高一立体几何证明专题练习一精编版

合集下载

高一数学常考立体几何证明的题目及答案

高一数学常考立体几何证明的题目及答案

1、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。

求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。

2、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。

3、已知ABC ∆中90ACB ∠=o,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .4、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.求证:(1) C 1O ∥面11AB D ;(2)1AC ⊥面11AB D .A EDBCAED 1CB 1DCBASDCB AD 1ODB AC 1B 1A 1C5、正方体''''ABCD A B C D-中,求证:(1)''AC B D DB⊥平面;(2)''BD ACB⊥平面.6、正方体ABCD—A1B1C1D1中.(1)求证:平面A1BD∥平面B1D1C;(2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD.7、四面体ABCD中,,,AC BD E F=分别为,AD BC的中点,且22EF AC=,90BDC∠=o,求证:BD⊥平面ACD8、如图,在正方体1111ABCD A B C D-中,E、F、G分别是AB、AD、11C D的中点.求证:平面1D EF∥平面BDG.9、如图,在正方体1111ABCD A B C D-中,E是1AA的中点.(1)求证:1//A C平面BDE;(2)求证:平面1A AC⊥平面BDE.10、已知ABCD是矩形,PA⊥平面ABCD,2AB=,4PA AD==,E为BC的中点.(1)求证:DE⊥平面PAE;AAB1C1CD1DGEF(2)求直线DP 与平面PAE 所成的角.11、如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD .(1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥.12、如图1,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1AO ⊥平面MBD .13、如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD , 作BE ⊥CD ,E为垂足,作AH ⊥BE 于H. 求证:AH ⊥平面BCD .14.(12分)求证平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形.已知:如图,三棱锥S—ABC,SC∥截面EFGH,AB∥截面EFGH.求证:截面EFGH是平行四边形.15.(12分)已知正方体ABCD—A1B1C1D1的棱长为a,M、N分别为A1B和AC上的点,A1M=AN=23 a,如图.(1)求证:MN∥面BB1C1C;(2)求MN的长.16.(12分)(2009·浙江高考)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q 分别为AE,AB的中点.(1)证明:PQ ∥平面ACD ;(2)求AD 与平面ABE 所成角的正弦值.17.(12分)如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E 、F 分别是AB 、BD 的中点. 求证:(1)直线EF ∥面ACD . (2)平面EFC ⊥平面BCD.1、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。

