ASTM A388(2005中文版) 大型钢锻件超声检测标准操作方法

合集下载

JB4730.3-2005超声波标准和ASME标准对照

JB4730.3-2005超声波标准和ASME标准对照

JB/T4730-2005 《承压设备无损检测》第3部分超声检测ultrasonic [ʌltrə′sɔnik]标准修改介绍以及与ASME标准对比JB/T 4730.3-2005标准条款及技术内容4.2 承压设备用钢锻件超声检测4.2.1 范围本条适用于承压设备用碳钢和低合金钢锻件的超声检测和质量等级评定。

本条不适用于奥氏体钢等粗晶材料锻件的超声检测,也不适用于内、外半径之比小于80%的环形和筒形锻件的周向横波检测。

国外标准的对应条款及技术内容,技术差异的简要评述【1】对应条款:ASME2004-SA388-1.1【2】相关技术内容: ASME规定:操作方法包括用直射波和斜射波技术对大型锻件作接触脉冲回波式超声波检验程序。

直射波法包括DGS(距离—增益—当量)法。

【3】简要评述:JB4730对适用范围作了限定,ASME没有那么明确。

JB/T 4730.3-2005标准条款及技术内容4.2.2 探头双晶直探头的公称频率应选用5MHz。

探头晶片面积不小于150mm2;单晶直探头的公称频率应选用2~5MHz,探头晶片一般为φ14~φ25mm。

主要修改内容:①探头2005版增加了有关探头的内容,即:双晶直探头的公称频率应选用5MHz。

探头晶片面积不小于150mm2;单晶直探头的公称频率应选用2MHz~5MHz,探头晶片一般为φ14mm~φ25mm。

解释:1994版没有对探头做出规定,选择余地较大,由此也可能造成检测结果的不一致,2005版对此作了规定。

值得注意的是,锻件双晶直探头的检测范围是45mm。

一般而言,用一个双晶直探头较难覆盖45mm,可能需要一个以上焦点不同的双晶直探头。

国外标准的对应条款及技术内容,技术差异的简要评述【1】对应条款:ASME2004-SA388-4.2,7.2【2】相关技术内容: ASME规定:a) 对于直射波扫查可采用换能器的最大有效面积为650mm2,其最小尺寸为20mm,最大为30mm。

