受拉构件的强度计算
拉弯和压弯构件的强度与稳定计算.

拉弯和压弯构件的强度与稳定计算1.拉弯和压弯构件的强度计算考虑部分截面发展塑性,《规范》规定的拉弯和压弯构件的强度计算式f W M A N nxx x n ≤+γ (6-1)承受双向弯矩的拉弯或压弯构件,《规范》采用了与式(6-1)相衔接的线性公式f W M W M A Nnyy y nx x x n ≤++γγ (6-2)式中:n A ——净截面面积;nx W 、ny W ——对x 轴和y 轴的净截面模量;x γ、y γ——截面塑性发展系数。
当压弯构件受压翼缘的外伸宽度与其厚度之比t b />y f /23513,但不超过yf /23515时,应取x γ=1.0。
对需要计算疲劳的拉弯和压弯构件,宜取x γ=y γ=1.0,即不考虑截面塑性发展,按弹性应力状态计算。
2.实腹式压弯构件在弯矩作用平面内的稳定计算目前确定压弯构件弯矩作用平面内极限承载力的方法很多,可分为两大类,一类是边缘屈服准则的计算方法,一类是精度较高的数值计算方法。
按边缘屈服准则推导的相关公式y Ex x x xx f N N W M AN =⎪⎪⎭⎫⎝⎛-+ϕϕ11(6-4)式中:x ϕ——在弯矩作用平面内的轴心受压构件整体稳定系数。
边缘纤维屈服准则认为当构件截面最大受压纤维刚刚屈服时构件即失去承载能力而发生破坏,更适用于格构式构件。
实腹式压弯构件当受压最大边缘刚开始屈服时尚有较大的强度储备,即容许截面塑性深入。
因此若要反映构件的实际受力情况,宜采用最大强度准则,即以具有各种初始缺陷的构件为计算模型,求解其极限承载力。
弯矩沿杆长均匀分布的两端铰支压弯构件,《规范》采用数值计算方法,考虑构件存在l/1000的初弯曲和实测的残余应力分布,算出了近200条压弯构件极限承载力曲线。
然后《规范》借用了弹性压弯构件边缘纤维屈服时计算公式的形式,经过数值运算,得出比较符合实际又能满足工程精度要求的实用相关公式y Ex px xx f N N W M AN=⎪⎪⎭⎫⎝⎛-+8.01ϕ(6-5)式中:px W ——截面塑性模量。
钢筋混凝土受压构件和受拉构件—偏心受压柱计算

① 当同一主轴方向的杆端弯矩比: M1 0.9
M2
② 轴压比:
N 0.9
fc A
③ 构件的长细比满足要求: l0 34 12( M1 )
i
M2
M1、M2:分别为已考虑侧移影响的偏心受压构件两端截面按结构弹性
分析确定的对同一主轴的组合弯矩设计值,绝对值较大端为M2,绝对值较小 端为 M1;当构件按单曲率弯曲时, M1/M2取正值,否则取负值。
α1fc
α1fcbx x=ξh0
f 'yA's A's
b
h0用平面的受压承载力计算
可能垂直弯矩作用平面先破坏,按非偏心方向的轴心受 压承载力计算
N Nu 0.9 ( fc A f yAs )
2.对称配筋矩形截面小偏压构件的截面设计
对称配筋,即As=As',fy = fy',as = as ' 截面设计:已知:截面尺寸、内力设计值M及N、材料强度等级、构件计算长度,
Ne f y As (h0 as ')
e
ei
h 2
as
e ei
N e’
fyAs As
α1fcbx x
α1fc
f 'yA's A's
b
as
h0
a's
h
大偏心受压应力计算图
2.对称配筋矩形截面大偏压构件的截面设计
对称配筋,即As=As',fy = fy',as = as ' 截面设计:已知:截面尺寸、内力设计值M及N、材料强度等级、构件计算长度,
5.3. 矩形截面大偏心受压构件的正截面承载力计算
.大偏心受压基本计算公式
N 1 f cbx f y As f y As
轴心受力构件的强度和刚度

