爆款解含有绝对值的方程四种方法.doc
解含绝对值的方程的四种方法
“解含绝对值的方程”例题解析绝对值概念在初中代数,乃至初等数学中,均占有相当重要的地位。
解含绝对值的方程在初中数学竞赛中经常出现,同学们往往感到困惑,难于解答。
下面举例说明解这类方程的几种常用方法。
一. 运用基本公式:若,则解方程例1. 解方程解:去掉第一重绝对值符号,得移项,得或所以所以原方程的解为:例2. 解方程所以即或解方程(1),得解方程(2),得又因为,所以所以原方程的解为二. 运用绝对值的代数意义解方程例3. 方程的解的个数是()A. 1B. 2C. 3D. 4或4以上解:方程可化为所以所以方程的解有无数个,故选(D)。
三. 运用绝对值的非负性解方程例4. 方程的图像是()A. 三条直线:B. 两条直线:C. 一点和一条直线:(0,0),D. 两个点:(0,1),(-1,0)而所以所以原方程的图象为两个点(0,1),(-1,0)故选(D)。
四. 运用绝对值的几何意义解方程例5. 解方程解:设,由绝对值的几何意义知所以又因为所以从数轴上看,点落在点与点的内部(包括点与点在内),即原方程的解为。
五. 运用方程的图象研究方程的解例6. 若关于x的方程有三个整数解,则a的值是()A. 0B. 1C. 2D. 3解:作的图象,如图1所示,由于方程解的个数就是直线与的图象的交点个数,把直线平行于x轴上、下移动,通过观察得仅当时方程有三个整数解。
故选(B)。
图1同时,我们还可以得到以下几个结论:(1)当时,方程没有解;(2)当或时,方程有两个解;(3)当时,方程有4个解。
含绝对值的函数方程解法
含绝对值的函数方程解法
对于含有绝对值的函数方程,求解的过程需要考虑绝对值的两种情况:正数和负数。
下面将介绍两种常见的解法。
1. 正数解法
当绝对值中的变量取正数时,可以将绝对值去除,直接求解函数方程。
例如,对于方程 $f(x) = |x - a| + b = c$,其中 $a,b,c$ 都是已知的实数常数,我们可以按照以下步骤求解:
1. 当 $x - a > 0$ 时,$|x - a| = x - a$,因此方程可转化为 $f(x) = x - a + b = c$;
2. 将方程整理为 $x = c - b + a$。
因此,当 $x - a > 0$ 时,方程的解为 $x = c - b + a$。
2. 负数解法
当绝对值中的变量取负数时,可以将绝对值去除,并加上负号,再求解函数方程。
例如,对于方程 $f(x) = |x - a| + b = c$,我们可以按照以下步骤
求解:
1. 当 $x - a < 0$ 时,$|x - a| = -(x - a)$,因此方程可转化为 $f(x) = -(x - a) + b = c$;
2. 将方程整理为 $x = a + c - b$。
因此,当 $x - a < 0$ 时,方程的解为 $x = a + c - b$。
需要注意的是,在求解含有绝对值的函数方程时,我们需要分
别考虑正数和负数的情况,并得到两组解。
最后,我们可以将两组
解合并为一个解集。
以上就是含绝对值的函数方程的解法。
希望以上内容能对你有
所帮助!。
(完整word)含绝对值不等式的解法
学科:数学教学内容:含绝对值不等式的解法【自学导引】1.绝对值的意义是:⎩⎨⎧<-≥=)0x (x )0x (x x .2.|x |<a (a >0)的解集是{x |-a <x <a }.|x |>a (a >0)的解集是{x |x <-a 或x >a }.【思考导学】1.|ax +b |<b (b >0)转化成-b <ax +b <b 的根据是什么?答:含绝对值的不等式|ax +b |<b 转化-b <ax +b <b 的根据是由绝对值的意义确定. 2.解含有绝对值符号的不等式的基本思想是什么?答:解含有绝对值符号的不等式的基本思想是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法就与解一般不等式或不等式组相同.【典例剖析】[例1]解不等式2<|2x -5|≤7.解法一:原不等式等价于⎩⎨⎧≤->-7|52|2|52|x x∴⎩⎨⎧≤-≤--<--7|5272522|52x x x 或即⎪⎩⎪⎨⎧≤≤-<>612327x x x 或∴原不等式的解集为{x |-1≤x <23或27<x ≤6}解法二:原不等式的解集是下面两个不等式组解集的并集 (Ⅰ)⎩⎨⎧≤-<≥-7522052x x(Ⅱ)⎩⎨⎧≤-<<-7252052x x不等式组(Ⅰ)的解集为{x |27<x ≤6}不等式组(Ⅱ)的解集是{x |-1≤x <23}∴原不等式的解集是{x |-1≤x <23或27<x ≤6}解法三:原不等式的解集是下面两个不等式解集的并集. (Ⅰ)2<2x -5≤7 (Ⅱ)2<5-2x ≤7不等式(Ⅰ)的解集为{x |27<x ≤6}不等式(Ⅱ)的解集是{x |-1≤x <23}∴原不等式的解集是{x |-1≤x <23或27<x ≤6}.点评:含绝对值的双向不等式的解法,关键是去绝对值号.其方法一是转 化为单向不等式组如解法一,再就是利用绝对值的定义如解法二、解法三. [例2]解关于x 的不等式: (1)|2x +3|-1<a (a ∈R ); (2)|2x +1|>x +1.解:(1)原不等式可化为|2x +3|<a +1当a +1>0,即a >-1时,由原不等式得-(a +1)<2x +3<a +1 -24+a <x <22-a当a +1≤0,即a ≤-1时,原不等式的解集为∅,综上,当a >-1时,原不等式的解集是{x |-24+a <x <22-a } 当a ≤-1时,原不等式的解集是∅.(2)原不等式可化为下面两个不等式组来解 (Ⅰ)⎩⎨⎧+>+≥+112012x x x 或(Ⅱ)⎩⎨⎧+>+-<+1)12(012x x x不等式组(Ⅰ)的解为x >0不等式组(Ⅱ)的解为x <-32∴原不等式的解集为{x |x <-32或x >0}点评:由于无论x 取何值,关于x 的代数式的绝对值均大于或等于0,即不可能小于0,故|f (x )|<a (a ≤0)的解集为∅.