解;(2)过作轴平行线交直线于,过作轴平行线交直线于,设出点坐标,进而求出、长度,用其表达,即可求解;(3)利用相似三角形性质即可求解.【小问1详解】解:抛物线过点,,对称轴,,解得,抛物线的解析式为;【小问2详解】由(1)知,,,,设直线为,,y BC y 'Q y 'BQ C BQ A BQ 3Q 214433y x x =-++50375,3P ⎛⎫ ⎪⎝⎭P y BC N P x AC M P PN PM 12S S + ()20y ax bx c a =++≠()6,0B ()0,4C 2x =3660422a b c c b a ⎧⎪++=⎪∴=⎨⎪⎪-=⎩13434a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩∴214433y x x =-++214433y x x =-++()2,0A -()6,0B ()0,4C AC 11y k x b =+111204k b b -+=⎧∴⎨=⎩,,设直线为,,,,设,如图1,过作轴平行线交直线于,过作轴平行线交直线于,,,,,,,,1124k b =⎧∴⎨=⎩24y x ∴=+BC 22y k x b =+222604k b b +=⎧∴⎨=⎩22234k b ⎧=-⎪∴⎨⎪=⎩243y x ∴=-+214,40633P n n n n ⎛⎫-++<< ⎪⎝⎭P y BC N P x AC M 2,43N n n ⎛⎫∴-+ ⎪⎝⎭221214,46333M n n n n ⎛⎫-+-++ ⎪⎝⎭2212116363PM n n n n n ⎛⎫∴=--+=+ ⎪⎝⎭2214214423333PN n n n n n -+++--+==()2122PAC PAM PCM C A S S S PM y y PM S ∴=-=⨯-== ()1132PBC cpn PNB B C S S S PN x x PN S ∴=+=⨯-== 22121223633S S PM PN n n n n ∴+++-+==,当时有最大值,此时,;【小问3详解】设平移到点,则轴于,如图2则,,,,即将抛物线向左平移个单位,向上平移个单位,又,则新抛物线顶点为,新抛物线为,如图3作于,于,直线交直线于,()2250533n =--+∴5n =12S S +503214252074433333n n -++-++==75,3P ⎛⎫∴ ⎪⎝⎭B B 'BB '=B K x '⊥K //CO B K 'BB K BCO '∴ ∽BB BK B K BC BO CO ''∴==64BK B K '==3BK ∴=2B K '=32()()222141116444233333y x x x x x =-++=--+=--+221,3⎛⎫- ⎪⎝⎭()2122133y x =-++AM BQ ⊥M CN BQ ⊥N BQ AC G,,,分类讨论:当在线段上,过点作轴于点,,,,,,,,,设直线为,,解得,,联立,,,,//AM CN ∴AMG CNG ∴ ∽3CG CN AC AN∴==G AC G GL x ⊥L //GL CO ∴AGL ACD ∴ ∽CG GL AL AC OC AO ∴==144GL AL OA∴==1GT ∴=12AL =13222OL ∴-==3,12G ⎛⎫∴- ⎪⎝⎭BG 33y k x b =+333331260k b k b ⎧-+=⎪∴⎨⎪+=⎩3321545k b ⎧=-⎪⎪⎨⎪=⎪⎩24155y x ∴-+=212733y x x --+=21224033155x x +--7+=258930x x +-=64186019240∆+>==当在线段的延长线上时,如图4过点作轴于,,,,,,,,,,设直线为,,解得,,联立,,,,,G CA G GL x ⊥L //GL OC ∴AGL ACO ∴ ∽AG GL AL AC OC AO∴==13AG GC =12GA AC ∴=12GL AL OC AO ∴==2GL ∴=1AL =()3,2G ∴--BQ 44y k x b =+44446032k b k b +=⎧∴⎨-+=-⎩442943k b ⎧=⎪⎪⎨⎪=-⎪⎩2493y x ∴-=212733y x x --+=21242703339x x x ∴+--+=236631220x x x +--+=238750x x +-=6447539640∆+⨯⨯>==综上.26. 已知是等腰直角三角形,,为平面内一点.(1)如图1,当点在的中点时,连接,将绕点逆时针旋转,得到,若,求的周长;(2)如图2,当点在外部时,、分别是、的中点,连接、、,将绕点逆时针旋转得到,连接、、,若,请探究、、之间的数量关系并给出证明;(3)如图3,当在内部时,连接,将绕点逆时针旋转,得到,若经过中点,连接、,为的中点,连接并延长交于点,当最大时,请直接写出的值.【答案】(1)(2)(3【解析】【分析】本题是几何变换综合题,考查了旋转性质,全等三角形的判定与性质,相似三角形的性质与判定,等腰直角三角形的性质,勾股定理,三角形的中位线的性质与判定,熟练掌握等腰直角三角形的性质及旋转的性质是解题的关键.(1)作中点,连接,是的中位线,可得,得到,由旋转的性质可得,,进而得到,,最后由勾股定理得即可求解;Q ABC AB AC =D D AB CD CD D 90︒ED 4AB =ADE V D ABC E F AB BC EF DE DF DE E 90︒EG CG DG FG FDG FGE ∠∠=FD FG CG D ABC AD AD D 90︒ED ED BC F AE CE G CE GF AB H AG ΔΔACG AHGS S 2++FD CG =+BC M DM DM ABC DM AB ⊥BD AD DM ==EDA CDM ≌2AD BD DM ===4AC =。
海南省海南中学2024届高三第一次模拟数学试题及参考答案
海南省海南中学2024届高三第一次模拟数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知全集{}1,2,3,4,5,6U =,集合{}{}1,3,5,2,3,4A B ==,则()U B A ⋂=( ) A .{}3B .{}2,4C .{}2,4,6D .{}1,2,4,62.若()2,3a =−,()1,2b =−,则()2a a b ⋅+=( ) A .5− B .3−C .3D .53.复数13ii 1iz +=−−,则z =( )A B C .2D 4.已知实数列1−、x 、y 、z 、2−成等比数列,则xyz =( )A .B .±4C .−D .±5.刍(chú)甍(méng )是中国古代算数中的一种几何体,其结构特征是:底面为长方形,顶棱和底面平行,且长度不等于底面平行的棱长的五面体,是一个对称的楔形体.已知一个刍甍底边长为4,底边宽为3,上棱长为2,高为2,则它的表面积是( )A .27+B .42+C .27+D .42+6.已知函数()f x 为偶函数,其图像在点()()1,1f 处的切线方程为210x y −+=,记()f x 的导函数为()f x ',则()1f '−=( ) A .12−B .12C .2−D .27.设某直角三角形的三个内角的余弦值成等差数列,则最小内角的正弦值为( )A .35B .45C D 8.双曲线C :221124x y −=的右焦点为F ,双曲线C 上有两点A ,B 关于直线l :380x y +−=对称,则FA FB +=( )A .B .C .D .二、多选题9.下列说法中正确的是( )A .一组数据10,11,11,12,13,14,16,18,20,22的第60百分位数为14B .某中学有高中生3500人,初中生1500人,为了解学生学习情况.用分层抽样的方法从该校学生中抽取一个容量为100的样本,则抽取的高中生人数为70C .若样本数据121031,31,,31x x x +++的平均数为10,则数据1210,,,x x x 的平均数为3D .随机变量X 服从二项分布()4,B p ,若方差()34D X =,则()3164P X == 10.某数学兴趣小组的同学经研究发现,反比例函数1y x=的图象是双曲线,设其焦点为,M N ,若P 为其图象上任意一点,则( )A .y x =−是它的一条对称轴 BC .点()2,2是它的一个焦点D .PM PN −=11.已知函数()32f x ax bx cx d =+++存在两个极值点()1212,x x x x <,且()11f x x =−,()22f x x =.设()f x 的零点个数为m ,方程()()2320a f x bf x c ⎡⎤++=⎣⎦的实根个数为n ,则( )A .当0a >时,3n =B .当a<0时,2m n +=C .mn 一定能被3整除D .m n +的取值集合为{}4,5,6,7三、填空题12.若πtan 34θ⎛⎫+= ⎪⎝⎭,则tan θ= .13.设()525012512x a a x a x a x −=+++⋅⋅⋅+,则125a a a ++⋅⋅⋅+= .14.洛卡斯是十九世纪法国数学家,他以研究斐波那契数列而著名.洛卡斯数列就是以他的名字命名,洛卡斯数列{}n L 为:1,3,4,7,11,18,29,47,76,,即1213L L ==,,且()21n n n L L L n *++=+∈N .设数列{}n L 各项依次除以4所得余数形成的数列为{}n a ,则2024a = .四、解答题15.已知质量均匀的正n 面体,n 个面分别标以数字1到n .(1)抛掷一个这样的正n 面体,随机变量X 表示它与地面接触的面上的数字.若2(X 5).3P <=求n ;(2)在(1)的情况下,抛掷两个这样的正n 面体,随机变量Y 表示这两个正n 面体与地面接触的面上的数字和的情况,我们规定:数字和小于7,等于7,大于7,Y 分别取值0,1,2,求Y 的分布列及期望.16.已知函数2()e (21)e x x f x a ax =−−−. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.17.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,,//BF DE BF DE =,M 是AE 的中点.(1)求证://EC 平面BDM ;(2)若DE ⊥平面,4,ABCD AB BM CF =⊥,点P 为线段CE 上一点,且13CP CE =,求直线PM 与平面AEF 所成角的正弦值.18.已知动点P 与定点(),0A m 的距离和P 到定直线2n x m=的距离的比为常数m n .其中0,0m n >>,且m n ≠,记点P 的轨迹为曲线C .(1)求C 的方程,并说明轨迹的形状;(2)设点(),0B m −,若曲线C 上两动点,M N 均在x 轴上方,AM BN ,且AN 与BM 相交于点Q .①当4m n ==时,求证:11AM BN+的值及ABQ 的周长均为定值; ②当m n >时,记ABQ 的面积为S ,其内切圆半径为r ,试探究是否存在常数λ,使得S r λ=恒成立?若存在,求λ(用,m n 表示);若不存在,请说明理由. 19.在计算机科学中,n 维数组(){}12,,,,0,1,N ,2n i X x x x x i n +=∈∈≥是一种基础而重要的数据结构,它在各种编程语言中被广泛使用.对于n 维数组()()1212,,,,,,,n n A a a a B b b b ==,定义A 与B 的差为()1122,,,,n n A B a b a b a b A−=−−−与B 之间的距离为1(,)ni i i d A B a b ==−∑.(1)若n 维数组()0,0,,0C =,证明:()()(),,,d A C d B C d A B +≥;(2)证明:对任意的数组,,A B C ,有()(),,d A C B C d A B −−=; (3)设集合(){}{}12,,,,0,1,N ,2,n n i n S X X x x x x i n P S +==∈∈≥⊆,若集合P 中有()2m m ≥个n 维数组,记P 中所有两元素间的距离的平均值为()d P ,证明:()()21mnd P m ≤−.参考答案:1.B【分析】根据给定条件,利用补集、交集的定义求解即得. 【详解】全集{}1,2,3,4,5,6U =,{}13,5A =,,则{2,4,6}UA =,而{}2,3,4B =,所以(){}2,4U A B ⋂=. 故选:B 2.B【分析】利用向量加法和数量积的坐标表示直接计算求解即可. 【详解】由题意可知()20,1a b +=, 所以()()220313a a b ⋅+=⨯+−⨯=−, 故选:B 3.D【分析】由复数的运算结合模长公式计算即可. 【详解】因为()()()()13i 1i 13ii=i=1i 1i 1i 1i z +++=−−−+−−+,所以z = 故选:D. 4.C【分析】求出y 的值,利用等比中项的性质可求得结果.【详解】设等比数列1−、x 、y 、z 、2−的公比为()0q q ≠,则210y q =−⨯<,由等比中项的性质可得()()2122y =−⨯−=,所以,y =因此,(33xyz y ===−故选:C. 5.A【分析】由题意可得刍甍的左右两个三角形为全等的等腰三角形,前后两个四边形为全等的等腰梯形,利用勾股定理分别求出三角形和梯形的高,从而可求出各个面的面积,即可得出答案.【详解】解:由题意可得刍甍的左右两个三角形为全等的等腰三角形,前后两个四边形为全等的等腰梯形,=,52=,则一个等腰三角形的面积为1322⨯,一个等腰梯形的面积为()52415222+⨯=,所以此刍甍的表面积为1522432722⨯+⨯+⨯=+故选:A.6.A【分析】先推导出偶函数的导数为奇函数,再根据条件得到()1f',再利用奇函数的的性质求()1f'−.【详解】因为()f x为偶函数,所以()()f x f x=−,两边求导,可得()()''f x f x⎡⎤⎡⎤=−⎣⎦⎣⎦⇒()()()'·f x f x x=−−''⇒()()f x f x=−'−'.又()f x在()()1,1f处的切线方程为:210x y−+=,所以()112f'=.所以()()1112f f''−=−=−.故选:A7.C【分析】设出三个角度的大小关系,结合已知条件求得最小角的正切值,再求正弦值即可.【详解】设π2A B C<<=,根据题意可得cos0C=,且cos cos2cosC A B+=,即2cos cosB A=,又π2A B+=,则2cos2sinB A=,2sin cosA A=,解得1tan2A=,又π0,2A⎛⎫∈ ⎪⎝⎭,则sin A.故选:C.8.B【分析】:30AB x y m −+=,()()1122,,,A x y B x y ,AB 的中点为S , 联立直线方程和双曲线方程后结合对称可得S 的坐标,而2FA FB FS +=,故可求FA FB +. 【详解】()4,4,0c F ==,设AB 的中点为S ,连接FS因为l 为线段AB 的垂直平分线,故可设:30AB x y m −+=,()()1122,,,A x y B x y ,由22112430x y x y m ⎧−=⎪⎨⎪−+=⎩可得2266120y my m −+−=(*), 故12y y m +=,故()121232x x y y m m +=+−=, 故AB 的中点为,22m m ⎛⎫⎪⎝⎭,因AB 的中点在直线380x y +−=上,故38022m m⨯+−=, 故4m =,此时22362412240m m ∆=−+⨯>,且()2,2S −,故224FA FB FS +== 故选:B.9.BC【分析】由百分位数求解判断A ,由分层抽样判断B ,由平均值性质判断C ,由二项分布性质判断D.【详解】对A ,1060%6⨯=,故第60百分位数为第6和第7位数的均值1416152+=,故A 错误;对B ,由题抽取的高中生抽取的人数为35001007035001500⨯=+,故B 正确;对C , 设数据1210,,,x x x 的平均数为x ,由平均值性质可知:样本数据121031,31,,31x x x +++的平均数为3110x +=,解得3x =,故C 正确;对D ,由题意可知()3414p p −=,解得14p =或34p =,则()31413271C 4464P X ⎛⎫==⨯⨯= ⎪⎝⎭或()3143131C 4464P X ⎛⎫==⨯⨯= ⎪⎝⎭,故D 错误. 故选:BC 10.ABD【分析】由题意可知反比例函数的图象为等轴双曲线,进一步分别计算出离心率以及,a c 即可逐一判断求解.容易知道y x =是实轴,y x =−是虚轴,坐标原点是对称中心, 联立实轴方程y x =与反比例函数表达式1y x=得实轴顶点()()1,1,1,1−−,所以2a c ==,其中一个焦点坐标应为而不是()2,2,由双曲线定义可知2PM PN a −== 故选:ABD. 11.AB【分析】分0a >和0a <两种情况,利用导数判断原函数单调性和极值,结合图象分析()f x ,()()f f x '的零点分布,进而可得结果,【详解】由题意可知()232f x ax bx c '=++为二次函数,且()1212,x x x x <为()f x '的零点,由()()()()2320f f x a f x bf x c ⎡⎤+⎦'=+=⎣得()1f x x =或()2f x x =, 当0a >时,令()0f x '>,解得1x x <或2x x >;令()0f x '<,解得12x x x <<; 可知:()f x 在()()12,,,x x ∞∞−+内单调递增,在()12,x x 内单调递减, 则1x 为极大值点,2x 为极小值点, 若10x ≥,则120x x −≤<,因为()()12f x f x >,即12x x −>,两者相矛盾,故10x <, 则()2f x x =有2个根,()1f x x =有1个根,可知3n =, 若()220f x x =>,可知1m =,3,4mn m n =+=;若()220f x x ==,可知2m =,6,5mn m n =+=; 若()220f x x =<,可知3m =,9,6mn m n =+=; 故A 正确;当0a <时,令()0f x '>,解得12x x x <<;令()0f x '<,解得1x x <或2x x >; 可知:()f x 在()12,x x 内单调递增,在内()()12,,,x x ∞∞−+单调递减, 则2x 为极大值点,1x 为极小值点, 若20x ≤,则120x x −>≥,因为()()12f x f x <,即12x x −<,两者相矛盾,故20x >,若()110f x x =−>,即10x <,可知1m =,3n =,3,4mn m n =+=; 若()110f x x =−=,即10x =,可知2m =,4n =,8,6mn m n =+=; 若()110f x x =−<,即1>0x ,可知3m =,5n =,15,8mn m n =+=; 此时2m n +=,故B 正确;综上所述:mn 的取值集合为{}3,6,8,9,15,m n +的取值集合为{}4,5,6,8, 故CD 错误; 故选:AB.【点睛】方法点睛:对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域; (2)求导数,得单调区间和极值点;(3)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解. 12.12/0.5【分析】由两角和的正切公式求解即可.【详解】由πtan 34θ⎛⎫+= ⎪⎝⎭可得:πtan tan43π1tan tan 4θθ+=−⋅, 即tan 131tan θθ+=−,解得:1tan =2θ.故答案为:12 13.2−【分析】分别令0x =,1x =即可得解. 【详解】令0x =,则01a =, 令1x =,则01251a a a a +++⋅⋅⋅+=−, 所以1252a a a ++⋅⋅⋅+=−. 故答案为:2−. 14.3【分析】根据递推关系可得{}n a 的周期性,再根据周期性求解即可. 【详解】{}n L 的各项除以4的余数分别为1,3,0,3,3,2,1,3,0,,故可得{}n a 的周期为6,且前6项分别为1,3,0,3,3,2, 所以20246337223a a a ⨯+===. 故答案为:3. 15.(1)6n =.(2)分布列见解析,(Y)1E =.【分析】(1)直接由题意解出即可.(2)设出事件,按古典概型中等可能事件的概率公式求出随机变量各个取值的概率,列出分布列,求出数学期望即可. 【详解】(1)因为42(X 5)3P n <==,所以6n =. (2)样本空间{(,),{1,2,3,4,5,6}}m t m t Ω=∈∣,共有36个样本点. 记事件A =“数字之和小于7”,事件B =“数字之和等于7", 事件C =“数字之和大于7”.{(1,1),(1,2),(2,1),(1,3),(3,1),(2,2),(1,4),(4,1),(2,3),(3,2)A =,(1,5),(5,1),(2,4),(4,2),(3,3)},共15种,故155(Y 0)()3612P P A ==== {(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)}B =,共6种,故61(Y 1)()366P P B ====; {(2,6),(6,2),(3,5),(5,3),(4,4),(3,6),(6,3),(4,5),(5,4)C =, (4,6),(6,4),(5,5),(5,6),(6,5),(6,6)},共15种,故155(Y 2)()3612P P C ====; 从而Y 的分布列为:故515(Y)012112612E =⨯+⨯+⨯= 16.(1)答案见解析; (2)1a >【分析】(1)求出导函数,根据0a ≤和0a >分类讨论求解即可;(2)根据函数()f x 的单调性易知0a >且min ()(ln )0f x f a =<,根据零点存在性定理结合函数的单调性列不等式求解即可.【详解】(1)()()2()2e (21)e 2e 1e x x x xf x a a a =−−−=+−'.①若0a ≤,()0f x '>,()f x 在(,)−∞+∞为增函数; ②若0a >,令()0f x '=,得ln x a =.当(,ln )x a ∈−∞时,()0,()'<f x f x 为减函数, 当(ln ,)x a ∈+∞时,()0,()'>f x f x 为增函数. 综上所述,当0a ≤时,()f x 在(,)−∞+∞单调递增;当0a >时,()f x 在(,ln )a −∞单调递减,在(ln ,)a +∞单调递增.(2)当0a ≤时,()f x 在(,)−∞+∞单调递增,不可能有两个零点,不符合题意. 当0a >时,()f x 在(,ln )a −∞单调递减,在(ln ,)a +∞单调递增, 因为()f x 有两个零点,必有min ()(ln )(1ln )0f x f a a a a ==−−<, 因为0a >,所以1ln 0a a −−<.令()1ln ,0g a a a a =−−>, 则1()10g a a'=−−<,所以()g a 在(0,)+∞单调递减,而(1)0g =, 所以当1a >时,()0g a <,即min ()0f x <. 又2211112(1)(21)10e e e e e f a a a ⎛⎫−=−−+=++−> ⎪⎝⎭,故()f x 在(1,ln )−a 有1个零点; 当ln 0x a >>时,因为e 1xy x =−−,则e 1xy '=−,由0'>y 得0x >,由0'<y 得0x <,所以函数e 1xy x =−−在()0∞−,单调递减,在()0,∞+单调递增,所以0e 1e 010x x −−≥−−=,即e 1x x >+,故()e 1x ax a −>−−,所以()22()e (21)e e 1e (31)e x x x x xf x a a a a >−−−−=−−+,取ln 3ln x a a =>,有2ln3ln32(ln3)e (31)e 9(31)340a a f a a a a a a a a >−−+=−−+=>, 所以()f x 在(ln ,ln3)a a 有1个零点. 综上所述,当()f x 有两个零点时,1a >. 17.(1)证明见解析;【分析】(1)连接AC 交BD 于N ,连接MN ,通过//MN EC 可证明;(2)建立空间直角坐标系,||DE a =,利用坐标运算通过0BM CF ⋅=求出a ,再利用向量法求线面角.【详解】(1)连接AC 交BD 于N ,连接MN ,因为四边形ABCD 是正方形,故N 为AC 中点,M 是AE 的中点, 所以在ACE △中,有//MN EC , 又EC ⊄平面,BDM MN ⊂平面BDM , 所以//EC 平面BDM ;(2)如图,建立空间直角坐标系,设||,||4DE a AB ==, 则(4,4,0),(0,4,0),(4,4,),(4,0,0),(0,0,)B C F a A E a ,又M 是AE 的中点,故2,0,2a M ⎛⎫ ⎪⎝⎭,2,4,,(4,0,)2a BM CF a ⎛⎫=−−= ⎪⎝⎭,因为BM CF ⊥,所以2802a BM CF ⋅=−+=,解得4a =, 设1(,,),3P x y z CP CE =,即(,4,)CP x y z =−11(0,4,4)33CE ==−,可得840,,33P ⎛⎫⎪⎝⎭,则822,,33PM ⎛⎫=−− ⎪⎝⎭,又(0,4,4),(4,0,4)AF AE ==−,设平面AEF 的一个法向量为()111,,n x y z =,则1111440440n AF y z n AE x z ⎧⋅=+=⎪⎨⋅=−+=⎪⎩,令11z =,则111,1x y ==−,即(1,1,1)n =−, 设直线PM 与平面AEF 所成角为θ,则sin cos ,3n MP n MP n MPθ⋅====⋅所以直线PM 与平面AEF .18.