1、轴心压杆的弹性弯曲屈曲变形
欧拉理论
cr
N cr A
2 EI
l2A
2E
2
2、 轴心压杆的弹塑性弯曲屈曲变形:
1) 双模量理论 :(弹塑性屈曲力的上限)与两 个变形模量有关 :
加载区应力应变遵循切线模量Et的变化规律, 卸载区应力应变遵循弹性模量E的变化规律,
2) 切线模量理论:(弹塑性屈曲力的下限) 弯曲时整个截面都处在加载过程中,应力应变关 系遵循同一个侧向模量Et,以Et代表E代入上式 切线模量,求屈曲应力和屈曲力 。
t 10
(10 0.1) 235
fy
(10 0.1 57.2) 235 12.97(满足) 345
腹板:
h0 200 33.3 (25 0.5) 235
tw 6
fy
(25 0.557.2) 235 44.2(满足) 345
四、原截面改用Q235钢材
235 fy
与无关,定值偏于安全,
以上 30取 30, 100,取 100
三、圆管的径厚比
D t
100或 23500 f y
D 管径,
t 壁厚,
f y 屈服强度
第四节 实腹式轴心压杆的截面设计
一、设计原则:
截面形式为双轴对称的型钢截面和实腹式组合截面。 为取得合理而经济的效果,设计时可按以下原则:
(二) 验算截面
1、强度验算: 2、刚度验算:
N f
An
l0 i
3、 整体稳定:
N f
A
须同时考虑两主轴方向,但一般取其中长细比 较大值进行验算。
4、 局部稳定:
工字形:
钢结构计算书

钢结构计算书一、构件受力类别轴心受拉构件强度计算。
二、强度验算:1.轴心受拉构件的强度,可按下式计算:式中:N──轴心拉力或轴心压力,取N=132.00(kN);A n──净截面面积,取A n=8300.00(mm2);轴心受拉构件的强度σ=N/A n=132.00×103/8300.00=15.904(N/mm2);f──钢材的抗拉强度设计值,取f=215.00(N/mm2);由于轴心受拉构件强度σ= 15.904N/mm2≤承载力设计值f=215.00 N/mm2,故满足要求!2.摩擦型高强螺栓连接处的强度,按下式计算,取最大值:式中:N──轴心拉力或轴心压力,取N=132.00(kN);A n──净截面面积,取A n=8300.00(mm2);A──构件的毛截面面积,取A=8300.00(mm2);f──钢材的抗拉强度设计值,取f=215.00(N/mm2);n──在节点或拼接处,构件一端连接的高强螺栓数目,取n=8;n1──所计算截面(最处列螺栓处)上高强螺栓数目;取n1=10。
σ=(1-0.5×10/8)×132.00×103/8300.00=5.964(N/mm2);式中:N──轴心拉力或轴心压力,取N=132.00(kN);A──构件的毛截面面积,取A=8300.00(mm2);σ=N/A=132.00×103/8300.00=15.904(N/mm2);由于轴心受拉构件强度σ= 15.904N/mm2≤承载力设计值f=215.00 N/mm2,故满足要求!3、受拉构件的长细比,可按下式计算:l──构件的计算长度,取l=3000.00 mm;i──构件的回转半径,取i=182.00 mm;λ──构件的长细比, λ= l/i= 3000.00/182.00 =16.484;[λ]──构件的允许长细比,取[λ]= 150.00 ;构件的长细比λ= 16.484 ≤[λ] = 150.00,满足要求;。
构件轴向拉伸或压缩时的强度条件

构件轴向拉伸或压缩时的强度条件随着工程领域的不断发展,对构件材料强度条件的研究也日益深入。
构件轴向拉伸或压缩时的强度条件是设计过程中非常重要的一部分,它直接影响着结构的安全性和稳定性。
本文将从材料特性、受力状态和强度计算三个方面来探讨构件轴向拉伸或压缩时的强度条件。
一、材料特性1.1 强度指标材料的强度指标是衡量其抗拉、抗压能力的基本参数。
通常来说,构件轴向拉伸时的强度指标为抗拉强度,而构件轴向压缩时的强度指标为抗压强度。
这两个指标是材料设计和选用的重要依据。
1.2 应力-应变曲线材料的应力-应变曲线也是影响构件强度条件的关键因素。
通过了解材料的本构关系,可以更准确地预测构件在受力过程中的变形和破坏情况,为强度条件的确定提供依据。
二、受力状态2.1 构件受力状态构件在轴向拉伸或压缩时,其受力状态可以用受拉或受压来描述。
在受拉状态下,构件会受到拉伸应力的作用,而在受压状态下,则会受到压缩应力的作用。
根据受力状态的不同,构件的强度条件也会有所差异。
2.2 变形特点构件在轴向拉伸或压缩时的变形特点也是确定其强度条件的重要因素之一。
了解构件在受力过程中的变形规律,可以帮助工程师更好地评估其受力性能,从而确定合理的强度条件。
三、强度计算3.1 构件破坏准则构件在轴向拉伸或压缩时的破坏准则是确定其强度条件的关键。
通常来说,构件轴向拉伸的破坏准则是根据材料的抗拉强度进行评定,而构件轴向压缩的破坏准则则是根据材料的抗压强度进行评定。
3.2 安全系数在强度计算过程中,通常会引入安全系数来考虑诸如材料非均匀性、不确定性等因素对构件强度的影响。
合理选择安全系数不仅可以保证构件的安全性,还可以充分发挥其承载能力。
四、结论构件轴向拉伸或压缩时的强度条件是工程设计中的重要内容,它直接关系到结构的安全性和稳定性。
通过对材料特性、受力状态和强度计算这三个方面的分析,可以更好地确定构件在轴向拉伸或压缩时的强度条件,为工程设计提供科学依据。
钢结构设计规范·轴心受力构件和拉弯、压弯构件的计算·拉弯构件和压弯构