立体几何100题精编版

立体几何100题精编版

立体几何100题1.如图,三角形中,,是边长为l 的正方形,平面底面,若分别是的中点.(1)求证:底面;(2)求几何体的体积.2.在三棱锥P ABC -中, PAC ∆和PBC ∆ 2AB =, ,O D分别是,AB PB 的中点.(1)求证: //OD 平面PAC ; (2)求证: OP ⊥平面ABC ; (3)求三棱锥D ABC -的体积.3.如图,在直三棱柱111ABC A B C -中, 090BAC ∠=, 2AB AC ==,点,M N 分别为111,A C AB 的中点.(1)证明: //MN 平面11BB C C ;(2)若CM MN ⊥,求三棱锥M NAC -的体积.. 4.如图,在三棱柱中,平面,点是与的交点,点在线段上,平面.(1)求证:;(2)若,求点到平面的距离.5.如图,四棱锥P A B C -中,底面ABCD 是直角梯形,1,//,2AB BC AD BC AB BC AD ⊥==, PAD ∆是正三角形, E 是PD 的中点. (1)求证: AD PC ⊥;(2)判定CE 是否平行于平面PAB ,请说明理由.6.如图,在四棱锥S ABCD -中,侧面SAD ⊥底面ABCD , SA SD =, //AD BC , 22AD BC CD ==, M , N 分别为AD , SD 的中点.(1)求证: //SB 平面CMN ;(2)求证: BD ⊥平面SCM .7.如图,在矩形中,,平面,分别为的中点,点是上一个动点.(1) 当是中点时,求证:平面平面;(2) 当时,求的值.8.如图,在正三棱柱111A B C ABC -中,点,D E 分别是1,A C AB 的中点. 求证: ED ∥平面11BB C C若1AB 求证:A 1B ⊥平面B 1CE.9.如图,在长方体1111ABCD A B C D -中, 12,1,1AB AD A A ===.(1)证明直线1BC 平行于平面1D AC ; (2)求直线1BC 到平面1D AC 的距离.10.如图所示,菱形ABCD 与正三角形BCE 所在平面互相垂直, FD ⊥平面ABCD ,且2AB =, FD =(1)求证: //EF 平面ABCD ; (2)若3CBA π∠=,求几何体EFABCD 的体积.11.在直三棱柱ABC -A 1B 1C 1中,AB =AC ,E 是BC 的中点,求证: (Ⅰ)平面AB 1E ⊥平面B 1BCC 1; (Ⅱ)A 1C //平面AB 1E .12.如图,在三棱柱中,平面,,,点为的中点. (1)证明:平面; (2)求三棱锥的体积.13.如图,在多面体中,四边形是正方形,在等腰梯形中,,,,为中点,平面平面.(1)证明:;(2)求三棱锥的体积.14.已知三棱锥,,,为的中点,平面,,,是中点,与所成的角为,且.(1)求证:;(2)求三棱锥的体积.15.在四棱锥中,平面平面,,是等边三角形,已知,,.(1)设是上一点,求证:平面平面.(2)求四棱锥的体积.-中,PA⊥底面ABCD,底面ABCD为菱形,16.如图,在四棱锥P ABCD60∠=,1,ABC==为PC的中点PA PB E.(1)求证: //PA 平面BDE ;(2)求三棱锥P BDE -的体积.17.如图,在直三棱柱(侧棱与底面垂直的棱柱)111ABC A B C -中,点G 是AC 的中点.(1)求证: 1//B C 平面1A BG ;(2)若A B B C =, 1AC ,求证: 11AC A B ⊥. 18.如图所示,四棱锥S ABCD -中,平面SAD ⊥平面ABCD , SA AD ⊥, //AD BC ,43SA BC AB ==24AD ==.(1)证明:在线段SC 上存在一点E ,使得//ED 平面SAB ;(2)若AB AC =,在(1)的条件下,求三棱锥S AED -的体积. 19.(本小题共12分)如图,边长为3的正方形ABCD 所在平面与等腰直角三角形ABE 所在平面互相垂直,AE AB ⊥,且2EM MD =, 3AB AN =.(Ⅰ)求证: //MN 平面BEC ;(Ⅱ)求三棱锥E BMC -的体积.20.如图,在四棱锥中,底面是边长为2的正方形,分别为的中点,平面底面.(1)求证:平面;(2)若,求三棱锥的体积.21.在直三棱柱ABC -A 1B 1C 1中,AB =AC ,E 是BC 的中点,求证:(Ⅰ)平面AB 1E ⊥平面B 1BCC 1; (Ⅱ)A 1C //平面AB 1E .22.如图1,四边形ABCD 为等腰梯形, 2,1AB AD DC CB ====,将ADC ∆沿AC 折起,使得平面ADC ⊥平面ABC , E 为AB 的中点,连接,DE DB .(1)求证: BC AD ⊥; (2)求E 到平面BCD 的距离. 23.如图,四棱锥中,底面为菱形,平面,为的中点.(Ⅰ)证明:平面; (Ⅱ)设,求三棱锥的体积.24.如图,在多面体中,四边形是正方形,在等腰梯形中,,,,为中点,平面平面.(1)证明:;(2)求三棱锥的体积.25.如图1,在矩形中,,,是的中点,将沿折起,得到如图2所示的四棱锥,其中平面平面.(1)证明:平面;(2)设为的中点,在线段上是否存在一点,使得平面,若存在,求出的值;若不存在,请说明理由.26.如图,在四棱锥P ABCD -中, 90ABC ACD ∠=∠=, BAC ∠ 60CAD =∠=,PA ⊥平面ABCD , 2,1PA AB ==.设,M N 分别为,PD AD 的中点.(1)求证:平面CMN ∥平面PAB ;(2)求三棱锥P ABM -的体积.27.如图所示,在长方体1111ABCD A B C D -中,底面ABCD 是边长为1的正方形, 12AA =,P 为棱1BB 上的一个动点.(1)求三棱锥1C PAA -的体积;(2)当1A P PC +取得最小值时,求证: 1PD ⊥平面PAC .28.在三棱柱111ABC A B C -中,已知侧棱1CC ⊥底面,ABC M 为BC 的中点,13,2,AC AB BC CC ===.(1)证明: 1B C ⊥平面1AMC ;(2)求点1A 到平面1AMC 的距离.29.五边形11ANB C C 是由一个梯形1ANB B 与一个矩形11BB C C 组成的,如图甲所示,B 为AC 的中点, 128AC CC AN ===. 先沿着虚线1BB 将五边形11ANB C C 折成直二面角1A BB C --,如图乙所示.(Ⅰ)求证:平面BNC ⊥平面11C B N ;(Ⅱ)求图乙中的多面体的体积.30.如图1, 1AFA ∆中, 11,82FA FA AA CF ===,,点,,B C D 为线段1AA 的四等分点,线段,,BE CF DG 互相平行,现沿,,BE CF DG 折叠得到图2所示的几何体,此几何体的底面ABCD 为正方形.(1)证明: ,,,A E F G 四点共面;(2)求四棱锥B AEFG -的体积.31.如图,三棱锥P ABC -中, PC ⊥平面ABC , ,,F G H 分别是,,PC AC BC 的中点,I 是线段FG 上的任意一点, 22PC AB BC ===,过点F 作平行于底面ABC 的平面DEF 交AP 于点D ,交BP 于点E . (1)求证: //HI 平面ABD ;(2)若AC BC ⊥,求点E 到平面FGH 的距离.32.如图,已知正方体的棱长为3,分别是棱、上的点,且.(1)证明:四点共面;(2)求几何体的体积.33.如图,在四棱柱1111ABCD A B C D -中,已知平面11AA C C ⊥平面ABCD ,且A B B C C A == 1AD CD ==.(1)求证: 1BD AA ⊥;(2)若E 为棱BC 的中点,求证: //AE 平面11DCC D . 34.如图,在三棱柱111ABC A B C -中,底面ABC ∆是等边三角形,且1AA ⊥平面ABC ,D 为AB 的中点,(Ⅰ) 求证:直线1//BC 平面1A CD ;(Ⅱ) 若12,AB BB E ==是1BB 的中点,求三棱锥1A CDE -的体积;35.如图,将菱形沿对角线折叠,分别过,作所在平面的垂线,,垂足分别为,,四边形为菱形,且.(1)求证:平面; (2)若,求该几何体的体积.36.如图,在四棱锥P ABCD -中, 122PC AD CD AB ====, //AB DC , AD CD ⊥, PC ⊥平面ABCD .(1)求证: BC ⊥平面PAC ; (2)若M 为线段PA 的中点,且过,,C D M 三点的平面与线段PB 交于点N ,确定点N 的位置,说明理由;并求三棱锥A CMN -的高.37.如图,在四棱锥O ABCD -中,底面ABCD 是边长为2的正方形,侧棱OB ⊥底面ABCD ,且侧棱OB 的长是2,点,,E F G 分别是,,AB OD BC 的中点.(Ⅰ)证明: OD ⊥平面EFG ;(Ⅱ)求三棱锥O EFG -的体积.38.如图,多面体ABCDEF 中, //,AD BC AB AD ⊥, FA ⊥平面,//ABCD FA DE ,且222AB AD AF BC DE =====.(Ⅰ)M 为线段EF 中点,求证: //CM 平面ABF ;(Ⅱ)求多面体ABCDEF 的体积.39.在如图所示的几何体中,四边形11BB C C 是矩形, 1BB ⊥平面ABC , 1111//,2,A B AB AB A B E =是AC 的中点.(1)求证: 1//A E 平面11BB C C ;(2)若AC BC =, 12AB BB =,求证平面1BEA ⊥平面11AA C .40.如图,四边形ABCD 为梯形, AB CD , PD ⊥平面A B C D ,90BAD ADC ∠∠==︒, 22DC AB a ==, DA =, E 为BC 中点.(1)求证:平面PBC ⊥平面PDE ;(2)线段PC 上是否存在一点F ,使PA 平面BDF ?若有,请找出具体位置,并进行证明:若无,请分析说明理由.41.已知四棱锥S ABCD -中,底面ABCD 是边长为2的菱形, 60BAD ∠=︒,SA SD SB ===E 是棱AD 的中点,点F 在棱SC 上,且SF SCλ=, SA //平面BEF .(Ⅰ)求实数λ的值;(Ⅱ)求三棱锥F EBC -的体积.42.在三棱柱ABC-A 1B 1C 1中,AB=BC=CA=AA 1=2,侧棱AA 1⊥平面ABC ,且D ,E 分别是棱A 1B 1,AA 1的中点,点F 在棱AB 上,且AF=14AB 。