(1)答案见解析(2)① 证明见解析;②存在;2()2m n nλ+=【分析】(1)设(),P x y ,由题意可得222221x y n n m +=−,结合椭圆、双曲线的标准方程即可求解;(2)设点()()()112233,,,,,M x y N x y M x y ',其中120,0y y >>且3232,x x y y =−=−.(ⅰ)由//AM BN 可知,,M A M '三点共且BN AM =',设MM ':x ty =+C 的方程,利用韦达定理表示1313,y y y y +,进而表示出11AM BN+,结合(1)化简计算即可;由椭圆的定义,由//AM BN 得()8AM BNBQ AM BN−⋅=+,()8BN AMAQ AM BN−⋅=+,进而表示出AQ BQ +,化简计算即可;(ii )由(ⅰ)可知,,M A M '三点共线,且BN AM =',设MM ':x sy m =+,联立C 的方程,利用韦达定理表示1313,y y y y +,计算化简可得22112nAM BN m n+=−,结合由内切圆性质计算即可求解. 【详解】(1)设点(),P x ym n =,即222()m x m y x n n ⎛⎫−+=− ⎪⎝⎭,经化简,得C 的方程为222221x y n n m +=−, 当m n <时,曲线C 是焦点在x 轴上的椭圆;当m n >时,曲线C 是焦点在x 轴上的双曲线.(2)设点()()()112233,,,,,M x y N x y M x y ',其中120,0y y >>且3232,x x y y =−=−, (ⅰ)由(1)可知C的方程为()()221,,168x y A B +=−,因为//AM BN===因此,,,M A M '三点共线,且BN AM =',(法一)设直线MM '的方程为x ty =+C 的方程,得()22280t y ++−=,则1313282y y y y t +==−+, 由(1)可知1134,4AM x BN AM x ====',所以1313131344222222112222x x AM BN AM BN AM BN ⎛⎫⎛⎫⎛⎫⎛⎫−+−−+− ⎪ ⎪ ⎪⎪++==⋅⎝⎭⎝⎭⎝⎭⎝⎭()()21321313442221142y y t y y t y y ⎛⎫−⋅− ⎪++===++,所以11AM BN+为定值1; (法二)设MAx θ∠==AM ,,解得AM ='所以11111AM BN AM AM ='+=+=, 所以11AM BN+为定值1; 由椭圆定义8BQ QM MA ++=,得8QM BQ AM =−−,8//,AM QM BQ AMAM BN BN BQ BQ−−∴==,解得()8AM BNBQ AM BN−⋅=+,同理可得()8BN AMAQ AM BN−⋅=+,所以()()()8882BN AM AM BNAM BN AM BNAQ BQ AM BNAM BNAM BN−⋅−⋅+−⋅+=+=+++2882611AM BN=−=−=+.因为AB =ABQ 的周长为定值6+.(ⅱ)当m n >时,曲线C 的方程为222221x y n m n −=−,轨迹为双曲线,根据(ⅰ)的证明,同理可得,,M A M '三点共线,且BN AM =', (法一)设直线MM '的方程为x sy m =+,联立C 的方程,得()()()222222222220m n s n y sm m n y m n ⎡⎤−−+−+−=⎣⎦,()()()()222221313222222222,sm m n m n y y y y mn s nmn s n−−∴+=−=−−−−,(*)因为2113,m n m mAM x x n BN AM x n n m n n⎛⎫=−=−==− ⎝'⎪⎭,所以1111AM AM AM BN AM AM AM AM ''+=+=⋅'+ 2222131322221313sm m n sm m n m m y y x n x n n n n n n n m m sm m n sm m nx n x n y y n n n n n n ⎛⎫⎛⎫−−⎛⎫⎛⎫+++−+− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭==⎛⎫⎛⎫⎛⎫⎛⎫−−−−++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()()()2213222222213132222m n smy y n n m n ms m n m s y y y y n n n −++=−−+++,将(*)代入上式,化简得22112nAM BN m n+=−, (法二)设MAx θ∠=,依条件有2cos AMmn n m AM m θ=⎛⎫−+ ⎪⎝⎭,解得22cos m n AM n m θ−=−,同理由2cos AM mn n m AM m θ=⎛⎫−− ⎪⎝⎭'',解得22cos m n AM n m θ−+'=,所以2222221111cos cos 2n m n m n AM BN AM AM m n m n m n θθ'−++=+=+=−−−. 由双曲线的定义2BQ QM MA n +−=,得2QM n AM BQ =+−,根据AM QM BN BQ =,解得()2n AM BN BQ AM BN+⋅=+, 同理根据AM AQ BN QN =,解得()2n BN AM AQ AM BN+⋅=+,所以()()2222n BN AM n AM BNAM BNAQ BQ n AM BNAM BNAM BN+⋅+⋅⋅+=+=++++222222211m n m n n n n n AM BN−+=+=+=+,由内切圆性质可知,()12S AB AQ BQ r =++⋅, 当S r λ=时,()2221()222m n m n AB AQ BQ m n nλ++=++=+=(常数). 因此,存在常数λ使得S r λ=恒成立,且2()2m n nλ+=.【点睛】方法点睛:求定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 19.(1)证明见解析 (2)证明见解析 (3)证明见解析【分析】(1)根据题意,结合新定义判断证明; (2)根据新定义,因为{0,1},1,2,,i c i n ∈=,分0i c =和1i c =两种情况证明;(3)根据题意结合排列组合的知识表示()d P 的式子,然后结合组合数和基本不等式进行放缩即可证得结论.【详解】(1)设A 与B 中对应项中同时为0的有()0x x n ≤≤个,同时为1的有()0y y n x ≤≤−个,则对应项不同的为n x y −−个,所以(),d A B n x y =−−. 所以()()()(),,2,d A C d B C y n x y n x y d A B +=+−−≥−−=; (2)设()()()121212,,,,,,,,,,,n n n n A a a a B b b b C c c c T ===∈,因为()1122,,,n n A C a c a c a c −=−−−,()1122,,,n n B C b c b c b c −=−−−,所以1(,)ni i i i i d A C B C a c b c =−−=−−−∑,因为{}0,1,1,2,,i c i n ∈=.所以当0i c =时,i i i i i i a c b c a b −−−=−,当1i c =时,()()11i i i i i i i i a c b c a b a b −−−=−−−=−, 所以11(,)(,)nni i i i i i i i d A C B C a c b c a b d A B ==−−=−−−=−=∑∑;(3)记集合P 中所有两个元素间距离的总和为(),1,mi j i j d P P =∑,则()2,11(),C mi j i j m d P d P P ==⋅∑.设集合P 中所有元素的第(1,2,,)k k n =个位置的数字共有k t 个1,k m t −个0,则()(),11,mi j k k k ni j d P P t m t ===−∑∑,因为,0k k t m t −>,所以()2224k k k k t m t m t m t +−⎛⎫⋅−≤= ⎪⎝⎭, 所以()()2,11,4mi j k k i j nk nm d P P t m t ===−≤∑∑,所以()22,112(),C (1)42(1)m i j i j m nm mnd P d P P m m m ==⋅≤⋅=−−∑. 【点睛】思路点睛:关于新定义题的思路有:(1)找出新定义有几个要素,找出要素分别代表什么意思;(2)由已知条件,看所求的是什么问题,进行分析,转换成数学语言; (3)将已知条件代入新定义的要素中; (4)结合数学知识进行解答.。
辽宁省沈阳市东北育才学校2025届高三上学期第一次模拟考试暨假期质量测试数学试卷(含答案)
辽宁省沈阳市东北育才学校2025届高三上学期第一次模拟考试暨假期质量测试数学试卷一、选择题:本题共11小题,每小题5分,共55分。
1.设集合M={y|y=2x,x<0},N={x|y=1−xx},则“x∈M”是“x∈N”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.给出下列四个结论:①“a>2”是“a>5”的充分不必要条件;②若命题p:∃x≥0,2x=3,则¬p:∀x<0,2x≠3;③若x∈R,则x2≠4是x≠2的充分不必要条件;④若命题q:对于任意x∈R,x2+2x−a>0为真命题,则a<−1其中正确结论个数为( )A. 1个B. 2个C. 3个D. 4个3.下列函数中,既是奇函数又具有零点的是( )A. f(x)=|x|xB. f(x)=ln(x2+1−x)C. f(x)=e x+e−xe x−e−x D. f(x)=1−x2|x+3|+|4−x|4.已知随机变量X的分布列如下表所示,则E(2X+1)=( )X123P 13a16A. 116B. 113C. 143D. 2235.已知数列{a n}为等差数列,{b n}为等比数列,a4=b4=3,则( )A. b1b7≥a1a7B. b1+b7≥a1+a7C. b1b7≤a1a7D. b1+b7≤a1+a76.已知函数f(x)=a x(a>0且a≠1)满足f(1)>1,且函数y=log a(x2−ax−1)在[2,3]上单调递增,则实数a的取值范围为( )A. (1,+∞)B. (1,4]C. (1,32)D. (32,4]7.已知函数f (x )={x,x ≤a x 2,(x >a),若存在实数b ,使函数g (x )=f (x )−b 有两个零点,则a 的取值范围是( )A. a <0B. a <1且a ≠0C. a <1D. a >0且a ≠18.已知命题p:∃x ∈R,ax−e x =0为假命题,则a 的取值范围为( )A. (−∞,0)∪[e,+∞)B. (−∞,0]∪(e,+∞)C. (0,e )D. [0,e )9.下列说法中,正确的是( )A. 若随机变量X ∼N (2,σ2),且P(X >6)=0.4,则P(−2<X <2)=0.1B. 若两个具有线性相关关系的变量的相关性越强,则线性相关系数r 的值越接近于1C. 若随机事件A ,B 满足:P(A)=12,P(B)=23,P(A ∪B)=56,则事件A 与B 相互独立D. 已知y 关于x 的回归直线方程为y =0.3−0.7x ,则样本点(2,−3)的残差为−1.910.已知函数f(x)定义域为R ,对∀x ,y ∈R ,恒有f(x +y)+f(x−y)=2f(x)f(y),则下列说法错误的有( )A. f(0)=1B. f(2x +1)=f(−2x−1)C. f(x)+f(0)≥0D. 若f(1)=12,则f(x)周期为611.对于函数f (x )=ln x x 2,下列说法正确的是( )A. f (x )在x =e 处取得极大值12eB. f (x )有两个不同的零点C. f ( 22)<f ( π)<f ( 3)D. 若f (x )<k−1x 2在(0,+∞)上恒成立,则k >e 2二、填空题:本题共3小题,每小题5分,共15分。
2024年中考数学第一次模拟试卷(湖南长沙卷)(全解全析)
2024年中考第一次模拟考试(湖南长沙卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列四个实数中,最小的是()A.2-B.4C.1D.5-【答案】D【分析】此题主要考查了实数大小比较的方法.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.>,【详解】解:∵54∴52>,∴52-<-,∴5214-<-<<,∴最小的数是5-,故选:D.2.在以下回收、绿色食品、节能、节水四个标志中,是中心对称图形的是()A.B.C.D.【答案】C【分析】根据中心对称图形的概念:一个图形沿某个点旋转180度后能与原图完全重合的;由此问题可求解.【详解】解:选项A、B、D不能找到一个点绕其旋转180度后能与原图完全重合,所以都不是中心对称图形,而C选项可以找到一个点绕其旋转180度后能与原图完全重合,所以是中心对称图形;故选C.【点睛】本题主要考查中心对称图形,熟练掌握中心对称图形的概念是解题的关键.3.下列计算中,正确的是()A .()326x x -=-B .()2211x x =++C .632x x x=D .235+=【答案】A 【分析】根据积的乘方,完全平方公式,同底数幂的除法,二次根式的加法对各选项进行判断即可.【详解】解:由题意知,()326x x -=-,正确,故A 符合要求;()2221211x x x x +=++≠+,错误,故B 不符合要求;6432x x x x=≠,错误,故C 不符合要求;235+≠,错误,故D 不符合要求;故选:A .【点睛】本题考查了积的乘方,完全平方公式,同底数幂的除法,二次根式的加法.熟练掌握积的乘方,完全平方公式,同底数幂的除法,二次根式的加法是解题的关键.4.据共青团中央2023年5月3日发布的中国共青团团内统计公报,截至2022年12月底,全国共有共青团员7358万.数据7358万用科学记数法表示为()A .7.358×107B .7.358×103C .7.358×104D .7.358×106【答案】A【分析】本题主要考查了科学记数法,表示较大的数,利用科学记数法的法则解答即可.【详解】解:7358万77.3581735800000=⨯=,故选:A .5.如图,把一个含有45︒角的直角三角板放在两条平行线m ,n 上,若123α∠=︒,则∠β的度数是()A .48︒B .88︒C .78︒D .75︒【答案】C 【分析】可求1123α∠=∠=︒,178ACB B ∠=∠-∠=︒,即可求解.【详解】解:如图:m n ∥,1123α∴∠=∠=︒,1∠ 是ABC 的一个外角,45B ∠=︒,178ACB B ∴∠=∠-∠=︒,78ACB β∴∠=∠=︒,故选:C .【点睛】本题考查了平行线的性质,三角形外角的性质,掌握性质是解题的关键.6.如图,AB 是O 的直径,42D ∠=︒,则CAB ∠=()A .52︒B .58︒C .48︒D .42︒【答案】C 【分析】本题考查圆周角的性质.由AB 是O 的直径可得90ACB ∠=︒,又由“同弧或等弧所对圆周角相等”可得42B D ∠=∠=︒,从而可求得CAB ∠.【详解】∵AB 是O 的直径,∴90ACB ∠=︒,∵ AC AC=∴42B D ∠=∠=︒,∴90904248CAB B ∠=︒-∠=︒-︒=︒.故选:C7.一元一次方程不等式组11112x x +≥-⎧⎪⎨<⎪⎩的解在数轴上表示正确的是()A .B .C .D .【答案】D 【分析】本题考查的是一元一次不等式组的解法及在数轴上表示解集,在数轴上表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.熟练掌握不等式组的解法是解题的关键.先分别解出两个不等式,然后找出解集,表示在数轴上即可.【详解】解:11112x x +≥-⎧⎪⎨<⎪⎩①②,由①得,x ≥−2,由②得,2x <,故原不等式组的解集为:22x -≤<.在数轴上表示为:故答案为:D .8.如图,在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法错误的是()A .众数是90分B .方差是10C .平均数是91分D .中位数是90分【答案】B 【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【详解】解:A 、∵90出现了5次,出现的次数最多,∴众数是90;故此选项不符合题意;B 、方差是:()()()()2222128591295915909110091191010⎡⎤⨯⨯-+⨯-+-+-=≠⎣⎦;故此选项符合题意;C 、平均数是(85×2+100×1+90×5+95×2)÷10=91;故此选项不符合题意;D 、∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故此选项不符合题意.故选:B .【点睛】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、方差,能从统计图中获得有关数据,求出众数、中位数、平均数、方差是解题的关键.9.在同一平面直角坐标系中,函数y ax =和()0y x a a =+≠的图象可能是()A .B .C .D .【答案】D【分析】本题主要考查正比例函数的系数和一次函数常数项决定图象所过象限的知识点.【详解】解:A .由函数y ax =得0a >,与()0y x a a =+≠图象的a<0矛盾,故本选项不符合题意;B .函数()0y x a a =+≠所过象限错误,故本选项不符合题意;C .函数()0y x a a =+≠所过象限错误,故本选项不符合题意;D .由函数y ax =得a<0,与()0y x a a =+≠图象的a<0一致,故本选项符合题意.故选:D .10.“千门万户瞳瞳日,总把新桃换旧符”.春节是中华民族的传统节日,古人常用写“桃符”的方式来祈福避祸,而现在,人们常用贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿.某商家在春节期间开展商品促销活动,顾客凡购物金额满100元,就可以从“福”字、春联、灯笼这三类礼品中免费领取一件.礼品领取规则:顾客每次从装有大小、形状、质地都相同的三张卡片(分别写有“福”字、春联、灯笼)的不透明袋子中,随机摸出一张卡片,然后领取一件与卡片上文字所对应的礼品.现有2名顾客都只领取了一件礼品,那么他们恰好领取同一类礼品的概率是()A .19B .16C .13D .12【答案】C【分析】分别用,,A B C 表示写有“福”字、春联、灯笼的三张卡片,利用列表法求出概率即可.【详解】解:分别用A ,B ,C 表示写有“福”字、春联、灯笼的三张卡片,列表如下:AB C AA ,A A ,B A ,C BB ,A B ,B B ,C C C ,A C ,B C ,C共有9中等可能的结果,其中他们恰好领取同一类礼品有3种等可能的结果,∴3193P ==;故选C .【点睛】本题考查列表法求概率,解题的关键是正确的列出表格.第Ⅱ卷二、填空题(本大题共6个小题,每小题3分,共18分)11.若22x -在实数范围内有意义,则x 的取值范围是.【答案】2x ≥【分析】此题主要考查了二次根式有意义的条件,正确掌握相关定义是解题关键.直接利用二次根式有意义则被开方数大于或等于零即可得出答案.【详解】解:22x -在实数范围内有意义,故20x -≥,解得:2x ≥.故答案为:2x ≥.12.分式方程422x x =-的解是.【答案】2x =-【分析】先去分母,再解出整式方程,然后检验,即可求解.【详解】解:去分母得:()224x x -=,解得:2x =-,检验:当2x =-时,()20x x -≠,∴原方程的解为2x =-.故答案为:2x =-【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.解分式方程注意要检验.13.若关于x 的一元二次方程220x x m -+=有两个不相等的实数根,实数m 的取值范围是.【答案】1m </1m>【分析】利用方程有两个不相等的实数根时,0∆>,建立关于m 的不等式,求出m 的取值范围.【详解】解: 关于x 的一元二次方程220x x m -+=有两个不相等的实数根,∴()2240m ∆=-->,即440m ->,解得:1m <,故答案为:1m <.【点睛】本题考查了根的判别式,牢记“当0∆>时,方程有两个不相等的实数根”是解题的关键.14.如图,扇形OAB 的半径为1,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧相交于点P ,35BOP ∠=︒,则 AB 的长l =(结果保留π).【答案】718π/718π【分析】先求解223570AOB BOP ∠=∠=⨯︒=︒,再利用弧长公式计算即可.【详解】解:由作图知:OP 垂直平分AB ,∵OA OB =,∴223570AOB BOP ∠=∠=⨯︒=︒,∵扇形的半径是1,∴ AB 的长70π17π18018⨯==.故答案为:7π18.【点睛】本题考查的是线段的垂直平分线的作图,等腰三角形的性质,弧长的计算,熟记弧长公式是解本题的关键.15.如图,反比例函数k y x=的图象经过ABCD Y 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD DC ⊥,ABCD Y 的面积为16,则k =.【答案】8-【分析】由平行四边形面积转化为矩形BDOA 面积,在得到矩形PDOE 面积,应用反比例函数比例系数k 的意义即可.【详解】解:如图,过点P 做PE y ⊥轴于点E .四边形ABCD 为平行四边形,AB CD ∴=,又BD x ⊥Q 轴,ABDO ∴为矩形,AB DO ∴=,16ABCD ABDO S S ∴== 矩形,P 为对角线交点,PE y ⊥轴,∴四边形PDOE 为矩形面积为8,即8DO EO ⋅=,∴设P 点坐标为(,)x y ,8k xy ==-.故答案为:8-.【点睛】本题考查了反比例函数k 的几何意义以及平行四边形的性质,理解等底等高的平行四边形与矩形面积相等是解题的关键.16.《九章算术》是中国古代的数学专著,书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt ABC △的两条直角边的长分别为5和12,则它的内接正方形CDEF 的边长为.【答案】6017/9317【分析】先设正方形的边长为x ,再表示出DE ,AD ,然后说明ADE V ∽ACB △,并根据对应边成比例得出答案.【详解】根据题意可知=5AC ,=12BC .设正方形的边长为x ,则=DE CD x =,5AD x =-.∵四边形CDEF 是正方形,∴==90C ADE ∠∠︒.∵A A ∠=∠,∴ADE V ∽ACB △,∴AD DE AC BC =,即5512x x -=,解得6017x =.所以正方形的边长为6017.故答案为:6017.【点睛】本题主要考查了正方形的性质,相似三角形的性质和判定,相似三角形的对应边成比例是求线段长的常用方法.三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每题9分,第24、25每题10分,共72分)17.计算:()2012sin60π2133-⎛⎫︒--++- ⎪⎝⎭【答案】237+【分析】本题考查实数的混合运算,先计算特殊角三角函数值,零次幂,负整数次幂,绝对值,再进行加减运算即可,正确计算是解题的关键.【详解】解:()2012sin60π2133-⎛⎫︒--++- ⎪⎝⎭2312131213=⨯-++-⎛⎫ ⎪⎝⎭31931=-++-237=+18.先化简,再求值:2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭,其中3a =.【答案】21-a a ,336+【分析】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.先根据分式混合运算的法则把原式进行化简,再把a 的值代入进行计算即可.【详解】解:原式22212111a a a a a ---+=÷-+()()()21112a a a a a a -+=⋅+--21a a =-当3a =时,原式133633+==-.19.如图,从水平面看一山坡上的通讯铁塔PC ,在点A 处用测角仪测得塔顶端点P 的仰角是45︒,向前走9米到达B 点,用测角仪测得塔顶端点P 和塔底端点C 的仰角分别是60︒和30︒.(1)求BPC ∠的度数;(2)求该铁塔PC 的高度.(结果精确到0.1米;参考数据:3 1.73≈,2 1.41≈)【答案】(1)30︒(2)14.3米【分析】本题考查了仰角的定义、解直角三角形、三角函数;(1)延长PC 交直线AB 于点F ,根据直角三角形两锐角互余求得即可;(2)设PC x =米,根据AF PF =,构建方程求出x 即可.【详解】(1)延长PC 交直线AB 于点F ,则AF PF ⊥,依题意得:45PAF ∠=︒,60PBF ∠=︒,∴906030BPC ∠=-=︒︒︒.(2)设PC x =米,∵60PBF ∠=︒,30CBF ∠=︒,∴30PBC ∠=︒,∴PBC BPC ∠=∠,∴PC CB x ==米,在Rt CBF △中,3cos302BF CB x =︒=,1sin 302CF CB x =︒=,在Rt PAF △中,45PAF APF ∠=∠=︒,∴PF AF =,∴3139222x x x x +=+=,∴933x =+,∴93393 1.7314.3PC =+≈+⨯≈(米),即该铁塔PC 的高度约为14.3米.20.