4.1.1在主平面内受弯的实腹构件(考虑腹板屈曲后强度者参见本规范第4.4.1条),其抗弯强度应按下列规定计算:`(M_x)/(γ_xW_(nx))+(M_y)/(γ_xW_(ny))≤f`(4.1.1)式中M x、M y——同一截面处绕x轴和y轴的弯矩(对工字形截面:x轴为强轴,y轴为弱轴);Wnx、Wny——对x轴和y轴的净截面模量;γx、γy——截面塑性发展系数;对工字形截面γy=1.20;对箱形截面,γX=Y y=1.05;对其他截面,可按表5.2.1采用;f——钢材的抗弯强度设计值。
当梁受压翼缘的自由外伸宽度与其厚度之比大于13`sqrt(235//f_y)`而不超过15`sqrt(235//f_y)`时,γx=1.0。
f y应取为钢材牌号所指屈服点。
对需要计算疲劳的梁,宜取γx=γy=1.0。
4.1.2在主平面内受弯的实腹构件(考虑腹板屈曲后强度者参见本规范第4.4.1条),其抗剪强度应按下式计算:`τ=(VS)/(It_w)`(4.1.2)式中V——计算截面沿腹板平面作用的剪力;S——计算剪应力处以上毛截面对中和轴的面积矩;I——毛截面惯性矩;t w——腹板厚度;fv——钢材的抗剪强度设计值。
4.1.3当梁上翼缘受有沿腹板平面作用的集中荷载、且该荷载处又未设置支承加劲肋时,腹板计算高度上边缘的局部承压强度应按下式计算:`σ_c=(varphiF)/(t_wl_z)≤f`(4.1.3-1)式中F——集中荷载,对动力荷载应考虑动力系数;ψ——集中荷载增大系数;对重级.工作制吊车梁ψ=1. 35;对其他梁,ψ=1.0;l z——集中荷载在腹板计算高度上边缘的假定分布长度,按下式计算:l2=a+5h y+2h R ( 4.1.3-2 )a——集中荷载沿梁跨度方向的支承长度,对钢轨上的轮压可取50mm;h y——自梁顶面至腹板计算高度上边缘的距离;h R——轨道的高度,对梁顶无轨道的梁h R=0;f——钢材的抗压强度设计值。
轴心受力构件

轴心受力构件设计轴心受拉构件时需进行强度和刚度的验算,设计轴心受压构件时需进行强度、整体稳定、局部稳定和刚度的验算。
一、轴心受力构件的强度和刚度1.轴心受力构件的强度计算轴心受力构件的强度是以截面的平均应力达到钢材的屈服点为承载力极限状态f A N n ≤=σ (1) 式中 N ——构件的轴心拉力或压力设计值;n A ——构件的净截面面积;f ——钢材的抗拉强度设计值。
采用高强度螺栓摩擦型连接的构件,验算最外列螺栓处危险截面的强度时,按下式计算:f A N n≤='σ (2) 'N =)5.01(1n n N - (3)式中 n ——连接一侧的高强度螺栓总数;1n ——计算截面(最外列螺栓处)上的高强度螺栓数;0.5——孔前传力系数。
采用高强度螺栓摩擦型连接的拉杆,除按式(2)验算净截面强度外,还应按下式验算毛截面强度f A N ≤=σ (4)2.轴心受力构件的刚度计算轴心受力构件的刚度是以限制其长细比保证][λλ≤ (5) 式中 λ——构件的最大长细比;[λ]——构件的容许长细比。
二、 轴心受压构件的整体稳定1.理想轴心受压构件的屈曲形式理想轴心受压构件可能以三种屈曲形式丧失稳定:①弯曲屈曲 双轴对称截面构件最常见的屈曲形式。
②扭转屈曲 长度较小的十字形截面构件可能发生的扭转屈曲。
③弯扭屈曲 单轴对称截面杆件绕对称轴屈曲时发生弯扭屈曲。
2.理想轴心受压构件的弯曲屈曲临界力若只考虑弯曲变形,临界力公式即为著名的欧拉临界力公式,表达式为N E =22l EI π=22λπEA (6) 3.初始缺陷对轴心受压构件承载力的影响实际工程中的构件不可避免地存在初弯曲、荷载初偏心和残余应力等初始缺陷,这些缺陷会降低轴心受压构件的稳定承载力。
1)残余应力的影响当轴心受压构件截面的平均应力p f >σ时,杆件截面内将出现部分塑性区和部分弹性区。
由于截面塑性区应力不可能再增加,能够产生抵抗力矩的只是截面的弹性区,此时的临界力和临界应力应为:N cr =22l EI e π=22lEI π·I I e (7) cr σ=22λπE ·I I e (8) 式中 I e ——弹性区的截面惯性矩(或有效惯性矩);I ——全截面的惯性矩。
轴心受力构件和拉弯、压弯构件的计算