解不等式分情况讨论时,一定要注意是对参数分类还是对变量分类,对参数分类的解集一般不合并,如(1)对变量分类,解集必须合并如(2).[例3]解不等式|x -|2x +1||>1.解:∵由|x -|2x +1||>1等价于(x -|2x +1|)>1或x -|2x +1|<-1 (1)由x -|2x +1|>1得|2x +1|<x -1∴⎩⎨⎧-<+-<+⎩⎨⎧-<+≥+1)12(012112012x x x x x x 或即⎪⎩⎪⎨⎧>-<⎪⎩⎪⎨⎧-<≥021221x x x x 或均无解 (2)由x -|2x +1|<-1得|2x +1|>x +1∴⎩⎨⎧+>+≥+112012x x x 或⎩⎨⎧+>+-<+1)12(012x x x即⎪⎪⎩⎪⎪⎨⎧-<-<⎪⎩⎪⎨⎧>-≥3221021x x x x 或,∴x >0或x <-32 综上讨论,原不等式的解集为{x |x <-32或x >0}.点评:这是含多重绝对值符号的不等式,可以从“外"向“里”,反复应用解答绝对值基本不等式类型的方法,去掉绝对值的符号,逐次化解.【随堂训练】1.不等式|8-3x |>0的解集是( ) A .∅ B .RC .{x |x ≠38,x ∈R }D .{38}答案: C2.下列不等式中,解集为R 的是( ) A .|x +2|>1 B .|x +2|+1>1C .(x -78)2>-1D .(x +78)2-1>0 答案: C3.在数轴上与原点距离不大于2的点的坐标的集合是( )A .{x |-2<x <2}B .{x |0<x ≤2}C .{x |-2≤x ≤2}D .{x |x ≥2或x ≤-2}解析: 所求点的集合即不等式|x |≤2的解集. 答案: C4.不等式|1-2x |<3的解集是( ) A .{x |x <1} B .{x |-1<x <2}C .{x |x >2}D .{x |x <-1或x >2}解析: 由|1-2x |<3得-3<2x -1<3,∴-1<x <2 答案: B5.不等式|x +4|>9的解集是__________.解析: 由原不等式得x +4>9或x +4<-9,∴x >5或x <-13 答案: {x |x >5或x <-13}6.当a >0时,关于x 的不等式|b -ax |<a 的解集是________. 解析: 由原不等式得|ax -b |<a,∴-a <ax -b <a ∴a b -1<x <ab+1 ∴{x |a b -1<x <ab+1}答案: {x |a b -1<x <ab+1}【强化训练】1.不等式|x +a |<1的解集是( ) A .{x |-1+a <x <1+a B .{x |-1-a <x <1-a } C .{x |-1-|a |<x <1-|a |}D .{x |x <-1-|a |或x >1-|a |} 解析: 由|x +a |<1得-1<x +a <1 ∴-1-a <x <1-a 答案: B2.不等式1≤|x -3|≤6的解集是( ) A .{x |-3≤x ≤2或4≤x ≤9} B .{x |-3≤x ≤9} C .{x |-1≤x ≤2} D .{x |4≤x ≤9}解析: 不等式等价于⎩⎨⎧≤-≤≥-63103x x 或⎩⎨⎧≤-≤<-63103x x解得:4≤x ≤9或-3≤x ≤2.答案: A3.下列不等式中,解集为{x |x <1或x >3}的不等式是( ) A .|x -2|>5 B .|2x -4|>3C .1-|2x -1|≤21D .1-|2x -1|<21解析: A 中,由|x -2|>5得x -2>5或x -2<-5∴x >7或x <-3同理,B 的解集为{x |x >27或x <-1}C 的解集为{x |x ≤1或x ≥3}D 的解集为{x |x <1或x >3} 答案: D4.已知集合A ={x ||x -1|<2},B ={x ||x -1|>1},则A ∩B 等于( ) A .{x |-1<x <3} B .{x |x <0或x >3} C .{x |-1<x <0}D .{x |-1<x <0或2<x <3}解析: |x -1|<2的解为-1<x <3,|x -1|>1的解为x <0或x >2. ∴A ∩B ={x |-1<x <0或2<x <3}. 答案: D5.已知不等式|x -2|<a (a >0)的解集是{x |-1<x <b },则a +2b = . 解析: 不等式|x -2|<a 的解集为{x |2-a <x <2+a } 由题意知:{x |2-a <x <2+a }={x |-1<x <b } ∴⎩⎨⎧==⇒⎩⎨⎧=+-=-53212c a c a a ∴a +2b =3+2×5=13 答案: 136.不等式|x +2|>x +2的解集是______.解析: ∵当x +2≥0时,|x +2|=x +2,x +2>x +2无解. 当x +2<0时,|x +2|=-(x +2)>0>x +2 ∴当x <-2时,|x +2|>x +2 答案: {x |x <-2} 7.解下列不等式:(1)|2-3x |≤2;(2)|3x -2|>2.解:(1)由原不等式得-2≤2-3x ≤2,各加上-2得-4≤-3x ≤0,各除以-3得34≥x ≥0,解集为{x |0≤x ≤34}.(2)由原不等式得3x -2<-2或3x -2>2,解得x <0或x >34,故解集为{x |x <0或x >34}.8.解下列不等式:(1)3≤|x -2|<9;(2)|3x -4|>1+2x . 解:(1)原不等式等价于不等式组由①得x ≤-1或x ≥5;由②得-7<x <11,把①、②的解表示在数轴上(如图), ∴原不等式的解集为{x |-7<x ≤-1或5≤x <11}.(2)原不等式等价于下面两个不等式组,即原不等式的解集是下面两个不等式组解集的并集:①⎩⎨⎧+>-≥-;2143,043x x x ②⎩⎨⎧+>--<-.21)43(,043x x x 由不等式组①解得x >5;由不等式组②解得x <53.