为了进一步加强中小学国防教育,教育部研究制定了《国防教育进中小学课程教材指南》.某中学开展了形式多样的国防教育培训活动.为了解培训效果,该校组织七、八年级全体学生参加了国防知识竞赛(百分制),并规定90分及以上为优秀,8089~分为良好,6079~分为及格,59分及以下为不及格.该学校七、八两个年级各有学生300人,现随机抽取了七、八年级各20名学生的成绩进行了整理与分析,下面给出了部分信息.a .抽取七年级20名学生的成绩如下:65875796796789977710083698994589769788188b .抽取七年级20名学生成绩的频数分布直方图如图1所示(数据分成5组:5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100)x ≤≤)c .抽取八年级20名学生成绩的扇形统计图如图2所示.d .七年级、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表:年级平均数中位数方差七年级81m 167.9八年级8279.5108.3请根据以上信息,回答下列问题:(1)补全七年级20名学生成绩的频数分布直方图,写出表中m 的值;(2)估计七、八两个年级此次竞赛成绩达到优秀的学生共有多少人;(3)若本次竞赛成绩达到81分及以上的同学可以获得参加挑战赛的机会,请根据样本数据估计,七、八两个年级中哪个年级获得参加挑战赛的机会的学生人数更多?并说明理由.【答案】(1)补全条形统计图见解析;82m =(2)七、八两个年级此次竞赛成绩达到优秀的学生共有165人(3)七年级获得参加挑战赛的机会的学生人数更多;理由见解析【分析】(1)根据题意可得七年级成绩位于6070x ≤<的有4人;七年级成绩位于第10位和第11位的是81和83,即可求解;(2)先求出八年级成绩优秀的所占的百分比,再分别用300乘以各自的百分比,即可求解;(3)分别求出七、八两个年级获得参加挑战赛的机会的学生人数,然后进行比较即可.【详解】(1)解:根据题意得:七年级成绩位于6070x ≤<的有4人,补全图形如下:七年级成绩位于第10位和第11位的是81和83,∴七年级成绩的中位数8183822m +==;(2)解:根据题意得:八年级成绩良好的所占的百分比为72100%20%360︒⨯=︒∴八年级成绩优秀的所占的百分比为120%45%5%30%---=,∴八年级成绩达到优秀的学生有30030%90⨯=(人),七年级成绩达到优秀的学生有53007520⨯=人,9075165+=(人),答:七、八两个年级此次竞赛成绩达到优秀的学生共有165人.(3)解:八年级获得参加挑战赛的机会的学生人数约为:()30020%30%150⨯+=(人),七年级获得参加挑战赛的机会的学生人数约为:1130016520⨯=(人),∵150165<,∴七年级获得参加挑战赛的机会的学生人数更多.【点睛】本题主要考查了条形统计图和扇形统计图,求中位数,用样本估计总体,明确题意,准确从统计图中获取信息是解题的关键.21.如图,在Rt ABC 中,32AC BC ==,点D 在AB 边上,连接CD ,将CD 绕点C 逆时针旋转90︒得到CE ,连接BE ,DE .(1)求证:CAD CBE ≌;(2)若2AD =时,求CE 的长;(3)点D 在AB 上运动时,试探究22AD BD +的值是否存在最小值,如果存在,求出这个最小值;如果不存在,请说明理由.【答案】(1)见解析(2)10(3)存在,18【分析】(1)由S AS 即可证明CAD CBE ≌;(2)证明CAD CBE ≌(SAS ),勾股定理得到DE ,在Rt CDE 中,勾股定理即可求解;(3)证明2222AD BD CD +=,即可求解.【详解】(1)解:由题意,可知90ACB DCE ∠=∠=︒,CA CB =,CD CE =.ACB DCB DCE DCB ∴∠-∠=∠-∠.即ACD BCE ∠=∠.()SAS CAD CBE ∴ ≌.(2) 在Rt ABC 中,32AC BC ==,45,26CAB CBA AB AC ∴∠=∠=︒==.624BD AB AD ∴=-=-=.CAD CBE ≌,2BE AD ∴==,45CBE CAD ∠=∠=︒.90ABE ABC CBE ∴∠=∠+∠=︒.2225DE BD BE ∴=+=.∴在Rt CDE △中,102DE CE CD ===.(3)由(2)可知,2222222AD BD BE BD DE CD ===++.∴当CD 最小时,有22AD BD +的值最小,此时CD AB ⊥.ABC 为等腰直角三角形,116322CD AB ∴==⨯=.∴222222318AD BD CD =≥⨯=+.即22AD BD +的最小值为18.【点睛】本题主要考查了图形的几何变换,涉及到等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,熟练掌握以上知识是解题的关键.22.某服装店老板到厂家选购A 、B 两种型号的服装,若购进A 种型号服装9件与B 种型号服装10件共需要1810元;若购进A 种型号服装12件与B 种型号服装8件共需要1880元.(1)A 、B 两种型号的服装每件分别为多少元?(2)若销售1件A 型服装可获利18元,销售1件B 型服装可获利30元,根据市场需求,服装店老板决定购进A 型服装的数量要比购进B 型服装的数量的2倍还多4件,这样服装全部售出后可使总的获利不少于732元,问至少购进B 型服装多少件?【答案】(1)A 种型号服装每件90元,B 种型号服装每件100元.(2)至少购进B 型服装10件.【分析】本题考查了一元一次不等式的应用、一元一次方程的应用,准确地找到等量关系并用方程组表示出来是解题的关键.(1)根据题意可知,本题中的相等关系是“A 种型号服装9件,B 种型号服装10件,需要1810元”和“A 种型号服装12件,B 种型号服装8件,需要1880元”,列方程组求解即可.(2)利用两个不等关系列不等式,结合实际意义求解.【详解】(1)设A 种型号服装每件x 元,B 种型号服装每件y 元.依题意可得:91018101281880x y x y +=⎧⎨+=⎩,解得:90100x y =⎧⎨=⎩,答:A 种型号服装每件90元,B 种型号服装每件100元.(2)设B 型服装购进m 件,则A 型服装购进()24m +件.根据题意得:()182430732m m ++≥,解不等式得10m ≥,答:至少购进B 型服装10件.23.如图,四边形ABCD 为矩形,点E 在边AD 上,AE CD =,连接CE ,过点E 作EF CE ⊥交AB 于点F ,分别过点C 、F 作CG EF ∥、FG CE ∥且CG 、GF 相交于点G .(1)求证:EF CE =;(2)连接GE ,若4CD =,点F 是AB 的中点,求GE 的长.【答案】(1)见解析;(2)210.【分析】(1)根据CE EF ⊥即余角的性质得到,可得∠=∠AFE CED ,根据矩形的性质可得90A D ∠=∠=︒,可证明(AAS)AEF DCE ≌ ,由此即可求证FE CE =;(2)根据题意可证四边形EFGC 是正方形,在Rt AEF 中由勾股定理求出的长,且EFG 是等腰直角三角形,根据其性质得到.【详解】(1)证明:∵CE EF ⊥,∴90CEF ∠=︒,∵四边形ABCD 是矩形,∴90A D ∠=∠=︒,AB CD =,∴90AEF AFE AEF CED ∠+∠=∠+∠=︒,∴∠=∠AFE CED ,∵AE CD =,∴(AAS)AEF DCE ≌ ,∴EF CE =.(2)解:如图所示,连接GE ,∵CG EF ∥,FG CE ∥,∴四边形CEFG 是平行四边形,∵90CEF ∠=︒,∴四边形CEFG 是矩形,∵EF CE =,∴四边形CEFG 是正方形,∵4AB CD ==,点F 是AB 的中点,∴122AF AB ==,∵4AE CD ==,在Rt AEF 中,90A ∠=︒,∴2225EF AF AE =+=,∵四边形CEFG 是正方形,∴EFG 是等腰直角三角形,∴2210EG EF ==.【点睛】此题考查了全等三角形的判定和性质,矩形的性质,正方形的性质,勾股定理,解题的关键是证明(AAS)AEF DCE ≌ ,由勾股定理求出FE 的长,由等腰直角三角形的性质即可得到2EG EF =.24.如图,A ,B ,C 是O 上的三点,且AB AC =,8BC =,点D 为优弧BDC 上的动点,且4cos 5ABC ∠=.(1)如图1,若BCD ACB ∠=∠,延长DC 到F ,使得CF CA =,连接AF ,求证:AF 是O 的切线;(2)如图2,若BCD ∠的角平分线与AD 相交于E ,求O 的半径与AE 的长;(3)如图3,将ABC 的BC 边所在的直线1l 绕点A 旋转得到2l ,直线2l 与O 相交于M ,N ,连接AM AN ,.2l 在运动的过程中,AM AN ⋅的值是否发生变化?若不变,求出其值;若变化,说明变化规律.【答案】(1)见解析(2)O 的半径为256,5AE =(3)2l 在运动的过程中,AM AN ⋅的值不发生变化,其值为25【分析】(1)连接AO ,先证BCD ABC ∠=∠,推出AB DF ∥,得到四边形ABCF 是平行四边形,AF BC ∥,再得到OA AF ⊥,即可证得结论;(2)连接AO 交BC 于H ,连接OB ,由垂径定理得142BH CH BC ===,根据4cos 5BH ABC AB ∠==,求出5AB =,设O 的半径为x ,则OA OB x ==,3OH x =-,在Rt BOH 中,由勾股定理求出256x =,O 的半径为256,根据角平分线定义及同弧所对圆周角相等得到AEC ACB BCE ACE ∠=∠+∠=∠,由此得到5AE AC AB ===;(3)连接AO ,并延长AO 交O 于Q ,连接NQ ,过点A 作2AP l ⊥于P ,证明AQM ANP △∽△,得到AM AN AP AQ ⋅=⋅,由(2)可知,点A 到直线1l 的距离为3,直线1l 绕点A 旋转得到2l ,A 到直线2l 的距离始终等于3,不会发生改变,由此得到253253AM AN AP AQ ⋅=⋅=⨯=.【详解】(1)证明:连接AO ,如图1所示:∵AB AC =,∴A ABC CB =∠∠,∵BCD ACB ∠=∠,∴BCD ABC ∠=∠,∴AB DF ∥,∵CF CA =,∴CF AB =,∴四边形ABCF 是平行四边形,∴AF BC ∥,∵AB AC =,∴»»AB AC =,∴OA BC ⊥,∴OA AF ⊥,∵OA 是O 的半径,∴AF 是O 的切线;图1(2)解:连接AO 交BC 于H ,连接OB ,如图2所示:∵OA BC ⊥,∴142BH CH BC ===,∵4cos 5BH ABC AB ∠==,∴554544AB BH ==⨯=,在Rt AHB 中,由勾股定理得:2222543AH AB BH =-=-=,设O 的半径为x ,则OA OB x ==,3OH x =-,在Rt BOH 中,由勾股定理得:()22234x x =-+,解得:256x =,∴O 的半径为256,∵CE 平分BCD ∠,∴BCE DCE ∠=∠,∵ABC ADC ∠=∠,∴AEC ADC DCE ABC DCE ACB BCE ACE ∠=∠+∠=∠+∠=∠+∠=∠,∴5AE AC AB ===;图2(3)解:连接AO ,并延长AO 交O 于Q ,连接NQ ,过点A 作2AP l ⊥于P ,如图3所示:则AQ 是O 的直径,∴90AMQ ∠=︒,∵2AP l ⊥,∴90APN ∠=︒,∴AMQ APN ∠=∠,∵AQM ANP ∠=∠,∴AQM ANP △∽△,∴AM AQ AP AN=,∴AM AN AP AQ ⋅=⋅,由(2)可知,点A 到直线1l 的距离为3,直线1l 绕点A 旋转得到2l ,∴点A 到直线2l 的距离始终等于3,不会发生改变,∴3AP =,∵25252263AQ OA ==⨯=,∴253253AM AN AP AQ ⋅=⋅=⨯=,∴2l 在运动的过程中,AM AN ⋅的值不发生变化,其值为25.图3【点睛】此题考查锐角三角函数,证明直线是圆的切线,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理,垂径定理,等知识,熟练掌握各知识点并综合应用是解题的关键.25.定义:在平面直角坐标系中,抛物线()20y ax bx c a =++≠与y 轴的交点坐标为()0,c ,那么我们把经过点()0,c 且平行于x 轴的直线称为这条抛物线的极限分割线.【特例感知】(1)抛物线221y x x =++的极限分割线与这条抛物线的交点坐标为______.【深入探究】(2)经过点()2,0A -和(),0(2)B x x >-的抛物线21142y x mx n =-++与y 轴交于点C ,它的极限分割线与该抛物线另一个交点为D ,请用含m 的代数式表示点D 的坐标.【拓展运用】(3)在(2)的条件下,设抛物线21142y x mx n =-++的顶点为P ,直线EF 垂直平分OC ,垂足为E ,交该抛物线的对称轴于点F .①当45CDF ∠=︒时,求点P 的坐标.②若直线EF 与直线MN 关于极限分割线对称,是否存在使点P 到直线MN 的距离与点B 到直线EF 的距离相等的m 的值?若存在,直接写出m 的值;若不存在,请说明理由.【答案】(1)()0,1和()2,1-(2)点D 的坐标为()2,1m m +(3)①顶点为91,4P ⎛⎫ ⎪⎝⎭或顶点为125,336P ⎛⎫- ⎪⎝⎭;②存在,0m =或222m =+或222m =-【分析】(1)根据定义,确定c 值,再建立方程组求解即可.(2)把点()2,0A -代入解析式,确定1n m =+,根据定义建立方程求解即可.(3)①根据等腰直角三角形的性质,得到等线段,再利用字母表示等线段建立绝对值等式计算即可.②设MN 与对称轴的交点为H ,用含m 的式子表示出点P 的坐标,分别写出极限分割线CD 、直线EF 及直线MN 的解析式,用含m 的式子分别表示出点B 到直线EF 的距离和点P 到直线MN 的距离,根据点P 到直线MN 的距离与点B 到直线EF 的距离相等,得出关于m 的绝对值方程,解方程即可.【详解】(1)∵抛物线221y x x =++的对称轴为直线=1x -,极限分割线为1y =,∴极限分割线与这条抛物线的一个交点坐标为()0,1,则另一个交点坐标为()2,1-.故答案为:()0,1和()2,1-.(2)抛物线经过点()2,0A -,∴()()21102242m n =-⨯-+⨯⨯-+∴1n m =+∴2111142x mx m m -+++=+,解得120,2x x m==∴点D 的坐标为()2,1m m +.(3)①设CD 与对称轴交于点G ,若45CDF ∠=︒,则DG GF =.∵点C 的坐标为()0,1m +,点D 的坐标为()2,1m m +..∴1,2OC m CD m =+=,∴11,22DG CD GF OC ==,∴112m m =+,解得1211,3m m ==-.∵抛物线21142y x mx n =-++的顶点为P ,∴抛物线()2211144y x m m m =--+++的顶点为21,14m m m P ⎛⎫++ ⎪⎝⎭,∴当1m =时,219144m m ++=,故顶点为91,4P ⎛⎫ ⎪⎝⎭;∴当13m =-时,21111251112511144933649336m m ++=⨯-+=⨯-+=,故顶点为125,336P ⎛⎫- ⎪⎝⎭;∴顶点为91,4P ⎛⎫ ⎪⎝⎭或顶点为125,336P ⎛⎫- ⎪⎝⎭.②存在,0m =或222m =+或222m =-.如图,设MN 与对称轴的交点为H .由()2知,1n m =+,抛物线()2211144y x m m m =--+++的顶点为21,14m m m P ⎛⎫++ ⎪⎝⎭,∴抛物线21142y x mx n =-++的极限分割线CD :1y m =+, 直线EF 垂直平分OC ,∴直线EF :12m y +=,∴点B 到直线EF 的距离为12m +; 直线EF 与直线MN 关于极限分割线CD 对称,∴直线MN :()312m y +=,∵21,14m m m P ⎛⎫++ ⎪⎝⎭,∴点P 到直线MN 的距离为()()()2213111114242m m m m m ++-+=-+,点P 到直线MN 的距离与点B 到直线EF 的距离相等,∴()()211111422m m m -+=+,∴()()211111422m m m -+=+或()()211111422m m m -+=-+,解得0m =或222m =+或222m =-,故0m =或222m =+或222m =-.【点睛】.查了抛物线与坐标轴的交点坐标和直线与抛物线的交点坐标等知识点,明确题中的定义、熟练掌握二次函数的图像与性质及绝对值方程是解题的关键.。
2024-2025学年河北省秦皇岛市山海关一中高三(上)第一次模拟数学试卷(含答案)
2024-2025学年河北省秦皇岛市山海关一中高三(上)第一次模拟数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={(x,y)|x 2+y 2=4},B ={(x,y)|y =2cosx},则A ∩B 的真子集个数为( )A. 5个B. 6个C. 7个D. 8个2.若干人站成一排,其中为互斥事件的是( )A. “甲站排头”与“乙站排头” B. “甲站排头”与“乙站排尾”C. “甲站排头”与“乙不站排头” D. “甲不站排头”与“乙不站排头”3.抛物线y =2x 2的准线方程为( )A. y =−18B. y =−12C. x =−18D. x =−124.已知直线a ,b ,c 是三条不同的直线,平面α,β,γ是三个不同的平面,下列命题正确的是( )A. 若a//α,b//α,则a//b B. 若a//b ,a//α,则b//αC. 若a ⊂α,b ⊂α,且a//β,b//β,则α//βD. α,β,γ三个平面最多可将空间分割成8个部分5.若正四棱锥的高为8,且所有顶点都在半径为5的球面上,则该正四棱锥的侧面积为( )A. 24B. 32C. 96D. 1286.已知双曲线C :x 2a 2−y 2=1(a >0),点M 在C 上,过点M 作C 两条渐近线的垂线,垂足分别为A ,B ,若|MA|⋅|MB|=34,则双曲线C 的离心率为( )A.62B. 233C. 263D.37.直线y =2x−2与曲线y =sinπx +xx−1−1的交点个数为( )A. 2B. 3C. 4D. 58.已知函数f(x)=lnx−mx 2+x ,若不等式f(x)>0的解集中佮有两个不同的正整数解,则实数m 的取值范围是( )A. [2+ln28,3+ln39) B. (3+ln39,2+ln24)C. [3+ln39,2+ln24) D. (2+ln28,3+ln39)二、多选题:本题共3小题,共18分。
2024年中考数学第一次模拟试卷(徐州卷)(全解全析)
2024年中考第一次模拟考试(徐州卷)数学·全解全析第Ⅰ卷一、选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)118)A .32B .23C .9D .6【答案】A 189232==故选:A .2.在下列运算中,正确的是()A .835x x x ÷=B .()2236x x =C .326x x x ⋅=D .()235x x =【答案】A【解析】解:A 、835x x x ÷=,故A 符合题意.B 、22(3)9x x =,故B 不符合题意.C 、325x x x ×=,故C 不符合题意.D 、326()x x =,故D 不符合题意.故选:A .3.如图是由4个相同的小正方体组成的几何体,从上面看这个几何体得到的平面图形是()A .B .C .D .【答案】B【解析】解:从上面看,得到的图形是两行,其中(上往下)第一行为2个小正方形,第二行是一个小正方形,选项B 中的图形符合题意,故选:B .4.某轮滑队所有队员的年龄只有12,13,14,15,16(岁)五种情况,其中部分数据如图所示,若队员年龄的唯一的众数与中位数相等,则这个轮滑队队员人数最少是()A .10B .11C .12D .13【答案】C 【解析】解:由题图中数据可知:小于14的人有4人,大于14的人也有4人,∴这组数据的中位数为:14,队员年龄的唯一的众数与中位数相等,∴众数是14,即年龄为14的人最多,∴14岁的队员最少有4人,故选:C .5.如图所示,在正五边形ABCDE 中,过点B ,A 作平行线BG ,AF ,46ABG ∠=︒,则FAE ∠的度数是()A .26︒B .44︒C .46︒D .72︒【答案】A 【解析】解:∵五边形ABCDE 为正五边形,∴()521801085EAB -⨯︒∠==︒.∵AF BG ∥,46ABG ∠=︒,∴1801804610826FAE ABG EAB ︒︒︒︒︒∠=-∠-∠=--=.故选:A .6.二次函数2y ax bx c =++中,y 与x 的部分对应值如下:则一元二次方程20ax bx c ++=的一个解x 满足条件()x1.1 1.2 1.3 1.4 1.5 1.6y 1.59- 1.16-0.71-0.24-0.250.76A .1.2 1.3x <<B .1.3 1.4x <<C .1.4 1.5x <<D .1.5 1.6x <<【答案】C【解析】解:由表格可知: 1.4x =时,0.240y =-<, 1.5x =时,0.250y =>,∴当1.4 1.5x <<,存在一个x 的值,使20y ax bx c =++=,∴一元二次方程20ax bx c ++=的一个解x 满足条件为1.4 1.5x <<;故选:C .7.如图,在平面直角坐标系xOy 中,菱形AOBC 的一个顶点O 在坐标原点,一边OB 在x 轴的正半轴上,4sin 5AOB ∠=,反比例函数48y x =在第一象限内的图象经过点A ,与BC 交于点F ,则AOF 的面积等于()A .30B .40C .60D .80【答案】B 【解析】解:过点A 作AM x ⊥轴于点M ,如图所示.设OA a =,在Rt OAM △中,90AMO ∠=︒,OA a =,4sin 5AOB ∠=,4sin 5AM OA AOB a ∴=⋅∠=,2235OM OA AM a =-=,∴点A 的坐标为3455a a ⎛⎫ ⎪⎝⎭,. 点A 在反比例函数48y x=的图象上,∴23412485525a a a ⋅==,解得:10a =,或10a =-(舍去).8AM ∴=,6OM =,∴10OA =.四边形OACB 是菱形,点F 在边BC 上,∴10OB OA ==,114022AOF OBCA S S OB AM ∴==⋅=菱形△.故选:B .8.如图,在ABC 中,点D 、E 在AC BC 、边上,连接DE 并延长交AB 延长线于点G .过D 作DF AG ⊥于F .若2ADF G ∠=∠,:2:1CE BE =,210AD =2AF =,4GE =,则BA 的长度为()A 2103B .4103C .9D .12【答案】C【解析】解:设ADF α∠=,则2G α∠=,∵DF AG ⊥,∴90AFD ∠=︒,∴90A α∠=︒-,∴18090ADG A G A α∠=︒-∠-∠=︒-=∠,∴GAD 为等腰三角形.由勾股定理得,226DF AD AF =-=,设GD x =,2GF x =-,由勾股定理得,222GF DF GD +=,即()22236x x -+=,解得10x =,∴6DE =,∵:2:1CE BE =,∴:2:3CE BC =,如图,过B 作BQ DG ∥交AC 于Q ,∴BQC EDC ∽,∴CEDEBC BQ =,即263BQ =,解得,9BQ =,∵BQ DG ∥,∴BQA DGA A ∠=∠=∠,∴9BA BQ ==,故选:C .第Ⅱ卷二、填空题(本大题共10个小题,每小题3分,共30分)9.实数5的平方根是.【答案】5±【解析】解:实数5的平方根是5故答案为:510.分解因式:22mx my -=.【答案】()()m x y x y -+/()()m x y x y +-【解析】解:()()()2222mx my m x y m x y x y -=-=-+;故答案为:()()m x y x y -+.11.作为锦州市非物质文化遗产,锦州烧烤已经成为我市的一张饮食文化名片,并于2022年入选国家《地标美食名录》.上网搜索“锦州烧烤”,网页显示找到相关结果约为5140000个,数据5140000用科学记数法可表示为.【答案】65.1410⨯【解析】65140000 5.1410=⨯.故答案为:65.1410⨯.12.圆锥的底面半径为2cm ,母线长为3cm ,则圆锥的侧面积为2cm .【答案】6π【解析】圆锥的侧面积为:()12236cm 2ππ⨯⨯⨯=.故答案为:6π13.如图,O 的直径12cm CD =,AB 是O 的弦,AB CD ⊥于点E ,13OE OC =::,则AB 的长为.【答案】82先求出OE 再利用勾股定理即可得得出AE ,最后用垂径定理即可得出AB .【解析】解:如图,连接OA ,O 的直径12cm CD =,6OD OA OC ∴===,13OE OC = ::,2OE ∴=,AB CD ⊥ ,290AB AE OEA ∴=∠=︒,,在Rt OAE △中,223642AE OA OE =--282cm AB AE ∴==.故答案为:8214.列方程组解题:“今有马二、牛一,直金七两;马三、牛二,直金十二两.马、牛各直金几何?”其大意是:2匹马,1头牛,一共价值7两;3匹马,2头牛,一共价值12两,问每匹马、每头牛各价值多少两?设每匹马x 两,每头牛y 两.