v v1 v2
v''
1
M
x
/ EI
x
Nv / EI x
dv2 dz
1V
1
dM dz
x
1Nv '
v2'' 1Nv''
其中 1 ——单位剪力作用下剪切角变形
v'' v1'' v2'' Nv / EI x 1Nv''
v''
N
v 0
EIx (1 1N )
稳定平衡方程的解
Ncr
2EIx
框架柱的计算长度
第5.3.4条:单厂阶形柱的计算长度
考虑折减——荷载较大的柱失稳时会受到低荷载柱的支承作用; ——考虑厂房的空间作用; ——对多跨厂房,如刚性屋盖或设屋盖纵向水平支撑――则将柱顶视作不动铰支座。
单阶柱
(1)下段柱的计算长度系数 2 :
当柱上端和横梁铰接时,按柱上端为自由的单阶柱的数值乘以折减系数(整体作用)
1、受压时保证单构件稳定 2、受拉是保证均匀传力 3、分支距离近,填板刚度大,
可视作实腹截面
轴压构件的抗剪验算
第5.1.6条:
第5.1.7条:
1.此时如按柱剪力验算支撑,不十 分恰当,因为该剪力可视作轴压构 件的偶然剪力。
当撑杆的作用是支撑一系列柱 时,就完全不对了 2.原理:带支撑压杆的挠度增量及 支撑构件的轴向变形,根据变形协 调条件推导其轴力; 3.此支撑力不与其他作用产生的轴 力叠加,而是取较大值; 4.一道支撑架在同一方向所支撑的 柱不宜超过8根。
λ
多条柱子曲线 (200多条)
影响因素: 截面形式、尺寸 残余应力分布 初偏心、初弯曲、初扭曲
11.钢结构构件

轴心受力构件1 、截面形式与柱的构造要求轴心受力构件的截面形式主要有实腹式(热轧型钢、钢板焊接成的工形钢)及格构式(钢板和型钢组成)两类。
2 、实腹式受力构件的强度和刚度1.轴心受拉构件:1)计算内容:a强度计算:其净截面的平均应力不应超过钢材的屈服强度。
b刚度验算:刚度用长细比λ表示,其值应小于容许长细比〔λ〕。
2)验算公式:a强度公式b长细比验算对于截面为双轴对称的构件应对两个轴计算长细比:式中l0x、l0y——构件对主轴x和y的计算长度;I x、I y ——构件截面对主轴x和y的回转半径。
2.轴心受压构件轴心受压构件除进行了强度和刚度计算(同轴拉构件计算方法)外,还需要进行整体稳定性和局部稳定性的计算。
轴心受压构件的承载力往往是由稳定条件决定的。
1)整体稳定性验算公式式中A——构件的毛截面面积;——轴心受压构件的稳定系数(取截面两主轴稳定系数中的较小者),查表。
构件的长细比λ应符合受压构件的容许长细比。
2)局部稳定验算:为防止组成构件的板件,在压力作用下发生局部屈曲现象,降低构件的承载力或导致构件的破坏,规范要求受压构件中板件的局部稳定以板件屈曲不先于构件的整体屈曲,以限制板件的宽厚比来加以控制(图11-4)。
型截面(热轧部分)计算长度=300cm,=885cm由型钢表查得1OO×截面面积,则此下弦杆净截面面积为:由附录组合截面特性表查得:,x=0.6× +2×1.0×=2604.2(cm2)x= =11.5cm ,y= =6.4cm((查附表得:(b) (c(受弯构件1 、梁的类型钢梁在建筑工程中常用的有工作平台梁、楼盖梁、吊车梁等。
截面形式主要有型钢梁和组合梁两大类。
优先采用型钢梁,当荷载和跨度较大时采用组合梁,常用的组合梁为焊接I字形截面梁或箱形梁。
2 、梁的受力性能与计算要点对于一般有翼板的组合工字形钢梁应进行梁的强度、刚度、整体稳定和局部稳定计算。
钢筋混凝土受拉构件承载力计算—偏心受拉构件正截面承载力计算