∴原不等式的解集为{x |x <53或x >5}.9.设A ={x ||2x -1|≤3},B ={x ||x +2|<1},求集合M ,使其同时满足下列三个条件: (1)M ⊆[(A ∪B )∩Z ]; (2)M 中有三个元素; (3)M ∩B ≠∅解:∵A ={x ||2x -1|≤3}={x |-1≤x ≤2} B ={x ||x +2|<1}={x |-3<x <-1}∴M ⊆[(A ∪B )∩Z ]={x |-1≤x ≤2}∪{x |-3<x <-1}∩Z ={x |-3<x ≤2}∩Z ={-2,-1,0,1,2}又∵M ∩B ≠∅,∴-2∈M . 又∵M 中有三个元素∴同时满足三个条件的M 为: {-2,-1,0},{-2,-1,1},{-2,-1,2},{-2,0,1},{-2,0,2},{-2,1,2}.【学后反思】解绝对值不等式,关键在于“转化”.根据绝对值的意义,把绝对值不等式转化为一次不等式(组). |x |<a 与|x |>a (a >0)型的不等式的解法及利用数轴表示其解集. 不等式|x |<a (a >0)的解集是{x |-a <x <a }.其解集在数轴上表示为(见图1-7):不等式|x |>a (a >0)的解集是{x |x >a 或x <-a },其解集在数轴上表示为(见图1-8):把不等式|x |<a 与|x |>a (a >0)中的x 替换成ax +b ,就可以得到|ax +b |<b 与|ax +b |>b (b >0)型的不等式的解法.。
专练:含绝对值的一元一次方程的解法(word文档良心出品)
含绝对值的一元一次方程的解法1.含绝对值的一次方程的解法(1)形如(0)ax b c a +=≠型的绝对值方程的解法:①当0c <时,根据绝对值的非负性,可知此时方程无解;②当0c =时,原方程变为0ax b +=,即0ax b +=,解得b x a=-; ③当0c >时,原方程变为ax b c +=或ax b c +=-,解得c b x a -=或c b x a--=. 解方程:⑴235x += ⑵21302x --= ⑶200520052006x x -+-= ⑷1121123x x +--+-=(2)形如(0)ax b cx d ac +=+≠型的绝对值方程的解法:①根据绝对值的非负性可知0cx d +≥,求出x 的取值范围;②根据绝对值的定义将原方程化为两个方程ax b cx d +=+和()ax b cx d +=-+; ③分别解方程ax b cx d +=+和()ax b cx d +=-+;④将求得的解代入0cx d +≥检验,舍去不合条件的解.解方程⑴4329x x +=+ ⑵525x x -+=-(3)形如(0)ax b cx d ac +=+≠型的绝对值方程的解法:①根据绝对值的定义将原方程化为两个方程ax b cx d +=+或()ax b cx d +=-+; ②分别解方程ax b cx d +=+和()ax b cx d +=-+. 解方程⑴23a a =- ⑵2131x x -=+(4)形如()x a x b c a b -+-=<型的绝对值方程的解法:①根据绝对值的几何意义可知x a x b a b -+-≥-;②当c a b <-时,此时方程无解;当c a b =-时,此时方程的解为a x b ≤≤;当c a b >-时,分两种情况: ①当x a <时,原方程的解为2a b c x +-=; ②当x b >时,原方程的解为2a b c x ++=. 解方程⑴134x x -+-= ⑵154x x -+-= ⑶216x x -++=(5)形如(0)ax b cx d ex f ac +±+=+≠型的绝对值方程的解法:①找绝对值零点:令0ax b +=,得1x x =,令0cx d +=得2x x =;②零点分段讨论:不妨设12x x <,将数轴分为三个区段,即①1x x <;②12x x x ≤<;③2x x ≥;③分段求解方程:在每一个区段内去掉绝对值符号,求解方程并检验,舍去不在区段内的解.解方程⑴2123x x +--= ⑵2134x x --+= ⑶23143x x x +--=-(6)形如(0)ax b cx d ex f a +++=+≠型的绝对值方程的解法:解法一:由内而外去绝对值符号:按照零点分段讨论的方式,由内而外逐层去掉绝对值符号,解方程并检验,舍去不符合条件的解.解法二:由外而内去绝对值符号:①根据绝对值的非负性可知0ex f +≥,求出x 的取值范围;②根据绝对值的定义将原方程化为两个绝对值方程()ax b ex f cx d +=+-+和()()ax b ex f cx d +=-+-+;③解②中的两个绝对值方程.【题01】解方程93352x x x ++-=+ 35162x x ---= 3548x -+=【题02】解方程:2112x --= 2121x x -+=+ 314x x -+= 11110x ----=【题03】当01x ≤≤时,求方程1110x ---=的解。
含绝对值的一元一次方程解法
含绝对值的一元一次方程解法一、绝对值的代数和几何意义。
绝对值的代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。
用字母表示为 ⎪⎩⎪⎨⎧-=a a a 0 000<=>a a a绝对值的几何意义:表示这个数的点离开原点的距离。
因此任何数的绝对值是非负数。
1、 求下列方程的解:(1)| x | = 7; (2)5 | x | = 10; (3)| x | = 0; (4)| x | = – 3; (5)| 3x | = 9.解:二、根据绝对值的意义,我们可以得到:当a > 0时 x =± a| x | =a 当a = 0时 x = 0当a < 0时 方程无解.(三)例1:解方程:(1) 19 – | x | = 100 – 10 | x |(2)2||33||4x x +=- 解:(1)例2、思考:如何解 | x – 1 | = 2分析:用换元(整体思想)法去解决,把 x – 1 看成一个字母y ,则原方程变为:| y | = 2,这个方程的解为 y = ±2,即 x – 1 = ±2,解得 x = 3或x = – 1.解:例3:解方程:| 2x – 1 | – 3 = 0 解方程:3|21|62y -= 解:三:形如d cx b ax +=+的绝对值的一元一次方程可变形为:)(d cx b ax +±=+且0≥+d cx 才是原方程的根,否则必须舍去,故解绝对值方程时必须检验。