根据题意,可列方程组为.【答案】273212x y x y +=⎧⎨+=⎩【解析】解:由题意得:273212x y x y +=⎧⎨+=⎩,故答案为:273212x y x y +=⎧⎨+=⎩.15.如图,在ABC 中,90ABC ∠=︒,60A ∠=︒,直尺的一边与BC 重合,另一边分别交AB ,AC 于点D ,E .点B ,C ,D ,E 处的读数分别为15,12,0,1,则直尺宽BD 的长为.233233【解析】解:由题意得,1DE =,3BC =,在Rt ABC △中,60A ∠=︒,则33tan 3BC AB A ==∵DE BC ∥,ADE ABC ∴△△∽,DE AD BC AB ∴=,即1333=解得:233BD =,23316.在古代的两河流域,人们用粘土制成泥版,在泥版上进行书写.古巴比伦时期的泥版BM15285(如图1)记录着祭司学校的数学几何练习题,该图片由完美的等圆组成.受泥版上的图案启发,某设计师设计出形似雨伞的图案用作平面镶嵌(如图2),若图案中伞顶与伞柄的最长距离为2,则一块伞形图案的面积为.【答案】2【解析】解:观察图形,一块伞形图案的面积为:矩形面积-下半圆面积+上半圆面积=矩形面积,∴一块伞形图案的面积为:2×1=2.故答案为:2.17.如图,曲线l 是由函数k y x=在第一象限内的图象绕坐标原点O 逆时针旋转45︒得到的,过点(42,2A -,(22,2B 的直线与曲线l 相交于点M ,N ,若OMN 的面积是46,则k 的值为.【答案】5【解析】解:连接OA ,OB ,过A 作AE y ⊥轴于E ,过B 作BF y ⊥轴于F ,如图所示:点(2,2A -,(2,2B ,42OE ∴=42AE =228OA OE AE ∴=+=,45EAO AOE ∠=∠=︒,同理得:4OB =,45BOF ∠=︒,90AOB ∠=︒∴,OA OB ∴⊥,函数(0)k y k x=>在第一象限内的图象绕坐标原点O 逆时针旋转45︒,∴建立新的坐标系:OB 为x '轴,OA 为y '轴,则旋转后的函数解析式为:k y x '=',在新的坐标系中,()0,8A ,()4,0B ,设直线AB 的解析式为:y mx n '='+,则840n m n =⎧⎨+=⎩,解得28m n =-⎧⎨=⎩,∴直线AB 的解析式为:28y x ''=-+,设()11,28M x x -+,()22,28N x x -+,由28k x x '-+='得:2280x x k ''-+=,124x x ∴+=,122k x x =,()121118484286222OMN AOB AOM BON S S S S x x =--=⨯⨯-⨯⨯-⨯⨯-+= 整理得126x x -=-()2126x x ∴-=,∴22112226x x x x +-=,()2121246x x x x ∴+-=,24462k ∴-⨯=,5k ∴=;故答案为:5.18.如图,等腰ABC 中,4AB AC BC m ===,,点D 是边AB 的中点,点P 是边BC 上的动点,且不与B C 、重合,DPQ B ∠=∠,射线PQ 交AC 于点Q .当点Q 总在边AC 上时,m 的最大值是.【答案】42【解析】解:设BP x =,则,PC m x =-AB AC = ,,B C ∴∠=∠,DPQ B ∠=∠Q ,C DPQ ∴∠=∠180,180PQC QPC C BPD ∠=︒-∠-∠∠=︒-∠Q ,DPQ QPC -∠,PQC BPD ∴∠=∠,BPD CQP ∴V V ∽,BD PBCP CQ ∴=即2,xm x CQ =-2111(),222CQ x m x mx ∴=-=-+当12x m =时,CQ 取最大值,最大值为218m ,要使Q 永远在AC 上,则CQ AC ≤,即4CQ ≤,214,8m ∴≤232,m ∴≤042,m ∴<≤∴m 的最大值为42故答案为:42三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤)19.(1()10131330 3.142tan π-⎛⎫-︒+-+- ⎪⎝⎭;(2)解方程:24810x x ++=.【解析】(1)原式()3313123131223=--+-=--=-(2)解:2124x x +=-212114x x ++=-+,()2314x +=312x +=±∴1312x =-+,2312x =--.20.(1)化简24()44-÷+--a a a a (2)解不等式组:2132(1)4x x x x <+⎧⎨--≤⎩【解析】解:(1)原式224444a a a a a --+=÷--224444a a a a a --=⨯--+2244(2)a a a a --=⨯--12a =-;(2)()213214x x x x <+⎧⎪⎨--≤⎪⎩①②解不等式①,得1x >-,解不等式②,得2x ≤,故原不等式组的解集是12x -<≤.21.2023年9月,为了更好地落实“双减”政策,增强课后服务的时效性,某中学定于每周二、周四下午进行兴趣社团课“走班制”,开设了5类兴趣社团课(每位学生均只选其一):A .音乐;B .体育;C .美术;D .信息技术;E .演讲.为了了解该校学生的参与情况,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)此次调查的学生人数为________人,并补全条形统计图;(2)求“C”类兴趣社团课所对应扇形的圆心角的度数;(3)该校现有学生1800人,请你估算该校参加“D”类兴趣社团课的学生有多少人?【解析】(1)解:1230%40÷=(人)参加“D”类兴趣社团课的学生有:40612859----=(人)补全条形统计图(2)“C”类兴趣社团课所对应扇形的圆心角的度数为:8 3607240︒⨯=︒(3)该校参加“D”类兴趣社团课的学生有:4061285 180040540----⨯=(人)22.元旦假期全国客流持续回暖,某景区入口检票处有A、B、C、D四个闸机,如图所示,游客领取门票后可随机选择一个闸口通过.(1)一名游客通过该景点闸口时,选择A闸口通过的概率为______.(2)当两名游客通过该景点闸口时,请用树状图或列表法求两名游客选择不同闸口通过的概率.【解析】(1)解:由题意可得:选择A闸口通过的概率为14,故答案为14;(2)解:设这两名游客为甲和乙,由题意可得如下表格:甲/乙A B C DA(),A A(),A B(),A C(),A DB(),B A(),B B(),B C(),B DC(),C A(),C B(),C C(),C DD(),D A(),D B(),D C(),D D由表格可知两名游客选择闸口通过的可能性有16种,其中选择不同闸口通过的情况有12种,∴两名游客选择不同闸口通过的概率为123164 P==.23.如图,矩形ABCD中,点E,F分别在AB,CD边上,连接CE、AF,∠DCE=∠BAF.试判断四边形AECF的形状并加以证明.【解析】解:四边形AECF是平行四边形.∵四边形ABCD是矩形,∴//DC AB,∴∠DFA=∠BAF,又∵∠DCE=∠BAF,∴∠DCE=∠DFA∴//FA CE,∴四边形AECF是平行四边形.24.今年春节期间第二十四届冬奥会在我国成功举办,吉祥物“冰墩墩”以其呆萌可爱、英姿飒爽形象,深受大家喜爱.某商店第一次用3000元购进一批“冰墩墩”玩具,很快售完;该商店第二次购进该“冰墩墩”玩具时,进价提高了20%,同样用3000元购进的数量比第一次少了10件.(1)求第一次购进的“冰墩墩”玩具每件的进价;(2)若两次购进的“冰墩墩”玩具每件售价均为70元,且全部售完,求两次的总利润.【解析】(1)解:设第一次购进的“冰墩墩”玩具每件的进价为x 元,则第二次每件的进价为(120%)x +元,依题意得:3000300010(120%)x x -=+,解得:50x =,经检验:50x =是方程的解,且符合题意,答:第一次购进的“冰墩墩”玩具每件的进价为50元.(2)解:由题意可得30003000703000217005050 1.2⎛⎫⨯+-⨯= ⎪⨯⎝⎭(元),答:两次的总利润为1700元.25.已知BC 是O 的直径,点D 是BC 延长线上一点,AB AD =,AE 是O 的弦,30AEC ∠=︒.(1)求证:直线AD 是O 的切线;(2)若AE BC ⊥,垂足为M ,O 的半径为10,求AE 的长.【解析】(1)如图,连结OA ,∵30AEC ∠=︒, AC AC =,∴30260B AEC AOC AEC ∠=∠=︒∠=∠=︒,,∵AB AD =,∴30D B ∠=∠=︒,∴18090OAD AOC D ∠=︒-∠-∠=︒,∵OA 是O 的半径,且AD OA ⊥,∴直线AD 是O 的切线.(2)∵BC 是O 的直径,且AE BC ⊥于点M ,∴AM EM =,∵9060AMO AOM ∠=︒∠=︒,,∴30OAM ∠=︒,∴1110522OM OA ==⨯=,∴22221053AM OA OM =--∴2233AE AM ==⨯.26.如图1是一种折叠椅示意图,忽略其支架等器件的宽度,支架与座板均用线段表示,得到它的侧面的简化结构图,如图2所示.若座板CD 平行于地面,前支架AB 与后支架OF 分别与CD 交于点E ,D ,量得20cm ED =,40cm DF =,58AED ∠=︒,76ODC ∠=︒.(1)求椅子座板CD 距离地面BF 的高度;(2)求两支架着地点B ,F 之间的距离.(精确到0.1cm )(参考数据:sin 580.85︒≈,cos 580.53︒≈,tan 58 1.60︒≈,sin 760.97︒≈,cos760.24︒≈,tan 76 4.00︒≈)【解析】(1)解:过点E ,D 分别作EH BF ⊥于H ,作DG BF ⊥于G ,90EHB DGF ∴∠=∠=︒,∵ED BF ∥,58OED OBF ∴∠=∠=︒,76ODE DFG ∠=∠=︒,在Rt DGF △中,40DF =,sin sin 760.97DG DFG DF∠=︒=≈ ,()0.974038.8cm DG ∴=⨯=,∴椅子座板CD 距离地面BF 的高度是38.8cm ;(2)解:在Rt DGF △中,40DF =,cos cos760.24FG DFG FD∴∠=︒=,()0.24409.6FG cm ∴=⨯=,∵ED BF ∥,EH BF ⊥,DG BF ⊥,∴四边形EDHG 是矩形,38.8cm EH DG ∴==,20cm ED HG ==,在Rt EBH △中,38.8EH =,tan tan 58 1.60EH EBH BH∠=︒=≈ ,()24.25cm BH ∴≈,()24.25209.653.9cm BF BH HG GF ∴=++=++≈,∴两支架着地点BF 之间的距离约为53.9cm .27.如图1,已知在平面直角坐标系xOy 中,抛物线31y a x x =+-()()与x 轴交于点A 和点B ,与y 轴交于点C ,且3OC =.点P 是抛物线上的一个动点,连接AP 和BP .(1)求a 的值和ACO ∠的度数;(2)当点P 运动到抛物线顶点时,求AOC 与APB △的面积之比;(3)如图2,当点P 在抛物线上运动,且满足APB ACO ∠∠=时,求点P 的坐标.【解析】(1)3OC = ,(0,3)C ∴,代入31y a x x =+-()(),得:33a -=,解得1a =-;令0y =,有(3)(1)0x x -+-=,解得3x =-或1x =,(3,0)A ∴-,(1,0)B ,OC OA ∴=,45ACO ∴∠=︒.(2)1a =- ,(3,0)A -,(1,0)B 2(3)(1)(1)4y x x x ∴=-+-=-++,1(3)4=--=AB ,∴顶点P 坐标为(1,4)-, 193322AOC S =⨯⨯=△,14482APB S ∆=⨯⨯=,∴992816AOCAPB S S ==⨯ .(3)如图,这样的点P 有两个.过点B 作1BD BP ⊥交1AP 于点D过点D 作DE x ⊥轴于点E ,过点1P 作1PF x ⊥轴于点F .145APB ∠=︒ ,1BDP ∴ 是等腰直角三角形.1BDE PBF ∴ ≌,DE BF ∴=,1BE PF =.设BF m =,则DE m =,21(1,4)P m m m +--,所以,214BE PF m m ==+.244AE AB BE m m ∴=-=--,4AF m =+.1ADE APF ∽,∴1DE AE PF AF =,∴224444m m m m m m--=++,化简得,243m m +=,即2(2)7m +=,解得27m =-±,取27m =-∴1(17,3)P --,根据对称性可知,2(17,3)P --.综上所述P 的坐标为1(17,3)P --,2(17,3)P--.28.(1)【方法尝试】如图1,矩形ABFC 是矩形ADGE 以点A 为旋转中心,按逆时针方向旋转90︒所得的图形,CB ED 、分别是它们的对角线.则CB 与ED 数量关系_______,位置关系________;(2)【类比迁移】如图2,在Rt ABC △和Rt ADE △中,909632BAC DAE AC AB AE AD ∠∠=︒=====,,,,.将DAE 绕点A 在平面内逆时针旋转,设旋转角BAE ∠为α(0360α︒≤<︒),连接CE BD ,.请判断线段CE 和BD 的数量关系和位置关系,并说明理由;(3)【拓展延伸】如图3,在Rt ABC △中,906ACB AB ∠=︒=,,过点A 作AP BC ∥,在射线AP 上取一点D ,连接CD ,使得3tan 4ACD ∠=,请求线段BD 的最大值和最小值.【解析】解:(1)如图,延长CB 交DE 于点H .由旋转的性质可得:CB ED =,ACB BEH ∠=∠.又∵ABC HBE ∠=∠,∴90CAB BHE ∠=∠=︒,即CB ED ⊥.故答案为:CB ED =,CB ED ⊥;(2)32CE BD =,CE BD ⊥,理由如下,延长CE 交BD 于点Q ,交AB 于点O ,如图2.∵90BAC DAE ∠=∠=︒,∴CAE BAD ∠=∠.∵9632AC AB AE AD ====,,,,∴32ACAEAB AD ==,∴CAE BAD ∽,∴32CE ACBD AB ==,ACE ABD ∠=∠.∵AOC BOQ ∠=∠,∴90OQB OAC ∠=∠=︒,∴32CE BD =,CE BD ⊥;(3)如图,过点A 作AE AB ⊥,使得483AE AB ==,取AB 的中点R ,连接CR ER CE ,,.∵AP BC ∥,∴90DAC ACB EAB ∠=∠=∠=︒.∴CAE DAB ∠=∠.∵3tan 4ADACD AC ∠==,∴34ADABAC AE ==,∴DAB CAE ∽△△,∴34BD ADEC AC ==,∴34BD EC =.∵点R 为AB 中点,90ACB ∠=︒,∴3CR AR BR ===.∵908EAB AE ∠=︒=,,∴2273ER AE AR =+=∵ER CR EC CR ER -≤≤+,733373EC ≤≤∵34BD EC =,37399373BD -+≤∴BD 94373+37394-.。
2024年中考数学第一次模拟试卷(深圳卷)(全解全析)
2024年中考第一次模拟考试(深圳卷)数学·全解全析第一部分选择题一、选择题(本大题共10小题,每题3分,共30分.每题给出4个选项,其中只有一种是正确旳)1.同学们在进行乒乓球赛时,如果胜3局记作3+,那么0表示().A.胜2局B.负3局C.胜3局D.非胜非负【答案】D【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.+,那么0表示非胜非负;【详解】解:胜3局记作3故选:D【点睛】本题主要考查了“正”和“负”的相对性,确定一对具有相反意义的量,以及0的意义,比较简单.2.以下是四届冬奥会会标的一部分,其中是轴对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称图形的定义进行判断即可.【详解】解:A、不是轴对称图形,故不符合要求;B、不是轴对称图形,故不符合要求;C、是轴对称图形,故符合要求;D、不是轴对称图形,故不符合要求;故选:C.【点睛】本题考查了轴对称图形的识别.解题的关键在于熟练掌握轴对称的定义:在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,据统计“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示是()A .84410⨯人B .84.410⨯人C .94.410⨯人D .104.410⨯人【答案】C【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:94400000000 4.410=⨯.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.下列说法正确的是()A .为了解全国中小学生的心理健康状况,应采用普查B .抛掷一枚质地均匀的硬币两次,必有一次正面朝上C .数据6、5、8、7、2的中位数是6D .甲乙两名射击运动员各进行10次射击练习,平均成绩相同,成绩的方差分别是:2s 甲=6,2s 乙=4,则甲比乙的成绩稳定【答案】C【分析】A.根据抽样调查和普查概念判断;B .根据随机事件和必然事件概念判断;C.根据中位数概念判断;D.根据方差概念判断;【详解】A.为了解全国中小学生的心理健康状况,适宜采用抽查;故错误;B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上属于随机事件不一定;故错误;C.数据6、5、8、7、2的中位数是6,故正确;D.甲乙两名射击运动员各进行10次射击练习,平均成绩相同,成绩的方差分别是:2s 甲=6,2s 乙=4,则乙比甲的成绩稳定;故错误;故选:C【点睛】本题主要考查抽样调查和普查概念、机事件和必然事件概念、中位数概念、方差概念,掌握相关概念是解题的关键.5.一个菱形的边长为2,则它的周长是()A .8B .6C .4D .2【答案】A【分析】本题考查了菱形的性质,根据菱形的四边相等,即可求解.【详解】解:∵一个菱形的边长为2,∴它的周长是248⨯=,故选:A .6.下列运算正确的是()A .()236a a -=-B .236a a a ⋅=C .222()a b a b +=+D .22232a a a -=【答案】D【分析】由幂的乘方、同底数幂乘法、完全平方公式、合并同类项,分别进行计算,即可得到答案.【详解】解:A 、()236a a -=,故A 错误;B 、235a a a ⋅=,故B 错误;C 、222()2a b a ab b +=++,故C 错误;D 、22232a a a -=,故D 正确;故选:D .【点睛】本题考查了幂的乘方、同底数幂乘法、完全平方公式、合并同类项,解题的关键是熟练掌握运算法则进行解题.7.如图,O 是BC 上一点,AO BC ⊥于点O ,直线DE 经过O 点,25BOD ∠︒=,则AOE ∠的度数为()A .100°B .105°C .115°D .125°【答案】C【分析】由AO BC ⊥,可得90AOC ∠︒=,由对顶角相等可得25COE BOD ∠∠︒==,根据角的和差即可解答.【详解】解:∵AO BC ⊥,∴90AOC ∠︒=,∵25COE BOD ∠∠︒==,图象如图2,已知8cm AF =,则下列说法正确的有几个()①动点H 的速度是2cm/s ;②BC 的长度为3cm ;③b 的值为14;④在运动过程中,当HAF △的面积是230cm 时,点H 的运动时间是3.75s 和1025s ..A .1个B .2个C .3个D .4个【答案】A【分析】先根据点H 的运动,得出当点H 在不同边上时HAF △的面积变化,并对应图2得出相关边的边长,最后经过计算判断各个说法.【详解】解:当点H 在AB 上时,如图所示,(cm)AH xt =,()214cm 2HAF S AF AH xt =⨯⨯= ,此时三角形面积随着时间增大而逐渐增大,当点H 在BC 上时,如图所示,HP 是HAF △的高,且HP AB =,12HAF S AF HP =⨯⨯ ,点当点H 在DE 上时,如图所示,12HAF S AF EF =⨯⨯ ,此时三角形面积不变,当点H 在EF 时,如图所示,12HAF S AF HF =⨯⨯ ,点H 零,对照图2可得05t ≤≤时,点(44540cm HAF S xt x ==⨯= ∴2x =,2510(cm)AB ⨯==∴动点H 的速度是2cm /s ,故①正确,58t ≤≤时,点H 在BC 上,此时三角形面积不变,∴动点H 由点B 运动到点C 共用时()853s -=,∴236(cm)BC ⨯==,故②错误,12t b ≤≤,点H 在DE 上,862(cm)DE AF BC =-=-=,∴动点H 由点D 运动到点E 共用时()221s ÷=,∴12113b =+=,故③错误.当HAF △的面积是230cm 时,点H 在AB 上或CD 上,点H 在AB 上时,()24830cm AAF S xt t === ,解得 3.75(s)t =,点H 在CD 上时,()211830cm 22HAF S AF HP HP =⨯⨯=⨯⨯= ,解得7.5(cm)HP =,∴107.5 2.5(cm)CH AB HP =-=-=,∴从点C 运动到点H 共用时2.52 1.25(s)=÷,由点A 到点C 共用时8s ,∴此时共用时8 1.259.25(s)+=,故④错误.故选:A .【点睛】本题考查动点函数的图象,掌握三角形的面积公式,函数图象的性质,理解函数图象上的点表示的意义是解决本题的关键.第二部分非选择题二、填空题(本大题共5小题,每题3分,共15分)11.如果从2、6、12、20、30、42这6个数中任意选一个数,那么选到的数恰好是4的倍数的概率是.【答案】13分析是解题的关键.14.如图,在Rt ABO 中,90,3023,ABO AOB OB ∠=︒∠=︒=反比例函数(k y k x=为常数且0k ≠)的图象经过边OA 的中点,C 则k =.【答案】3-【分析】先过点C 作CD ⊥OB ,根据90∠=︒ABO ,C 点是OA 的中点,得到CD 为Rt ABO 的中位线,再根据三角函数求得C (3,1-),代入函数解析式求出k 值即可.【详解】解:过点C 作CD ⊥OB∵90∠=︒ABO ,C 点是OA 的中点.∴CD 为Rt ABO 的中位线∵30,23AOB OB ∠=︒=∴OD=3,CD=3031tan ︒= ∴C(3,1-)∵反比例函数(ky k x=为常数且0k ≠)的图象经过边OA 的中点,C在Rt △BDE 中,222223104522BD BE ED x x ⎛⎫=+=+=+ ⎪ ⎪⎝⎭又∵∠DBE =∠ABC ,∠BED =∠BCA =90°∴△BED ∽△BCA∴BD DE BA AC=即245310263102x x +=+∴221010450x x -+=解得,()2110101010424591042x +-⨯⨯==,()221010101042451042x --⨯⨯==∵△BED ∽△BCA又∵BC >AC∴1BE BC ED CA=>∴BE >ED =3102∴BE =9102则22229103101522BD BE DE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∴BC =BD +DC =18>AC =6∴116185422ABC S AC BC =⋅=⨯⨯= ,符合题意若1031022BE DE =<=,不符合题意舍去故答案为:54.【点睛】本题考查了相似三角形的判定与性质、勾股定理、锐角三角函数、一元二次方程,解题的关键是通过相似三角形的性质求出BE 的值.三、解答题(本大题共7小题,其中第16小题5分,第17题7分,第18题8分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)处理方A继续使用B直接丢弃C送回收点D搁置家中E卖给药贩F直接焚烧式所占比8%51%10%20%6%5%例(1)设计调查方式:有下列选取样本的方法:①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.其中最合理的一种是.(只需填上正确答案的序号)(2)描述数据:此次抽样的样本数为1000户家庭,下图是根据调查结果绘制的不完整的条形统计图,请补全此条形统计图.(3)分析数据:根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是.(4)分析数据:家庭过期药品的正确处理方式是送回收点,若该市有800万户家庭,请估计大约有多少户家庭处理过期药品的方式是正确的.【答案】(1)③(2)见解析(3)直接丢弃(4)80万【分析】(1)根据抽取的样本具有代表性解题即可;(2)用总量乘以各处理方式所占的百分比求出数量,补图即可;(3)由表格可以得到丢弃所占的百分比最大,即可得到结果;(4)用样本所占百分比乘以总户数解题即可.【详解】(1)解:∵抽取的样本具有代表性,∴③在全市常住人口中以家庭为单位随机抽取更具有代表性;故答案为:③(2)C 的数量为:100010%100⨯=;D 的数量为:100020%200⨯=,补图为:(3)根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是直接丢弃;(4)解:80010%80⨯=(万户)答:估计大约有80万户家庭处理过期药品的方式是正确的.【点睛】本题考查条形统计图,样本的选取,用样本估计总体,众数,解题的关键是利用统计图获取有关信息,在解题时腰认真观察、分析、研究统计图.19.北京时间12月18日晚23点,2022年卡塔尔世界杯决赛,阿根廷对战法国.