这时本题转化为已知As´求As的问题。
(3)求As
= −
+ ′ ′ ( − ′ )
得
× × = . × . × − .
+ × × ( − )
偏心受拉构件正截面受拉承载力计算
− =
×
属于大偏心受拉构件。
(2) 计算As´
= − + = −
+ =
由式(5-6)可得
′
− ² ( − . )
=
′ ( − ′ )
As=1963mm2
,
(1-1)、(1-2)式可得
′
=
=
− ( −. ) ²
′ ( −′ )
+′ ′ +
(5-6)
(5-7)
当采用对称配筋时,求得x为负值,取 = 2′ ,并对As´合力点取矩,计算As 。
偏心受拉构件正截面受拉承载力计算
315×103 ×125−1.0×14.3×1000×1752 ×0.55×(1−0.5×0.55)
=
<0
300×(175−25)
偏心受拉构件正截面受拉承载力计算
取
′ = ′ = . × × = ²
取2
16,
选2
16,A's=402mm2
偏心受拉构件的正截面受力原理及承载能力计算
判别条件:
M h
e
as
N 2
M h
e
as
N 2
第六章轴向受力构件-受拉构件承载力计算3

6.5.3 偏心受拉构件斜截面承载力计算
轴向拉力使斜裂缝裂得更宽,加大了斜裂缝剪承载力降低。
6.5.1 轴心受拉构件
6.5.1.3 算例
[ 例 1] 已 知 某 钢 筋 混 凝 土 屋 架 下 弦 , 截 面 尺 寸
b×h=200mm×150mm , 承 受 的 轴 心 拉 力 设 计 值
N=234kN,混凝土强度等级 C30,钢筋为 HRB335。
求截面配筋。
[解]查表可知: f y 300 N mm 2 ,代入轴心受拉计算公式 得
时,仍应按 300
N mm 2
取用”的要求,取
f
' y
fy
300
N
mm 2
h
400
e 2 e0 as 2 114 40 46mm ;
e'
h 2
e0
as'
400 2
114 40
274mm
6.5.4 算例
代入计算公式得:
As'
Ne f y (h0 as' )
6.5.2 偏心受拉构件正截面承载力计算
6.5.2.3 矩形截面偏心受拉构件正截面承载力计算公式 对小偏拉,应验算: As minbh , As minbh 应注意,对钢筋混凝土小偏心受拉构件,当 fy 大于 300N/mm2 时,取 300N/mm2。
6.5.2 偏心受拉构件正截面承载力计算
第三章 受拉(压)构件的强度计算

化
为保证整个吊车结构得强度安全,吊车所能起吊
工 得最大重力,应取上述Fw1和Fw2中较小者。所以,
学 吊车的最大起吊重力Fw=57.6kN。
院
第一节 受拉直杆的强度计算
化 4.本例讨论
工 根据以上分析,在最大起吊重力Fw=57.6kN的情形
设
下,显然AB杆的强度有大量富裕。因此为节省材
械 基
挤压应力不得超过许用挤压应力[σjy]。工程中对于 圆柱面的挤压计算,其挤压面按承受挤压圆柱面的
础
投影面计算,且假定在此挤压面积上的挤压力是均
化
匀分布的,由此,挤压强度条件为:
工 学
jy
Pjy Ajy
jy
院 许用挤压应力通过实验确定,大致可取(1.7-2.0)[σ]
第二节 拉(压)杆剪切和挤压强度计算
备 机 械 基 础
料,同时还可减轻吊车结构的重量,可以重新设计 AB杆的横截面尺寸。
根据设计准则,有
σ(AB)=FN1/A1=1.73Fw/(2×A1`)≤[σ] 其中A1`为单根槽钢的横截面面积。由上式得到: A1`≥4.2cm2
化 查型钢表可知,5号槽钢横截面面积为6.93cm2,可
工 以满足强度要求。
化 例题P51 3-3一矩形截面钢板拉伸试件,如图所示。为了
工
使拉力通过试件轴线,试件两端开有圆孔、孔内插有销
设
钉,载荷加在销钉上,再通过销钉传给试件,若试件和
备
销钉材料的许用应力相同,[τ]=100MPa,[σjy]=
机
320MPa,[σ] =160MPa,试件的抗拉强度极限σb=
械
400MPa。为了保证试件能在中部拉断,试确定端部的
轴压复习题