例1:解方程:5665-=+x x练习:(1)解方程:43234+=--x x(2)解方程:413=+-x x四:“零点分段法”解含多个绝对值的代数问题“零点分段法”即令各绝对值代数式为零,得若干个绝对值为零的点,这些点把数轴分成几个区间,再在各区间内化简求值即可。
例1:化简下列各式1、12-x2、31++-x x练习:化简:x x x +-++121例2:解下列方程1、451=-+-x x2、113+=--+x x x练习:1、1213+=-x x2、12212+=-+-x x x。
如何解决绝对值方程
如何解决绝对值方程绝对值方程是一个常见的数学问题,需要找到使得方程中的绝对值表达式等于某个给定的值的未知数的取值。
解决绝对值方程的方法有很多,下面将介绍几种常见的解决方法。
一、用绝对值的定义解绝对值方程绝对值的定义是:当x≥0时,|x|=x;当x<0时,|x|=-x。
在解决一个绝对值方程时,可根据绝对值的定义将绝对值表达式拆分成两个情况,分别对应x≥0和x<0两种情况。
然后解得两个方程,得到两组解。
例如,解方程|2x-3|=5时,可以将绝对值表达式拆分成2x-3=5和2x-3=-5两个方程,然后解得x=4和x=-1,得到解集{x=4, x=-1}。
二、利用绝对值的性质解绝对值方程1. 若|a|=|b|,则a=b或a=-b。
即若两个绝对值相等,则去掉绝对值符号后的表达式相等。
利用这个性质,可以简化解绝对值方程的步骤。
例如,解方程|2x+1|=3,由性质可知2x+1=3或2x+1=-3,然后解得x=1和x=-2,得到解集{x=1, x=-2}。
2. 若|a|>c,则a>c或a<-c。
即若一个绝对值大于一个正数,则去掉绝对值符号后的表达式大于这个正数。
利用这个性质,可以将不等式转化成一组简单的不等式。
例如,解不等式|2x-1|>4,由性质可知2x-1>4或2x-1<-4,然后解得x>2.5或x<-1.5,得到解集{x:x>2.5或x<-1.5}。
三、用图像法解绝对值方程可以通过绘制绝对值函数的图像,来解决绝对值方程。
绘制出函数的图像后,再找到与给定值相等的函数值对应的x值即可得到解。
例如,解方程|2x-3|=5,可绘制出y=|2x-3|和y=5两个函数的图像,然后找到它们的交点对应的x值,即可得到解。
总结:解决绝对值方程的方法有多种,包括用绝对值的定义解方程、利用绝对值的性质解方程以及利用图像法解方程等。
不同的方法适用于不同的问题,需要根据具体情况选择合适的方法来解决。
求解带有绝对值的方程
求解带有绝对值的方程在初中数学中,我们经常会遇到带有绝对值的方程。
解这类方程需要运用一些特定的方法和技巧。
在本文中,我将为大家详细介绍如何求解带有绝对值的方程,并通过具体的例子进行说明。
一、绝对值的定义和性质首先,我们来回顾一下绝对值的定义和性质。
对于任意实数x,绝对值|x|表示x到原点的距离,即|x| = x (x ≥ 0),|x| = -x (x < 0)。
根据绝对值的定义,我们可以得出以下性质:1. |x| ≥ 0,即绝对值永远大于等于0。
2. |x| = 0 当且仅当x = 0。
3. |x| = |-x|,即绝对值的值与其自身的相反数的绝对值相等。
了解了绝对值的定义和性质后,我们就可以开始解决带有绝对值的方程了。
二、绝对值方程的求解方法1. 分段讨论法当方程中只有一个绝对值时,我们可以采用分段讨论的方法来求解。
具体步骤如下:(1)将绝对值拆开,得到两个方程:a. x = |x|,当x ≥ 0时;b. x = -|x|,当x < 0时。
(2)分别解这两个方程:a. 对于方程x = |x|,当x ≥ 0时,方程变为x = x,解得x = 0;b. 对于方程x = -|x|,当x < 0时,方程变为x = -x,解得x = 0。
(3)综合两个解集,得到最终的解集{x | x = 0}。
例如,求解方程|x| = 3,按照上述步骤进行计算,最终得到解集{x | x = 3, x = -3}。
2. 转化为二次方程当方程中存在两个绝对值时,我们可以将其转化为二次方程来求解。
具体步骤如下:(1)将绝对值拆开,得到四个方程:a. x = |x|,当x ≥ 0时;b. x = -|x|,当x < 0时;c. y = |y|,当y ≥ 0时;d. y = -|y|,当y < 0时。
(2)将方程a和方程c相乘,并将方程b和方程d相乘,得到两个二次方程:a. x^2 = x^2;b. x^2 = -x^2;c. y^2 = y^2;d. y^2 = -y^2。
绝对值方程(组)的几种解法
绝对值方程(组)的几种解法带有绝对值的方程(组),一般都是通过划分区间,去掉绝对值,分段讨论求解.但对于一些特殊的绝对值方程(组),采取特殊方法,就可以避免一般方法的复杂运算.本文介绍的几种特殊解法,供读者参考.一、利用绝对值定义在解题时,利用|a |≥0,把方程(组)变形,简化,然后求其解.例1 解方程组:⎩⎨⎧-=+=-++(2)42|1|(1) 3|2||1|y x y x 解:由(2),|1|+x ≥0,⎩⎨⎧=--+=-++∴-=-∴≥≥-∴(4).0)2(2|1|(3) 3)2(|1|:.2|2|.2,042y x y x y y y y 原方程变形为(3)×2+(4)得:|x +1|=2.解得:.3,121-==x x代入(3)得:y =3. ∴方程组的解为:⎩⎨⎧=-=⎩⎨⎧==.3,3 ,3,12211y x y x 二、利用不等式性质将方程适当变形,利用不等式公式中等号成立的条件,求方程(组)的解.