阿根廷最终战胜法国,时隔36年再次夺得世界杯冠军,这也是阿根廷队历史第3次在世界杯夺冠,梅西赛后接受采访时说道,“我们受到了很多挫折,但我们做到了”,世界杯结束后,学生对于足球的热情高涨.为满足学生课间运动的需求,学校计划购买一批足球,已知购买3个A 品牌足球和2个B 品牌足球共需480元;购买5个A 品牌足球和2个B 品牌足球共需640元(1)求A ,B 两种品牌足球的单价;(2)若该校计划从某商城网购A ,B 两种品牌的足球共20个,其中购买A 品牌的足球不少于3个且不多于B 品牌的足球个数,求该校购买这些足球共有几种方案?【答案】(1)A 品牌足球单价为80元,B 品牌足球单价为120元;(2)共有8种方案【分析】(1)根据购买3个A 品牌足球和2个B 品牌足球共需480元;购买5个A 品牌足球和2个B 品牌足球共需640元,可以列出相应的二元一次方程组,然后求解即可;(2)设购买A 品牌足球a 个,则购买B 品牌足球()20a -个,然后根据购买A 品牌的足球不少于3个且不多于B 品牌的足球个数,列出一元一次不等式组,即可得出答案.【详解】(1)解:设A .,B 两种品牌足球的单价分别为x 元,y 元,根据题意.,得3248052640x y x y +=⎧⎨+=⎩,解得80120x y =⎧⎨=⎩,答:A 品牌足球单价为80元,B 品牌足球单价为120元;(2)解:设购买A 品牌足球a 个,则购买B 品牌足球()20a -个,根据题意.,得320a a a ≥⎧⎨≤-⎩,解得310a ≤≤,∵a 为整数,∴3,4,5,6,7,8,9,10a =所以共有8种方案【点睛】本题考查二元一次方程组的应用、一元一次不等式组的应用,解答本题的关键是明确题意,列出相应的方程组.20.如图,已知Rt ABC 中,90C ∠=︒.(1)请按如下要求完成尺规作图.(不写作法,保留作图痕迹)①BAC ∠的角平分线AD ,交BC 于点D ;②作线段AD 的垂直平分线EF 与AB 相交于点O ;③以点O 为圆心,以OD 长为半径画圆,交边AB 于点M .(2)在(1)的条件下求证:BC 是O 的切线;(3)若4AM BM =,10AC =,求O 的半径.用尺规作图,准确应用相关性质进行推理运算.21.如图,某蔬菜种植大棚一侧框架,它的上半部分是一个等腰ABC ,其中腰长AB 与底边BC 的比是5:8,它的下半部分是矩形BCDE ,点F 、H 是AB 边的三等分点,点G 、I 是AC 边的三等分点.已知,制造这一侧框架的材料总长(图中所有黑线的长度和)为42米,设AB 的长是x 米,BE 的长是y 米.(1)请直接写出y 与x 的函数关系式__________;(2)若该侧框架围成图形的面积用S 表示,请直接写出S 与x 之间的函数关系__________;(3)当x 等于多少米时,此框架围成图形的面积是28平方米(第2问结论可直接应用)?【答案】(1)1721102y x =-+(2)25684255S x x =-+(3)当x 取52或5时,此框架围成图形的面积是28平方米【分析】(1)先证明AFG AHI ABC ∽∽,则有::::1:2:3FG HI BC AF AG AB ==,即2FG HI BC BC ++=,再根据矩形的性质得到ED BC =,BE JK LM CD ===,然后得到方程168244255x x x y +++=,整理解题即可;(2)过点A 作AN BC ⊥于点N ,根据等腰三角形的性质和勾股定理可以得到35AN x ==,然后根据ABC BCDE S S S =+ 矩形求出面积即可;(3)令28S =,则2568428255x x -+=,解方程求出方程的根解题即可.【详解】(1)解:∵AB :BC 5:8=,AB x =米,∴85BC x =米,又∵F 、H 是AB 边的三等分点,点G 、I 是AC 边的三等分点,∴::::1:2:3AF AG AB AG AI AC ==,∴85ABC BCDE S S S =+=矩形故答案为:25625S x =-+(3)令28S =,则5625-解得:152x =,25x =,∴当x 取52或5时,此框架围成图形的面积是【点睛】本题考查二次函数的性质在实际生活中的应用,式是解题的关键.22.在ABCD Y 中,点E 是(1)如图1,求证:180BFD FCD ∠+∠=︒;(2)如图1,探索EF 与BD 的数量关系,并证明;(3)如图2,若2AB AF =,3AF =,10AD =,求EF 的长.【答案】(1)见解析(2)BD =2EF ,见解析(3)213FE =【分析】(1)根据平行四边形的性质、平行线的性质以及等量代换即可解答;(2)如图:如图1,延长FE ,DC 交于点G ,先证CEG BEF ≌△△可得CG BF =、EF EG =,再证CEG BEF ≌△△和BFD GCF ≌△△,最后根据全等三角形的性质以及等量代换即可解答;(3)如图2,过点F 作MF CD ⊥于点M ,过点E 作NE BA ⊥于点N ,连接AC ,AE ,则90FMC ∠=︒;由直角三角形的性质可得2CD CM =,再证四边形ACMF 是矩形,然后运用勾股定理求得AC ,进一步求得EN 、FN ,最后运用勾股定理解答即可.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB CD ∥,∴180BFD FDC ∠+∠=︒∵FC FD =,∴FCD FDC∠=∠∴180BFD FCD ∠+∠=︒.(2)解:2BD EF =,证明如下:证明:如图1,延长FE ,DC 交于点G ,∵AB CD ∥,∴G BFE∠=∠∵点E 是CB 中点,∴BE CE=又BEF CEG ∠=∠,∴CEG BEF ≌△△,∴CG BF =,EF EG=∵180BFD FCD ∠+∠=︒,180FCG FCD ∠+∠=︒∴BFD GCF ∠=∠,又∵FC FD=∴BFD GCF ≌△△,∴2BD FG EF ==.(3)解:如图2,过点F 作MF CD ⊥于点M ,过点E 作NE BA ⊥于点N ,连接AC ,AE ,则90FMC ∠=︒,∵FC FD =,∴2CD CM=∵四边形ABCD 是平行四边形,∴AB CD ∥,BA CD =,10DA BC ==∵26BA FA ==,∴FA CM =,FA CM ∥,∴四边形ACMF 是平行四边形,∵90CMF ∠=︒,∴四边形ACMF 是矩形,∴90CAF BAC ∠=∠=︒,21∴228AC BC AB =-=∵E 是BC 中点,∴AE BE =,∴3AN BN AF ===,∴142NE AC ==,∴222264213FE FN EN =+=+=.【点睛】本题主要考查了全等三角形的判定与性质、矩形的判定与性质、平行四边形的判定与性质、勾股定理等知识点,灵活运用相关性质、判定定理成为解答本题的关键。
2024年大连市高三数学第一次模拟考试卷附答案解析
2024年大连市高三数学第一次模拟考试卷注意事项:1.请在答题纸上作答,在试卷上作答无效.2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{123456}U =,,,,,,集合{124}{135}A B ==,,,,,,则U B A = ð()A .{2}4,B .{16},C .{3}5,D .{1}2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,xn ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .x 1,x 2,…,xn 的平均数B .x 1,x 2,…,xn 的标准差C .x 1,x 2,…,xn 的最大值D .x 1,x 2,…,xn 的中位数3.方程2214x y m+=表示椭圆,则实数m 的取值范围()A .0m >B .4m >C .04m <<D .0m >且4m ≠4.已知直线a ,b ,c 是三条不同的直线,平面α,β,γ是三个不同的平面,下列命题正确的是()A .若a c b c ⊥⊥,,则//a bB .若////a b a α,,则//b αC .若////a b c a αα⊥,,,且c b ⊥,则c α⊥D .若βαγα⊥⊥,,且a βγ= ,则a α⊥5.将ABCDEF 六位教师分配到3所学校,若每所学校分配2人,其中,A B 分配到同一所学校,则不同的分配方法共有()A .12种B .18种C .36种D .54种6.若π,π2α⎛⎫∈ ⎪⎝⎭,且5cos 24παα⎛⎫=- ⎪⎝⎭,则tan α=()A .43-B .34-C .13-D .17.设函数3333()sin πe e 3x x f x x x --=+--+则满足()(32)4f x f x +-<的x 的取值范围是()A .(3,)+∞B .(3),-∞C .(1,)+∞D .(,1)-∞8.设12F F ,是双曲线2222:1(00)x y C a b a b-=>>,的左、右焦点,点A 是双曲线C 右支上一点,若12AF F △的内切圆M 的半径为a (M 为圆心),且λ∃∈R ,使得123AM OM F F λ+=,则双曲线C 的离心率为()AB C .2D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知i 是虚数单位,下列说法正确的是()A .已知a b c d ∈R ,,,,若a c b d >=,,则i i a b c d +>+B .复数12z z ,满足12z z =,则12z z =C .复数z 满足|i ||i |z z -=+,则z 在复平面内对应的点的轨迹为一条直线D .复数z 满足(1i)|1|+=z ,则ππcos isin 44z ⎫=-⎪⎭10.已知函数()sin()(0,0π)f x x ωϕωϕ=+><<,若π5π166f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,且π5π,66x ⎛⎫∀∈- ⎪⎝⎭,都有()1f x <,则()A .()y f x =在5π0,12⎛⎫⎪⎝⎭单调递减B .()y f x =的图象关于7π,012⎛⎫⎪⎝⎭对称C .直线12y =+是一条切线D .()y f x =的图象向右平移π3个单位长度后得到函数()g x 是偶函数11.已知函数()f x 是定义域为R 的可导函数,若()()()()3f x y f x f y xy x y +=+++,且()03f '=-,则()A .()f x 是奇函数B .()f x 是减函数C .0f=D .1x =是()f x 的极小值点第Ⅱ卷三、填空题:(本大题共3小题,每小题5分,共15分,把答案填在答卷纸的相应位置上)12.“函数()2sin f x ax x =-是奇函数”的充要条件是实数=a .13.在边长为4的正方形ABCD 中,如图1所示,E ,F ,M 分别为BC ,CD ,BE 的中点,分别沿AE ,AF 及EF 所在直线把AEB AFD ,和EFC 折起,使B ,C ,D 三点重合于点P ,得到三棱锥P AEF -,如图2所示,则三棱锥P AEF -外接球的表面积是;过点M 的平面截三棱锥P AEF -外接球所得截面的面积的取值范围是.14.已知实数0,0a b >>,且()84ab a b +=,则4a b +的最小值为四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图多面体ABCDEF 中,面FAB ⊥面ABCD ,FAB 为等边三角形,四边形ABCD 为正方形,EF BC ∥,且334EF BC ==,H ,G 分别为CE ,CD 的中点.(1)证明:BF AD ⊥;(2)求平面BCEF 与平面FGH 所成角的余弦值;(3)作平面FHG 与平面ABCD 的交线,记该交线与直线AD 交点为P ,写出APAD的值(不需要说明理由,保留作图痕迹).16.已知函数()()ln 1R f x x x ax a =++∈.(1)若()0f x ≥恒成立,求a 的取值范围;(2)当1x >时,证明:e ln e(1)x x x >-.17.一个不透明的盒子中有质地、大小均相同的7个小球,其中4个白球,3个黑球,现采取不放回的方式每次从盒中随机抽取一个小球,当盒中只剩一种颜色时,停止取球.(1)求停止取球时盒中恰好剩3个白球的概率;(2)停止取球时,记总的抽取次数为X ,求X 的分布列与数学期望:(3)现对方案进行调整:将这7个球分装在甲乙两个盒子中,甲盒装3个小球,其中2个白球,1个黑球:乙盒装4个小球,其中2个白球,2个黑球.采取不放回的方式先从甲盒中每次随机抽取一个小球,当盒中只剩一种颜色时,用同样的方式从乙盒中抽取,直到乙盒中所剩小球颜色和甲盒剩余小球颜色相同,或者乙盒小球全部取出后停止.记这种方案的总抽取次数为Y ,求Y 的数学期望,并从实际意义解释X 与Y 的数学期望的大小关系.18.在平面直角坐标系xOy 中,点O 为坐标原点,已知两点()()1,21,2A B ---,,点M 满足()2MA MB OM OA OB +=⋅++uuu r uuu r uuu r uu r uu u r,记点M 的轨迹为G .(1)求曲线G 的方程:(2)若P ,C ,D 为曲线G 上的三个动点,CPD ∠的平分线交x 轴于点()0(1)Q a a <-,,点Q 到直线PC 的距离为1.(ⅰ)若点Q 为PCD 重心,用a 表示点P 的坐标;(ⅱ)若PQ CD ⊥,求a 的取值范围.19.对于数列()1231:,,,1,2,3A a a a a i ∈=N ,定义“T 变换”:T 将数列A 变换成数列123:,,B b b b ,其中1(12)i i i b a a i +=-=,,且331b a a =-.这种“T 变换”记作()B T A =,继续对数列B 进行“T 变换”,得到数列123:,,C c c c ,依此类推,当得到的数列各项均为0时变换结束.(1)写出数列A :3,6,5经过5次“T 变换”后得到的数列:(2)若123,,a a a 不全相等,判断数列123:,,A a a a 不断的“T 变换”是否会结束,并说明理由;(3)设数列A :2020,2,2024经过k 次“T 变换”得到的数列各项之和最小,求k 的最小值.1.C【分析】由补集和交集的定义运算.【详解】集合{123456}U =,,,,,,集合{124}{135}A B ==,,,,,,则{}3,5,6U A =ð,有{}3,5U B A = ð.故选:C 2.B【详解】评估这种农作物亩产量稳定程度的指标是标准差或方差,故选B.点睛:众数:一组数据出现次数最多的数叫众数,众数反映一组数据的多数水平;中位数:一组数据中间的数(起到分水岭的作用),中位数反映一组数据的中间水平;平均数:反映一组数据的平均水平;方差:反映一组数据偏离平均数的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.标准差是方差的算术平方根,意义在于反映一组数据的离散程度.3.D【分析】分焦点在x 轴,y 轴两种情况讨论,写出m 范围即可.【详解】方程2214x y m+=表示椭圆,若焦点在x 轴上,40m >>;若焦点在y 轴上,4m >.综上:实数m 的取值范围是0m >且4m ≠故选:D【点睛】本题考查了椭圆的标准方程,考查了学生概念理解,分类讨论,数学运算能力,属于基础题.4.D【分析】由空间中直线与平面的位置关系,对各项进行分析即可.【详解】若a c b c ⊥⊥,,则a ,b 可以是平行,也可以是相交或异面,故A 错误;若////a b a α,,则//b α或b α⊂,故B 错误;若////a b c a αα⊥,,且c b ⊥,当//a b 时,不能证明c α⊥,C 选项错误;若βαγα⊥⊥,,且a βγ= ,在a 上取一点P ,作PQ α⊥,由面面垂直的性质定理可得PQ β⊂且PQ γ⊂,既a 与PQ 重合,可得a α⊥,故D 正确.故选:D 5.B【分析】先平均分组,再利用全排列可求不同分配方法的总数.【详解】将余下四人分成两组,每组两人,有2242C C 2种分法,故不同的分配方法共有223423C C A 182⨯=种,故选:B.6.A【分析】先利用三角恒等变换公式化简可得1cos sin 5αα+=,结合22cos sin 1αα+=可得cos ,sin αα,进而可得tan α.【详解】由5cos 2sin 4παα⎛⎫- ⎪⎝⎭得()22225cos sin cos sin 22αααα⎫-=-⎪⎪⎭,即()()5cos sin cos sin cos sin αααααα-+=-,因为π,π2α⎛⎫∈ ⎪⎝⎭,所以cos sin 0αα-≠,所以1cos sin 5αα+=,结合22cos sin 1αα+=,且cos 0,sin 0αα<>,得34cos ,sin 55αα=-=,所以sin tan s 43co ααα==-.故选:A.7.C【分析】观察题设条件与所求不等式,构造函数()()12g x f x =+-,利用奇偶性的定义与导数说明其奇偶性和单调性,从而将所求转化为()()122g x g x -<-,进而得解.【详解】因为3333()sin πe e 3x x f x x x --=+--+,所以()()3333331sin ππee 13x xf x x x +---+=++---+33sin πe e 2x x x x -=-+--+,设()()3312sin πe e x xg x f x x x -=+-=-+--,显然定义域为R ,()()12g x f x -=-,又()()3333()sin πee sinπe e ()xx x x g x x x x x g x ---=--+-+=--+--=-,所以()g x 为R 上的奇函数,又33()πcos π3e 3e 1πcos 15πcos 0x x g x x x x -'=-++-≥-+=->,所以()g x 在R 上单调递增,又()(32)4f x f x +-<,则[][]()2(32)20f x f x -+--<,所以()()1220g x g x -+-<,即()()()12222g x g x g x -<--=-,所以122x x -<-,解得1x >,则满足()(32)4f x f x +-<的x 的取值范围是(1,)+∞.故选:C .8.A【分析】向量坐标化并结合双曲线定义与等面积得123,3,AF c a AF c a =+=-点点距列方程得()3,4A a a 代入双曲线求出离心率.【详解】设()(),,,M M A A M x y A x y ,由对称性不妨设A 在第一象限,此时M 也在第一象限,因为123AM OM F F λ+=uuu r uuu u u ruu r ,所以30,44M A M A M y y y y y a -+===,所以()12121124222AF F S c a AF AF c a =⋅⋅=⋅++⋅ ,又122AF AF a -=,解得()1213,3,,0AF c a AF c a F c =+=--,所以1A AF ex a=+,所以1A AF a ex =+,解得3A x a =,所以()3,4A a a ,代入双曲线方程得:2222(3)(4)1a a a b-=,解得,b c ==,所以==ce a故选:A【点睛】关键点点睛:本题考查双曲线的离心率,关键是向量坐标化并充分利用曲线定义确定A 的坐标.9.BCD【分析】根据虚数不能比较大小可知A 错误;根据共轭复数的定义可判断B ;根据复数的几何意义可判断C ;根据复数的运算法则进行计算,可判断D.【详解】对A ,虚数不能比较大小,可知A 错误;对B ,根据共轭复数的定义知,当12z z =时,12z z =,则12z z =,故B 正确;对C ,因为复数z 满足|i ||i |z z -=+,则复数z 在复平面上对应的点到()()0,1,0,1-两点间的距离相等,则复数z 在复平面上对应的点为两点构成线段的中垂线,即z 在复平面内对应的点的轨迹为一条直线,故C 正确;因为(1i)|1|2z +==,则()()()()21i 21i 21i 1i 1i 1i 2z --====-++-,又ππ22cos isin i 1i 4422z ⎫⎫=--=-⎪⎪⎪⎭⎭,故D 正确,故选:BCD.10.BC【分析】依题意可得πT =即可求出ω,再根据函数的最大值求出ϕ,即可求出函数解析式,再根据正弦函数的性质判断A 、B 、D ,设切点为005π,sin 26x x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,利用导数的几何意义求出0x ,即可判断C.【详解】对A ,因为()sin()(0,0π)f x x ωϕωϕ=+><<,所以()max 1f x =,又π5π166f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,且π5π,66x ⎛⎫∀∈- ⎪⎝⎭,都有()1f x <,所以5πππ66T ⎛⎫=--= ⎪⎝⎭,所以2ππT ω==,解得2ω=,即()()sin 2f x x ϕ=+,又ππsin 163f ϕ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭,所以ππ2π,Z 32k k ϕ-+=+∈,解得5π2π,Z 6k k ϕ=+∈,又0πϕ<<,所以5π6ϕ=,所以()5πsin 26f x x ⎛⎫=+ ⎪⎝⎭,当5π0,12x ⎛⎫∈ ⎪⎝⎭时5π5π5π2,663x ⎛⎫+∈ ⎪⎝⎭,又sin y x =在5π5π,63⎛⎫⎪⎝⎭上不单调,所以()y f x =在5π0,12⎛⎫⎪⎝⎭上不单调,故A 错误;对B ,因为7π7π5πsin 2sin 2π012126f ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭,所以()y f x =的图象关于7π,012⎛⎫⎪⎝⎭对称,故B 正确;对C ,因为()5π2cos 26f x x ⎛⎫=+ ⎝'⎪⎭,设切点为005π,sin 26x x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,则()005π2cos 26f x x ⎛⎫=+= ⎪⎝⎭'所以05πcos 262x ⎛⎫+=- ⎪⎝⎭,所以05π5π22π,Z 66x k k +=+∈或05π5π22π,Z 66x k k +=-+∈,解得0π,Z x k k =∈或05ππ,Z 6x k k =-+∈,又005π1sin 262x ⎛⎫+=+ ⎪⎝⎭,因为05π1sin 216x ⎛⎫-≤+≤ ⎪⎝⎭,即01112-≤+≤,解得0x ≤,所以00x =,即直线12y =+是函数()f x 在10,2⎛⎫⎪⎝⎭处的切线,故C 正确;对D ,将()y f x =的图象向右平移π3个单位长度后得到()π5ππsin 2sin 2366g x x x ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,显然()g x 是非奇非偶函数,故D 错误.故选:BC 11.ACD【分析】令0x y ==求出()0f ,令y x =-可确定奇偶性,将y 当作常数,x 作为变量,对原式求导,然后可通过赋值,解不等式求单调性及极值.【详解】令0x y ==,得()00f =,令y x =-,得()()0f x f x =+-,所以()f x 是奇函数,A 正确;()()()()()22233,63f x y f x f y x y xy f x y f x yx y '+=+++'∴+=++ 令()()20,03x f y f y =∴=+'',又()()()2303,33,3f f y y f y y y c '=-∴='=-∴-+ ,()()()3300,0,3,3,0f c f y y y f x x x f=∴=∴=-∴=-∴= ,令()0f x '=,1x ∴=±,()0f x '>,1x <-或()1,0,11x f x x ><-<<'()f x ∴在(),1∞--和()1,∞+上为增函数,()f x 在()1,1-上为减函数,1x ∴=是()f x 的极小值,故CD 正确,B 错误.故选:ACD.12.0【分析】结合三角函数奇偶性、幂函数奇偶性以及奇偶性的定义即可运算求解.【详解】若函数()2sin f x ax x =-是奇函数,则当且仅当()()()()22sin sin f x ax x a x x f x ⎡⎤=-=----=--⎣⎦,也就是220ax =恒成立,从而只能0a =.故答案为:0.13.24π[]π,6π【分析】补体法确定外接球直径进而求得表面积;利用球的截面性质确定面积最值.【详解】由题意,将三棱锥补形为边长为2,2,4长方体,如图所示:三棱锥P AEF -外接球即为补形后长方体的外接球,所以外接球的直径()2222222424R R =++==,所以三棱锥P AEF -外接球的表面积为24π24πS R ==,过点M 的平面截三棱锥P AEF -的外接球所得截面为圆,其中最大截面为过球心O 的大圆,此时截面圆的面积为22π6πR ==,最小截面为过点M 垂直于球心O 与M 连线的圆,此时截面圆半径1r =(其中MN 长度为长方体前后面对角线长度),故截面圆的面积为2ππr =,所以过点M 的平面截三棱锥P AEF -的外接球所得截面的面积的取值范围为[]π,6π.故答案为:24π;[]π,6π14.【分析】利用消元法得到4a b +的函数关系式,再利用导数讨论其单调性后可求最小值.