轴压复习题1.一根截面面积为A ,净截面面积为A n 的构件,在拉力N 作用下的强度计算公式为 。
(A)y n f A N ≤=/σ (B) y f A N ≤=/σ (C) f A N n ≤=/σ (D) y f A N ≤=/σ2.轴心受拉构件按强度极限状态是 。
(A) 净截面的平均应力达到钢材的抗拉强度f u(B) 毛截面的平均应力达到钢材的抗拉强度f u(C) 净截面的平均应力达到钢材的屈服强度f y(D) 毛截面的平均应力达到钢材的屈服强度f y3.实腹式轴心受拉构件计算的内容有 。
(A) 强度 (B) 强度和整体稳定性(C) 强度、局部稳定和整体稳定 (D) 强度、刚度(长细比)4.工字形轴心受压构件,翼缘的局部稳定条件为yf 235)1.010(t b 1λ+≤,其中λ的含义为 。
(A) 构件最长细比,且不小于30、不大于100(B) 构件最小长细比 (C) 最大长细比与最小长细比的平均值(D) 30或100 5.轴心压杆整体稳定公式f AN ≤ϕ的意义为 。
(A) 截面平均应力不超过材料的强度设计值(B) 截面最大应力不超过材料的强度设计值(C) 截面平均应力不超过构件的欧拉临界应力值(D) 构件轴心压力设计值不超过构件稳定极限承截力设计值6.轴心受压格构式构件在验算其绕虚轴的整体稳定时采用换算长细比,这是因为 。
(A) 格构构件的整体稳定承载力高于同截面的实腹构件(B) 考虑强度降低的影响(C) 考虑剪切变形的影响(D) 考虑单支失稳对构件承载力的影响7.计算格构式压杆对虚轴x 轴的整体稳定性时,其稳定系数应根据 查表确定。
(A) x λ (B) ax λ (C) y λ (D) oy λ8.双肢格构式轴心受压柱,实轴为x-x 轴,虚轴为y-y 轴,应根据 确定肢件间距离。
(A) x λ=y λ (B) oy λ=x λ (C) oy λ=y λ (D) 强度条件9.普通轴心受压钢构件的承载力经常取决于 。
薄壁型钢构件计算

薄壁型钢构件计算5 构件的计算5.1 轴心受拉构件5.1.1 轴心受拉构件的强度应按下式计算:式中σ——正应力;N——轴心力;A n——净截面面积;f——钢材的抗拉、抗压和抗弯强度设计值。
高强度螺栓摩擦型连接处的强度应按下列公式计算:式中n1——所计算截面(最外列螺栓)处的高强度螺栓数;n——在节点或拼接处,构件一端连接的高强度螺栓数;A——毛截面面积。
5.1.2 计算开口截面的轴心受拉构件的强度时,若轴心力不通过截面弯心(或不通过Z 形截面的扇性零点),则应考虑双力矩的影响。
注:本条规定也适用于轴心受压、拉弯、压弯构件。
5.2 轴心受压构件5.2.1 轴心受压构件的强度应按下式计算:式中:A en——有效净截面面积。
5.2.2 轴心受压构件的稳定性应按下式计算:式中——轴心受压构件的稳定系数,应按本规范表A.1.1-1或表A.1.1-2采用;A e——有效截面面积。
5.2.3 计算闭口截面、双轴对称的开口截面和截面全部有效的不卷边的等边单角钢轴心受压构件的稳定系数时,其长细比应取按下列公式算得的较大值:式中:λx、λy——构件对截面主轴x轴和y轴的长细比;l0x、l0y——构件在垂直于截面主轴x轴和y轴的平面内的计算长度;i x、i y——构件毛截面对其主轴x轴和y轴的回转半径。
5.2.4 计算单轴对称开口截面(如图5.2.4所示)轴心受压构件的稳定系数时,其长细比应取按公式5.2.3-2和下式算得的较大值:式中λω——弯扭屈曲的换算长细比;Iω——毛截面扇性惯性矩;I t——毛截面抗扭惯性矩;e0——毛截面的弯心在对称轴上的坐标;lω——扭转屈曲的计算长度,lω=β·l;l——无缀板时,为构件的几何长度;有缀板时,取两相邻缀板中心线的最大间距;α,β——约束系数,按表5.2.4采用。
表5.2.4 开口截面轴心受压和压弯构件的约束系数图5.2.4 单轴对称开口截面示意图5.2.5 有缀板的单轴对称开口截面轴心受压构件弯扭屈曲的换算长细比λω可按公式5.2.4-1计算,约束系数α、β可按表5.2.4采用,但扭转屈曲的计算长度lω=β·a,a 为缀板中心线的最大间距。
第4章轴心受拉构件介绍