例2 解方程:.|4||2||6|4224-=-+--x x x x解:由绝对值不等式知,若a 、b 为实数,则|a +b |≤|a |+|b|, (1)由于|,4||)2()6(||2||6|4224224-=++--≥++--x x x x x x λ因为(1)式中等号成立的充要条件是a ·b ≥0,所以,0)2)(6(224≥+--x x x:,3,0)3()2(2222解得≥∴≥-+x x x.33-≤≥x x 或 三、利用复数模长公式适当引入复变量代换,把实数问题转化为复数问题,然后利用复数模长公式的特性,求得方程(组)的解.例3 解方程22|2042644|222+-=++-++x x x x x x将原方程变形得:(2).22|204244|(1)|,|||||||.221)1(||,4)2(||,5)12(||,4)2(,5)12(.224)2(5)12(|2222121222212222212122222+-≤++-++∴-≤-+-=+-=-++=++=++=++=+-=++-++x x x x b x x z z z z x x x z z x z x z i x z i x z x x x x 又则设 由于(1)式当且仅当z 1、z 2共线且方向相同时等号成立.若(2)式等号成立,有:,42512x x +=+解得x =2. ∴方程的解为x =2.四、利用|a |2=a 2(a ∈R )在解方程(组)时,注意到a ∈R 时,有|a |2=a 2,可以去掉绝对值,把方程(组)简化.例4 解方程:321=--x x 解:由根式定义知:0≤x ≤1 设],2,0[,sin 2πθθ∈=x 则原方程化为:32|cos sin |=-θθ 上式两边平方得:,972sin ,922sin 1==-θθ .18249,.18249,1824922cos 1sin ,2942cos 2是原方程的解经检验即±=±=±=-=∴±=∴x x θθθ 五、利用函数性质把方程和函数联系在一起,利用函数的性质,可以直接求解.例5 解方程组:⎩⎨⎧=+=+(2) .10||2||5(1) ,6||2||y x y x 解:分别以-x 、-y 及同时以-x 、-y 作代换(1)、(2)均不变,知它们的图象关于x 轴、y 轴和原点对称.因此,设x ≥0,y ≥0得:⎪⎩⎪⎨⎧==⎩⎨⎧=+=+.25,1:.1025,62y x y x y x 解得 依x 轴、y 轴及原点对称,可得另三组解:⎪⎩⎪⎨⎧-=-=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧-==.25,1 ;25,1 ;25,1y x y x y x。
含绝对值的一元一次方程解法
含绝对值的一元一次方程解法引言一元一次方程是数学中常见的方程类型。
然而,当方程中含有绝对值时,解题变得更加复杂。
本文将介绍含绝对值的一元一次方程的解法,并提供简单的策略来解决这类问题。
解法步骤解含绝对值的一元一次方程可以按照以下步骤进行:1. 确定绝对值的取值范围:首先,我们需要确定绝对值的取值范围。
绝对值是一个非负数,所以无论绝对值内的表达式是正数还是负数,我们都可以用正数来解方程。
确定绝对值的取值范围:首先,我们需要确定绝对值的取值范围。
绝对值是一个非负数,所以无论绝对值内的表达式是正数还是负数,我们都可以用正数来解方程。
2. 列出两个方程:根据绝对值的定义,我们可以将含绝对值的方程分成两个方程,分别对应绝对值内的表达式为正数和负数的情况。
对于每个方程,我们将绝对值去掉,得到一个等式。
列出两个方程:根据绝对值的定义,我们可以将含绝对值的方程分成两个方程,分别对应绝对值内的表达式为正数和负数的情况。
对于每个方程,我们将绝对值去掉,得到一个等式。
3. 解每个方程:解两个等式,分别得到两个解。
这些解将是含绝对值的方程的解。
解每个方程:解两个等式,分别得到两个解。
这些解将是含绝对值的方程的解。
4. 检查解的有效性:将得到的解代入原方程,检查是否满足原方程的条件。
只有满足条件的解才是方程的真正解。
检查解的有效性:将得到的解代入原方程,检查是否满足原方程的条件。
只有满足条件的解才是方程的真正解。
简单示例让我们通过一个简单的示例来演示含绝对值的一元一次方程的解法。
题目:解方程 $|2x - 3| = 5$。
解方程 $|2x - 3| = 5$。
解法:1. 绝对值的取值范围为非负数,所以我们可以将方程改写为两个等式:- $2x - 3 = 5$,对应于绝对值内的表达式为正数的情况。
- $2x - 3 = -5$,对应于绝对值内的表达式为负数的情况。
2. 解第一个等式:$2x - 3 = 5$。
解得 $x = 4$。
专练:含绝对值的一元一次方程的解法
含绝对值的一元一次方程的解法1.含绝对值的一次方程的解法(1)形如(0)ax b c a +=≠型的绝对值方程的解法:①当0c <时,根据绝对值的非负性,可知此时方程无解;②当0c =时,原方程变为0ax b +=,即0ax b +=,解得b x a=-; ③当0c >时,原方程变为ax b c +=或ax b c +=-,解得c b x a -=或c b x a--=. 解方程:⑴235x += ⑵21302x --= ⑶200520052006x x -+-= ⑷1121123x x +--+-=(2)形如(0)ax b cx d ac +=+≠型的绝对值方程的解法:①根据绝对值的非负性可知0cx d +≥,求出x 的取值范围;②根据绝对值的定义将原方程化为两个方程ax b cx d +=+和()ax b cx d +=-+; ③分别解方程ax b cx d +=+和()ax b cx d +=-+;④将求得的解代入0cx d +≥检验,舍去不合条件的解.