【详解】()222224(4)81681616a b a ab b a a b b b b+=++=++=+,设()2416g b b b =+,其中0b >,则()()322481432b g b b b b-=-+'=,当10,2b ⎛⎫∈ ⎪⎝⎭时,()0g b '<,当1,2b ∞⎛⎫∈+ ⎪⎝⎭时,()0g b '>,故()g b 在10,2⎛⎫ ⎪⎝⎭上为增函数,在1,2∞⎛⎫+ ⎪⎝⎭上为减函数,故()min 1122g b g ⎛⎫== ⎪⎝⎭,此时20a =-+>,故4a b +的最小值为故答案为:15.(1)证明见解析(3)14AP AD =,作图见解析【分析】(1)由面面垂直得到线面垂直,从而证明出线线垂直;(2)由面面垂直得到线面垂直,再建立空间直角坐标系,写出点的坐标,得到平面的法向量,进而利用平面法向量求出面面角的余弦值;(3)作出辅助线,得到线线平行,进而得到结论.【详解】(1)在正方形ABCD 中,AD AB ⊥,∵平面FAB ⊥平面ABCD ,平面FAB 平面,ABCD AB AD =⊂平面ABCD ,AD ∴⊥平面FAB ,又BF ⊂平面FAB ,BF AD ∴⊥;(2) FAB 为等边三角形,设AB 中点为O ,∴OF AB ⊥,又平面FAB ⊥平面ABCD ,面FAB 面,ABCD AB OF =⊂面FAB ,则OF ⊥面ABCD ,以O 为坐标原点,分别以,,OB OG OF 为,,x y z轴正方向建立空间直角坐标系,如图所示:因为334EF BC ==,则4BC =,则()()((()72,0,0,2,4,0,0,0,,0,3,21,,0,4,02B C F E H G ⎛ ⎝,所以(()(72,0,,0,4,0,1,,,0,4,2BF BC FH FG ⎛=-=== ⎝,设平面BCEF 的一个法向量为(),,m x y z =则020400m BF x y m BC ⎧⎧⋅=-+=⎪⎪⇒⎨⎨=⎪⋅=⎪⎩⎩ ,取1z =得0x y ==,所以)m =,设平面FGH 的一个法向量为(),,n a b c =则7002040a b n FH n FG b ⎧⎧+=⋅=⎪⎪⇒⎨⎨⋅=⎪⎪-=⎩⎩,取c =93,42a b =-=,所以93,42n ⎛=- ⎝ ,所以)93,42cos ,22n m n m n m⎛⋅- ⋅===-⋅,所以平面与BCEF 与平面FGH(3)如图所示:在AD 上取一点P ,使得DP EF =,连接,FP PG ,因为//EF BC ,AD //BC ,所以//EF AD ,即//EF DP ,所以EFPD 为平行四边形,故//FP ED ,因为H ,G 分别为CE ,CD 的中点,所以//GH DE ,故//GH PF ,即,,,G H P F共面,故14AP AD =.16.(1)1a ≥-(2)证明见解析【分析】(1)参变分离,构造函数,求导得到函数的单调性,从而求出最值,得到答案;(2)法一:在(1)的基础上得到()e 1e ln x xx x x ->,1x >,再构造函数得到e e xx >,得到()()e 1e 1x x x x->-,从而得到结论;法二:即证11ln e x x x -->,构造函数()11ln e x x G x x --=-,求导后再对分子求导,从而得到函数的单调性,得到()()10G x G >=,证明出结论.【详解】(1)由已知得,1ln a x x-≤+在()0,∞+上恒成立,设()()221111ln ,x g x x g x x x x x-=+=-=',()0g x '>,解得1x >,()0g x '<,解得01x <<,()g x ∴在()0,1上为减函数,在()1,∞+上为增函数,()()11g x g ∴≥=,即1a -≤,1a ∴≥-;(2)法一:由(1)知1a ≥-时,()0f x ≥恒成立,取1a =-,得1ln x x x-≥成立,1x =时取等号.所以当1x >时,()e 1e ln x xx x x->,设()()e e ,e e x xh x x h x =='--,故1x >时,()0h x '>,()e e x h x x ∴=-在()1,∞+上为增函数,()()10h x h ∴>=,e e x x ∴>.所以1x >时,e e xx>,即()()e 1e1xx x x->-.由此可证,当1x >时,()()e 1e ln e 1x x x x x x->>-,结论得证.法二:当1x >时,若证()e ln e 1xx x >-成立.即证11ln ex x x -->,1x >设()11ln ,1ex x G x x x --=->,()()()1112211e 1e 1e 2e e x x x x x x x x G x x x -------+-=-'=,设()()()1211e2,e 22e 21x x x m x x x m x x x ---=+-=+-=+-',当1x >时,()()0,m x m x >'∴在()1,∞+上为增函数.()()()10,0m x m G x ∴>=∴>',()G x ∴在()1,∞+上为增函数,()()10G x G >=,由此可证,当1x >时,()e ln e 1xx x >-成立.【点睛】方法点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.17.(1)335(2)分布列见解析,()275E X =(3)()409E Y =,在将球分装时,甲盒取完后直接取乙盒,此时甲盒中还有其它球,该球干扰作用已经消失,所以同样是要剩余同一颜色,调整后的方案总抽取次数的期望更低.【分析】(1)利用古典概型的概率公式可求A 得概率;(2)先确定X 的取值,再就每一个取值的意义结合古典概型的概率公式可求分布列,再利用公式可求期望.(3)先确定Y 的取值,再设甲盒、乙盒抽取次数分别为12Y Y 、,根据题设得到三者之间的关系,再结合古典概型的概率公式可求分布.【详解】(1)设“停止取球时盒中恰好剩3个白球”为事件A ,则()11343347C A A 3A 35P A ==;(2)X 的可能取值为3,4,5,6,()3337A 13A 35P X ===,()4113443347A C A A 44A 35P X +===,()11422334444357C A A C A A 25A 7P X +===,()11223427C C A 46A 7P X ===,所以X 的分布列为X3456P1354352747X 的数学期望()14242734563535775E X =⨯+⨯+⨯+⨯=;(3)Y 的可能取值为3,4,5,6,设甲盒、乙盒抽取次数分别为12Y Y 、,因为乙盒中两种小球个数相同,所以无论甲盒剩余小球什么颜色,乙盒只需取完一种颜色即可,()()()221224A 113123A 18P Y P Y P Y ======,()()()()()1122222212123244C A A A 12413223A A 923P Y P Y P Y P Y P Y ====+===⨯+⨯=,()()()()()121251423P Y P Y P Y P Y P Y ====+==11221122222222323444C A A A C A A 1273A A 3A 18⎛⎫=++= ⎪⎝⎭,()()()11222222123244C A A A 216243A A 3P Y P Y P Y ⎛⎫=====+= ⎪⎝⎭,Y 的数学期望()12714034561891839E Y =⨯+⨯+⨯+⨯=,在将球分装时,甲盒取完后直接取乙盒,此时甲盒中还有其它球,该球干扰作用已经消失,所以同样是要剩余同一颜色,调整后的方案总抽取次数的期望更低.18.(1)24y x=-(2)(i)334P ⎛-± ⎝,;(ii )94a <-【分析】(1)对()2MA MB OM OA OB +=⋅++uuu r uuu r uuu r uu r uu u r向量坐标化,整理得曲线轨迹方程;(2)法一:由条件得PQ CD ⊥,结合斜率和重心坐标公式得P1=,平方化简得,m n 是方程()()()2220000120y t x a y t x a -+---=的两根,直线与曲线联立,结合韦达定理求出P 坐标,即可求解;法二:由圆切线方程抽方程可知直线EF 的方程为()()001x a x a y y --+=,与圆联立得()0012221y x a k k y -+=-,结合韦达定理得P 坐标,即可求解.【详解】(1)设点()()(),,1,2,1,2M x y A B ---Q ,()()()()()1,2,1,2,,,1,2,1,2MA x y MB x y OM x y OA OB ∴=---=----==-=--uuu r uuu r uuu r uu r uu u r即()()22,2,2,0MA MB x y OA OB +=---+=-uuu r uuu r uu r uu u r,MA MB ∴+==uuu r uuu r()()()2,2,0222OM OA OB x y x ⋅++=⋅-+=-+uuu r uu r uu u r,()2,22MA MB OM OA OB x +=⋅++=-+Q uuu r uuu r uuu r uu r uu u r,化简得曲线G 的方程:24y x =-;(2)(ⅰ)解法1:设()()()112200,,,,,C x y D x y P x y ,PQ 为PCD 的角平分线.Q 为PCD 重心PQ ∴为PCD 的中线,S 三线合一可得PQ CD⊥021221124,4CD PQ y y y k k y x x y y a --===-+--Q ,Q 为PCD 重心0120y y y ∴++=(14,PQ CD k k P a ⋅=-∴-± ①设直线PC 方程为:()00x x m y y -=-,直线PD 方程为:()00x x n y y -=-,PQ ∵是CPD ∠的平分线,点Q 到直线PC 的距离为1,∴点Q 到直线PD 的距离为1,1=,可得()()()2220000120y m x a y m x a -+---=同理()()()2220000120y n x a y n x a -+---=,即,m n 是方程()()()2220000120y t x a y t x a -+---=的两根,()002021x a y m n y -∴+=-,()0024x x m y y y x ⎧-=-⎨=-⎩联立可得:2004440y my x my ++-=,011044y y m y m y ∴+=-∴=--,同理()201204,42y n y y y m n y =--∴+=-+-,点Q 为PCD 重心,0120y y y ∴++=,即()()00002024401x a y m n y y y ⎛⎫--+-=--=⎪-⎝⎭,又020008144,a x y x y +⎧=⎪=-∴⎨⎪=⎩ 故点P的坐标为81,4a +⎛ ⎝②联立①②可得174a =-即33,4P ⎛⎫- ⎪⎝⎭(ⅱ)由(ⅰ)知()002021x a y m n y -+=-,()()()()2021*******0020214422424121CDy y y k x a y x x y y m n y a y y y -----∴=====--+-+----⨯--,020,1,4PQ PQ CD y k k k y a =⋅=---Q 22216481648,04949a a a a y a a +-+-∴=∴≥----216481,049a a a a +-<-∴≥--Q 等价于94904a a -->∴<-时满足题意.(ⅰ)解法2:PQ ∵是CPD ∠的平分线,点Q 到直线PC 的距离为1,∴点Q 到直线PD 的距离为1,∴直线PC PD 、与圆22:()1Q x a y -+=相切,设直线PC PD 、与圆的切点分别为()()1122,,,E x y F x y ,设直线PC 上任意一点坐标为(),P x y ,则0PE QE ⋅=,可得()()1111,,0x x y y x a y --⋅-=,整理得()()()11110x x x a y y y --+-=,结合2211()1x a y -+=,进一步可得直线PC 方程为:()()111x a x a y y --+=,同理直线PD 方程为()()221x a x a y y --+=,因为点()00,P x y 在两条直线上,所以可知直线EF 的方程为()()001x a x a y y --+=,代入圆方程可得:()()22200()x a y x a x a y y ⎡⎤-+=--+⎣⎦即:()()()()22220000121()0y y x a x a y y x a x a ⎡⎤----+---=⎣⎦设直线QE 的斜率1114y k x a =-,直线QF 的斜率为2224y k x a=-,()()()2220001210y y y y x a x a x a x a ⎛⎫∴---+--= ⎪--⎝⎭即()0012221y x a k k y -+=-,联立直线PC 与抛物线方程,()()21141y x x a x a y y ⎧=-⎪⎨--+=⎪⎩,可得:21114140y y y a x a x a ⎛⎫--+= ⎪--⎝⎭,014C y y k ∴+=,同理可得024D y y k ∴+=,()12042C D y y k k y ∴+=+- 点Q 为PCD 重心,00C D y y y ∴++=,即()()00120028401x a y k k y y y -+-=-=-,又020008144,a x y x y +⎧=⎪=-∴⎨⎪=⎩ 故点P的坐标为81,4a +⎛ ⎝②其余过程同解法1.【点睛】关键点点睛:本题考查直线与抛物线位置关系,关键是利用角分线的意义抽方程或直线,进而得韦达定理求出P 坐标.19.(1)0,1,1(2)不会,理由见解析(3)507【分析】(1)根据数列的新定义写出经过5次“T 变换”后得到的数列即可;(2)先假设数列A 经过不断的“T 变换”结束,不妨设最后的数列123123:,,,:,,,:0,0,0D d d d E e e e F ,由F 数列往前推,则非零数量可能通过“T 变换”结束,或者数列E 为常数列,进而得到D 可能出现的情况,推出矛盾,故假设不成立,即可证明;(3)先往后推几项,发现规律,假设1次“T 变换”后得到的通项,多写几项推出规律,往后继续进行,推到使数字接近1时,再继续推,往后会发现k 次“T 变换”得到的数列是循环的,得到最小值,进而推出次数即可.【详解】(1)由题知,5次变换得到的数列依次为3,1,2;2,1,1;1,0,1;1,1,0;0,1,1;所以数列A :3,6,5经过5次“T 变换”后得到的数列为0,1,1.(2)数列A 经过不断的“T 变换”不会结束,设数列123123:,,,:,,,:0,0,0D d d d E e e e F ,且()(),E T D F T E ==,由题可知:2132310,0,0e e e e e e -=-=-=,123e e e ∴==,即非零常数列才能经过“T 变换”结束;设123e e e e ===(e 为非零常数列),则为变换得到数列E 的前两项,数列D 只有四种可能:111111111111:,,2;:,,;:,,2;:,,D d d e d e D d d e d D d d e d e D d d e d +++---,而以上四种情况,数列E 的第三项只能是0或2e ,即不存在数列D ,使得其经过“T 变换”变成非零常数列,故数列A 经过不断的“T 变换”不会结束;(3)数列A 经过一次“T 变换”后得到数列:2018,2022,4B ,其结构为,4,4,a a +(a 远大于4)数列B 经过6次“T 变换”后得到的数列依次为:4,,4;4,4,8;8,12,4;4,16,12;a a a a a a a a -------;20,4,16;24,20,4a a a a ----所以,经过6次“T 变换”后得到的数列也是形如“,4,4a a +”的数列,变化的是,除了4之外的两项均减小24,201824842,=⨯+ 则数列B 经过684504⨯=次“T 变换”后得到的数列为:2,6,4,接下来经过“T 变换”后得到的数列依次为:4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;至此,数列各项和的最小值为4,以后数列循环出现,数列各项之和不会变得更小,所以最快经过16842507+⨯+=次“T 变换”得到的数列各项之和最小,即k 的最小值为507.【点睛】思路点睛:本题考查数列的新定义问题.关于数列的新定义一般思路为:()1根据定义写出几项;()2找出规律;()3写成通项;()4证明结论.。
2024唐山高考一模数学(含答案)
唐山市2024年普通高等学校招生统一考试第一次模拟演练数学本试卷共4页,19小题,满分150分.考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i为虚数单位,复数z=21+i,则z·¯z=A.1+i B.1-iC. 2 D.22.已知x∈R,p:“x2-x>0”,q:“x>1”,则p是q的A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件3.已知向量a=(3,-1),b=(-2,x),若a⊥(a+b),则|b|=A.2 5 B.4C.210 D.204.已知函数f(x)=xx-2,则f(x)的最小值为A.0 B.2C.2 2 D.35.从正方体的8个顶点中任取3个连接构成三角形,则能构成正三角形的概率为A.17B.114C.27D.4356.已知抛物线E :y 2=4x 的焦点为F ,以F 为圆心的圆与E 交于A ,B 两点,与E 的准线交于C ,D 两点,若|CD |=221,则|AB |= A .3 B .4 C .6 D .87.已知球与圆台的底面、侧面都相切,且圆台母线与底面所成角为60°,则球表面积与圆台侧面积之比为 A .2︰3 B .3︰4 C .7︰8 D .6︰13 8.已知函数f (x )=|sin ωx |+cos ωx (ω>0)的最小正周期为π,则A .f (x )在[- π 8, π8]单调递增 B .(3π8,0)是f (x )的一个对称中心C .f (x )在[- π 6, π 6]的值域为[1,2] D .x = π8是f (x )的一条对称轴二、选择题:本题共3小题,每小题6分,共18分。
高三第一次模拟考试卷数学
一、选择题(每小题5分,共50分)1. 下列函数中,在其定义域内是奇函数的是()A. f(x) = x^2 + 1B. f(x) = x^3 - xC. f(x) = 1/xD. f(x) = x^2 - 2x + 12. 已知函数f(x) = ax^2 + bx + c,若f(1) = 2,f(-1) = 0,且f(x)的图像开口向上,则a的取值范围是()A. a > 0B. a < 0C. a = 0D. a ≠ 03. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a=3,b=4,c=5,则角A的正弦值是()A. 3/5B. 4/5C. 5/3D. 3/44. 已知数列{an}的前n项和为Sn,若an = 2^n - 1,则数列{an}的第5项是()A. 31B. 32C. 33D. 345. 下列不等式中,正确的是()A. log2(3) > log2(2)B. log2(4) < log2(3)C. log2(9) > log2(8)D. log2(16) < log2(15)6. 已知复数z = 1 + i,则|z|^2 + |z|^3的值是()A. 3B. 4C. 5D. 67. 在极坐标系中,点P(2, π/6)对应的直角坐标是()A. (√3, 1)B. (1, √3)C. (-√3, 1)D. (1, -√3)8. 已知函数f(x) = e^x + e^(-x),则f(x)的图像关于()A. x轴对称B. y轴对称C. 原点对称D. 直线y=x对称9. 下列各式中,表示二项式展开式的通项公式的是()A. (a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + ... + C(n, n)b^nB. (a - b)^n = C(n, 0)a^n - C(n, 1)a^(n-1)b + ... - C(n, n)b^nC. (a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b^2 + ... + C(n, n)b^nD. (a - b)^n = C(n, 0)a^n - C(n, 1)a^(n-1)b^2 + ... - C(n, n)b^n10. 下列函数中,在区间(0, +∞)上单调递减的是()A. f(x) = x^2 - 2x + 1B. f(x) = 2x - 1C. f(x) = 1/xD. f(x) = e^x二、填空题(每小题5分,共50分)11. 函数f(x) = (x - 1)/(x + 1)的对称轴方程是______。
2024年中考数学第一次模拟试卷(上海卷)(全解全析)
2024年中考第一次模拟考试(上海卷)数学·全解全析第Ⅰ卷一、选择题(本大题共6个小题,每小题4分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列二次根式中,与3是同类二次根式的是()A .6B .9C .13D .18【答案】C【解析】A 、6与3不是同类二次根式,B 、93=与3不是同类二次根式,C 、1333=与3是同类二次根式,D 、1832=与3不是同类二次根式.故选C .2.将抛物线2y x =向左平移2个单位后,所得新抛物线的解析式是()A .22y x =-B .22y x =+C .2(2)y x =-D .2(2)y x =+【答案】D【解析】由“左加右减”的原则可知,将抛物线y =x 2向左平移2个单位,所得抛物线的解析式为:y =(x +2)2,故选D .3.已知在四边形ABCD 中,AB CD ,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是()A .AD BC =B .AC BD=C .A C∠=∠D .A B∠=∠【答案】C【解析】A 、B.∵在四边形ABCD 中,AB CD ,∴AD BC =或AC BD =,都不能判定四边形ABCD 为平行四边形,故A 、B 错误;C.∵AB CD ,∴180B C ∠+∠=︒,∵A C ∠=∠,∴180A B ∠+∠=︒,∴AD BC ∥,∴四边形ABCD 为平行四边形,故C 正确.D.当A B ∠=∠时,无法判定四边形ABCD 为平行四边形,故D 错误.故选C.4.在线段、等边三角形、等腰梯形、平行四边形中,一定是轴对称图形的个数有()A.1个B.2个C.3个D.4个【答案】C【解析】①线段是轴对称图形,②等边三角形是轴对称图形,③等腰梯形是轴对称图形,④平行四边形不是轴对称图形,综上所述,一定是轴对称图形的是①②③共3个.故选C.5.对于数据:6,3,4,7,6,0,9.下列判断中正确的是()A.这组数据的平均数是6,中位数是6B.这组数据的平均数是6,中位数是7C.这组数据的平均数是5,中位数是6D.这组数据的平均数是5,中位数是7【答案】C【解析】对于数据:6,3,4,7,6,0,9,这组数据按照从小到大排列是:0,3,4,6,6,7,9,这组数据的平均数是:034667957++++++=,中位数是6,故选C.6.如图,在△ABC中,∠C=90°,AC=3,BC=4,⊙B的半径为1,已知⊙A与直线BC相交,且与⊙B没有公共点,那么⊙A的半径可以是()A.4B.5C.6D.7.【答案】D【解析】根据勾股定理得:AB=5,根据题意,⊙A与直线BC相交,所以⊙A的半径的取值范围是大于3;又⊙A 与⊙B 没有交点,则r <5-1=4或r >5+1=6,∴3<r <4或r >6.故选D .二、填空题(本大题共12个小题,每小题4分,共48分)7.52的相反数是.【答案】-52【解析】52的相反数是﹣52,故答案为﹣52.8.在四边形ABCD 中,向量AB 、CD 满足AB=-4CD ,那么线段AB 与CD 的位置关系是.【答案】平行【解析】∵AB =-4CD ,∴AB 与CD 是共线向量,由于AB 与CD没有公共点,∴AB ∥CD ,故答案为平行.9.如图,已知在△ABC 中,AB =3,AC =2,∠A =45o ,将这个三角形绕点B 旋转,使点A 落在射线AC上的点A 1处,点C 落在点C 1处,那么AC 1=.【答案】22【解析】如图,连接AC 1,由旋转知,△ABC ≌△A 1BC 1,∴AB =A 1B =3,AC =A 1C 1=2,∠CAB =∠C 1A 1B =45°,∴∠CAB =∠CA 1B =45°,∴△ABA 1为等腰直角三角形,∠AA 1C 1=∠CA 1B+∠C 1A 1B =90°,在等腰直角三角形ABA 1中,AA 1=2AB =32,在Rt △AA 1C 1中,22221111AC AA A C (32)222=+=+=.故答案为22.10.计算:32()m m ¸-=.【答案】m【解析】m 3÷(-m )2=m 3÷m 2=m .故答案为m .11.不等式组10,25x x ->⎧⎨<⎩的整数解是.【答案】x =2【解析】1025x x -⎧⎨⎩>①<②,由①得x >1,由②得x <52,∴1<x <52,∵x 取整数,∴x =2.故答案为x =2.12.方程10x x -=g 的根是.【答案】x=1【解析】原方程变形为x (x-1)=0,∴x=0或x-1=0,∴x=0或x=1,∴x=0时,被开方数x-1=-1<0,∴x=0不符合题意,舍去,∴方程的根为x=1,故答案为x=1.13.如果正比例函数3)y k x =-(的图像经过第一、三象限,那么k 的取值范围是.【答案】k>3【解析】因为正比例函数y=(k-3)x 的图象经过第一、三象限,所以k-3>0,解得:k >3,故答案为k >3.14.