高一数学常考立体几何证明的题目及答案

高一数学常考立体几何证明的题目及答案

证明:( 1)连结 A1C1 ,设 A1C 1 B1D1 O1,连结 AO1
∵ ABCD A1B1C 1D1 是正方体
A1 ACC1 是平行四边形
∴ A1C1∥ AC 且 A1C 1 AC
又 O1,O 分别是 A1C1, AC 的中点,∴ O1C1∥ AO 且 O1C1 AO
AOC1O1 是平行四边形 C1O∥ AO1, AO1 面 AB1D1 , C1O
.
1、如图,已知空间四边形 ABCD 中, BC AC , AD BD , E 是 AB 的中点。
求证:( 1) AB 平面 CDE; ( 2)平面 CDE 平面 ABC 。
BC AC
证明:( 1)
AE BE
CE AB
AD BD
同理,
AE BE
DE AB
A E
B
C
又∵ CE DE E
∴ AB 平面 CDE
9、如图,在正方体 ABCD A1B1C1D1 中, E 是 AA1 的中点 . ( 1)求证: A1C // 平面 BDE ; ( 2)求证:平面 A1AC 平面 BDE .
10、已知 ABCD 是矩形, PA 平面 ABCD , AB 2 , PA AD 4 , E 为 BC 的中点. ( 1)求证: DE 平面 PAE ; ( 2)求直线 DP 与平面 PAE 所成的角.
13 、 如 图 2 , 在 三 棱 锥 A - BCD 中 , BC= AC, AD= BD, 作 BE⊥ CD, E 为 垂 足 , 作 AH⊥ BE 于 H . 求 证 : AH⊥ 平 面 BCD.
精彩文档
实用标准文案
14. (12 分 )求证平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形. 已知:如图,三棱锥 S—ABC, SC∥截面 EFGH ,AB∥截面 EFGH . 求证:截面 EFGH 是平行四边形.