解方程⑴4329x x +=+ ⑵525x x -+=-(3)形如(0)ax b cx d ac +=+≠型的绝对值方程的解法:①根据绝对值的定义将原方程化为两个方程ax b cx d +=+或()ax b cx d +=-+; ②分别解方程ax b cx d +=+和()ax b cx d +=-+. 解方程⑴23a a =- ⑵2131x x -=+(4)形如()x a x b c a b -+-=<型的绝对值方程的解法:①根据绝对值的几何意义可知x a x b a b -+-≥-;②当c a b <-时,此时方程无解;当c a b =-时,此时方程的解为a x b ≤≤;当c a b >-时,分两种情况: ①当x a <时,原方程的解为2a b c x +-=; ②当x b >时,原方程的解为2a b c x ++=. 解方程⑴134x x -+-= ⑵154x x -+-= ⑶216x x -++=(5)形如(0)ax b cx d ex f ac +±+=+≠型的绝对值方程的解法:①找绝对值零点:令0ax b +=,得1x x =,令0cx d +=得2x x =;②零点分段讨论:不妨设12x x <,将数轴分为三个区段,即①1x x <;②12x x x ≤<;③2x x ≥;③分段求解方程:在每一个区段内去掉绝对值符号,求解方程并检验,舍去不在区段内的解.解方程⑴2123x x +--= ⑵2134x x --+= ⑶23143x x x +--=-(6)形如(0)ax b cx d ex f a +++=+≠型的绝对值方程的解法:解法一:由内而外去绝对值符号:按照零点分段讨论的方式,由内而外逐层去掉绝对值符号,解方程并检验,舍去不符合条件的解.解法二:由外而内去绝对值符号:①根据绝对值的非负性可知0ex f +≥,求出x 的取值范围;②根据绝对值的定义将原方程化为两个绝对值方程()ax b ex f cx d +=+-+和()()ax b ex f cx d +=-+-+;③解②中的两个绝对值方程.【题01】解方程93352x x x ++-=+ 35162x x ---= 3548x -+=【题02】解方程:2112x --= 2121x x -+=+ 314x x -+= 11110x ----=【题03】当01x ≤≤时,求方程1110x ---=的解。
绝对值方程的解法
绝对值方程的解法绝对值方程的解法一、形如ax+b=cx+d的方程的解法:当两个式子的绝对值相等时,绝对值内的两个式子可以相等或互为相反数。
例如:x-2=2x+3.因此,对于ax+b=cx+d这类绝对值方程,可以得到ax+b=cx+d或ax+b=-(cx+d),一般有两个解,解完无需检验。
巩固:解下列绝对值方程:1、2x-1=3x+12、x+20=5x-28二、形如ax+b=cx+d的方程的解法:从绝对值的意义出发分类讨论:①当ax+b≥0时,ax+b=ax+b,得ax+b=cx+d,解完需把解代入验证是否满足ax+b≥0,若不满足应舍去。
②当ax+b<0时,ax+b=-(ax+b),得-(ax+b)=cx+d,解完需把解代入验证是否满足ax+b<0,若不满足应舍去。
例如:2x+9=7x-1.巩固:解下列绝对值方程:1、3x-1=5x+92、4x+8=10x-34二、形如ax+b±cx+d=q的方程的解法:(零点分段法)对于这类方程,因为不知道x的取值范围,所以无法确切地判断绝对值里的式子的符号,因此需要分类讨论。
例如:x-1+x-2=3①推断零点:使各个绝对值内的式子正负性发生改变时x 的值即为零点。
x=1时,x-1=0;x=2时,x-2=0;即x=1和x=2为零点。
②分类讨论:当x<1时,方程可化为(1-x)+(2-x)=3;解得x=0,x=0在x<1的范围内,故成立;当1≤x<2时,方程可化为(x-1)+(2-x)=3;即1=3,舍去;当x≥2时,方程可化为(x-1)+(x-2)=3;解得x=3,x=3在x≥2的范围内,故成立。
综上所述,x=0或x=3.巩固:解下列绝对值方程:1、x+2+x=7+1/22、2x-1+x-7=7/33、3x+5-2x-7=16/44、5x+2-3x-10=24 课后作业:解下列绝对值方程:。
解含有绝对值的方程
解含有绝对值的方程数学是一门让人既爱又恨的学科,其中解含有绝对值的方程更是让很多学生头疼的问题。
今天,我将为大家详细介绍如何解含有绝对值的方程,并给出一些实用的例子和技巧。
一、绝对值的定义和性质在开始解含有绝对值的方程之前,我们先来回顾一下绝对值的定义和性质。
绝对值的定义如下:对于任意实数x,当x≥0时,|x|=x;当x<0时,|x|=-x。
绝对值的性质如下:1. |a|≥0,即绝对值的值大于等于0;2. |a|=0的充分必要条件是a=0;3. |ab|=|a||b|,即绝对值的乘积等于各绝对值的乘积;4. |a/b|=|a|/|b|,即绝对值的商等于绝对值的商。
二、一元一次绝对值方程的解法1. |x|=a,其中a≥0。
当a≥0时,方程|x|=a的解为x=a和x=-a。
2. |x|=a,其中a<0。
当a<0时,方程|x|=a无解。
3. |x|=a,其中a>0。
当a>0时,方程|x|=a的解为x=a和x=-a。
三、一元二次绝对值方程的解法1. |ax^2+bx+c|=0,其中a≠0。
当a≠0时,方程|ax^2+bx+c|=0的解为x=根号(-b^2/4ac)和x=-根号(-b^2/4ac)。
2. |ax^2+bx+c|=a,其中a≠0。
当a≠0时,方程|ax^2+bx+c|=a的解为x=根号((-b±√(b^2-4ac))/2a)和x=-根号((-b±√(b^2-4ac))/2a)。
四、实际例子及解析1. 例子1:|2x-3|=5。
解:根据绝对值的定义,我们可以得到以下两个方程:2x-3=5和2x-3=-5。
解这两个方程可以得到x=4和x=-1。
所以,方程|2x-3|=5的解为x=4和x=-1。
2. 例子2:|x^2-4|=3。
解:根据绝对值的定义,我们可以得到以下两个方程:x^2-4=3和x^2-4=-3。
解这两个方程可以得到x=√7和x=-√7。