ASTM A388A388M-2003大型钢锻件超声波检测的标准实施规程英文

ASTM A388A388M-2003大型钢锻件超声波检测的标准实施规程英文

Designation:A388/A388M–03Used in USNRC-RDT standardsAn American National StandardStandard Practice forUltrasonic Examination of Heavy Steel Forgings1This standard is issued under thefixed designation A388/A388M;the number immediately following the designation indicates the yearof original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.1.Scope*1.1This practice2covers the examination procedures for the contact,pulse-echo ultrasonic examination of heavy steel forgings by the straight and angle-beam techniques.The straight beam techniques include utilization of the DGS(Dis-tance Gain-Size)method.See Appendix X3.1.2This practice is to be used whenever the inquiry, contract,order,or specification states that forgings are to be subject to ultrasonic examination in accordance with Practice A388/A388M.1.3The values stated in either inch-pound or SI units are to be regarded as the standard.Within the text,the SI units are shown in brackets.The values stated in each system are not exact equivalents;therefore,each system must be used inde-pendently of the bining values from the two systems may result in nonconformance with the specification.1.4This specification and the applicable material specifica-tions are expressed in both inch-pound units and SI units. However,unless the order specifies the applicable“M”speci-fication designation[SI units],the material shall be furnished to inch-pound units.1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:A469Specification for Vacuum-Treated Steel Forgings for Generator Rotors3A745/A745M Practice for Ultrasonic Examination of Aus-tenitic Steel Forgings3E317Practice for Evaluating Performance Characteristicsof Ultrasonic Pulse-Echo Examination Instruments and Systems Without the Use of Electronic Measurement Instruments4E428Practice for Fabrication and Control of Steel Refer-ence Blocks Used in Ultrasonic Inspection42.2ANSI Standard:B46.1Surface Texture52.3Other Document:Recommended Practice for Nondestructive Personnel Quali-fication and Certification SNT-TC-1A,Supplement C—Ultrasonic Testing63.Ordering Information3.1When this practice is to be applied to an inquiry, contract,or order,the purchaser shall so state and shall also furnish the following information:3.1.1Method of establishing the sensitivity in accordance with7.2.2and7.3.3(Vee or rectangular notch),3.1.1.1The diameter and test metal distance of theflat-bottom hole and the material of the reference block in accordance with7.2.2.2,3.1.2Quality level for the entire forging or portions thereof in accordance with10.3,and3.1.3Any options in accordance with6.1,6.2,and7.1.11.4.Apparatus4.1An ultrasonic,pulsed,reflection type of instrument shall be used for this examination.The system shall have a mini-mum capability for examining at frequencies from1to5MHz. On examining austenitic stainless forgings the system shall have the capabilities for examining at frequencies down to0.4 MHz.4.1.1The ultrasonic instrument shall provide linear presen-tation(within5%)for at least75%of the screen height (sweep line to top of screen).The5%linearity referred to is descriptive of the screen presentation of amplitude.Instrument linearity shall be verified in accordance with the intent of1This practice is under the jurisdiction of ASTM Committee A01on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.06on Steel Forgings and Billets.Current edition approved April10,2003.Published June2003.Originally published as A388–st previous edition A388/A388M–01.2For ASME Boiler and Pressure Vessel Code applications see related Specifi-cation SA-388/SA-388M in Section II of that Code.3Annual Book of ASTM Standards,V ol01.05.4Annual Book of ASTM Standards,V ol03.03.5Available from the American National Standards Institute,Inc.,25W.43rd Street,4thfloor,New York,NY10036.6Available from the American Society for Nondestructive Testing,1711Arlin-gate Ln.,P.O.Box28518,Columbus,OH43228–0518.1*A Summary of Changes section appears at the end of this standard. Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.Practice E317.Any set of blocks processed in accordance with Practice E317or E428may be used to establish the specified 65%instrument linearity.4.1.2The electronic apparatus shall contain an attenuator (accurate over its useful range to610%(+1dB)of the amplitude ratio)which will allow measurement of indications beyond the linear range of the instrument.4.2Search Units,having a transducer with a maximum active area of1in.2[650mm2]with3⁄4in.[20mm]minimum to11⁄8in.[30mm]maximum dimensions shall be used for straight-beam scanning(see7.2);and search units equipped from1⁄2by1in.[13by25mm]to1by1in.[25by25mm] shall be used for angle-beam scanning(see7.3).4.2.1Transducers shall be utilized at their rated frequencies.4.2.2Other search units may be used for evaluating and pinpointing indications.4.3Couplants,having good wetting characteristics such as SAE No.20or No.30motor oil,glycerin,pine oil,or water shall be used.Couplants may not be comparable to one another and the same couplant shall be used for calibration and examination.4.4Reference Blocks,containingflat-bottom holes may be used for calibration of equipment in accordance with4.1.1and may be used to establish recording levels for straight-beam examination when so specified by the order or contract.4.5DGS Scales,matched to the ultrasonic test unit and transducer to be utilized,may be used to establish recording levels for straight beam examination,when so specified by the order or contract.The DGS scale range must be selected to include the full thickness cross-section of the forging to be examined.An example of a DGS overlay is found in Appendix X3.5.Personnel Requirements5.1Personnel performing the ultrasonic examinations to this practice shall be qualified and certified in accordance with a written procedure conforming to Recommended Practice No. SNT-TC-1A or another national standard that is acceptable to both the purchaser and the supplier.6.Preparation of Forging for Ultrasonic Examination 6.1Unless otherwise specified in the order or contract,the forging shall be machined to provide cylindrical surfaces for radial examination in the case of round forgings;the ends of the forgings shall be machined perpendicular to the axis of the forging for the axial examination.Faces of disk and rectangular forgings shall be machinedflat and parallel to one another.6.2The surface roughness of exteriorfinishes shall not exceed250µin.[6µm]unless otherwise shown on the forging drawing or stated in the order or the contract.6.3The surfaces of the forging to be examined shall be free of extraneous material such as loose scale,paint,dirt,and so forth.7.Procedure7.1General:7.1.1As far as practicable,subject the entire volume of the forging to ultrasonic examination.Because of radii at change of sections and other local configurations,it may be impossible to examine some sections of a forging.7.1.2Perform the ultrasonic examination after heat treat-ment for mechanical properties(exclusive of stress-relief treatments)but prior to drilling holes,cutting keyways,tapers, grooves,or machining sections to contour.If the configuration of the forging required for the treatment for mechanical properties prohibits a subsequent complete examination of the forging,it shall be permissible to examine prior to treatment for mechanical properties.In such cases,reexamine the forging ultrasonically as completely as possible after heat treatment.7.1.3To ensure complete coverage of the forging volume, index the search unit with at least15%overlap with each pass.7.1.4For manual scanning,do not exceed a scanning rate of 6in./s[150mm/s].7.1.5For automated scanning,adjust scanning speed or instrument repetition rate,or both,to permit detection of the smallest discontinuities referenced in the specification and to allow the recording or signaling device to function.At no time shall the scanning speed exceed the speed at which an acceptable calibration was made.7.1.6If possible,scan all sections of forgings in two perpendicular directions.7.1.7Scan disk forgings using a straight beam technique from at least oneflat face and radially from the circumference, whenever practicable.7.1.8Scan cylindrical sections and hollow forgings radially using a straight-beam technique.When practicable,also exam-ine the forging in the axial direction.7.1.9In addition,examine hollow forgings by angle-beam technique from the outside diameter surface as required in 7.3.1.7.1.10In rechecking or reevaluation by manufacturer or purchaser use comparable equipment,search units,frequency, and couplant.7.1.11Forgings may be examined either stationary or while rotating in a lathe or on rollers.If not specified by the purchaser,either method may be used at the manufacturer’s option.7.2Straight-Beam Examination:7.2.1For straight-beam examination use a nominal21⁄4 -MHz search unit whenever practicable;however,1MHz is the preferred frequency for coarse grained austenitic materials and long testing distances.In many instances on examining coarse grained austenitic materials it may be necessary to use a frequency of0.4MHz.Other frequencies may be used if desirable for better resolution,penetrability,or detectability of flaws.7.2.2Establish the instrument sensitivity by either the reflection,reference-block technique,or DGS method(see Appendix X3for an explanation of the DGS method).7.2.2.1Back-Reflection Technique(Back-Reflection Cali-bration Applicable to Forgings with Parallel Entry and Back Surfaces)—With the attenuator set at an appropriate level,for example5to1or14dB,adjust the instrument controls to obtain a back reflection approximately75%of the full-screen height from the opposite side of the forging.Scan theforgingat the maximum amplification setting of the attenuator(attenu-ator set at1to1).Carry out the evaluation of discontinuities with the gain control set at the reference level.Recalibration is required for significant changes in section thickness or diam-eter.N OTE1—High sensitivity levels are not usually employed when in-specting austenitic steel forgings due to attendant high level of“noise”or “hash”caused by coarse grain structure.7.2.2.2Reference-Block Calibration—The test surface roughness on the calibration standard shall be comparable to but no better than the item to be examined.Adjust the instrument controls to obtain the required signal amplitude from theflat-bottom hole in the specified reference block. Utilize the attenuator in order to set up on amplitudes larger than the vertical linearity of the instrument.In those cases, remove the attenuation prior to scanning the forging.N OTE2—Whenflat-surfaced reference block calibration is specified, adjust the amplitude of indication from the reference block or blocks to compensate for examination surface curvature(an example is given in Appendix X1).7.2.2.3DGS Calibration—Prior to use,verify that the DGS overlay matches the transducer size and frequency.Accuracy of the overlay can be verified by reference blocks and procedures outlined in Practice E317.Overlays are to be serialized to match the ultrasonic transducer and pulse echo testing system that they are to be utilized with.7.2.2.4Choose the appropriate DGS scale for the cross-sectional thickness of the forging to be examined.Insert the overlay over the CRT screen,ensuring the DGS scale base line coincides with the sweep line of the CRT screen.Place the probe on the forging,adjust the gain to make thefirst backwall echo appear clearly on CRT ing the Delay and Sweep control,shift the screen pattern so that the leading edge of the initial pulse is on zero of the DGS scale and the backwall echo is on the DGS scale value corresponding to the thickness of the forging.Adjust the gain so the forging backwall echo matches the height of the DGS reference slope within61Db. Once adjusted,increase the gain by the Db shown on the DGS scale for the reference slope.Instrument is now calibrated and flaw sizes that can be reliably detected can be directly read from the CRT screen.Theseflaw sizes are the equivalentflat bottom reflector that can be used as a reference point.N OTE3—The above can be utilized on all solid forgings.Cylindrical hollow forgings,and drilled or bored forgings must be corrected to compensate for attenuation due to the central hole(see Appendix X4).7.2.3Recalibration—Any change in the search unit,cou-plant,instrument setting,or scanning speed from that used for calibration shall require recalibration.Perform a calibration check at least once every8h shift.When a loss of15%or greater in the gain level is indicated,reestablish the required calibration and reexamine all of the material examined in the preceding calibration period.When an increase of15%or greater in the gain level is indicated,reevaluate all recorded indications.7.2.4During the examination of the forging,monitor the back reflection for any significant reduction in amplitude. Reduction in back-reflection amplitude may indicate not only the presence of a discontinuity but also poor coupling of the search unit with the surface of the forging,nonparallel back-reflection surface,or local variations of attenuation in the forging.Recheck any areas causing loss of back reflection.7.3Angle-Beam Examination—Rings and Hollow Forgings: 7.3.1Perform the examination from the circumference of rings and hollow forgings that have an axial length greater than 2in.[50mm]and an outside to inside diameter ratio of less than2.0to1.7.3.2Use a1MHz,45°angle-beam search unit unless thickness,OD/ID ratio,or other geometric configuration results in failure to achieve calibration.Other frequencies may be used if desirable for better resolution,penetrability,or detectability offlaws.For angle-beam inspection of hollow forgings up to 2.0to1ratio,provide the transducer with a wedge or shoe that will result in the beam mode and angle required by the size and shape of the cross section under examination.7.3.3Calibrate the instrument for the angle-beam examina-tion to obtain an indication amplitude of approximately75% full-screen height from a rectangular or a60°V-notch on inside diameter(ID)in the axial direction and parallel to the axis of the forging.A separate calibration standard may be used; however,it shall have the same nominal composition,heat treatment,and thickness as the forging it represents.The test surfacefinish on the calibration standard shall be comparable but no better than the item to be examined.Where a group of identical forgings is made,one of these forgings may be used as the separate calibration standard.Cut the ID notch depth to 3%maximum of the thickness or1⁄4in.[6mm],whichever is smaller,and its length approximately1in.[25mm].Thickness is defined as the thickness of the forging to be examined at the time of examination.At the same instrument setting,obtain a reflection from a similar OD notch.Draw a line through the peaks of thefirst reflections obtained from the ID and OD notches.This shall be the amplitude reference line.It is preferable to have the notches in excess metal or test metal when possible.When the OD notch cannot be detected when examining the OD surface,perform the examination when practicable(some ID’s may be too small to permit examina-tion),as indicated above from both the OD and ID surfaces. Utilize the ID notch when inspecting from the OD,and the OD notch when inspecting from the ID.Curve wedges or shoes may be used when necessary and practicable.7.3.4Perform the examination by scanning over the entire surface area circumferentially in both the clockwise and counter-clockwise directions from the OD surface.Examine forgings,which cannot be examined axially using a straight beam,in both axial directions with an angle-beam search unit. For axial scanning,use rectangular or60°V-notches on the ID and OD for the calibration.These notches shall be perpendicu-lar to the axis of the forging and the same dimensions as the axial notch.8.Recording8.1Straight-Beam Examination—Record the following in-dications as information for the purchaser.These recordable indications do not constitute a rejectable condition unless negotiated as such in the purchaseorder.8.1.1In the back-reflection technique,individual indications equal to or exceeding10%of the back reflection from an adjacent area free from indications;in the reference-block or DGS technique,indications equal to or exceeding100%of the reference amplitude.8.1.2An indication that is continuous on the same plane regardless of amplitude,and found over an area larger than twice the diameter of the search unit.The extent of such an indication shall be accurately measured along with variations in amplitudes of reflections.8.1.2.1Planar indications shall be considered continuous over a plane if they have a major axis greater than1in.[25 mm].In recording these indications corrections must be made for beam divergence at the estimatedflaw depth.8.1.3In the back-reflection technique,discontinuity indica-tions equal to or exceeding5%of the back reflection.In the reference-block technique,indications equal to or exceeding 50%of the reference amplitude providing that they travel,are continuous,or appear as clusters.8.1.3.1Traveling indications are herein defined as indica-tions whose leading edge moves a distance equivalent to1in. [25mm]or more of metal depth with movement of the search unit over the surface of the forging.8.1.3.2A cluster of indications is defined asfive or more indications located in a volume representing a2-in.[50-mm]or smaller cube in the forging.8.1.4Reduction in back reflection exceeding20%of the original measured in increments of10%.8.1.5Amplitudes of recordable indications in increments of 10%.8.2Angle-Beam Examination—Record discontinuity indi-cations equal to or exceeding50%of the indication from the reference line.When an amplitude reference line cannot be generated,record discontinuity indications equal to or exceed-ing50%of the reference notch.These recordable indications do not constitute a rejectable condition unless negotiated as such in the purchase order.9.Report9.1Report the following information:9.1.1All recordable indications(see Section8).9.1.2For the purpose of reporting the locations of record-able indications,a sketch shall be prepared showing the physical outline of the forging including dimensions of all areas not inspected due to geometric configuration,the pur-chaser’s drawing number,the purchaser’s order number,and the manufacturer’s serial number,and the axial,radial,and circumferential distribution of recordable ultrasonic indica-tions.9.1.3The specification to which the examination was per-formed as well as the frequency used,method of setting sensitivity,type of instrument,surfacefinish,couplant,and search unit employed.9.1.4The inspector’s signature and date examination per-formed.10.Quality Levels10.1This practice is intended for application to forgings, with a wide variety of sizes,shapes,compositions,melting processes,and applications.It is,therefore,impracticable to specify an ultrasonic quality level which would be universally applicable to such a diversity of products.Ultrasonic accep-tance or rejection criteria for individual forgings should be based on a realistic appraisal of service requirements and the quality that can normally be obtained in the production of the particular type forging.10.2Heavy austenitic stainless steel forgings are more difficult to penetrate ultrasonically than similar carbon or low-alloy steel forgings.The degree of attenuation normally increases with section size;and the noise level,generally or in isolated areas,may become too great to permit detection of discrete indications.In most instances,this attenuation results from inherent coarse grained microstructure of these austenitic alloys.For these reasons,the methods and standards employed for ultrasonically examining carbon and low-alloy steel forg-ings may not be applicable to heavy austenitic steel forgings.In general,only straight beam inspecting using a back-reflection reference standard is used.However,utilization of Practice A745/A745M for austenitic steel forgings can be considered ifflat bottom hole reference standards or angle beam exami-nation of these grades are required.10.3Acceptance quality levels shall be established between purchaser and manufacturer on the basis of one or more of the following criteria.10.3.1Straight-Beam Examination:10.3.1.1No indications larger than some percentage of the reference back reflection.10.3.1.2No indications equal to or larger than the indication received form theflat-bottom hole in a specific reference block or blocks.10.3.1.3No areas showing loss of back reflection larger than some percentage of the reference back reflection.10.3.1.4No indications per10.3.1.1or10.3.1.2coupled with some loss of resultant back reflection per10.3.1.3. 10.3.1.5No indications exceeding the reference level speci-fied in the DGS method10.3.2Angle-Beam Examination—No indications exceed-ing a stated percentage of the reflection from a reference notch or of the amplitude reference line.10.4Intelligent application of ultrasonic quality levels in-volves an understanding of the effects of many parameters on examination results.11.Keywords11.1angle beam examination;back-reflection;DGS;refer-ence–block;straight beam examination;ultrasonicSUPPLEMENTARY REQUIREMENTSThe following supplementary requirements shall apply only when specified by the purchaser in the inquiry,contract,or order.Details shall be agreed upon by the manufacturer and the purchaser.S1.Reporting CriteriaS1.1Reference block calibration shall be performed using at least three holes,spaced to approximate minimum,mean, and maximum thickness as tested,and shall be used to generate a distance amplitude correction(DAC)curve.The following hole sizes apply:1.1⁄16in.[1.5mm]flat bottom holes(FBH)for thicknesses lessthan1.5in.[40mm]2.1⁄8in.[3mm]FBH for thicknesses of1.5-6in.[40-150mm]inclusive3.1⁄4in.[6mm]FBH for thicknesses over6in.[150mm]S1.2Reporting criteria include:1.All indications exceeding the DAC curve2.Two or more indications separated by1⁄2in.[12mm]or lessAPPENDIXES(Nonmandatory Information)X1.TYPICAL TUNING LEVEL COMPENSATION FOR THE EFFECTS OF FORGING CURV ATURE X1.1The curve(Fig.X1.1)was determined for the follow-ing test conditions:Material nickel-molybdenum-vanadium alloy steel(Specification A469,Class4)Instrument Type UR ReflectoscopeSearch unit11⁄8-in.[30mm]diameter quartzFrequency21⁄4MHzReference block ASTM No.3-0600(aluminum)Reflection area of refer-ence curve 0.010in.2[6.5mm2]in nickel-molybdenum-vana-dium alloy steelSurfacefinish250µin.[6µm],max,roughnessX1.2To utilize curve,adjust reflectoscope sensitivity toobtain indicated ultrasonic response on ASTM No.3-0600reference block for each diameter as shown.A response of1in.[25mm]sweep-to-peak is used forflat e attenuatorto obtain desired amplitude,but do testing at1to1setting.X2.INDICATION AMPLITUDE COMPENSATION FOR TEST DISTANCE V ARIATIONS X2.1The curve(Fig.X2.1)has been determined for thefollowing test conditions:Material nickel-molybdenum-vanadium alloy steel(Specification A469,Class4)Instrument Type UR ReflectoscopeSearch unit11⁄8-in.[30mm]diameter quartzFrequency21⁄4MHzCouplant No.20oilReference block ASTM No.3-0600(aluminum)Reflection area of refer-ence curve 0.010in.2[65mm2]in nickel-molybdenum-vana-dium alloy steelSurfacefinish250µin.max,roughnessX2.2To utilize curve,establish amplitude from ASTM reference block to coincide with values from AppendixX1.FIG.X1.1Typical Compensation Curve for Effects of ForgingCurvatureX3.BACKGROUND INFORMATION ON THE DGS METHODSX3.1The DGS method was developed to determine flaw sizes by comparison to a back wall echo produced on the part to be ultrasonic tested.The derivation of DGS curves is extensively covered and can be found in standard texts on ultrasonic testing,and will not be covered here.The distance or thickness of the forging (A )to be tested,as noted on the overlay,must be accurately defined on the CRT screen.Theback reflection (B )of the part must be established and suitable gain added.Flaw echo indications that appear can be sized via the flaw size curves (C )on the overlay.Item (D )depicts the transducers that the overlay works in conjunction with and (E )depicts the series of curves that the overlay scales are matched to.PENSATION FOR CENTER HOLE ATTENUATION ON CYLINDRICAL BORED OR HOLLOW FORGINGSUTILIZING THE DGS METHODX4.1The hole in a cylindrical bored forging causes sound scatter.In these cases,a correction is required which depends on the wall thickness and bore diameter.X4.1.1Determine the correction value in dB from the Nomogram (Fig.X4.1).X4.1.2Proceed as described in 7.2.2.3.X4.1.3With the GAIN-dB control,reduce the flaw detector gain by the correction value determined as per the Nomogram (Fig.X4.2).Thus,the flaw detector gain is accuratelyadjusted.FIG.X2.1Typical Distance-Amplitude CorrectionCurveFIG.X4.1Example of DGSOverlaySUMMARY OF CHANGESCommittee A01has identified the location of the following changes since A 388/A 388M–01that may impact the use of this standard.(1)Revise Section7.1.7.N OTE —Metric units are presented in this figure to be consistent with DGS scales presently available.Conversion to English units would also be acceptable.FIG.X4.2The Influence of a Central Bore on the Backwall Echo Amplitude of Cylindrical or Plane ParallelForgingsASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed everyfive years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959, United States.Individual reprints(single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at610-832-9585(phone),610-832-9555(fax),or service@(e-mail);or through the ASTM website ().。