高一数学立体几何练习题及部分答案汇编精编版.doc

高一数学立体几何练习题及部分答案汇编精编版.doc

高一数学立体几何练习题及部分答案汇编精编版.doc立体几何试题一.选择题(每题 4 分,共 40 分)1.已知 AB//PQ , BC//QR,则∠ PQP 等于()A300B300C1500D以上结论都不对2.在空间,下列命题正确的个数为()(1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形(3)平行于同一条直线的两条直线平行;(4)有两边及其夹角对应相等的两个三角形全等A 1B 2C 3D 43.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是()A 平行B相交C在平面内D平行或在平面内4.已知直线 m//平面,直线n在内,则m与n的关系为()A 平行B相交C平行或异面D相交或异面5.经过平面外一点,作与平行的平面,则这样的平面可作()A 1个或2个B0个或1个C1个D0个6.如图,如果MC菱形ABCD所在平面,那么MA与BD的位置关系是()A 平行B垂直相交C异面D相交但不垂直7.经过平面外一点和平面内一点与平面垂直的平面有()A 0个B1个C无数个D1个或无数个8.下列条件中 ,能判断两个平面平行的是()A 一个平面内的一条直线平行于另一个平面;B一个平面内的两条直线平行于另一个平面C一个平面内有无数条直线平行于另一个平面D一个平面内任何一条直线都平行于另一个平面9.对于直线m , n和平面,,使成立的一个条件是()A m // n, n, mB m // n, n, mC m n,m, nD m n,m //, n //10 .已知四棱锥 ,则中 ,直角三角形最多可以有 ()1二.填空题(每题 4 分,共 16 分)11.已知ABC 的两边 AC,BC 分别交平面于点M,N,设直线AB与平面交于点O,则点O 与直线 MN 的位置关系为 _________12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有_____________条13.一块西瓜切 3 刀最多能切 _________块14.将边长是 a 的正方形 ABCD 沿对角线 AC 折起 ,使得折起后 BD 得长为 a,则三棱锥 D-ABC 的体积为 ___________三、解答题15( 10 分)如图,已知E,F 分别是正方形ABCD A B C D 的棱AA 和棱 CC 上的点,且1 1 1 11 1AE C1 F 。

修订版高中数学立体几何常考证明题汇总[精]

修订版高中数学立体几何常考证明题汇总[精]

修订版高中数学立体几何常考证明题汇总[精]新课标立体几何常考证明题汇总1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点(1)求证:EFGH是平行四边形(2)若BD=23,AC=2,EG=2。

求异面直线AC、BD所成的角和EG、BD所成的角。

A BF CG DE H证明:在?ABD中,∵E,H分别是AB,AD的中点∴EH//BD,EH?同理,FG//BD,FG?(2) 90° 30 °考点:证平行(利用三角形中位线),异面直线所成的角1BD 21BD∴EH//FG,EH?FG∴四边形EFGH是平行四边形。

22、如图,已知空间四边形ABCD中,BC?AC,AD?BD,E是AB的中点。

求证:(1)AB?平面CDE;(2)平面CDE?平面ABC。

A EBC?AC?证明:(1)??CE?ABAE?BE?同理,AD?BD???DE?ABAE?BE?BC又∵CE?DE?E ∴AB?平面CDED(2)由(1)有AB?平面CDE又∵AB?平面ABC,∴平面CDE?平面ABC 考点:线面垂直,面面垂直的判定快乐E是AA1的中点, 3、如图,在正方体ABCD?A1BC11D1中,BDE。

求证: AC1//平面证明:连接AC交BD于O,连接EO,∵E为AA1的中点,O为AC的中点∴EO为三角形A1AC的中位线∴EO//AC1B1AD1E CA DBDE外又EO在平面BDE内,AC1在平面B BDE。