轴心受拉构件
Chapter 4 Axial Tension Member
钢结构基本原理
Basic Principles of Steel Structure
主要内容
4.1 轴心受力构件的截面形式
4.2 轴心受拉构件的强度 4.3 轴心受拉构件的刚度 4.4 轴心受拉构件的运用类型 4.5 索的力学性能和计算方法
由 X 0 dH dx 0 dx
d 2z q q 2 两次积分: 2 z x C1 x C2 dx H 2H
将边界条件代入上式:x 0; z 0
x l; z c
q c z xl x x 2H l c 设索中点的挠度为 f,中点坐标 zc f ,代入上式 2 4 fxl x c z x 2 l l 4 fxl x 抛物线 如果c 0,则: z l2
y
dA
y
x
xdA
A
A
x x
S y xdA
A
y
ydA
A
A
S x ydA
A
(2)非紧密连接方式
净截面有效系数 130
a
22.5 1.4 22.5 1.4 0.9 1 . 4 15 1.4 0.7 2 22.5 1.4 0.9 15 1.4
4.2 轴心受拉构件的强度
1、承载极限
截面平均应力达到fu,但缺少安全储备。 毛截面平均应力达fy,结构变形过大。
2、计算准则:
毛截面平均应力不超过fy。
3、设计准则
净截面平均应力不超过钢材 的抗拉强度设计值。
钢材的应力应变关系
4.2 轴心受拉构件的强度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 拉(压)杆剪切和挤压强度计算
解:1.首先确定拉断试件所需的轴力P
P=σb A1=400×30×5=60×103N
2.确定销钉直径 按剪切强度条件 得到
按挤压强度条件 销钉挤压面投影面积为d×δ,于是由
第二节 拉(压)杆剪切和挤压强度计算
即: 得到:
由此可取d=40mm 3.根据剪切强度条件确定端部尺寸a 剪切面积为a×δ,由 得a=60mm 4.根据拉伸强度条件确定端部尺寸b
还伴随有局部承压现象。在局部承压面上的压力称 为挤压力,与之相应的应力称为挤压应力。 为保证构件在挤压面处不产生显著的塑性变形,要求 挤压应力不得超过许用挤压应力[σjy]。工程中对于 圆柱面的挤压计算,其挤压面按承受挤压圆柱面的 投影面计算,且假定在此挤压面积上的挤压力是均 匀分布的,由此,挤压强度条件为:
斜拉杆AC由两根50mm×50mm×5mm的等边角钢组 成,水平横梁AB由两根10号槽钢组成。AC杆和AB梁 的材料都是Q235钢,许用应力[σ]=120MPa。当行走 小车位于A点时(小车的两个轮子间距很小,可认为是 作用在A点的集中力),求允许的最大起吊重力FW(包 括小车和电动机自重)。杆和梁的自重忽略不计。
由h/b=1.4
例 悬臂起重机撑杆AB为中空钢管,外径 105mm,内径95mm。钢索1和2互相平行,且设 钢索1可作为相当于直径d=25mm的圆钢计算。 材料[σ]=60MPa,确定许可吊重。
钢索2的拉力T2=P,带入 方程组解得: 而撑杆AB允许的最大轴力为:
带入(a)式得相应的吊重为:
同理,钢索1允许的最大拉力是: 代入(b)式得相应的吊重为: 比较,可知起重机的许可吊重应为17kN。
*
22
剪切虎克定律
剪切弹性模量G,MPa
*
23
剪应力互等定理
剪应力互等定理:在相互垂直的两个平面上 ,剪应力必然成对存在,且数值相等;两者 都垂直于两个平面的交线,方向则共同指向 或背离这一交线。
*
24
第二ቤተ መጻሕፍቲ ባይዱ 拉(压)杆剪切和挤压强度计算
三、连接零件的挤压强度计算 某些连接零件在发生剪切变形时,其承受外力的表面
受拉构件的强度计算
第一节 受拉直杆的强度计算
一、强度条件的建立与许用应力的确定 1.受拉直杆的强度条件
为了保证拉(压)杆的正常工作,必须使其最大工作 应力不超过材料在拉伸(压缩)时的基本许用应力 ,即:
此即受拉(压)直杆的强度条件。
许用应力 从保证材料安全的角度出发,构件截面上 的工作应力人为规定一个最高允许值,此最高允许值 称为材料的基本许用应力,简称许用应力, 用[σ]表 示。
第二节 拉(压)杆剪切和挤压强度计算
一、剪力 内力Q
第二节 拉(压)杆剪切和挤压强度计算
二、连接零件剪切强度的实用计算
对于以受剪切为主的构件应进行剪切强度计算。工程 上为简化计算,常假设剪力Q在截面内按均匀分布 来考虑,所以称为实用计算。
剪切强度条件:
式中[τ]称为材料的许用剪应力。许用剪应力通过材 料剪切试验确定。或者以材料许用拉应力乘以一个 系数作为许用剪应力,对于钢材工程中常取[τ]=( 0.75-0.80)[σ]
三、剪切强度条件
塑性材料:[τ] =(0.6~0.8)[σ] 脆性材料:[τ] =(0.8~1.0)[σ] 强度校核、截面选择和求许可载荷