astma388 标准中文版

astma388 标准中文版

astma388 标准中文版一、astma388标准介绍astma388是美国材料和试验协会(ASTM)制定的一项标准,它包括了很多领域的测试方法和规范。

作为一项材料测试标准,astma388旨在确保各种材料在制造和使用过程中能够满足相应的技术要求,以保证产品的质量和安全性。

二、astma388标准的用途1. astma388标准被广泛应用于工业、建筑、航空航天、能源等领域,以进行各种材料的物理性能、化学性能、热处理性能等方面的测试和评估。

2. astma388标准也被广泛应用于科研机构、高校实验室等科学研究领域,用于对各种新材料的性能进行测试和分析,为新材料的开发和应用提供支持。

三、astma388标准的主要内容astma388标准主要包括以下方面的内容:1. 试样的制备:标准中对试样的制备方法进行了详细的规定,包括试样的尺寸、形状、加工工艺等方面的要求,以确保测试结果的准确性和可比性。

2. 物理性能测试:包括拉伸性能、弯曲性能、硬度、冲击性能等方面的测试方法,在标准中对相关测试装置、试验条件等都进行了规定,以确保测试结果的准确性和可重复性。

3. 化学性能测试:包括化学成分分析、腐蚀性能测试等方面的方法,对相关试剂、仪器设备的要求也在标准中进行了详细规定。

4. 热处理性能测试:包括金相组织观察、晶粒度测定、显微硬度测定等方法,对相关设备、试验条件等方面也进行了详细规定。

5. 样品标签和记录:对测试样品的标识、记录和报告的要求也在标准中进行了规定,以确保测试数据的可追溯性和可靠性。

四、astma388标准的意义1. astma388标准的制定和应用,能够确保各种材料的性能测试能够按照统一的标准进行,从而保证了测试结果的可比性和可重复性。

2. astma388标准的应用,能够为材料的生产、加工和使用提供科学依据,保证产品的质量和安全性,促进材料技术的发展和进步。

3. astma388标准的推广,能够促进国际间材料测试方法的统一,为国际贸易和合作提供了技术支持和保障。

A388中文版

A388中文版

ASTM A388/A388M-03大型锻钢件的超声波检测方法1适用范围1.1本标准适用于采用直射波和斜射波技术对大型锻钢件作接触式、脉冲回波超声波检测。

1.2凡是因咨询、合同、订货或技术条件的规定,而要求对锻件按A388/A388M进行超声波检测时,均可采用本标准。

1.3以英寸—磅为单位,或以SI国际单位制表示的数值均视为标准值。

在正文中,SI国际单位制数值表示在括号内。

用上述二种单位制表示的数值并不完全相等,因此只能单独使用其中一种。

混同使用两种单位制可能会使之与技术要求不一致。

1.4本标准及引用的材料技术条件均同时采用英寸—磅和SI国际单位制表述,然而除非订单技术要求中规定采用SI国际单位制,所用材料应以英寸—磅为供货单位。

1.5本标准的宗旨不在于论述与使用有关的安全问题。

使用本标准者在使用前有责任制订相应的有关安全防护与保健的措施,并确定有关应用范围的管理条例。

2参考文献2.1ASTM标准A469 发电机转子用真空精炼钢锻件的技术要求A745/A745M 奥氏体钢锻件的超声波检验方法E317 不采用电子测量装置评价脉冲反射式超声波检测装置及系统性能的检测方法E428 超声波检测用钢制参考试块的制作和控制方法2.2ANSI标准B46.1 表面状况2.3其它文献无损检测人员资格与鉴定的推荐方法SNT-TC-1A,附录C——超声波检测3订货依据3.1当采用本标准应用于咨询、合同或订货时,订货方应申明并提供下列各项资料。