∴AC1//平面考点:线面平行的判定4、已知?ABC中?ACB?90,SA?面ABC,AD?SC,求证:AD?面SBC.证明:∵?ACB?90° ?BC?AC又SA?面ABC ?SA?BC ?BC?面SAC ?BC?ADCSDACB又SC?AD,SC?BC?C?AD?面SBC 考点:线面垂直的判定O是底ABCD对角线的交点. 5、已知正方体ABCD?A1BC11D1,求证:(1) C1O∥面AB1D1;(2)AC?面AB1D1. 1证明:(1)连结AC11,设D1A1B1C1AC11?B1D1?O1,连结AO1∵ A BCD?AD1BC11D1是正方体 ?A1ACC1是平行四边形C∴A1C1∥AC且 AC11?AC O又O1,O分别是ACAB1C1?AO 11,AC的中点,∴O1C1∥AO且O?AOC1O1是平行四边形?C1O∥AO1,AO1?面ABD,CO?面ABD ∴CO∥面ABD11111111(2)CC1?面A1B1C1D1 ?CC !1?B1D∵AC11?B1D1, ?BD?面ACC又 1111 即A1C?B1D1AC?AD1,又D1B1?AD1?D1同理可证1?面AB1D1 ?AC1考点:线面平行的判定(利用平行四边形),线面垂直的判定快乐6、正方体ABCD?A'B'C'D'中,求证:(1)AC?平面B'D'DB;(2)BD'?平面ACB'.考点:线面垂直的判定7、正方体ABCD―A1B1C1D1中.(1)求证:平面A1BD∥平面B1D1C; (2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD.证明:(1)由B1B∥DD1,得四边形BB1D1D是平行四边形,∴B1D1∥BD,又BD ?平面B1D1C,B1D1?平面B1D1C,∴BD∥平面B1D1C.同理A1D∥平面B1D1C.而A1D∩BD=D,∴平面A1BD∥平面B1CD.A1 E D A D1 B1 F G B C C1(2)由BD∥B1D1,得BD∥平面EB1D1.取BB1中点G,∴AE∥B1G.从而得B1E∥AG,同理GF∥AD.∴AG∥DF.∴B1E∥DF.∴DF∥平面EB1D1.∴平面EB1D1∥平面FBD.考点:线面平行的判定(利用平行四边形)8、四面体ABCD中,AC?BD,E,F分别为AD,BC的中点,且EF?2AC, 21//?AC2?BDC?90,求证:BD?平面ACD证明:取CD的中点G,连结EG,FG,∵E,F分别为AD,BC的中点,∴EG//1BD,又AC?BD,∴FG?1AC,∴在?EFG中,EG2?FG2?1AC2?EF2 FG?222 ∴EG?FG,∴BD?AC,又?BDC?90,即BD?CD,AC?CD?C ∴BD?平面ACD考点:线面垂直的判定,三角形中位线,构造直角三角形M是PC的中点,N是AB9、如图P是?ABC所在平面外一点,PA?PB,CB?平面PAB,P上的点,AN?3NB(1)求证:MN?AB;(2)当?APB?90,AB?2BC?4时,求MN的长。

立体几何证明方法汇总精编版

立体几何证明方法汇总精编版

① 中位线定理例题:已知如图:平行四边形ABCD 中,6BC =,正方形ADEF 所在平面与平面ABCD 垂直,G ,H 分别是DF ,BE的中点. (1)求证:GH ∥平面CDE ;(2)若2,CD DB ==,求四棱锥F-ABCD 的体积.练习:1、如下图所示:在直三棱柱ABC —A 1B 1C 1中,AC=3,BC=4,AB=5,AA 1=4,点D 是AB 的中点。

求证:AC 1∥平面CDB 1;2. 如图,1111D C B A ABCD -是正四棱柱侧棱长为1,底面边长为2,E 是棱BC 的中点。

(1)求证://1BD 平面DE C 1;(2)求三棱锥BC D D 1-的体积.3、如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,4,3PD DC ==,E 是PC 的中点。

(1)证明://PA BDE 平面;(2)求PAD ∆以PA 为轴旋转所围成的几何体体积。

A 1C _ H_ G_ D_ A_ B_ CEFGPABDFEA B C D EF例2、 如图, 在矩形ABCD 中,2AB BC = , ,P Q 分别为线段,AB CD 的中点, EP ⊥平面ABCD .求证: AQ ∥平面CEP ;(利用平行四边形)练习:①如图,PA 垂直于矩形ABCD 所在的平面,E 、F 分别是AB 、PD 的中点。

求证:AF ∥平面PCE ;②如图,已知P 是矩形ABCD 所在平面外一点,ABCD 平面PD ⊥,M ,N 分别是AB ,PC 中点。

求证://PAD MN 平面PABCDMN③ 如图,已知AB ⊥平面ACD ,DE//AB ,△ACD 是正三角形,AD = DE = 2AB ,且F 是CD 的中点.⑴求证:AF//平面BCE ;④、已知正方体ABCD-1111D C B A ,O 是底ABCD 对角线的交点.求证://1O C 面11AB D .A BCDEF③比例关系是PB 、BC 上的点,且NCBN PMBM =,例题3、P 是平行四边形ABCD 平面外一点,M 、N 分别求证:MN//平面PCD(利用比例关系)练习:如图,四边形ABCD 为正方形,⊥EA 平面ABCD ,//EF AB ,=4,=2,=1AB AE EF .(Ⅱ)若点M 在线段AC 上,且满足14CM CA =, 求证://EM 平面FBC ;④面面平行-线面平行例题4、如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE//CF ,∠BCF=∠CEF=︒90,AD=3,EF=2。