专练:含绝对值的一元一次方程的解法教程文件
专练:含绝对值的一元一次方程的解法含绝对值的一元一次方程的解法1.含绝对值的一次方程的解法(1)形如(0)ax b c a +=≠型的绝对值方程的解法:①当0c <时,根据绝对值的非负性,可知此时方程无解; ②当0c =时,原方程变为0ax b +=,即0ax b +=,解得b x a=-;③当0c >时,原方程变为ax b c +=或ax b c +=-,解得c b x a -=或c b x a--=. 解方程:⑴235x += ⑵21302x --= ⑶200520052006x x -+-= ⑷1121123x x +--+-=(2)形如(0)ax b cx d ac +=+≠型的绝对值方程的解法: ①根据绝对值的非负性可知0cx d +≥,求出x 的取值范围; ②根据绝对值的定义将原方程化为两个方程ax b cx d +=+和()ax b cx d +=-+; ③分别解方程ax b cx d +=+和()ax b cx d +=-+; ④将求得的解代入0cx d +≥检验,舍去不合条件的解. 解方程⑴4329x x +=+ ⑵525x x -+=-(3)形如(0)ax b cx d ac +=+≠型的绝对值方程的解法: ①根据绝对值的定义将原方程化为两个方程ax b cx d +=+或()ax b cx d +=-+; ②分别解方程ax b cx d +=+和()ax b cx d +=-+. 解方程⑴23a a =- ⑵2131x x -=+(4)形如()x a x b c a b -+-=<型的绝对值方程的解法: ①根据绝对值的几何意义可知x a x b a b -+-≥-; ②当c a b <-时,此时方程无解; 当c a b =-时,此时方程的解为a x b ≤≤; 当c a b >-时,分两种情况:①当x a <时,原方程的解为2a b c x +-=; ②当x b >时,原方程的解为2a b c x ++=. 解方程⑴134x x -+-= ⑵154x x -+-= ⑶216x x -++=(5)形如(0)ax b cx d ex f ac +±+=+≠型的绝对值方程的解法: ①找绝对值零点:令0ax b +=,得1x x =,令0cx d +=得2x x =; ②零点分段讨论:不妨设12x x <,将数轴分为三个区段,即①1x x <;②12x x x ≤<;③2x x ≥;③分段求解方程:在每一个区段内去掉绝对值符号,求解方程并检验,舍去不在区段内的解.解方程⑴2123x x +--= ⑵2134x x --+= ⑶23143x x x +--=-(6)形如(0)ax b cx d ex f a +++=+≠型的绝对值方程的解法: 解法一:由内而外去绝对值符号:按照零点分段讨论的方式,由内而外逐层去掉绝对值符号,解方程并检验,舍去不符合条件的解.解法二:由外而内去绝对值符号:①根据绝对值的非负性可知0ex f +≥,求出x 的取值范围; ②根据绝对值的定义将原方程化为两个绝对值方程()ax b ex f cx d +=+-+和()()ax b ex f cx d +=-+-+; ③解②中的两个绝对值方程.【题01】解方程93352x x x ++-=+ 35162x x ---= 3548x -+=【题02】解方程:2112x --= 2121x x -+=+ 314x x -+= 11110x ----=【题03】当01x ≤≤时,求方程1110x ---=的解。
30. 如何解含有绝对值的方程?
30. 如何解含有绝对值的方程?30、如何解含有绝对值的方程?在数学的学习中,我们经常会遇到含有绝对值的方程。
这些方程看起来可能会有些复杂,但只要掌握了正确的方法和思路,其实也并不难解决。
接下来,就让我们一起来探讨一下如何解这类方程吧。
首先,我们要明确绝对值的定义。
绝对值表示一个数在数轴上所对应点到原点的距离。
所以,绝对值总是非负的。
即对于任意实数 a,|a|≥0 。
当我们面对一个含有绝对值的方程时,比如|x| = 5 ,这意味着 x 可能等于 5 或者-5 。
因为 5 和-5 到原点的距离都是 5 。
这是最简单的情况,当方程中的绝对值符号内是一个单独的未知数时,我们可以直接得出这样的结论。
然而,大多数情况下,方程会更复杂一些。
比如|2x 1| = 3 。
这时候,我们需要分情况讨论。
第一种情况,当2x 1 ≥ 0 时,也就是2x ≥ 1 ,x ≥ 1/2 ,此时方程可以化为 2x 1 = 3 。
解这个方程,2x = 4 ,x = 2 。
因为 x = 2 满足 x ≥ 1/2 ,所以 x = 2 是这个方程的一个解。
第二种情况,当 2x 1 < 0 时,也就是 2x < 1 ,x < 1/2 ,此时方程化为(2x 1) = 3 。
去括号得到-2x + 1 = 3 ,-2x = 2 ,x =-1 。
因为 x =-1 满足 x < 1/2 ,所以 x =-1 也是这个方程的一个解。
再来看一个更复杂点的例子,比如|x^2 4x + 3| = 2 。
同样,我们分情况讨论。
当 x^2 4x +3 ≥ 0 时,即(x 1)(x 3) ≥ 0 ,这意味着x ≤ 1 或者 x ≥ 3 。
此时方程化为 x^2 4x + 3 = 2 ,移项得到 x^2 4x + 1 = 0 。
使用求根公式 x =4 ± √(16 4) / 2 =2 ± √3 。
因为 2 +√3 > 3 ,2 √3 < 1 ,所以 x = 2 +√3 和 x =2 √3 都是方程的解。
中考数学解题技巧如何解决含有绝对值的方程题
中考数学解题技巧如何解决含有绝对值的方程题绝对值方程题在中考数学中是一类常见且重要的题型,解答这类题目需要一定的技巧和逻辑思维能力。
通过掌握一些解题技巧,能够更加高效地解决含有绝对值的方程题。
本文将从三个方面介绍解决这类题目的技巧,即绝对值的定义、绝对值方程的解法和实际应用。
一、绝对值的定义在解决含有绝对值的方程题之前,首先需要清楚绝对值的定义。