3.1.1按照7.2.2和7.3.3条(V形或矩形槽)所述来确定灵敏度的方法。

3.1.1.1按照7.2.2.2条所述确定参考试块的材料、平底孔孔径及其金属测试声程。

3.1.2按照10.3条所述确定整个锻件或其中某些部位的质量等级。

3.1.3根据6.1、6.2和7.1.11条规定的任何选择方案。

4仪器4.1本检测应采用脉冲反射式超声波仪器。

仪器应至少具有1~5MHz频率下进行检测的能力。

锻件与铸件超声波探伤详细教程(附实例解析)重点讲义资料

锻件与铸件超声波探伤详细教程(附实例解析)重点讲义资料

第六章锻件与铸件超声波探伤第六章锻件与铸件超声波探伤锻件和铸件是各种机械设备及锅炉压力容器的重要毛坯件。

它们在生产加工过程中常会产生一些缺陷,影响设备的安全使用。

一些标准规定对某些锻件和铸件必须进行超声波探伤。

由于铸件晶粒粗大、透声性差,信噪比低,探伤困难大,因此本章重点计论锻件探伤问题,对铸件探伤只做简单介绍。

第一节锻件超声波探伤一、锻件加工及常见缺陷锻件是由热态钢锭经锻压变形而成。

锻压过程包括加热、形变和冷却。

锻件的方式大致分为镦粗、拔长和滚压。

镦粗是锻压力施加于坯料的两端,形变发生在横截面上。

拔长是锻压力施加于坯料的外圆,形变发生在长度方向。

滚压是先镦粗坯料,然后冲孔再插入芯棒并在外圆施加锻压力。

滚压既有纵向形变,又有横向形变。

其中镦粗主要用于饼类锻件。

拔长主要用于轴类锻件,而简类锻件一般先镦粗,后冲孔,再镦压。

为了改善锻件的绍织性能,锻后还要进行正火、退火或调质等热处理。

锻件缺陷可分为铸造缺陷、锻造缺陷和热处理缺陷。

铸造缺陷主要有:缩孔残余、疏松、夹杂、裂纹等。

锻造缺陷主要有:折叠、白点、裂纹等。

热处理缺陷主要有:裂纹等。

缩孔残余是铸锭中的缩孔在锻造时切头量不足残留下来的,多见于锻件的端部。

疏松是钢锭在凝固收缩时形成的不致密和孔穴,锻造时因锻造比不足而末全焊合,主要存在于钢锭中心及头部。

夹杂有内在夹杂、外来菲金属夹杂栩金属夹杂。

内在夹杂主要集中于钢锭中心及头部。

裂纹有铸造裂纹、锻造裂纹和热处理裂纹等。

奥氏体钢轴心晶间裂纹就是铸造引起的裂纹。

锻造和热处理不当,会在锻件表面或心部形成裂纹。

白点是锻件含氢最较高,锻后冷却过快,钢中溶解的氢来不及逸出,造成应力过大引起的开裂,白点主要集中于锻件大截面中心。

合金总量超过3.5~4.0%和Cr、Ni、Mn的合金钢大型锻件容易产生白点。

白点在钢中总是成群出现。

二、探伤方法概述按探伤时间分类,锻件探伤可分为原材料探伤和制造过程中的探伤,产品检验及在役检验。

A388

A388

STANDARD PRACTICE FOR ULTRASONIC EXAMINATION OF HEA VYSTEEL FORGINGS重型锻造钢的探伤测试标准惯例1. Scope 范围1.1 This practice covers the examination procedures for the contact, pulse-echo ultrasonic examination of heavy steel forgings by the straight and angle-beam techniques.本惯例包含了通过直探头和斜探头的重型锻造钢的接触和回波探伤测试的程序。

1.2 This practice is to be used whenever the inquiry, contract, order, or specification states that forgings are to be subject to ultrasonic examination in accordance with ASTM Practice A 388.这份惯例在当询盘、合同、订单或明细中声明锻造钢需要根据ASTM A 388进行探伤测试时使用。

1.3 The values stated in either inch-pound or SI units are to be regarded as the standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.以英制或SI制单位标识的数值均为标准数值,两种单位表示的数值不准确相等,因此每种单位必须单独使用。

锻件超声波检测方法

锻件超声波检测方法

锻件超声波检测方法仪器型号友联PXUT-350+ 探头型号试块型号1 试块21 .长按功能键选择0初始化,选1当前通道,或者2所有通道,按确认.2.长按通道/设置,输入相关参数(探头类型、探头频率、晶片尺寸)然后按确认.3.测零点:长按零点/测试,选择测零点声速,出现如下界面:1).预置工件声速:5920m/s2)一次回波声程:100mm3)二次回波声程:200mm 按确定,移动探头,在CSK-1A上的100mm处找到最高波,当回波达到80%高度时,按确认.探头不动,待200mm处回波稳定不动时,按确定键.4.试块法:探伤灵敏度:200/φ2工件尺寸:长X宽X高编号:把有工件编号那一面对着自己。

1)探伤比例调节:因最大声程为200,该处回波应跳到8格,则200X1.25=250,按声程/标度+或-调节,使屏幕显示为250mm,此时探伤比例为1:2.52)探伤灵敏度调节:将200/φ2孔的最高回波调到80%时,记下dB1= dB,即为200/φ2的探伤灵敏度;3)探工件:在端面上以150mm/s的速度探测缺陷,探到缺陷时,寻找缺陷的最高波,将最高波降到80%高度时,记下dB2= dB以及缺陷的位置X: mm、Y: mm、Sf:mm 4)计算当量缺陷评定Φx= Φ4+40lg(Φx/4)单个缺陷的质量分级等级ⅠⅡⅢⅣⅤ≤Φ4 Φ4+(>0dB~8 dB)Φ4+(>8dB~12 dB)Φ4+(>12dB~16dB)>Φ4+16dB缺陷当量直径5)将dB数调到dB1= dB后继续扫查其他缺陷。

5.底波法1)工件尺寸:长mm X宽mm X高S0 mm 编号:探伤灵敏度:S0/Φ.2)探伤比例调节:因最大声程为S0,该处回波应跳到8格,则S0X1.25=L,按声程/标度+或-调节,使屏幕显示为L= mm,此时探伤比例为1:L/1003)探伤灵敏度的调节:将无缺陷处底波(在端面找到底波的最大波高),调到80%高度,记录dB= dB。

锻件与铸件超声波探伤详细教程(附实例解析)

锻件与铸件超声波探伤详细教程(附实例解析)