高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。

高一数学立体几何练习题及部分答案汇编

高一数学立体几何练习题及部分答案汇编

立体几何试题一.选择题(每题4分,共40分)1.已知AB//PQ,BC//QR,则∠PQP等于()A 030B 030C 0150 D 以上结论都不对2.在空间,下列命题正确的个数为()(1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形(3)平行于同一条直线的两条直线平行;(4)有两边及其夹角对应相等的两个三角形全等A 1B 2C 3D 43.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是()A 平行B 相交C 在平面D 平行或在平面4.已知直线m//平面α,直线n在α,则m与n的关系为()A 平行B 相交C 平行或异面D 相交或异面5.经过平面α外一点,作与α平行的平面,则这样的平面可作()A 1个或2个B 0个或1个C 1个D 0个6.如图,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是( )A 平行B 垂直相交C 异面D 相交但不垂直7.经过平面α外一点和平面α一点与平面α垂直的平面有()A 0个B 1个C 无数个D 1个或无数个8.下列条件中,能判断两个平面平行的是( )A 一个平面的一条直线平行于另一个平面;B 一个平面的两条直线平行于另一个平面C 一个平面有无数条直线平行于另一个平面D 一个平面任何一条直线都平行于另一个平面9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( )A //,,m n n m βα⊥⊂B //,,m n n m βα⊥⊥C ,,m n m n αβα⊥=⊂D ,//,//m n m n αβ⊥10 .已知四棱锥,则中,直角三角形最多可以有( )A 1个B 2个C 3个D 4个二.填空题(每题4分,共16分)11.已知∆ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有_____________条13.一块西瓜切3刀最多能切_________块14.将边长是a 的正方形ABCD 沿对角线AC 折起,使得折起后BD 得长为a,则三棱锥D-ABC 的体积为___________三、 解答题15(10分)如图,已知E,F 分别是正方形1111ABCD A B C D -的棱1AA 和棱1CC 上的点,且1AE C F =。

高中立体几何证明题

高中立体几何证明题

高中立体几何证明题一、线面平行的证明题1已知正方体ABCD - A_{1}B_{1}C_{1}D_{1},E,F分别是AB,BC的中点,求证:EF∥平面A_{1}C_{1}D。

解析1. 连接AC。

- 在 ABC中,因为E,F分别是AB,BC的中点,所以EF∥ AC。

2. 正方体ABCD - A_{1}B_{1}C_{1}D_{1}中:- AC∥ A_{1}C_{1}。

- 由EF∥ AC和AC∥ A_{1}C_{1}可得EF∥ A_{1}C_{1}。

- 又A_{1}C_{1}⊂平面A_{1}C_{1}D,EFnot⊂平面A_{1}C_{1}D。

- 根据线面平行的判定定理,所以EF∥平面A_{1}C_{1}D。

题2在三棱柱ABC - A_{1}B_{1}C_{1}中,D是AB的中点,求证:AC_{1}∥平面CDB_{1}。

解析1. 连接BC_{1},交B_{1}C于点E。

- 在三棱柱ABC - A_{1}B_{1}C_{1}中,E为BC_{1}的中点。

2. 因为D是AB的中点:- 所以在 ABC_{1}中,DE∥ AC_{1}。

- 又DE⊂平面CDB_{1},AC_{1}not⊂平面CDB_{1}。

- 根据线面平行的判定定理,可得AC_{1}∥平面CDB_{1}。

二、线面垂直的证明题3在四棱锥P - ABCD中,底面ABCD是正方形,PA = PB = PC = PD,求证:PA⊥平面ABCD。

解析1. 连接AC,BD交于点O,连接PO。

- 因为底面ABCD是正方形,所以O为AC,BD中点。

- 又PA = PC,PB = PD,根据等腰三角形三线合一的性质:- 可得PO⊥ AC,PO⊥ BD。

- 而AC∩ BD = O,AC⊂平面ABCD,BD⊂平面ABCD。

- 根据直线与平面垂直的判定定理,所以PO⊥平面ABCD。

- 又PA = PB = PC = PD,AO = BO = CO = DO,所以 PAO≅ PBO≅ PCO ≅ PDO。

最新最全立体几何证明题复习精选完整版.doc

最新最全立体几何证明题复习精选完整版.doc

立体几何大题证明解答题(共10道题)1.(2014四川,18, 12分)(本小题满分12分)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(I )若AC丄BC,证明:直线BC丄平面ACC1A1;(II )设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE //平面A1MC?请证明你的结论.2.(2014江苏,16, 14分)如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点•已知PA 丄AC,PA=6,BC=8,DF=5.求证:(1)直线PA//平面DEF;(2)平面BDE丄平面ABC.3.(2014 山东,18,12 分)如图,四棱锥P-ABCD 中,AP丄平面PCD,AD // BC,AB=BC= - AD,E,F 分别为线段AD,PC的中点.(I )求证:AP //平面BEF;(II )求证:BE丄平面PAC.a4.(2014天津,17 , 13分)女口图,四棱锥P-ABCD 的底面ABCD 是平行四边形,BA=BD= ,AD=2,PA=PD= • - ,E,F 分别是棱AD,PC 的中点.(I )证明EF //平面PAB;(I )证明平面PBC丄平面ABCD;5.(2014 北京,17,14 分)女口图,在三棱柱ABC-A1B1C1 中,侧棱垂直于底面,AB 丄BC,AA仁AC=2,BC=1,E,F 分别是A1C1,BC 的中点.(I )求证:平面ABE丄平面B1BCC1;(II )求证:C仆//平面ABE;(川)求三棱锥E-ABC的体积.6.(2014课标I ,18,12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA丄平面ABCD,E 为PD 的中点• (I )证明:PB //平面AEC;V ',求A到平面PBC的距离•(I )设AP=1,AD= ,三棱锥P-ABD的体积7.(河北省衡水中学2014届高三下学期二调)如图,在四棱锥“m:中,Z 朋C二£ACD二90D,饷C = ACAD二60°,为丄平面」「为「.的中点,忌二慈•二L(I)求证:1 //平面H衣;(II)求四面体PACE的体积.8.【2012高考安徽文19】(本小题满分12分)如图,长方体ABCD - 中,底面A1B1C1D1是正方形,O是BD的中点,E 是棱AA上任意一点。