*
20
例 P=20kN,销钉16Mn,[τ ]=140MPa直径d是多 少才能安全起吊。
*
21
补充:剪切变形和剪切虎克定律
剪切变形、剪应变
γ为剪应变或角应变,rad。由剪应力τ决定
第一节 受拉直杆的强度计算
对于AC杆 由型钢表(p492)查得单根 50mm×50mm×5mm等
边角钢得横截面面积为4.803cm2,由此得到杆AC横 截面上得正应力 σ(AC)=FN2/A2=2Fw2/(2×4.803) 由强度设计条件σ(AC)≤[σ],得到
Fw2≤57.6KN 为保证整个吊车结构得强度安全,吊车所能起吊
n的确定原则:在保证安全的前提下尽量取小值。 过于安全会造成浪费,过于节省会造成危险。
第一节 受拉直杆的强度计算
应用强度条件可解决三类实际问题:
1. 设计构件的截面尺寸: 2. 确定最大工作载荷: FP(FN)≤A·[σ] 3. 校核强度:
第一节 受拉直杆的强度计算
例题:图所示为可以绕铅垂轴OO1旋转的吊车简图,其中
第二节 拉(压)杆剪切和挤压强度计算
一、剪切变形与剪力
当杆件承受大小相等、方向相反、作用线相互平行、 相距很近的两个横向力作用时,如果该二力相互错 动并保持二者作用线之间的距离不变,这时杆件的 两个相邻截面将产生相互错动使直杆变为平行折杆 。这种受力与变形形式称为剪切。剪切时,杆件横 截面上只有剪力一个内力分量。
挤压的概念、挤压应力
*
26
挤压强度条件
塑性材料:[σ ]jy=(1.7-2.0)[σ] 脆性材料:[σ ]jy=(2.0-2.5)[σ]
*
27
例 平键联接,d=70mm,键的尺寸为 校核键的强度
*
28
*
29
第二节 拉(压)杆剪切和挤压强度计算
例题P51 3-3一矩形截面钢板拉伸试件,如图所示。为了 使拉力通过试件轴线,试件两端开有圆孔、孔内插有销 钉,载荷加在销钉上,再通过销钉传给试件,若试件和 销钉材料的许用应力相同,[τ]=100MPa,[σjy]= 320MPa,[σ] =160MPa,试件的抗拉强度极限σb= 400MPa。为了保证试件能在中部拉断,试确定端部的 尺寸a、b及销钉直径d。
第一节 受拉直杆的强度计算
2.许用应力的确定 许用应力按下式确定:
式中: [σ] —— 许用应力,计算值,MPa σ° —— 极限应力或危险应力,试验值,MPa n —— 安全系数
σ°=
σts ——对于塑性材料 σtb ——对于脆性材料或塑性材料
关于安全系数:
第一节 受拉直杆的强度计算
n的准确取值需综合考虑如下因素: 1. 构件的重要程度; 2. 计算载荷的精度; 3. 材料的质量; 4. 构件的加工质量; 5. 设计公式的可靠度; 6. 构件的工作条件。
计算得b=120mm
例 已知油压力p=2MPa,内径D=75mm,活塞杆 直径d=18mm,材料的许用应力[σ]=50MPa,校 核活塞杆的强度。
强度足够
例 矩形截面的阶梯轴,AD段和DB段的横截面积 为BC段横截面面积的两倍。矩形截面的高度与宽 度之比h/b=1.4,材料的许用应力[σ]=160MPa。 选择截面尺寸h和b
第一节 受拉直杆的强度计算
解: 1.受力分析
AB梁和AC杆的两端简化为铰链连接,所以,吊车的 计算模型可简化为图中所示。由此AB和AC都是二力杆 ,二者分别承受压缩和拉伸。
第一节 受拉直杆的强度计算
2.确定二杆的轴力 以节点A为研究对象,并设AB和AC杆的轴力均为正
方向,分别为FN1和FN2。受力如图所示。由平衡条 件得到:
得最大重力,应取上述Fw1和Fw2中较小者。所以 ,吊车的最大起吊重力Fw=57.6kN。
第一节 受拉直杆的强度计算
4.本例讨论
根据以上分析,在最大起吊重力Fw=57.6kN的情形 下,显然AB杆的强度有大量富裕。因此为节省材 料,同时还可减轻吊车结构的重量,可以重新设计 AB杆的横截面尺寸。
根据设计准则,有 σ(AB)=FN1/A1=1.73Fw/(2×A1`)≤[σ] 其中A1`为单根槽钢的横截面面积。由上式得到: A1`≥4.2cm2 查型钢表可知,5号槽钢横截面面积为6.93cm2,可 以满足强度要求。
∑Fx=0, 即-FN1-FN2·cosα=0 ∑Fy=0, 即-Fw+FN2·sinα=0 根据图中的几何尺寸, 有sinα=0.5,cosα=0.866 所以得到: FN1=-1.73Fw,FN2=2Fw
第一节 受拉直杆的强度计算
3.确定最大起重力: 对于AB杆
由型钢表(p491)查得单根10号槽钢的横截面面 积为12.74cm2,由此,杆横截面上的正应力 σ(AB)=FN1/A1=1.73Fw/(2×12.74) 将其代入强度设计准则,得到 σ(AB)=FN1/A1=1.73Fw/(2×12.74)≤[σ] 解得: Fw1≤176.7kN