如图,某水库大坝的横断面是梯形ABCD ,坝顶宽AD 是6米,坝高4米,背水坡AB 和迎水坡CD 的坡度都是1:0.5,那么坝底宽BC 是米.【答案】10【解析】过点A 作AE ⊥BC ,DF ⊥BC ,由题意可得:AD=EF=6m ,AE=DF=4m ,∵背水坡AB 和迎水坡CD 的坡度都是1:0.5,∴BE=FC=2m ,∴BC=BE+FC+EF=6+2+2=10(m ).故答案为10.15.已知△ABC ,点D 、E 分别在边AB 、AC 上,DE//BC ,13DE BC =.如果设AB a = ,DE b = ,那么AC =.(用向量a 、b的式子表示)【答案】3a b+【解析】如图,//DE BC ,13DE BC =,DE b = ,∴3BC b =,AC AB BC =+,∴3AC a b =+,故答案为3a b +r r.16.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,掷一次骰子,掷的点数大于2的概率是.【答案】23【解析】∵在这6种情况中,掷的点数大于2的有3,4,5,6共4种结果,∴掷的点数大于2的概率为4263=,故答案为:23.17.如图,将ABC ∆沿BC 边上的中线AD 平移到'''A B C ∆的位置,已知ABC ∆的面积为16,阴影部分三角形的面积为9,如果'1AA =,那么'A D 的长为.【答案】3【解析】如图,∵S △ABC =16、S △A′EF =9,且AD 为BC 边的中线,∴14.52A DE A EF S S ''== ,182ABD ABC S S == ,∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E ∥AB ,∴△DA′E ∽△DAB ,则2A DE ADBS A D AD S '⎛⎫ ⎝⎭'⎪ =,24.518A D A D '⎛⎫ ⎪'+⎝⎭=,解得A′D=3或37A D ¢=-(舍),故答案为3.18.如果当a≠0,b≠0,且a≠b 时,将直线y=ax+b 和直线y=bx+a 称为一对“对偶直线”,把它们的公共点称为该对“对偶直线”的“对偶点”,那么请写出“对偶点”为(1,4)的一对“对偶直线”:.【答案】3,31y x y x =+=+【解析】把(1,4)代入y ax b =+得:a+b=4又因为0a ≠,0b ≠,且a b ≠,所以当a=1是b=3所以“对偶点”为(1,4)的一对“对偶直线”可以是:3,31y x y x =+=+故答案为3,31y x y x =+=+.第Ⅱ卷三、解答题(本大题共7个小题,共78分.解答应写出文字说明,证明过程或演算步骤)19.(10分)计算:11213812221-⎛⎫+-+- ⎪-⎝⎭.【解析】原式=23(21)2221++-+-=2+32+3﹣222+﹣1=224+.(10分)20.(10分)已知:如图,在平面直角坐标系xOy 中,双曲线y =6x经过第一象限内的点A ,延长OA 到点B ,使得BA =2AO ,过点B 作BH ⊥x 轴,垂足为点H ,交双曲线于点C ,点B 的横坐标为6.求:(1)点A 的坐标;(2)将直线AB 平移,使其经过点C ,求平移后直线的表达式.【解析】(1)作AD ⊥x 轴,垂足为D ,∵BH ⊥x 轴,AD ⊥x 轴,∴∠BHO =∠ADO =90°,∴AD ∥BH ,∵BA =2AO ,12OD OA DH AB ∴==,∵点B 的横坐标为6,∴OH =6,∴OD =2,∵双曲线y =6x经过第一象限内的点A ,可得点A 的纵坐标为3,∴点A 的坐标为(2,3);(2)∵双曲线y =6x上点C 的横坐标为6,∴点C 的坐标为(6,1),由题意得,直线AB 的表达式为32y x =,∴设平移后直线的表达式为32y x =+b ,∵平移后直线32y x =+b 经过点C (6,1),∴3162=⨯+b 解得b =﹣8,∴平移后直线的表达式32y x =-8.21.(10分)如图是某地下停车库入口的设计示意图,已知坡道AB 的坡比i =1:2.4,AC 的长为7.2米,CD 的长为0.4米.按规定,车库坡道口上方需张贴限高标志,根据图中所给数据,确定该车库入口的限高数值(即点D 到AB 的距离).【解析】如图,延长CD 交AB 于E ,∵i =1:2.4,∴15tan CAB 2.412∠==,∴512CE AC =,∵AC =7.2,∴CE =3,∵CD =0.4,∴DE =2.6,过点D 作DH ⊥AB 于H ,∴∠EDH =∠CAB ,∵5tan CAB 12∠=,∴12cos EDH cos CAB 13∠=∠=,12DH DE cos EDH 2.6 2.413=⨯∠=⨯=.答:该车库入口的限高数值为2.4米.22.(10分)已知:如图,在矩形ABCD 中,过AC 的中点M 作EF AC ⊥,分别交AD 、BC 于点E 、F .(1)求证:四边形AECF 是菱形;(2)如果2·CD BF BC =,求BAF ∠的度数.【解析】()1证明: 四边形ABCD 为矩形,//AD BC ∴,12∠∠∴=,点M 为AC 的中点,AM CM ∴=.在AME 与CMF 中,12AM CM AME CMF ∠∠∠∠=⎧⎪=⎨⎪=⎩,AME ∴≌()CMF ASA ,ME MF ∴=.∴四边形AECF 为平行四边形,又EF AC ⊥ ,∴平行四边形AECF 为菱形;()2解:2CD BF BC =⋅ ,CD BC BFCD∴=,又 四边形ABCD 为矩形,AB CD ∴=,AB BCBF AB∴=又ABF CBA ∠∠= ,ABF ∴ ∽CBA ,23∠∠∴=,四边形AECF 为菱形,14∠∠∴=,即134∠∠∠==,四边形ABCD 为矩形,13490BAD ∠∠∠∠∴=++=,∴即130∠= .23.(12分)如图,已知四边形ABCD 菱形,对角线AC BD 、相交于点O ,DH AB ⊥,垂足为点H ,交AC于点E ,连接HO 并延长交CD 于点G .(1)求证:12DHO BCD ∠=∠;(2)求证:2HG AE DE CG = .【解析】(1)∵四边形ABCD 是菱形,//,,,AB CD AB CD AC BD DO BO ∴=⊥=,12ACD BCD ∠=∠,DH AB ⊥ ,90DHA DHB ∴∠=∠=︒,//AB CD ,90DHA HDC ∴∠=∠=︒,90BDH BDC ∴∠+∠=︒,90COD ∠=︒ ,90ACD BDC ∴∠+∠=︒,90,DHB DO BO ∴∠=︒=,OD OH ∴=,BDH DHO ∴∠=∠,12DHO BCD ∴∠=∠.(2)//AB CD ,1HO OB OG OD ∴==,12OH OG HG ∴==, AD CD =,DCA DAC ∴∠=∠,,AED HDC DCA HGC HDC DHG ∠=∠+∠∠=∠+∠ ,又DHO DCA ∠=∠ ,AED HGC ∴∠=∠,AED ∴∆∽CGO ∆,OG CGDE AE∴=,••OG AE CG DE ∴=,1••2HG AE DE CG ∴=,∴2HG AE DE CG = .24.(12分)已知:抛物线2y x bx c =-++,经过点A(-1,-2),B(0,1).(1)求抛物线的关系式及顶点P 的坐标.(2)若点B′与点B 关于x 轴对称,把(1)中的抛物线向左平移m 个单位,平移后的抛物线经过点B′,设此时抛物线顶点为点P′.①求∠P′B B′的大小.②把线段P′B′以点B′为旋转中心顺时针旋转120°,点P′落在点M 处,设点N 在(1)中的抛物线上,当△MN B′的面积等于63时,求点N 的坐标.【解析】(1)把点A (-1,-2),B (0,1),代入2y x bx c =-++得2=11b c c ---+⎧⎨=⎩,解得=21b c ⎧⎨=⎩,∴抛物线的关系式为:221y x x =-++,得y=-(x-1)2+2;∴顶点坐标为()12P ,.(2)①设抛物线平移后为()2112y x m =--++,代入点B’(0,-1)得,-1=-(m-1)2+2解得131m =+,231m =-+(舍去);∴()2132y x =-++,得顶点()3,2P '-连结P B ',P’B’,作P’H ⊥y 轴,垂足为H ,得3P H '=,HB=1,P’B=31+=2∵tan 3P HP BH BH ∠='=',∴60P BH ∠=' ,∴18060120P BB ∠=-=''.②∵2BB '=,2P B '=即BB P B '=',∴30BP B P B B ''''∠=∠= ;∵线段P B ''以点B '为旋转中心顺时针旋转120 ,点P '落在点M 处;∴90OB M ∠=' ,B M B P '=''∴//MB x '轴,23B M B P ''='=;设MNB ∆'在B M '边上的高为h ,得:632MNB B M h S '∆⋅'==,解得6h =;∴设()7N a -,或()5N a ,分别代入221y x x =-++得2721a a -=-++解得:4a =或2a =-∴()47N -,或()27N --,,2521a a =-++方程无实数根舍去,∴综上所述:当63MNB S '∆=时,点N 的坐标为()47N -,或()27N --,.25.(14分)如图,已知△ABC ,AB=2,3BC =,∠B=45°,点D 在边BC 上,联结AD ,以点A 为圆心,AD 为半径画圆,与边AC 交于点E ,点F 在圆A 上,且AF ⊥AD .(1)设BD 为x ,点D 、F 之间的距离为y ,求y 关于x 的函数解析式,并写出定义域;(2)如果E 是 DF 的中点,求:BD CD 的值;(3)联结CF ,如果四边形ADCF 是梯形,求BD 的长.【解析】(1)过点A 作AH ⊥BC ,垂足为点H .∵∠B =45°,AB =2,∴·cos 1BH AH AB B ===.∵BD 为x ,∴1DH x =-.在Rt △ADH 中,90AHD ∠=︒,∴22222AD AH DH x x =+=-+.联结DF ,点D 、F 之间的距离y 即为DF 的长度.∵点F 在圆A 上,且AF ⊥AD ,∴AD AF =,45ADF ∠=︒.在Rt △ADF 中,90DAF ∠=︒,∴2442cos ADDF x x ADF ==-+∠.∴2442y x x =-+.()03x ≤≤;(2)∵E 是DF 的中点,∴AE DF ⊥,AE 平分DF .∵BC=3,∴312HC =-=.∴225AC AH HC =+=.设DF 与AE 相交于点Q ,在Rt △DCQ 中,90DQC ∠=︒,tan DQDCQ CQ ∠=.在Rt △AHC 中,90AHC ∠=︒,1tan 2AHACH HC ∠==.∵DCQ ACH ∠=∠,∴12DQCQ =.设,2DQ k CQ k ==,AQ DQ k ==,∵35k =,53k =,∴2253DC DQ CQ =+=.∵43BD BC DC =-=,∴4:5BD CD =.(3)如果四边形ADCF 是梯形则①当AF ∥DC 时,45AFD FDC ∠=∠=︒.∵45ADF ∠=︒,∴AD BC ⊥,即点D 与点H 重合.∴1BD =.②当AD ∥FC 时,45ADF CFD ∠=∠=︒.∵45B ∠=︒,∴B CFD ∠=∠.∵B BAD ADF FDC ∠+∠=∠+∠,∴BAD FDC ∠=∠.∴ABD ∆∽DFC ∆.∴ABADDF DC =.∵2DF AD =,DC BC BD =-.∴2AD BC BD =-.即()222-23x x x +=-,整理得210x x --=,解得152x ±=(负数舍去).综上所述,如果四边形ADCF 是梯形,BD 的长是1或1+52.。
2024学年江苏省南大附中高三年级第一次模拟数学试题
2024学年江苏省南大附中高三年级第一次模拟数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.3481(3)(2)x x x+-展开式中x 2的系数为( ) A .-1280B .4864C .-4864D .12802.若函数()xf x e =的图象上两点M ,N 关于直线y x =的对称点在()2g x ax =-的图象上,则a 的取值范围是( ) A .,2e ⎛⎫-∞ ⎪⎝⎭B .(,)e -∞C .0,2e ⎛⎫ ⎪⎝⎭D .(0,)e3.已知点P 不在直线l 、m 上,则“过点P 可以作无数个平面,使得直线l 、m 都与这些平面平行”是“直线l 、m 互相平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知函数()()1xf x k xe =-,若对任意x ∈R ,都有()1f x <成立,则实数k 的取值范围是( )A .(),1e -∞-B .()1,e -+∞C .(],0e -D .(]1,1e -5.已知双曲线2222:1(0,0)x y a b a bΓ-=>>的右焦点为F ,过原点的直线l 与双曲线Γ的左、右两支分别交于,A B两点,延长BF 交右支于C 点,若,||3||AF FB CF FB ⊥=,则双曲线Γ的离心率是( )A .3B .32C .53D .26.已知集合{}|1A x x =>-,集合(){}|20B x x x =+<,那么A B 等于( )A .{}|2x x >-B .{}1|0x x -<<C .{}|1x x >-D .{}|12x x -<<7.已知向量()1,2a =,()2,2b =-,(),1c λ=-,若()//2c a b +,则λ=( )A .2-B .1-C .12-D .128.将一块边长为cm a 的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为3722cm ,则a 的值为( )A .6B .8C .10D .129.在ABC ∆中,30C =︒,2cos 3A =-,152AC =-,则AC 边上的高为( ) A .52B .2C .5D .15210.已知1cos ,,32πααπ⎛⎫=-∈⎪⎝⎭,则()sin πα+= ( ) A .223B .223-C .223±D .1311.执行如图所示的程序框图,则输出的S =( )A .2B .3C .23D .12-12. “角谷猜想”的内容是:对于任意一个大于1的整数n ,如果n 为偶数就除以2,如果n 是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入10n =,则输出i 的( )A .6B .7C .8D .9二、填空题:本题共4小题,每小题5分,共20分。
天津市十二区县重点校2024届高三下学期第一次模拟考试 数学含答案
2024年天津市十二区重点学校高三毕业班联考(一)数学试卷(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。
答卷前,考生务必将自己的姓名、准考证号、考场/座位号填涂在答题卡规定位置上。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将答题卡交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号;2.本卷共9小题,每小题共5分,共45分。
参考公式:·如果事件A B 、互斥,那么()()()P A B P A P B =+ ·柱体的体积公式V Sh =,其中S 表示柱体的底面积,h 表示柱体的高。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数z 满足()z 1-i =1+,则z =()A .1i-B .1i+C .22i-D .22i+2.已知,a b ∈R ,则“b a >”是“22a b <”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.如图是函数()f x 的部分图象,则()f x 的解析式可能为()A .()sin522x xx f x -=-B .()cos522x xx f x -=+C .()cos522x xx f x -=-D .()sin522x xx f x -=-4.已知函数()1x f x x e =-,若0.61212,log 29a f b f -⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,134c f ⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系为()A .a b c<<B .c b a<<C .a c b<<D .b c a<<5.已知等差数列{}n a 的前n 项和为n S ,且()*4224,21n n S S a a n N ==+∈,则5a =()A .6B .9C .11D .146.下列说法正确的是()A .一组数据7,8,8,9,11,13,15,17,20,22的第80百分位数为17;B .根据分类变量X 与Y 的成对样本数据,计算得到24.712χ=,根据小概率值0.05α=的独立性检验()0.05 3.841x =,可判断X 与Y 有关联,此推断犯错误的概率不大于0.05;C .两个随机变量的线性相关性越强,相关系数的绝对值越接近于0;D .若随机变量,ξη满足32ηξ=-,则()()32D D ηξ=-.7.如图是函数()()sin 0,0,22f x K x K ππωϕωϕ⎛⎫=+>>-<< ⎪⎝⎭的部分图象,A 是图象的一个最高点,D 是图象与y 轴的交点,,B C 是图象与x 轴的交点,且()0,1,D ABC -△的面积等于2π,则下列说法正确的是()A .函数()f x 的图象关于点,06π⎛⎫-⎪⎝⎭对称;B .函数()f x 的最小正周期为2π;C .函数()f x 的图象可由()2sin 2y x =的图象向右平移6π个单位长度得到;D .函数()f x 的单调递增区间是,,63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦。
河北省唐山市2024届高三下学期第一次模拟演练数学试题(教师版)
2024届唐山市普通高等学校招生统一考试第一次模拟演练数学本试卷共4页,19小题,满分150分.考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,复数21i z =+,则z z ⋅=()A.1i + B.1i-C.D.2【答案】D 【解析】【分析】根据复数的运算法则求出1i z =-,1i z =+,复数的乘法运算即可求解.【详解】221i 22i 22i 1i 1i 1i 1i 2z ---=⋅===-+--,所以1i z =-,1iz =+,()()21i 1i 1i 2z z ⋅=+-=-=.故选:D2.已知x ∈R ,p :“20x x ->”,q :“1x >”,则p 是q 的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】首先解一元二次方程,再根据充分条件、必要条件的定义判断即可.【详解】由20x x ->,即()10x x ->,解得1x >或0x <,所以p :“1x >或0x <”,故由p 推不出q ,即充分性不成立,由q 推得出p ,即必要性成立,所以p 是q 的必要但不充分条件.故选:B3.已知向量()3,1a =- ,()2,b x =-,若()a ab ⊥+ ,则b = ()A. B.4C. D.20【答案】A 【解析】【分析】由向量垂直的性质和向量的模长计算可得.【详解】()1,1a b x +=-,因为()a ab ⊥+,所以()311104x x ⨯-⨯-=⇒=,所以()2,4b =-r,所以b ==,故选:A4.已知函数()f x =,则()f x 的最小值为()A.0B.2C. D.3【答案】C 【解析】【分析】利用基本不等式可得答案.【详解】由已知得2x >,所以()22f x +===+≥当且仅当=即4x =等号成立,则()f x 的最小值为.故选:C .5.从正方体的8个顶点中任取3个连接构成三角形,则能构成正三角形的概率为()A.17B.114C.27D.435【答案】A 【解析】【分析】利用排列组合以及古典概型的概率公式,即可解出.【详解】从八个顶点中任选三个构成三角形的有38C 56=种结果;其中能构成正三角形的有8种结果:111111111111,,,,,,,,ACD BDC ACB BDA A C B B D A B D C A C D 故概率为:81567=,故选:A ..6.已知抛物线E :24y x =的焦点为F ,以F 为圆心的圆与E 交于A ,B 两点,与E 的准线交于C 、D 两点,若CD =,则AB =()A.3B.4C.6D.8【答案】D 【解析】【分析】设点A 在第一象限,由CD =,可确定圆的半径,利用抛物线的定义求出()4,4A ,即可求得结果.【详解】由抛物线方程知:12p=,()1,0F ∴,不妨设点A 在第一象限,如图所示,直线CD 与x 轴交于点E ,由CD =,则2ED EF ==,圆的半径()222125r =+,所以5AF =,由抛物线的定义可得:52A px +=,所以4A x =,又因为点A 在抛物线上,所以()4,4A ,248AB ∴=⨯=.故选:D .7.已知球与圆台的底面、侧面都相切,且圆台母线与底面所成角为60︒,则球表面积与圆台侧面积之比为()A.2:3B.3:4C.7:8D.6:13【答案】B 【解析】【分析】作出圆台的轴截面,利用切线长定理可得母线与半径的关系;结合60°可得圆台的上下半径以及球的半径的关系,即可利用面积公式求解.【详解】设圆台上下底面圆的半径为12,r r ,母线为,l 球的半径为,R 取圆台的轴截面ABCD ,则四边形ABCD 为等腰梯形,圆台的外接球球心为O ,则球心O 在截面ABCD 内,在截面ABCD 内,设圆O 切梯形ABCD 的边AB 、BC 、CD 、DA 分别于点E 、F 、G 、H ,由切线长定理可得AE AH =,DG DH =,故AD DH AH DG AE =+=+,即12l r r =+;由于60ABC ∠= ,所以2112sin 60,2GE R l r r ==-=,解得213,3r r R r ==())()22121211434π3π43r S R S rl r l r r ⨯===++球圆台;故选:B .8.已知函数()()sin cos 0f x x x ωωω=+>的最小正周期为π,则()A.()f x 在ππ,88⎡⎤-⎢⎥⎣⎦单调递增B.3π,08⎛⎫⎪⎝⎭是()f x 的一个对称中心C.()f x 在ππ,66⎡⎤-⎢⎥⎣⎦的值域为⎡⎣ D.π8x =是()f x 的一条对称轴【答案】C 【解析】【分析】由函数()f x 的最小正周期为π,求出2ω=,再代入化简()f x ,画出()f x 的图象,再对选项一一判断即可得出答案.【详解】因为函数()f x 的最小正周期为π,所以2ω=,所以函数()πsin 2cos 2,π,π2sin 2cos 2πsin 2cos 2,π,ππ2x x x k k f x x x x x x k k ⎧⎡⎤+∈+⎪⎢⎥⎪⎣⎦=+=⎨⎛⎤⎪-+∈++ ⎥⎪⎝⎦⎩即()ππ2,π,π42ππ2,π,ππ42x x k k f x x x k k ⎛⎫⎡⎤+∈+ ⎪⎢⎥⎝⎭⎣⎦=⎨⎛⎫⎛⎤⎪-∈++ ⎪ ⎥⎪⎝⎭⎝⎦⎩,作出函数()f x 的图象,如下图所示:对于A ,由图可知,()f x 在ππ,88⎡⎤-⎢⎥⎣⎦单调有增有减,故A 错误;对于B ,由图象可知,()f x 无对称中心,故B 错误;对于C ,由图象可知,()f x 为偶函数,当π0,6x ⎡⎤∈⎢⎥⎣⎦,ππ7π2,4412x ⎡⎤+∈⎢⎥⎣⎦,所以π2sin 242x ⎤⎛⎫+∈⎥ ⎪⎝⎭⎣⎦,π24x ⎛⎫⎡+∈ ⎪⎣⎝⎭,所以()f x 在ππ,66⎡⎤-⎢⎥⎣⎦的值域为⎡⎣,故C 正确;对于D ,由图象可知,()f x 的对称轴为π,Z 2k x k =∈,故D 错误.故选:C .【点睛】关键点睛:由函数()f x 的最小正周期求出ω,再代入化简()f x ,画出()f x 的图象,再由三角函数的单调性,对称性,值域对选项一一判断即可得出答案.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知样本数据:1,2,3,4,5,6,7,8,9,则()A.极差为8B.方差为6C.平均数为5D.80百分位数为7【答案】AC 【解析】【分析】由极差,方差,平均数,第百分位数的计算逐一判断即可.【详解】A :极差等于最大值减去最小值,故918-=,故A 正确;C :平均数为123959++++= ,故C 正确;B :由方差公式计算可得()()()222152********93-+-++-== ,故B 错误;D :第80百分位数为90.87.2⨯=,为8,故D 错误;故选:AC.10.已知函数()331f x x x =-+,则()A.直线32y x =-是曲线()y f x =的切线B.()f x 有两个极值点C.()f x 有三个零点D.存在等差数列{}n a ,满足()155kk f a ==∑【答案】BCD 【解析】【分析】由导数的意义可知斜率为32-时,求出切点,再由点斜式判断A 错误;求导后由单调性可判断B正确;代入极值点后可判断C 正确;由等差中项可判断D 正确.