(完整版)立体几何证明垂直专项含练习题及答案.doc

(完整版)立体几何证明垂直专项含练习题及答案.doc

精品字里行间精品文档立体几何证明 ------ 垂直一. 复习引入1.空间两条直线的位置关系有: _________,_________,_________三种。

2.(公理 4)平行于同一条直线的两条直线互相 _________.3.直线与平面的位置关系有 _____________,_____________,_____________三种。

4.直线与平面平行判定定理 : 如果 _________的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么 _________________________.6.两个平面的位置关系 :_________,_________.7.判定定理 1:如果一个平面内有 _____________直线都平行于另一个平面,那么这两个平面平行 .8.线面垂直性质定理:垂直于同一条直线的两个平面 ________.9.如果两个平行平面同时和第三个平面相交,那么它们的________平行 .10.如果两个平面平行,那么其中一个平面内的所有直线都 _____于另一个平面 . 二.知识点梳理知识点一、直线和平面垂直的定义与判定定义语言描述如果直线l 和平面α内的任意一条直线都垂直,我们就说直线 l 与平面互相垂直,记作 l ⊥α图形判定一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直 .条件 b 为平面α内的任一直线,而 l 对这l ⊥m, l ⊥n,m∩n=B,m ,一直线总有 l ⊥αn结论l ⊥l ⊥要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同(线线垂直线面垂直)知识点二、直线和平面垂直的性质性质语言描述一条直线垂直于一个平面,那么这条垂直于同一个平面的两条直线平行.直线垂直于这个平面内的所有直线图形条件结论知识点三、二面角Ⅰ .二面角:从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle). 这条直线叫做二面角的棱,这两个半平面叫做二面角的面. 记作二面角-AB-. (简记P-AB-Q)二面角的平面角的三个特征:ⅰ.点在棱上ⅱ.线在面内ⅲ .与棱垂直Ⅱ .二面角的平面角:在二面角-l-的棱l上任取一点O,以点O为垂足,在半平面,内分别作垂直于棱 l 的射线 OA 和 OB ,则射线 OA 和 OB 构成的AOB叫做二面角的平面角.作用:衡量二面角的大小;范围:001800.知识点四、平面和平面垂直的定义和判定定义判定文字描述两个平面相交,如果它们所成的二面一个平面过另一个平面的垂线,则这角是直二面角,就说这两个平面垂两个平面垂直直.图形结果α∩β =lα-l-β=90oα⊥β(垂直问题中要注意题目中的文字表述,特别是“任何”“ 随意”“无数”等字眼)三.常用证明垂直的方法立体几何中证明线面垂直或面面垂直都可转化为线线垂直,而证明线线垂直一般有以下的一些方法:( 1)通过“平移”。

高一数学常考立体几何证明题及答案

高一数学常考立体几何证明题及答案

高一数学常考立体几何证明题1、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。

求证:(1)⊥AB 平面; (2)平面CDE ⊥平面ABC 。

2、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点,求证: 1//A C 平面BDE 。

3、已知ABC ∆中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥, 求证:AD ⊥面SBC .4、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.求证:(1) C1O ∥面11AB D ;(2)1AC ⊥面11AB D .5、正方体''''ABCD A B C D -中,求证:''AC B D DB ⊥平面;6、正方体—A1B1C1D1中.(1)求证:平面A1∥平面B1D1C ;(2)若E 、F 分别是1,1的中点,求证:平面1D1∥平面.AE D BCAE D 1CB 1DCBASDCB AD 1ODBAC 1B 1A 1C A AB 1C 1C D 1D G EF7、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且22EF AC =,90BDC ∠=,求证:BD ⊥平面ACD8、如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别是AB 、AD 、11C D 的中点.求证:平面1D EF∥平面BDG .9、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点.(1)求证:1//A C 平面BDE ;(2)求证:平面1A AC ⊥平面BDE .10、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角.11、如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥.12、如图1,在正方体1111ABCD A B C D -中,M 为1CC 的中点,交于点O ,求证:1AO ⊥平面.13、如图2,在三棱锥A-中,=,=, 作⊥,E为垂足,作⊥于H. 求证:⊥平面.14.(12分)求证平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形.已知:如图,三棱锥S —,∥截面,∥截面. 求证:截面是平行四边形.15.(12分)已知正方体—A1B1C1D1的棱长为a ,M 、N 分别为A1B 和上的点,A1M ==a ,如图.(1)求证:∥面1C1C ; 16.(12分)(2009·浙江高考)如图,⊥平面,∥,===2=2,∠=120°,P ,Q 分别为,的中点. (1)证明:∥平面;17.(12分)如图,在四面体中,=,⊥,点E 、F 分别是、的中点. 求证:(1)直线∥面. (2)平面⊥平面 .20、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点,D 1ODBAC 1B 1A 1CN MPCBA求证:1//A C 平面BDE 。