锻件与铸件超声波探伤详细教程(附实例解析)第六章锻件与铸件超声波探伤第六章锻件与铸件超声波探伤锻件和铸件是各种机械设备及锅炉压力容器的重要毛坯件。

它们在生产加工过程中常会产生一些缺陷,影响设备的安全使用。

一些标准规定对某些锻件和铸件必须进行超声波探伤。

由于铸件晶粒粗大、透声性差,信噪比低,探伤困难大,因此本章重点计论锻件探伤问题,对铸件探伤只做简单介绍。

第一节锻件超声波探伤一、锻件加工及常见缺陷锻件是由热态钢锭经锻压变形而成。

锻压过程包括加热、形变和冷却。

锻件的方式大致分为镦粗、拔长和滚压。

镦粗是锻压力施加于坯料的两端,形变发生在横截面上。

拔长是锻压力施加于坯料的外圆,形变发生在长度方向。

滚压是先镦粗坯料,然后冲孔再插入芯棒并在外圆施加锻压力。

滚压既有纵向形变,又有横向形变。

其中镦粗主要用于饼类锻件。

拔长主要用于轴类锻件,而简类锻件一般先镦粗,后冲孔,再镦压。

为了改善锻件的绍织性能,锻后还要进行正火、退火或调质等热处理。

锻件缺陷可分为铸造缺陷、锻造缺陷和热处理缺陷。

铸造缺陷主要有:缩孔残余、疏松、夹杂、裂纹等。

锻造缺陷主要有:折叠、白点、裂纹等。

热处理缺陷主要有:裂纹等。

缩孔残余是铸锭中的缩孔在锻造时切头量不足残留下来的,多见于锻件的端部。

疏松是钢锭在凝固收缩时形成的不致密和孔穴,锻造时因锻造比不足而末全焊合,主要存在于钢锭中心及头部。

夹杂有内在夹杂、外来菲金属夹杂栩金属夹杂。

内在夹杂主要集中于钢锭中心及头部。

裂纹有铸造裂纹、锻造裂纹和热处理裂纹等。

奥氏体钢轴心晶间裂纹就是铸造引起的裂纹。

锻造和热处理不当,会在锻件表面或心部形成裂纹。

白点是锻件含氢最较高,锻后冷却过快,钢中溶解的氢来不及逸出,造成应力过大引起的开裂,白点主要集中于锻件大截面中心。

合金总量超过3.5~4.0%和Cr、Ni、Mn的合金钢大型锻件容易产生白点。

白点在钢中总是成群出现。

二、探伤方法概述按探伤时间分类,锻件探伤可分为原材料探伤和制造过程中的探伤,产品检验及在役检验。

国外主要无损检测标准题录(超声检测

国外主要无损检测标准题录(超声检测

国外主要无损检测标准题录(超声检测)(注:题录后括号内注解意义同国内标准,INDT为"国外无损检测"杂志)国际标准:ISO 7963:1985 钢焊缝--用于焊缝超声检验的2 号校正试块(TC44)ISO 5577:2000 无损检测--超声检测--术语ISO 5180-80 超声检验用钢制校准试块ISO 2400-72E 用于校准超声检测设备的钢焊件参考试块(用于t≤50mm钢管焊缝)(INDT,82-4)(TC44)ISO/DP4992-83 铸钢件的超声波检测(INDT,85-2)ISO 5948-81E 铁路机车车辆部件的超声波验收试验(车辆,车轮及轮箍)(NDT,87-4)ISO 5948:1994(E) 铁道车辆材料-超声波验收检验(TC17)(NDT2002-3)ISO(1984-02-07) 铸钢件超声波探伤草案(WSTS,88-4,5)ISO 4386/1:1992 普通轴承金属多层普通轴承第一部分:粘接强度的超声无损检验(TC123)ISO 4386/2 支承面金属层厚度≥2mm的粘接破坏性试验ISO 9303:1989 无缝和焊接( 埋弧焊除外) 承压钢管--探测纵向缺陷的全圆周超声检验(TC17)ISO 9305:1989 无缝承压钢管--探测横向缺陷的全圆周超声检验(TC17)ISO 9764:1989 电阻焊和感应焊承压钢管--探测焊缝纵向缺陷的超声检验(TC17)ISO 9765:1990 埋弧焊承压钢管--探测焊缝纵向及/ 或横向缺陷的超声检验(TC17)ISO 10124:1994 受压无缝和焊制(埋弧焊除外)钢管分层缺陷的超声检测ISO 10332:1994 受压无缝和焊制(埋弧焊除外)钢管验证水压密封性的超声检测ISO 10543:1993 无缝和热拉缩径焊接承压钢管--全圆周超声厚度检查(TC17)ISO 11496:1993 无缝和焊接承压钢管--探测管端头分层缺陷的超声检验(TC17)ISO 4064-3-99 封闭管道中液体流量的测量使用速调整超声流量计法ISO 10375:1997 无损检测--超声检验--探头及其声场的表征ISO 12094:1994 受压焊制钢管焊制钢管制造用钢带/钢板分层缺陷的超声检测ISO 12710:2002 无损检测超声检测超声检测仪的电子特性评估ISO 12713:1998 无损检测--声发射检测--换能器的初次校正ISO 12714:1999 无损检测--声发射检查--声发射传感器的二次校准ISO 12715:1999 无损检测--超声检测--表征接触式探头声束轮廓的参考试块和测试方法ISO 12716:2001 无损检测--声发射检验--术语ISO 13663:1995 受压焊制钢管焊缝附近分层缺陷的超声检测IIW VC-421-83,VF-141-83 焊缝常规超声检验验收标准(7-100mm铁素体钢对接焊缝)(INDT,85-3)IIW DOC V-527-76 焊缝超声检验手册IIW DOC V-664-79 用A VG图直接评估超声反射信号的验收标准(NDT,80-2)欧洲标准:ENV 583-6:2000 无损检测超声检验第6部分:衍射时差法探伤和定量[S]EN 583-2:2001 超声波探伤仪时基线和灵敏度的调整(无损探伤,2004.4)美国ASTM A609/A609M-91 碳钢、低合金钢和马氏体不锈钢铸件的超声波检测(A-1) ASTM A388/A388M-91 大型钢锻件的超声检测方法(A-1) (80版在INDT,83-4)ASTM A418-87(93) 汽轮机和发电机转子钢锻件的超声检测方法(A-1)ASTM A435/A435M-90 压力容器用钢板的直射法超声检测(A-1)ASTM A503-75(89) 大型曲轴锻件的超声检测(A-1)ASTM A531-91 汽轮发电机用钢制护环的超声检验(A-5) (旧版在INDT,82-4)ASTM A577/A577M-90 钢板斜射法超声检测(A-1)ASTM A578/A578M-92 特殊用途的普通钢板与复合钢板直射法超声检测(A-1)ANSI/ASTM A745/A745M-86(91) 奥氏体钢锻件的超声检测(A-1) (INDT,83-1为77年版) ASTM A898/A898M-91 轧制钢结构型材超声直射声束检验规范(A-1)ASTM B773-87 钎焊或熔焊的电接触组件连接质量超声C-扫描评价的标准指南(B-4) ASTM B811-90 锆合金核燃料包复管超声探伤(B-10)ASTM B594-90 宇航用铝合金制品的超声检测(B-7)ASTM B548-90 压力容器用铝合金板的超声检测(B-7)ASTM B509-77 核用镍合金板材补充要求的规范ASTM B510-77 核用镍合金棒材补充要求的规范ASTM B513-77 核用镍合金无缝管材补充要求的规范ASTM C597-83(91) 混凝士中脉冲速度的测试方法(C-9)ASTM D2966 发动机冷却器中铝的气蚀腐蚀特性的超声能量测试法ASTM D2845-90 岩石的脉冲速度和超声弹性常数试验室测定方法(D-18)ASTM D5300-93 用力学和超声方法组合, 测量聚合物基热固预浸料树脂含量和其它性能的标准试验方法(D-30)ASTM E500-86B 超声检测术语定义ASTM E610-82 声发射术语定义ASTM E127-1998 铝合金超声波标准参考试块的制造和校验规程ASTM E428-2000 用于超声波检查的钢制参考试块的制造和控制技术规程ASTM E804-88 用平底孔尺寸之间的外推法校正超声检验系统的实施方法ASTM E1065-1999 超声探头特性评定指南ASTM E650-97(2002)e1 装配压电式声发射传感器的指南ASTM E317-2001 不采用电子测量仪器评定超声脉冲反射检验系统工作特性的实施方法ASTM E976-2000 声发射传感器响应再现性测定指南ASTM E1067-2001 玻璃纤维增强塑料树脂(FRP)槽罐容器声发射检验标准实施方法ASTM E494-95(2001) 测量材料中超声速度的标准实施方法ASTM E664-93(2000) 用液浸法测量超声纵波视在衰减的标准实施方法ASTM E114-95(2001) 接触法超声脉冲回波直波束检验标准实施方法ASTM E164-1997 焊接件的接触法超声波检验规程ASTM E166 焊接件超声波接触法检验ASTM E213-2004 金属管材的超声检验规程ASTM E214-2001 使用超声纵波脉冲反射法液浸检验规程ASTM E273-2001 焊接管焊缝超声检验规程ASTM E569-2002 受控激励时构件声发射监测的技术规程ASTM E587-2000 超声斜射声束接触法检验技术规程ASTM E588-95 用超声波方法探测轴承质量级钢大块夹杂物的技术规程ASTM E749-2001 连续焊接过程中声发射监测的标准实施方法ASTM E750-1998 表征声发射仪器的标准实施方法ASTM E751-2001 电阻点焊声发射监测标准实施方法ASTM E797-95(2001) 用手动超声脉冲反射接触法测量厚度的标准实施方法ASTM E1001-2004 用超声纵波液浸脉冲反射法探测和评定不连续性的标准实施方法ASTM E1002-1996 超声波检漏标准试验方法ASTM E113-81 共振法超声检测ASTM E914-85 绝缘高空操作台的声发射检测方法ASTM E1106-86(2002)e1 声发射传感器一级校准标准实施方法ASTM E1139-2002 声发射连续监视金属压力极限的技术规程ASTM E1118-2000 增强型热固树脂管(RTRP) 声发射检验技术规程ASTM E1158-2004 金属和合金材料超声脉冲纵波检验用参考试块材料选择和制作指南ASTM E1315-93(2002) 凸圆柱曲面钢材的超声波检查技术规程ASTM E1324-2000 测量超声波检查仪若干电子特性的指南ASTM E1454-2002 数字超声检验数据计算机化传输的数据区指南ASTM E1419-2002b 利用声发射检验无缝充气压力容器的标准试验方法ASTM E1495-2002 复合材料, 层板以及粘接件声-超声评定指南ASTM E1211-2002 应用表面配置声发射传感器探测泄漏及其位置的技术规程ASTM E1736-2000 纤维缠绕压力容器声-超声评定的标准实施方法ASTM E1774-96(2002) 电磁声换能器(EMA Ts)指南(无损探伤2003.1)ASTM E1781-1998 声发射传感器二级校准标准实施方法ASTM E1816-96(2002) 应用电磁声换能器技术(EMAT)的超声波检验技术规程(无损探伤2003.2)ASTM E1888/E1888M-2002 用软木芯玻璃纤维增强塑料制成的压力容器声发射检测标准试验方法ASTM E1901-1997(2003) 接触法超声波直射声束脉冲反射探测和评估不连续性的指南ASTM E1930-2002 应用声发射检查常压和低压充液金属储罐的标准试验方法ASTM E1932-1997(2002)e1 小零件声发射检验技术指南ASTM E1961-1998(2003)e1 用聚焦探头分区识别环形焊缝的机械化超声波检查技术规程(无损检测2003.4)ASTM E1962-1998 应用电磁声换能器(EMAT)技术超声波表面检验的标准试验方法(无损探伤2003.3)ASTM E2001-1998(2003) 谐振超声波频谱技术用于金属和非金属零件中探测缺陷的指南ASTM E2075-2000 应用聚丙烯棒检定声发射传感器响应稳定性的技术规程ASTM E2076-2000 应用声发射检查玻璃纤维增强塑料风扇叶片的标准试验方法ASTM E2191-2002 卷绕覆合层充气压力容器声发射标准检测方法ASTM E2192-2002 应用超声检测平面缺陷高度尺寸的指南ASTM E2223-2002 无缝、充气的钢压力容器超声斜射检测标准操作规程ASTM F600-83 热塑管道套筒对接接头的超声无损评价ASTM F1512-94 溅射靶背板组件连接的超声C-扫描评定实施方法(F-1)ASME 2235:2000 超声衍射时差(TOFD)法ASME 2235-4:2001 锅炉压力容器规范案例用超声检验取代射线照相[S]MIL-STD-1263-73 超声检测人员的资格鉴定与证书颁发(已停用)MIL-I-46175-76 SAE D 7003球墨铸铁的超声检测MIL-STD-770-87 铅的超声检验MIL-HDBK-726-74 