对于任意实数x,绝对值|x|定义为:①当x≥0时,|x|=x;②当x<0时,|x|=-x。
根据绝对值的定义,我们可以知道绝对值永远取非负值,即|a|≥0。
这个性质在解决绝对值方程时会用到。
绝对值方程的解法绝对值方程的解法主要有两种情况:一种是只含有一个绝对值的方程,另一种是含有两个绝对值的方程。
1. 含有一个绝对值的方程当方程中只有一个绝对值时,有两个可能情况:一是绝对值内的表达式为非负数,二是绝对值内的表达式为负数。
(1) 绝对值内的表达式为非负数对于形如|a|=b的方程,其中a为实数,b为非负数,解可以分为两种情况:①当a≥0时,方程变为a=b,直接得到解a=b;②当a<0时,方程变为-a=b,解可以化简为a=-b。
(2) 绝对值内的表达式为负数对于形如|a|=b的方程,其中a为实数,b为负数,解为无解。
因为绝对值|a|永远取非负值,所以当等式右边为负数时,无法找到满足等式的实数解。
2. 含有两个绝对值的方程当方程中含有两个绝对值时,需要分情况讨论。
考虑形如|a|+|b|=c 的方程,其中a、b为实数,c为非负数。
(1) 当a≥0,b≥0时,方程变为a+b=c,直接得到解a+b=c。
(2) 当a<0,b≥0时,方程变为-b+a=c,解可以化简为a=b+c。
(3) 当a≥0,b<0时,方程变为a-b=c,解可以化简为a=b+c。
(4) 当a<0,b<0时,方程变为-b-a=c,解可以化简为a=-b-c。
通过以上的解法,我们可以更加灵活地解决中考数学中的绝对值方程题,并求得相应的解。
含绝对值的一次方程的解法
含绝对值的一次方程的解法例1. 解方程:(1)x x -+=213(2)2121x x x -+-=+分析:(1)分x ≥-12与x <-12讨论; (2)分x x x x ≤--<≤<≤>11121222,,,讨论。
解:(1)当210x +≥,即x ≥-12时,原式化为 ∴=x 2,或x =-4(与x ≥-12相悖,舍去) 当210x +<,即x <-12时 ∴=-x 43,或x =23(与x <-12相悖,舍去) 综上所述,x =2,或x =-43(2)当x ≤-1时,()()()1221-+-=-+x x x ∴=x 2(舍去)当-<≤112x 时,()()1221-+-=+x x x 当122<≤x 时,()()2121x x x -+-=+ 当x >2时,()()2121x x x -+-=+∴=x 2(舍去)综上所述,122≤≤x 说明:含有多个绝对值符号的处理方法是“找零点,划区间”,有时也可以利用绝对值的几何意义。
例2. 求a 的取值范围,使(1)方程x a --=21恰有三个整数解;(2)方程x ax =+1有一个负根,而且没有正根。
分析:去绝对值符号,求出x 值再讨论。
解:(1)当a =0时,x x x --=-=-=±2102121,,∴=x 3或1当a >0时,x a x a --=±-=±2121,由x a -=+21,得x a =+3或x a =-1由x a -=-21,根据题意,必有a =1,这时x =2故a =1时,方程恰有三个整数解x =024,,(2)当x <0时,-=++=-x ax a x 111,()或a ≠-1,则x a=-+<110 当x >0时,x ax a x =+-=-111,()若a ≠1时,则x a=->110 因为a <1时,方程有正根,a >-1时,方程有负根。
带有绝对值符号的方程解法(1)
若a≤b,则|a|≤|b|。
绝对值函数图像
01
绝对值函数y=|x|的图像是一条折线,顶点在原点,两边分别 与x轴正半轴和y轴正半轴重合。
02
当x≥0时,y=x;当x<0时,y=-x。
03
绝对值函数图像关于y轴对称。
02
一元一次绝对值方程解法
方程类型及解法思路
类型一
01
$|ax+b|=c$,其中$aneq0$,$cgeq0$
实例分析与求解过程
• 实例二:解方程组$\left{ \begin{array}{l} |x + y - 3| + |x - y + 1| = 6 \ x + 2y = 4 \end{array} \right.$。
• 分析:这是一个多元绝对值方程组,可以将其化为四个分段函数进行求 解。
• 求解过程:根据绝对值的性质,将方程组化为四个分段函数组,然后分 别求解每个分段函数组。解得$\left{ \begin{array}{l} x = \frac{8}{3} \ y = \frac{2}{3} \end{array} \right.$或$\left{ \begin{array}{l} x = 0 \ y = 2 \end{array} \right.$或$\left{ \begin{array}{l} x = \frac{4}{3} \ y = \frac{8}{3} \end{array} \right.$。经检验,所有解均符合原方程组 。
高次绝对值方程类型及解法
类型一
形如$|x^n| = a$($n geq 2$,$a > 0$)的高 次绝对值方程。
类型二
形如$|x^n - b| = c$($n geq 2$,$b, c in R$ )的高次绝对值方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解含有绝对值的方程四种方法
以下介绍几种含绝对值的方程的解法,给出的这四种方法都是常用的方法。
一、定义法:
根据绝对值的定义把绝对值号去掉,把一个方程变成两个方程来解。
这种方法只适用于较简单的含绝对值的方程。
二、平方法:
对于较简单的含绝对值的方程,去掉绝对值符号的又一个简单方法是方程两边平方。
;三、零点分区法:
这种方法适合于稍微复杂一些的情况,首先令各绝对值号内的式子等于零。
由此解得几个X的值把整个褛分为几个区间,解题时要按这几个区间逐一讨论,特别是解得的值要研究是否落在所给的区间。
四、数轴法
X-A的绝对值的几何意义是,在数轴上表示数A的点到X点的距离,根据这个几何意义解某些绝对值方程,具有直观简捷等特点。
精选。