高中数学立体几何证明专项练习

高中数学立体几何证明专项练习

高中数学立体几何证明专项练习1、在如图所示的几何体中,D 是AC 的中点,EF ∥DB .已知G ,H 分别是EC 和FB 的中点.求证:GH ∥平面ABC .2、如图,在四棱锥P ­ABCD 中,底面ABCD 是边长为1的菱形,∠DAB =π3,平面P AD ⊥平面ABCD ,P A =PD =102. (1)证明:PB ⊥BC ;(2)求点A 到平面PBC 的距离.3、如图,在四棱锥P ­ABCD 中,P A ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点.(1)求证:BD ⊥平面P AC ;(2)若∠ABC =60°,求证:平面P AB ⊥平面P AE ;(3)棱PB 上是否存在点F ,使得CF ∥平面P AE ?说明理由.4、如图所示,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,底面边长1AB =,E 是PC 的中点.(1)求证://PA 平面BDE ;(2)若2OP =,求三棱锥E BCD -的体积.5、如图,在几何体P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,2ABC BAD π∠=∠=,2AD =,1AB BC ==.(1)求证:CD ⊥平面PAC ;(2)若PC 与平面ABCD 所成的角为3π,求点A 到平面PCD的距离.6、如图,在四棱锥P -ABCD 中,底面ABCD 是直角梯形,且AD ∥BC ,AB ∥BC ,BC =2AD ,已知平面PAB ∥平面ABCD ,E ,F 分别为BC ,PC 的中点.求证:(1)AB // 平面DEF ;(2)BC ∥平面DEF .7、如图所示,四棱锥A ­BCDE 中,BE ∥CD ,BE ⊥平面ABC ,CD =32BE ,点F 在线段AD 上.(1)若AF =2FD ,求证:EF ∥平面ABC ;(2)若△ABC 为等边三角形,CD =AC =3,求四棱锥A ­BCDE的体积.8.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,PA ⊥平面ABCD ,且2PA AD ==,点E 为线段PD 的中点.(1)求证://PB 平面AEC ;(2)求证:AE ⊥平面PCD ;(3)求三棱锥A PEC -的体积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一立体几何证明专题练习一
1.如图,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,
AC,A1B1,A1C1的中点,求证:
(1)B,C,H,G四点共面;
(2)平面EFA1∥平面BCHG.
2.如图,在直三棱柱ABC-A1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C 的中点.
(1)求证:DE∥平面ABC;
(2)求三棱锥E-BCD的体积.
3.如图,多面体ABFEDC的直观图及三视图如图所示,M,N分别为AF,BC的中点.
(1)求证:MN∥平面CDEF;
(2)求多面体A-CDEF的体积.
4.如图所示,已知PA⊥矩形ABCD所在平面,M,N分别是AB,PC的中点.
(1)求证:MN⊥CD;
(2)若∠PDA=45°,求证:MN⊥平面PCD.
5.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=4,AB=2DC=2 5.
(1)求证:BD⊥平面PAD;
(2)求三棱锥A-PCD的体积.
6.已知正方体ABCD-A1B1C1D1中,E为棱CC1上的动点.
(1)求证:A1E⊥BD;
(2)当E恰为棱CC1的中点时,求证:平面A1BD⊥平面
EBD.
7.如图,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,∠BAC =∠ACD=90°,AE∥CD,DC=AC=2AE=2.
(1)求证:AF∥平面BDE;
(2)求四面体B-CDE的体积.
8. 如图所示,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.
(1)求证:E、B、F、D1四点共面;
(2)求证:平面A1GH∥平面BED1F.
9.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
(1)证明:BC1∥平面A1CD;
(2)若AA1=AC=CB=2,AB=22,求三棱锥C-A1DE的体积.
10.在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.
(1)若AC⊥BC,证明:直线BC⊥平面ACC1A1;
(2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.
11.如图所示,在直三棱柱ABC-A1B1C1中(侧棱垂直于底面的三棱柱叫直三棱柱),AB=BB1,AC1⊥平面A1BD,D为AC的中点.求证:
(1)B1C∥平面A1BD;
(2)B1C1⊥平面ABB1A1.
12. 如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是CD、A1D1的中点.
(1)求证:AB1⊥BF;
(2)求证:AE⊥BF;
(3)棱CC1上是否存在点P,使BF⊥平面AEP,若存在,确定点P的位置,若不存在,说明理由.
13.如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为217.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.
(1)证明:GH∥EF;
(2)若EB=2,求四边形GEFH的面积.
14.如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.
(1)求证:平面ABE⊥平面B1BCC1;
(2)求证:C1F∥平面ABE;
(3)求三棱锥E-ABC的体积.。

相关文档
最新文档