超声检测手册(已由MIL-HDBK-728/6代替)MIL-STD-2154-82 锻制金属的超声检验MIL-HDBK-728/6(92) 超声检验MIL-HDBK-732A(91) 复合材料无损检验方法-声发射法MIL-HDBK-786(93) 用模拟声发射事件确保现场声发射系统的运作MIL-HDBK-787(93) 复合材料的无损检验方法-超声波法MIL-HDBK-788(89) 声发射传感器的选择MIL-STD-1875(83) 超声波检验要求MIL-STD-1945(91) 声发射试验术语和定义汇编MIL-U-85067A(84) MARK71 MODO 弹头外壳焊缝超声评定德国:DIN 54110 超声检测概念DIN 54119-81 超声检测术语定义DIN 54120-73 调整和检查脉冲回波式探伤仪用Ⅰ型参考试块及其应用DIN 54122-73 调整和检查脉冲回波式探伤仪用Ⅱ型参考试块及其应用DIN 54124T1-83 脉冲回波式超声探伤仪的现场校正DIN 25435T1-79 核技术设备的定期超声检测DIN 54123-80 焊接、轧制和爆炸成型包复层的超声检测DIN 54125-82 焊缝超声检测(INDT,85-2)DIN 54126T1-82 超声检测的一般规则:对检测系统和检测对象的要求DIN 54126T2-82 超声检测的一般规则:检测方法SEL 072-77 厚钢板超声检验技术**货条件(西德钢铁交货技术条件SEL) SEL 1915-77 耐热钢管材纵向缺陷的超声检验SEL 1922-77 铁素体钢铸件的超声检测法国:NF A09-352-85 声发射检验的推荐方法NF A09-360-85 纤维基复合材料及其制品的声发射检测NF A09-355-85 声发射压电传感器的耦合NF A09-354-85 商品化声发射压电传感器及其技术数据的意义NF A09-353-85 声发射波单通道特性的测量NF A09-351-84 声发射源位置的推荐标定方法NF A09-350-84 声发射名词术语NF A09-300-87 无损检测超声检验名词术语NF A09-310-87 无损检测超声检验用A型及B型校准试块NF A09-315-87 A型和B型校准试块的使用方法NF A09-321-83 超声检验超声探伤仪的选用方法NF A09-322-85 工业用超声探头规格NF A09-323-87 工业用超声探头特性表示方法NF A09-325-87 超声检验中声波束的一般规则NF A09-326-87 接触式探头超声波束特性的现场测定方法NF A09-331-86 使用聚焦超声波束测定缺陷大小的方法NF A09-320-84 金属制品手动超声检测用超声探伤仪特性的校准方法NF A09-330-86 聚焦超声波束特性的定义及其校准方法NF A89-611-81 碳钢或低碳钢焊缝超声检测设备用校准试块(NO.2试块)NF A04-311-64 钢件超声检测用标准试块NF A04-307-81 非工字钢,钢轨等形状的长钢铁制品内部缺陷手工超声检测方法NF A04-305-83 钢铁制品、厚钢板超声检测质量的定义与测试方法NF A49-200-77 钢管,锅炉及压力容器用无缝钢管超声检测方法分类及应用NF A49-870-81 钢管,锅炉及压力容器用无缝钢管纵向缺陷的超声检测方法英国:BS 4S100 附录B 轧制钢坯和棒材的超声检测BS M36-84 特殊锻件用平底孔标准的水浸法超声检测BS 3605-73 附录B 管材纵向缺陷的超声检测BS DD21-72 对12~150mm厚钢板超声检测的质量分级BS 5996-80 铁素体钢板超声检测及质量等级分类BS 3923Pt1-86 焊缝超声波检验方法-铁素体钢熔焊缝手工超声检测(WSTS,90-4~91-1) BS 3923Pt2-72 焊缝超声波检验方法-铁素体钢熔焊对接接头自动超声检测BS 3923Pt3-72 焊缝超声波检验方法-接管角焊缝手工超声检测BS 4408Pt5-74 混凝土中超声脉冲速度的测量BS 4331-83 超声检测设备工作特性测定方法BS 4331 第1部分超声检测设备性能特征评定办法全部性能:现场办法BS 4331 第2部分超声检测设备性能特征评定办法电子性能BS 4331 第3部分超声检测设备性能特征评定办法探头(不包括浸入式探头)在用监测指南BS 2704-83 超声检测用校准试块的技术要求BS 3683Pt4-85 无损检测名词术语超声波检验BS 3889Pt1-1990 管材无损检测方法-锻钢管自动超声探伤方法BS 4124-87 锻钢件的超声波检验方法BS 6208-1990 铁素体钢铸件超声检测方法包括质量等级BS 1881 Pt203-86 混凝土试验-混凝土中超声脉冲速度的推荐测量方法BS 2923 第1部分焊接声发射检测铁素体钢熔焊手工检测方法BS 2923 第2部分焊接超声检测方法铁素体钢熔焊的对接焊缝自动检测BS 7585-1-1992 多层金属滑动轴承结合层的超声无损检测方法BS 7706-1993 缺陷定位、定量的超声衍射时差(TOFD)法-校验和调整指南BS EN 583-1-1999 无损检测超声检测一般原理BS EN 583-2-2001 无损检测超声检测灵敏度和调整范围BS EN 583-3-1997 无损检测超声检测发射方法BS EN 583-5-2001 无损检测超声检测不连续性的表征与尺寸测定BS EN 1330-4-2000 无损检测术语-超声检测BS EN 1712 焊接无损检测焊缝的超声检测合格的水平BS EN 10160-1999 厚度等于大于6mm钢板产品的超声检测(反射法),BS 5996BS EN 10228-3-1998 锻钢件无损检测-铁素体与马氏体钢锻件的超声检测BS EN 10228-4-1999 锻钢件无损检测-奥氏体与奥氏体-铁素体钢锻件的超声检测BS EN 10246-6-2000 钢管无损检测无缝钢管横向缺陷全自动外围超声检测BS EN 10246-7-1996 钢管无损检测无缝与焊接(埋弧焊除外)钢管纵向缺陷全自动外围超声检测BS EN 10246-8-2000 钢管无损检测电焊钢管焊缝纵向缺陷的自动超声检测BS EN 10246-14-2000 钢管无损检测无缝与焊接(埋弧焊除外)钢管分层缺陷的自动超声检测BS EN 10308-2002 无损检测钢棒的超声检测BS EN 12223-2000 无损检测超声检测1号校正试块规范BS EN 12668-1-2000 无损检测超声检测设备特性与确认-仪器BS EN 12668-2-2001 无损检测超声检测设备特性与确认-探头BS EN 12668-3-2000 无损检测超声检测设备特性与确认-组合设备BS EN 27963-1992 焊缝超声检测2号校正试块规范,ISO 7963-1985前苏联:гост21397-75 铝合金制品超声检测用标准试块的基本参数与技术要求гост23702-79 超声换能器基本参数及其测量方法(INDT,83-3)гост23667-79 超声探伤仪基本参数测量方法гост23049-78 超声检测的一般技术要求гост22727-77 薄钢板致密性的超声检测гост22368-77 对接焊缝超声检测的缺陷分类гост21120-75 圆,方,矩形截面棒材与坯料的超声回波法检测гост20415-82 声学检测一般规则гост18576-80 铁路钢轨的超声检测гост17410-78 圆柱形无缝金属管的超声检测гост14782-76 焊缝的超声检测гост12503-75 钢的超声检测一般要求гост51017-71 涡轮机K-200-130-1转子锻件制造标准(含超声检测标准)ПИ1.2. 032-77 航空发动机涡轮盘和压气机盘的超声检验OCT1 90250-77 无损检验用于航空技术装备的半成品和零件的超声检验对检验方法内容和编制的一般要求日本:NDIS 2001-89 超声检测标准名词术语NDIS 2302-69 钢板超声检测用N1型灵敏度标准试块NDIS 2303-69 超声斜射法检测用A1型灵敏度标准试块NDIS 2304-69 超声斜射法检测用A2型灵敏度标准试块NDIS 2305-78 超声斜射法检测用A21和A22灵敏度标准试块NDIS 2101-66 超声探伤仪分辨率的测量方法与等级分类NDIS 2102-67 超声探伤仪线性的测量方法与等级分类NDIS 2103-88 超声探伤仪用刻度板NDIS 2104-71 超声探伤仪时间轴线性的测量方法NDIS 2105-85 携带型脉冲反射式超声测厚仪的性能表示方法(NDT,88-9)NDIS 2106-79 声发射装置的性能表示方法NDIS 2107-82 宽带超声探头性能测定方法与表示方法(INDT,84-4)NDTS 2301-66 超声波板波探伤用P1型标准试块NDIS 2301-66 超声波板波探伤法NDIS 2415-87 超声反射法测定固体超声衰减系数及表示方法NDIS 2414-87 超声反射波法与穿透法测定固体声速及表示方法NDIS 2112-72 斜探头性能的测试方法NDIS 2108-86 超声探头性能特性的测量与表示方法NDIS 2413-86 有声学各向异性的铁素体钢焊缝超声手动检测方法及检验结果分类NDIS 2412-80 高强钢球形容器声发射试验方法及试验结果的等级分类(INDT,82-4)NDIS 2411-80 碳钢及低合金钢锻件超声检测方法与检验结果等级分类(A V法) (INDT,83-2) NDIS 2410-79 钢焊缝超声串列法检测及检验结果等级分类NDIS 2409-79 压力容器耐压试验时的声发射检测方法NDIS 2408-79 携带式脉冲反射式超声厚度计的测定方法NDIS 2407-76 钢焊缝超声波自动探伤方法NDIS 2406-76 室外立式园筒形储罐侧板与底板角焊缝端部裂纹的超声检测方法NDIS 2405-74 用分割式直探头超声检测钢板的方法NDIS 2404-74 钢焊缝超声检测方法及等级分类NDIS 2403-68 压力容器用钢板(厚度18~38mm)超声检验标准NDIS 2423:2001 超声衍射时差(TOFD)法TOFD法缺陷测高方法[S]NDIS 2418-1996 超声端部回波法缺陷测高技术(无损探伤,2005.1)JIS G0801-1993 压力容器用钢板超声检测方法JIS G 0802-1998 不锈钢板超声检测方法JIS Z 3080-1995 铝板对接焊缝超声斜射检测法JIS Z 3081-1994 铝管焊缝超声斜射检测方法JIS Z 3082-1995 铝板T型焊缝超声检测法JIS Z 3871-1987 铝及铝合金焊缝超声检测标准鉴定方法JIS G 0901-1992 建筑用轧制钢板超声检测的等级分类JIS Z 2344-1993 金属材料的脉冲回波式超声检测一般规则JIS G 0584-1998 电弧焊接钢管的超声检测方法JIS G 0582-1998 钢管的超声检测方法JIS Z 3060-2002 铁素体钢焊缝超声检测方法JIS Z 3061-83 曲面钢焊缝的超声检测方法(WSTS,88-1,87-6)JIS Z 3062-1996 加固变形钢筋气体压力焊的超声检测方法与验收标准JIS Z 3070-1998 铁素体钢焊缝自动超声检测方法JIS G0587-1995 碳钢及低合金钢锻件的超声波检验方法JIS G0601-82 复合钢的检验方法JIS H 0516-1992 钛管材超声检验JIS H4751-86 附录锆合金管的超声波检验方法JIS Z2345-2000 超声检测用标准试块JIS Z2346-78 钢板超声检测用N1型灵敏度校验试块JIS Z2347-78 超声检测用A1型灵敏度标准试块JIS Z2348-78 超声斜射法检测用A2型灵敏度标准试块JIS Z2349-78 超声斜射法检测用A3型灵敏度标准试块JIS Z 2350-2002 超声探头性能特性测量方法JIS Z 2351-1992 超声脉冲回波检测仪电子性能评定方法JIS Z 2352-1992 超声脉冲回波检测仪综合性能评定方法JIS Z 2353-1991 利用参考试片测量固体中超声脉冲速度的方法JIS Z 2354-1992 用脉冲回波测量固体的超声衰减系数的方法JIS Z 2355-1994 脉冲反射法超声测量厚度的方法JIS K 7090-1996 碳纤维增强塑料板超声脉冲回波检验方法JIS R 1602-1995 细陶瓷弹性模量测试方法JCSS 14-84 碳钢和低合金钢铸件直射法超声检验标准(日本钢铸件与锻件协会标准)附:美国航空金属材料标准(SAE-AMS)中相关无损检测的标准题录AIR4964 在无损检测过程中紫外线辐射的曝光水平Exposure Levels of UV Radiation in Nondestructive