【详解】()()()233311f x x x x ==+'--,A :令()233322f x x x =-⇒'=-=±,而12f ⎛⎫= ⎪ ⎪⎝⎭,由点斜式可知此时切线方程为32122x y ⎛⎫⎛⎫--=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭;212f ⎛⎫-=+ ⎪ ⎪⎝⎭,由点斜式可知此时切线方程为32122x y ⎛⎫⎫--=-+ ⎪⎪ ⎪⎭⎝⎭;所以直线32y x =-不是曲线()y f x =的切线,故A 错误;B :令()0f x '=,解得1x =±,所以函数在()(),11,∞∞--⋃+上单调递增,在()1,1-上单调递减,故=1x -时取得极大值,1x =取得极小值;故B 正确;C :因为()()130,110f f -=>=-<,所以由单调性可知函数由三个极值点,故C 正确;D :假设存在,即()()33551f a f a =⇒=,令0x =,可得()1f x =,方程有解,故D 正确;故选:BCD11.在透明的密闭正三棱柱容器111ABC A B C -内灌进一些水,已知14AB AA ==.如图,当竖直放置时,水面与地面距离为3.固定容器底面一边AC 于地面上,再将容器按如图方向倾斜,至侧面11ACC A 与地面重合的过程中,设水面所在平面为α,则()A.水面形状的变化:三角形⇒梯形⇒矩形B.当11C A α⊂时,水面的面积为 C.当B α∈时,水面与地面的距离为835D.当侧面11ACC A 与地面重合时,水面的面积为12【答案】ABC 【解析】【分析】根据题设条件得到V =水,正三棱柱的体积V =,再结合各个选项的条件,逐一分析判断,即可得出结果.【详解】由题知31634ABC V S h ==⨯⨯= 水31644V =⨯⨯=,对于选项A ,当容器按题设方向倾斜至B α∈时,水面形状是三角形,再倾斜时,水面形状是梯形,直到侧面11ACC A 与地面重合时,水面形状是矩形,所以选项A 正确,对于选项B ,如图1,当容器按题设方向倾斜至11C A α⊂时,设水面与棱1BB 的交点为M ,设1MB a =,又三棱柱111ABC A B C -为正三棱柱,取11B C 中点E ,连接1A E ,易知11111,A E B C A E B B ⊥⊥,又1111BB B C B = ,111,BB B C ⊂面11BCC B ,所以1A E ⊥面11BCC B ,所以1A 到平面11BCC B 的距离为1A E =,所以11111432A MBC V a -=⨯⨯⨯⨯=3a =,此时水面图形为11A MC △,又115A M C M ===,114A C =,取11A C 中点,则11HM A C ⊥,且HM ==,所以11142A MC S =⨯= ,故选项B 正确,对于选项C ,如图2,当容器按题设方向倾斜至B α∈时,设水面与棱1111,A B C B 的交点为,F G ,易知11////FG A C AC ,设11B F B G b ==,由1121111π4sin 3323B B FG B FG V S BB b -==⨯= ,得到b =因为水面始终与地面平行,AC 始终与水面平行,且AC 始终在地面上,所以水面与地面的距离,即AC 到平面的距离,取AC 中点Q ,连接,HQ BQ ,设1B H 交FG 于K ,连接BK ,易知,HQ AC BQ AC ⊥⊥,又HQ BQ Q = ,,HQ BQ ⊂面1QBB H ,所以AC ⊥面1QBB H ,又11////FG A C AC ,所以FG ⊥面1QBB H ,过Q 作QR ⊥BK 于R ,连接QR ,因为QR ⊂面1QBB H ,所以FG QR ⊥,又FG BK K = ,,FG BK ⊂面α,所以QR α⊥,即QR 为水平面到地面的距离,如图3,过K 作KP QB ⊥于P ,易知1π33B K ==,所以5BK ==,得到4sin 5KP QBR KB ∠==,又QB =4sin 55QR QB QBR =∠==,故选项C 正确,对于选项D ,如图4,当侧面11ACC A 与地面重合时,水面α为矩形1111E H N M ,设1BE t =,则由1111111211π4sin 23B M N BE H BE H V S BB t -==⨯= ,解得2t =,所以112E H =,故1111428E H N M S =⨯=,所以选项D 错误,【点睛】关键点点晴:本题的关键在于选项C ,利用容器倾斜时始终与地面平行,边AC 始终与水面平行,将问题转化成AC 到水面的距离,再利用几何关系,即可求出结果.三、填空题:本题共3小题,每小题5分,共15分.12.在4312x x ⎛⎫ ⎪⎝⎭-的展开式中,常数项为______.(用数字作答)【答案】8-【解析】【分析】先由二项式定理求出4312x x ⎛⎫ ⎪⎝⎭-的展开式的通项公式,再求出常数项即可.【详解】因为4312x x ⎛⎫ ⎪⎝⎭-展开式的通项公式为:()()4341241441C 212C ,0,1,2,3,4rrr r r r r r T xx r x ---+⎛⎫=-=-⋅⋅= ⎪⎝⎭,令1240r -=,解得3r =,所以常数项为:3442C 8T =-⨯=-.故答案为:8-13.在ABC 中,5,7,8AB BC AC ===,D 是AB 边上一点,CD AB ⊥,则CD =______.【答案】【解析】【分析】由余弦定理求出1cos 2A =,即可得π3A =,在Rt ACD △中,所以8sin CD A =,代入即可得出答案.【详解】因为5,7,8AB BC AC ===,所以由余弦定理可得:222642549401cos 2258802AC AB BC A AC AB +-+-====⋅⨯⨯,因为0πA <<,所以π3A =,所以在Rt ACD △中,所以π8sin 8sin 3CD A ===.故答案为:14.已知椭圆E :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,过2F 的直线交E 于A ,B 两点,()0,1C -是线段1BF 的中点,且2AB AC AC ⋅=uuu r uuu r uuu r,则E 的方程为______.【答案】22196x y +=【解析】【分析】根据中点关系可得平行,进而可得21F F AB ⊥,根据向量的坐标运算即可求解.【详解】由于()0,1C -是线段1BF 的中点,()0,0O 是线段21F F 的中点,所以2//OC F B ,故21F F AB ⊥,设椭圆焦距为2c ,则()()21,0,,0F c F c -,将x c =代入椭圆方程可得22221c ya b+=,故2b y a =,因此22,,,b b Ac B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,()0,1C -是线段1BF 的中点,所以222b BF a ==,故22b a =,2220,,,1b b AB AC c a a ⎛⎫⎛⎫=-=--- ⎪ ⎪⎝⎭⎝⎭ ,由2AB AC AC ⋅=uuu r uuu r uuu r 得22222211b b b c a a a ⎛⎫⎛⎫---=--+ ⎪ ⎪⎝⎭⎝⎭,故()()2241212c ---=--+,解得23c =,又2222b a a c ==-,故29a =,26b =,故椭圆方程为22196x y +=,故答案为:22196x y +=四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知数列{}n a 是正项等比数列,其前n 项和为n S ,且2416a a =,5324S S =+.(1)求{}n a 的通项公式;(2)记{}2log n n a a +的前n 项和为n T ,求满足2024n T <的最大整数n .【答案】(1)12n n a -=(2)10n =【解析】【分析】(1)直接利用等比数列的通项公式和前n 项和公式列方程组解出公比q ,从而可求出通项公式;(2)由(1)得2log n n a a +,然后用分组求和法即可求n T ,分别计算10T 和11T ,即可确定n 的值.【小问1详解】设{}n a 的公比为q ,则11n n a a q -=,因为0n a >,所以0q >,依题意可得345424a a a =⎧⎨+=⎩,即213411424a q a q a q ⎧=⎨+=⎩,整理得260q q +-=,解得2q =或3q =-(舍去),所以3132n n n a a q--==.【小问2详解】由(1)可知12log 21n n n a a n -+=+-,故()()012122220121n n T n -=+++++++++- ()1212n n n -=-+显然,n T 随着n 的增大而增大,1010214510682024T =-+=<,1111215521022024T =-+=>,所以满足2024n T <的最大整数10n =.16.某项测试共有8道题,每道题答对5分,不答或答错得0分.某人答对每道题的概率都是14,每道试题答对或答错互不影响,设某人答对题目的个数为X .(1)求此人得分的期望;(2)指出此人答对几道题的可能性最大,并说明理由.【答案】(1)10(2)此人答对2道题的可能性最大;理由见解析.【解析】【分析】(1)根据已知条件,确定18,4⎛⎫~ ⎪⎝⎭X B ,得分为5X ,求()()555210E X E X ==⨯=即可;(2)根据二项分布概率公式有()881344kkk P x k C -⎛⎫⎛⎫==⨯ ⎪ ⎪⎝⎭⎝⎭0,1,28k = ,通过作商法求出19413k k p kp k--=+,与1比较大小即可确定k p 在2k =时取最大值.【小问1详解】某人答对每道题的概率都是14,则答对题目的个数X 服从二项分布,即18,4⎛⎫~ ⎪⎝⎭X B ,()1824E X =⨯=,由于每道题答对得5分,所以此人答题得分为5X ,因此,在此项测试中,此人答题得分的期望为()()555210E X E X ==⨯=.【小问2详解】设此人答对k 道题的可能性为()8813C 44k kk P x k -⎛⎫⎛⎫==⨯ ⎪ ⎪⎝⎭⎝⎭,0,1,2,,8k = ,记()k p P x k ==,则()()881911813C 44113C 44kkk k k k k k P X k p p P X k -----⎛⎫⎛⎫⨯ ⎪ ⎪=⎝⎭⎝⎭===-⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭()()()8!1!8!499418!3331!9!4k k k k k k k k ⨯---===+⨯--,当94k <时,1k k p p ->,k p 随k 的增加而增加,即210p p p >>;当94k >时,1k k p p -<,k p 随k 的增加而减小,即872p p p <<< ;所以当2k =时,2p 最大,因此此人答对2道题的可能性最大.17.如图,三棱柱111ABC A B C -中,侧面11BB C C 为矩形,底面ABC 为等边三角形.(1)证明:11A B A C =;(2)若11AC A B ⊥,12A A AB ==,①证明:平面1A BC ⊥平面ABC ;②求平面ABC 与平面11A BC 的夹角的余弦值.【答案】(1)证明见解析(2)证明见解析,平面ABC 与平面11A BC 的夹角的余弦值为217【解析】【分析】(1)根据线线垂直可证明BC ⊥平面AOM ,即可结合中点求证,(2)根据线线垂直可得二面角的平面角,即可根据长度关系判断二面角为直角,进而可求证,(3)建立空间直角坐标系,利用法向量的夹角即可求解.【小问1详解】取11,BC B C 的中点为,O M ,连接1,,OM AO A O ,由于侧面11BB C C 为矩形,所以11,//,BB BC OM BB OM BC ⊥∴⊥ ,由于底面ABC 为等边三角形,所以AO BC ⊥,,,AO OM O AO MO ⋂=⊂平面AOM ,所以BC ⊥平面AOM ,由于11//,,AA OM AA OM =故四边形1AOMA 为平行四边形,故1A O ⊂平面AOM ,故1BC A O ⊥,又O 是BC 中点,所以11A B A C =,【小问2详解】①由于2,,AB BC AC AO BC ===⊥O 是BC 中点,所以3,1AO CO BO ===,又11A B A C =且11AC A B ⊥,所以11A C A B ==11A O =由于1BC A O ⊥,BC AO ⊥,故1AOA ∠为1A BC A --的平面角,由于22211A O AO A A +=,所以1π2A OA ∠=,故平面1A BC ⊥平面ABC;②由于1,,OA OA OB 两两垂直,故建立如图所示的空间直角坐标系,())()()10,0,1,,0,1,0,0,1,0A A B C -,则)()1,0,1,1,CA A B ==-)11,C A CA ==设平面11A BC 的法向量为(),,m x y z =,则11100C A m y A B m y z ⎧⋅=+=⎪⎨⋅=-=⎪⎩,取x =)3,3m =-- ,由于平面ABC 的法向量为()10,0,1OA =,故11121cos ,7m OA m OA m OA ⋅===故平面ABC 与平面11A BC的夹角的余弦值为718.已知双曲线Γ:()222210,0x y a b a b -=>>,()2,3A ,1,02B ⎛⎫ ⎪⎝⎭,直线AB 与Γ有唯一公共点A .(1)求Γ的方程:(2)若双曲线Γ的离心率e 不大于2,过B 的直线l 与Γ交于不同的两点M ,N .求直线AM 与直线AN 的斜率之和.【答案】(1)221774x y -=或2213y x -=(2)4【解析】【分析】(1)依题意可得22491a b-=,再求出直线AB 的方程,联立直线与曲线方程,消元,分2240b a -=和2240b a -≠两种情况讨论,分别求出2a ,2b ,即可求出曲线方程;(2)首先由离心率分析双曲线Γ的方程为2213y x -=,设()11,M x y ,()22,N x y ,直线l 为12y k x ⎛⎫=- ⎪⎝⎭,联立直线与曲线方程,消元、列出韦达定理,再利用斜率公式计算可得.【小问1详解】依题意可得22491a b-=,又直线AB 的方程为()3032122y x --=--,即21y x =-,由2222211y x x y ab =-⎧⎪⎨-=⎪⎩,消去y 整理得()2222222440b a x a x a a b -+--=,当2240b a -=时,又22491a b -=,解得274a =,27b =,所以双曲线Γ的方程为221774x y -=;当2240b a -≠,所以222444a b a-=-,即223a b =,又22491a b-=,所以23b =,21a =,此时Δ0=,符合题意,所以双曲线Γ的方程为2213y x -=;综上可得双曲线Γ的方程为221774x y -=或2213y x -=.【小问2详解】当274a =,27b =时22252c a b e a a+===>(舍去);当23b =,21a =时22222c a b e a a+===≤,符合题意,所以双曲线Γ的方程为2213y x -=,设()11,M x y ,()22,N x y ,显然直线l 的斜率存在,设直线l 为12y k x ⎛⎫=-⎪⎝⎭,由221213y k x y x ⎧⎛⎫=- ⎪⎪⎪⎝⎭⎨⎪-=⎪⎩,消去y 整理得()22223303k k x k x -+--=,由()242Δ43303k k k ⎛⎫=+-+> ⎪⎝⎭,可得20127k ≤<-+所以21223k x x k +=--,2122343k x x k +=--,所以12121212113333222222AM ANk x k x y y k k x x x x ⎛⎫⎛⎫---- ⎪ ⎪--⎝⎭⎝⎭+=+=----()1212124323224x x k k x x x x +-⎛⎫=+-⨯⎪-++⎝⎭222222433232342433k k k k k k k k--⎛⎫-=+-⨯⎪⎝⎭+⎛⎫---+ ⎪--⎝⎭()223312239244k k k k -⎛⎫=+-⨯⎪⎝⎭--()2233122349244k k k k -⎛⎫=+-⨯= ⎪⎝⎭--,所以直线AM 与直线AN 的斜率之和为4.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.19.已知函数()tan f x x =,()()()sin 212ln cos g x x x =+-,(1)求曲线()y f x =在点π,14⎛⎫⎪⎝⎭处的切线方程:(2)当π20,x ⎛⎫∈ ⎪⎝⎭时,求()g x 的值域.【答案】19.π2102x y -+-=20.()sin1,∞+【解析】【分析】(1)求导即可根据点斜式求解直线方程,(2)分类讨论π10,42x ⎛⎫∈- ⎪⎝⎭和π1π,422x ⎛⎫∈- ⎪⎝⎭时,导函数的正负,构造函数π()tan 212h x x x ⎛⎫=-+- ⎪⎝⎭和()()π2cos 212212s x x x ⎛⎫=+++- ⎪⎝⎭,利用导数判断导函数正负,进而确定函数的单调性即可求解.【小问1详解】由()tan f x x =得()2sin 1cos cos x f x x x '⎛⎫== ⎪⎝⎭',所以π12142f ⎛⎫== ⎪⎝⎭',所以所求切线方程为π124y x ⎛⎫-=- ⎪⎝⎭,即π2102x y -+-=【小问2详解】π0,2x ⎛⎫∈ ⎪⎝⎭时,()211,π+1x +∈,()()()2sin 2cos 212cos 212tan cos xg x x x x x=++=++',当π10,42x ⎛⎫∈- ⎪⎝⎭时,π211,2x ⎛⎫+∈ ⎪⎝⎭,此时()cos 210,tan 0x x +>>,故()()0,g x g x '>单调递增,当π1π,422x ⎛⎫∈-⎪⎝⎭时,π21,π12x ⎛⎫+∈+ ⎪⎝⎭,接下来证明:当π1π,422x ⎛⎫∈-⎪⎝⎭时,πtan 212x x ≥+-,令2π1()tan 21,()2,2cos h x x x h x x ⎛⎫=-+-=- '⎪⎝⎭又π()04h '=,故当()()2π1π1,,cos ,0,4242x x h x h x '⎛⎫∈->< ⎪⎝⎭单调递减,当()()2ππ1,,cos ,0,422x x h x h x ⎛⎫∈⎪⎝'⎭单调递增,故()h x 有最小值π04h ⎛⎫= ⎪⎝⎭,因此()0h x ≥,即πtan 212x x ≥+-,()()()π2cos 212tan 2cos 212212g x x x x x '⎛⎫=++≥+++- ⎪⎝⎭,令()()()()π2cos 21221,4sin 21402s x x x s x x ⎛⎫=+++-=-++≥ '⎪⎝⎭,故()s x 单调递增,即()π142s x s ⎛⎫≥-⎪⎝⎭,所以()π1π1π2cos 21221042422g x ⎛⎫⎛⎫⎛⎫⎛⎫≥-++-+-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭',故()g x 在π1π,422x ⎛⎫∈- ⎪⎝⎭单调递增,综上可得()g x 在π0,2x ⎛⎫∈ ⎪⎝⎭单调递增,()0sin1g =,当()()π,sin 21sin π1sin1,2x x →+→+=而()ln cos x ∞→-,因此()g x ∞→+,所以()g x 的值域为()sin1,∞+【点睛】方法点睛:对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑷ 1
1 1 1 1 10 100 1000 10000
3. 求未知数(每小题 4 分) ⑴ 4:3
1 2 2 :x 3 5
⑵ 4x
2 x 2.5 3
五、解决问题(共 36 分,第 1—6 题 5 分,第 7 题 6 分) 1. 有一个谷堆,形状近似圆锥,测得底面周长是 18.84 米,高 2.1 米,每立方米稻谷约重 550 千克,这堆稻谷大约重多少千克?(得数保留整数千克)
5. 下图是一个牛棚,周围是一片草地,牛棚长 5 米,宽 4 米,牛棚的一角用一根绳子拴着 一头牛,绳子长 9 米,问这头牛能吃到的青草的面积最多有多少平方米?(不算牛棚内 的面积)
6. 今年儿子的年龄是父亲年龄的 几岁?
3 3 , 15 年后,儿子的年龄是父亲年龄的 .今年儿子 7 5
7. 我国古代有很多经典的数学题,例如《孙子算经》卷下第 17 题是一首诗: “妇人洗碗在河滨,路人问她客几人?答曰不知客数目,六十五碗自分明,二人共食 一碗饭,三人共吃一碗羹,四人共肉无余数,请君细算客几人?” 这首诗翻译成现代文就是: 每两位客人合用 1 只饭碗, 三位合用 1 只汤碗, 四位合用 1 只 肉碗,共用 65 只碗,问有多少客人?
⑴
2 . 3 7 5
5 3 8
1 1 1 2 2
98 2 5
1 1 3 3 5 5
1 4 1 3 5 7 3 5 5 3 31
⑵ 1.75 0.24 0.76
4 7
第 2 页(共 6 页)
⑶ 2012 20.11 201.2 201
2. 师徒二人合作 400 个零件.师傅做的 件?
1 1 比徒弟做的 多 8 个.问徒弟做了多少个零 5 4
3. 一个 10 千克的薄皮西瓜,它的重量中 98% 是水.在太阳暴晒后水分蒸发不少,剩下 的水分只占总重量的 95% .现在西瓜的总重量是多少?
第 3 页(共 6 页)
4. 警察叔叔接到报警,有一群抢匪在超市作案.当警车赶到超市时,抢匪已经于 1 分钟 前逃向一座大桥.警察立即驱车追赶,但抢匪抢来的跑车的速度比警车的速度每小时 快 30 千米,因此抢匪比警察早 4 分钟到大桥.而当警察达到大桥时,抢匪已经在离桥 头 12 千米处.问超市到桥之间的距离.
1 1 1 C. D. 5000 5000000 50000 1 5. 甲乙两袋糖,从甲袋拿出 的糖放到乙袋,两袋糖的重量相等,原来甲袋糖比乙袋多 12
( )
A.10%
B.20%
C.
1 11
D.
1 12
四、计算题(共 34 分,共 3 题) 1. 直接写得数(每小题 1 分) 1 5 1 0.23 1.7 3 3 6 7 4 5 0.04 0.5 25 3.6 5 4 2. 下列各题怎样简便就怎样计算(每小题 4 分)
1 ,躯干的重量等于鱼头加鱼尾,这条 2
8. 汽车的轮胎,放在前轮可行驶 2000 千米,放在后轮可以行驶 6000 千米,如果允许途 中将前后轮调换一次, 4 只轮胎最多可行驶( )千米. 9. 画展 9 点开门,但早有人来排队等候入场,从第一个观众来到时起,每分钟来的观众人 数-样多,如果开 3 个入场口,9 点 9 分就不再有人排队,如果开 5 个入场口,9 点 5 分 就没有排队:那么第一个观众到达的时间是( 10. 观察下面的数表: ) .
第 5 页(共 6 页)
⑶ 这是最后一关!请将下图分割成形状面积都相同的 8 个部分. (此图由三个相同的正方 形组成) ( 4 分)
第 6 页(共 6 页)
2. 数学中有很多有趣的题,图形分割就是其中一种,请你展开想象的翅膀,来对下列图 形进行巧妙的分割吧. ⑴ 请将一个等边三角形分割成形状面积都相等的 3 个部分. ( 3 分)
⑵ 相信聪明的你肯定轻松解决了第一关,接下来请将下图分割成形状面积都相同的 4 个 部分. (此图由五个相同的正方形组成) ( 3 分)
2 ,所以六⑴班的男生人数比六⑵班的男生人 5
( ( ) )
三、 选择题(共 5 分,每小题 1 分) 2 5 1. 若 a b ,则 a : b ( ) 3 6 A 5: 9 B. 4:5
D 5: 4 2. 折叠一批纸鹤,甲同学单独折叠需要半小时,乙同学单独折叠需要 45 分钟,则甲、乙
两个同学共同折叠需要( ) A.12 分钟 B.15 分钟 C.18 分钟 3. 三角形的面积是 x 平方厘米,底是 5 厘米,高是(
C 1 50
B.x 5
B.
C.5 x2
D.2 x 5
)
4. 在一幅地图上, 3 厘米表示实际距离 150 千米,这幅地图的比例尺为: (
第 4 页(共 6 页)
附加题(共 20 分,每题 10 分)
1. 在一个装有水的圆柱形容器内,竖直插有一根圆柱形玻璃棒(实心) ,此容器内水的高 度为 80 厘米,玻璃棒浸没在水中的长度大于 40 厘米.已知容器内侧底面直径为 20 厘 米,玻璃棒的底面直径为 5 厘米.现在把这根玻璃棒轻轻向正上方提起 30 厘米,问玻 璃棒露出水面且被浸湿的部分的长度是多少厘米?
2012 广州小升初第一次模拟考试 数学试卷
考 生 须 知 1.本试卷共 6 页,32 题 2.本试卷满分 120 分,考试时间 80 分钟 3.在试卷密封线内填写学校、班级、姓名
一、填空题(共 20 分,每小题 2 分) 1. 广州市中心城区人口为 7707063 人,读作(
写成用万作单位,且保留整数约是( )万人. 2. 一个圆锥的体积是 3.2 立方分米,底面积是 3.2 平方分米,高是( 3. 被除数除以除数的商是 0.24 ,被除数与除数的比是( 4. 规定 1 3 1 2 3 , 则 2 3 2 3 4 , 4 2 45 , ) .
1 1 1 2 ; 2 1 1 2 3 ; ; 3 2 1 1 2 3 4 ; ; ; 4 3 2 1
根据前四行的规律,第十行倒数第三个数与第三个数的差是( ) .
第 1 页(共 6 页)
二、判断题(共 5 分,每小题 1 分)
1. 一个人的身高与体重成正比例. 2. 一个圆柱的底面半径扩大为原来的 2 倍, 它的体积就变为原来的 2 倍. 3. 两个偶数的最大公因数可能是 1 . 4. 六⑴班中男生占 64% ,六⑵班中女生占 数多. 5. 两个质数的和不一定为偶数. ( ( ( ) ) )
)人,改
)分米.
5 3 4 4 (
) .
5. 某次数学竞赛,做对一题得 5 分,做错或没做扣 2 分,一共有 20 题,小丝最后得了 79 分,小丝答对了( )题. ) 6. 一件衣服如果售价 72 元, 就会亏本 20% , 现在要使利润率为 20% , 每件应该卖 ( 元. 7. 鱼尾重 4 千克,鱼头的重量等于鱼尾加躯干的 鱼重( )千克.