Inspection Processes AMS 1355 超声水浸探头和接触探头的性能参数AMS2300G 优质航空用钢纯洁度的磁粉检验方法Premium Aircraft- Quality Steel Cleanliness Magnetic Particle Inspection Procedure GAMS2301H 航空用钢纯洁度的磁粉检验方法Cleanliness, Aircraft Quality Steel Magnetic Particle Inspection Procedure HAMS2303D 航空用马氏体耐蚀钢纯洁度的磁粉检验方法Cleanliness, Aircraft Quality Steel, Martensitic Corrosion- Resistant Steels, Magnetic Particle Inspection Procedure DAMS2304 特种航空用钢纯洁度的磁粉检验方法Special Aircraft- Quality Steel Cleanliness Magnetic Particle Inspection Procedure AMS-2308-94 磁橡胶检查AMS-2309-94 磁橡胶检查材料AMS-2380B-91(R-95) 优质钛合金的认可与控制AMS-2440-84(R-94) 镀铬钢零件的基底材料检查AMS2442 零件的磁粉检验验收标准Magnetic Particle Acceptance Criteria for PartsAMS2628 高级钛及钛合金坯料的超声波液浸检验Ultrasonic Immersion Inspection Titanium and Titanium Alloy Billet Premium GradeAMS2630B 产品厚度大于0.5英寸(12.7mm)的超声波检验Inspection, Ultrasonic Product Over 0.5 Inch(12.7 mm) Thick BAMS2631B 钛和钛合金棒材及坯料的超声波检验Ultrasonic Inspection, Titanium and Titanium Alloy Bar and Billet BAMS2632A 横截面厚度0.5英寸(12.7mm)及以下薄材的超声波检验Inspection, Ultrasonic, of Thin Materials 0. 50 inch (12.7 mm) and Under in Cross- Sectional Thickness AAMS2633B 离心铸造耐蚀钢管状圆柱体的超声波检验Ultrasonic Inspection, Centrifugally- Cast,Corrosion- Resistant Steel Tubular Cylinders BAMS 2634A-95 薄壁金属管的超声检验(K)AMS 2635C-81 射线照相检验AMS 2640J-83(R-92) 磁粉检验AMS2641A 磁粉检验用石油基载液Vehicle, Magnetic Particle Inspection, Petroleum Base A AMS-2642A-89(R-94) 钛合金组织的阳极化侵蚀检查程序AMS2644A 渗透检验材料Inspection Material, Penetrant A AMS 2645H-83 荧光渗透检验AMS 2646C-82 着色渗透检验AMS-2647-85 用于飞机和发动机零件维修的荧光渗透检查(K) AMS 2650 荧光X 射线检验AMS-2658A-91 经热处理的铝合金零件硬度和电导率检查AMS3040B 非荧光磁粉--干法Magnetic Particles, Nonfluorescent, Dry Method BAMS3041C 非荧光磁粉--湿法,油磁悬液Magnetic Particles, Nonfluorescent, Wet Method,Oil Vehicle, Ready- to- Use CAMS 3042B-88 非荧光磁粉--湿法,水磁悬液AMS3043B 非荧光磁粉--湿法,喷罐型油磁悬液Magnetic Particles, Nonfluorescent, Wet Method,Oil Vehicle, Aerosol Packaged BAMS 3044C-89 荧光磁粉--湿法,水磁悬液AMS3045C 荧光磁粉--湿法,油磁悬液Magnetic Particles, Fluorescent, Wet Method, Oil Vehicle Ready- to- Use CAMS3046D 荧光磁粉--湿法,喷罐型油磁悬液Magnetic Particles, Fluorescent Wet Method, Oil Vehicle, Aerosol Packaged DAMS3155D 溶剂去除型油基荧光渗透剂Oil, Fluorescent Penetrant, Solvent- Soluble(Noncurrent Aug 99) D AMS-3156C-83 可水洗型油基荧光渗透剂(K)AMS3157C 溶剂去除型强荧光油基荧光渗透剂Oil Fluorescent Penetrant, High Fluorescence,Solvent Soluble CAMS3158B 水基荧光渗透剂Solution, Fluorescent Penetrant, Water Base BAMS3159E 与液氧相容的泄漏试验溶液Leak Test Solution, Liquid Oxygen Compatible E AMS3160G 石油溶剂Solvent, Petroleum GAMS3161A 无味重质油性溶剂Oil, Odorless Heavy Solvent AAMS3165D 芬芳性石油溶剂Solvent, Petroleum, Aromatic DAMS-5564B-92 焊接或无缝的19Cr10Ni高压液压管超声检验AMS7295/ 8B X射线照相纸2.5-80 Radiographic Paper, 2.5-80 BAMS7295/ 9B X射线照相纸2.0-80 Radiographic Paper, 2.0-80 BAMSSTD2154 锻制金属的过程中超声检验Inspection, Ultrasonic, Wrought Metals,Processes forARP891A 通过测量电导率确定铝合金回火度(涡流法) Determination of Aluminum Alloy Tempers Through Electrical Conductivity Measurements (Eddy Current) AARP1313B 确定高温合金中的痕迹元素Determination of Trace Elements in High Temperature Alloys BARP1333 钛基合金电子束焊接的无损检测Nondestructive Testing of Electron Beam Welded Joints in Titanium Base AlloysARP1341A 确定碳钢和低合金钢最终成品的脱碳与渗碳Determining Decarburization and Carburization in Finished Parts of Carbon and Low- Alloy Steels AARP1611A 痕迹荧光透视法和X射线照相法相结合的质量检验方法Quality Inspection Procedure, Composites, Tracer Fluoroscopy and Radiography A ARP-1675-90(R-95) 铝构件的结构熔合线ARP4402 飞机铝构件开放式紧固孔的涡流检验Eddy Current Inspection of Open Fastener Holes in Aluminum Aircraft StructureARP4462 利用巴克豪森噪声检验高强度钢零件中的磨削烧伤Barkhausen Noise Inspection for Detecting Grinding Burns in High Strength Steel Parts AS-1177A-93 螺栓和螺钉的无损检查标准AS-1613A-88 射线照相图象质量指示器AS3071B 磁粉检验,荧光渗透和着色渗透检验的验收标准Acceptance Criteria - Magnetic Particle, Fluorescent Penetrant, and Contrast Dye Penetrant Inspection B AS-4787-92 在航空发动机有色金属构件中圆孔的涡流检查(K)AS4792 用于水磁悬液磁粉检验的水调节剂Water Conditioning Agents for Aqueous Magnetic Particle InspectionAS5282 用于磁粉检验的工具钢环形试样Tool Steel Ring for Magnetic Particle InspectionAS7114 美国宇航局与国防部订约授权程序(NADCAP)要求-无损检测National Aerospace and Defense Contractors Accreditation Program Requirements for Nondestructive TestingAS7114/ 1 美国宇航局与国防部订约授权程序(NADCAP)要求-着色渗透无损检测设备的审定NADCAP Requirements for Nondestructive Testing Facility Penetrant Survey.AS7114/ 2 美国宇航局与国防部订约授权程序(NADCAP)要求-磁粉无损检测的审定NADCAP Requirements for Nondestructive Testing Magnetic Particle SurveyAS7114/ 3 美国宇航局与国防部订约授权程序(NADCAP)要求-超声无损检测设备的审定NADCAP Requirements for Nondestructive Testing Facility Ultrasonic SurveyAS7114/ 4 美国宇航局与国防部订约授权程序(NADCAP)要求-X射线照相无损检测设备NADCAP Requirements for Nondestructive Testing Facility RadiographyEN2002/ 21 美国宇航系列-金属材料试验方法-第21部分-铸件的X射线照相检测Aerospace series-- Test methods for metallic materials-- Part 21-- Radiographic testing of cast components EN2004/ 2 美国宇航系列-铝和铝合金产品试验方法-第2部分-板型锻件和挤压件的超声检测Test methods for aluminum and aluminum alloy products-- Part 2-- Ultrasonic testing of plates forgings and extrusions-- Aerospace seriesMAM2300A 优质航空用钢纯洁度的磁粉检验方法(公制) Premium Aircraft- Quality Steel Cleanliness, Magnetic Particle Inspection Procedure, Metric (SI) Measurement AMAM2301 航空用钢纯洁度的磁粉检验方法(公制) Cleanliness, Aircraft Quality Steel, Magnetic Particle Inspection Procedure, Metric (SI) MeasurementMAM2303B 航空用马氏体耐蚀钢纯洁度的磁粉检验方法(公制) Cleanliness, Aircraft Quality Steel, Martensitic Corrosion- Resistant Steels, Magnetic Particle Inspection Procedure, Metric (SI) Measurement BMAM2304 特种航空用钢纯洁度的磁粉检验方法(公制) Special Aircraft- Quality Steel Cleanliness Magnetic Particle Inspection Procedure, Metric (SI) Measurement。

铸、锻件的超声波探伤检测方法

铸、锻件的超声波探伤检测方法
• 锻造缺陷:折叠、白点、裂纹等。
• 锻造裂纹可出现在工件中不同位置,可由缩孔残 余在锻造时扩大产生,表面下气泡锻造产生,柱 状晶粗大引起,轴芯晶间裂纹锻造时引起,非金 属夹杂物引起,锻造加热不当引起,锻造变形不
当引起,经锻温度过低等原因引起。
• 白点是因钢中含氢量较高时由锻造过程中 残余应力热加工后的相变应力和热应力等 原因产生,是一种细微的氢裂纹,在白点 纵向断口上呈银白色的园点或椭圆形斑点, 故称白点。
• 游动波产生原因:(当出现游动回波,可 考虑中心附近危险性缺陷)
• 随探头移动,不同波束射至缺陷,中心波 束射至缺陷,回波高,声程小,边缘波束 射至缺陷,回波低,声程大,在扫描线上 游动范围达25mm,利用游动波的包络线, 可判断缺陷形状。
• 纵波:
• 单探头探测时,探头置于筒形锻件外园面、 内园面和端部探测。
• 三、探测条件选择 • 1.探头选择: • 频率:双晶直探头为5MHZ,单晶直探头为
2MHZ~5MHZ,对晶粒粗大锻件可适当降 低频率,可用1~2.5MHZ。 • 晶片尺寸:Ф14~25mm,常用Ф20mm。

• 双晶直探头——检测近表面缺陷。探头晶 片面积不小于150mm2。
• ③当量曲线法:
• a.面板曲线法
• 将不同直径,不同声程Φ平底孔波高绘制曲 线放在面板上,当缺陷波高与某平底孔回 波高一致时,即为该缺陷当量。
• b.相对曲线 dB——当量缺陷
• 利用衰减器,将某孔(平底孔)作出距 离——波幅曲线,探伤时将所有缺陷波均 调到基准波。然后根据衰减器得出读数, 再在dB——当量曲线上查出缺陷当量。
• ④AVG曲线定量法(第二章中已介绍)
• 2.缺陷长度测量法 • ①6dB(半波高)测长法,对平板工件、探

ASTM A388-05大型钢锻件超声测试操作标准

ASTM A388-05大型钢锻件超声测试操作标准

大型钢锻件超声测试操作标准1.范围1.1本操作方法包括用直射波和斜射波技术对大型钢锻件做接触式,脉冲回波式超声波检测流程。

直射波技术包括DGS(距离-增益-当量)方法。

见附录X3。

1.2凡因询价,合同,订货或技术条件的规定要求按照ASTM A388/A388M进行超声检测时,均采用本操作方法。

1.3以SI制单位或英制单位表示的数值均为标准数值。

两种单位表示的数值不完全相等;因此每种单位必须单独使用。

两种单位组合使用产生的结果可能和该标准不符。

1.4本方法和材料规范均用SI制和英制表示。

但除了订货要求采用规范符号M(SI)外,应使用英制单位加工。

1.5本标准不是讨论安全问题,如果有,是与使用有关的。

使用本标准的用户有责任在使用前建立适当的安全健康操作方法并确定这种方法的可行性。

2.引用文件2.1ASTM 标准:A 469/A 469M 发电机用钢锻件真空熔炼技术规范A 745/A 745M 奥氏体钢锻件的超声检测操作方法E 317 无电子测量设备的脉冲回波式超声检测系统性能评定操作方法E 428 超声检测用参考试块的制作和质量控制操作方法E 1065 超声检测探头的性能评定指南2.2ANSI 标准:B 46.1 表面结构2.3其他文件推荐的无损检测人员资格鉴定和认证的操作方法SNT-TC-1A,(1988版或以后的)3.术语3.1定义:3.1.1单个指示—指当探头沿任何方向移动时波幅从最高点下降至一定波高的一个指示,由于太小不看作游动指示或平面指示。

3.1.2指示级别(密集型指示)—-指在锻件边长2in(50mm)的立方体内或更小体积内有五个或更多的指示。

3.1.3平面型指示—指指示的最大长度大于1in(25mm)或大于探头主要尺寸两倍的指示,但无论哪种都不是游动的指示。

3.1.4游动指示—指探头在锻件表面移动时波的前沿在工件探度方向上移动1in(25mm)或更多距离的指示。

4.订货信息4.1当本方法用于询价签合同,订货时,订货单位应当声明,并提供如下信息:4.1.1标准数据(包括日期)4.1.2按照8.2.2和8.3.3确定探伤灵敏度。

ASTM A 388-A388M-2009_钢锻件超声波检查规程

ASTM A 388-A388M-2009_钢锻件超声波检查规程

Designation:A388/A388M–09Used in USNRC-RDT standards Standard Practice forUltrasonic Examination of Steel Forgings1This standard is issued under thefixed designation A388/A388M;the number immediately following the designation indicates the yearof original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(´)indicates an editorial change since the last revision or reapproval.1.Scope*1.1This practice2covers the examination procedures for the contact,pulse-echo ultrasonic examination of steel forgings by the straight and angle-beam techniques.The straight beam techniques include utilization of the DGS(Distance Gain-Size) method.See Appendix X3.1.2This practice is to be used whenever the inquiry, contract,order,or specification states that forgings are to be subject to ultrasonic examination in accordance with Practice A388/A388M.1.3The values stated in either SI units or inch-pound units are to be regarded separately as standard.The values stated in each system may not be exact equivalents;therefore,each system shall be used independently of the bining values from the two systems may result in non-conformance with the standard.1.4This specification and the applicable material specifica-tions are expressed in both inch-pound units and SI units. However,unless the order specifies the applicable“M”speci-fication designation[SI units],the material shall be furnished to inch-pound units.1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:3A469/A469M Specification for Vacuum-Treated Steel Forgings for Generator RotorsA745/A745M Practice for Ultrasonic Examination of Aus-tenitic Steel ForgingsE317Practice for Evaluating Performance Characteristics of Ultrasonic Pulse-Echo Testing Instruments and Systems without the Use of Electronic Measurement Instruments E428Practice for Fabrication and Control of Metal,Other than Aluminum,Reference Blocks Used in Ultrasonic TestingE1065Guide for Evaluating Characteristics of Ultrasonic Search Units2.2ANSI Standard:B46.1Surface Texture42.3Other Document:Recommended Practice for Nondestructive Personnel Quali-fication and Certification SNT-TC-1A,(1988or later)5 3.Terminology3.1Definitions:3.1.1indication levels(clusters),n—five or more indica-tions in a volume representing a2-in.[50-mm]or smaller cube in the forging.3.1.2individual indications,n—single indications showinga decrease in amplitude as the search unit is moved in any direction from the position of maximum amplitude and which are too small to be considered traveling or planar.3.1.3planar indications,n—indications shall be considered continuous over a plane if they have a major axis greater than 1in.[25mm]or twice the major dimension of the transducer, whichever is greater,and do not travel.3.1.4traveling indications,n—inductions whose leading edge moves a distance equivalent to1in.[25mm]or more of metal depth with movement of the transducer over the surface of the forging.4.Significance and Use4.1This practice shall be used when ultrasonic inspection is required by the order or specification for inspection purposes where the acceptance of the forging is based on limitations of the number,amplitude,or location of discontinuities,or a combination thereof,which give rise to ultrasonic indications.1This practice is under the jurisdiction of ASTM Committee A01on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.06on Steel Forgings and Billets.Current edition approved May1,2009.Published May2009.Originally approved st previous edition approved in2008as A388/A388M–08.2For ASME Boiler and Pressure Vessel Code applications see related Specifi-cation SA-388/SA-388M in Section II of that Code.3For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.4Available from American National Standards Institute(ANSI),25W.43rd St., 4th Floor,New York,NY10036.5Available from the American Society for Nondestructive Testing,1711Arlin-gate Ln.,P.O.Box28518,Columbus,OH43228–0518.*A Summary of Changes section appears at the end of this standard. Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.4.2The ultrasonic quality level shall be clearly stated as order requirements.5.Ordering Information5.1When this practice is to be applied to an inquiry, contract,or order,the purchaser shall so state and shall also furnish the following information:5.1.1Designation number(including year date),5.1.2Method of establishing the sensitivity in accordance with9.2.2and9.3.3(Vee-or rectangular-notch),5.1.2.1The diameter and test metal distance of theflat-bottom hole and the material of the reference block in accordance with9.2.2.2,5.1.3Quality level for the entire forging or portions thereof in accordance with12.3,and5.1.4Any options in accordance with1.4,6.4,6.5,7.1,8.1, 8.2,9.1.11,10.1,and10.2.6.Apparatus6.1An ultrasonic,pulsed,reflection type of instrument shall be used for this examination.The system shall have a mini-mum capability for examining at frequencies from1to5MHz. On examining austenitic stainless forgings the system shall have the capabilities for examining at frequencies down to0.4 MHz.6.1.1The ultrasonic instrument shall provide linear presen-tation(within5%)for at least75%of the screen height (sweep line to top of screen).The5%linearity referred to is descriptive of the screen presentation of amplitude.Instrument linearity shall be verified in accordance with the intent of Practice E317.Any set of blocks processed in accordance with Practice E317or E428may be used to establish the specified 65%instrument linearity.6.1.2The electronic apparatus shall contain an attenuator (accurate over its useful range to610%(+1dB)of the amplitude ratio)which will allow measurement of indications beyond the linear range of the instrument.6.2Search Units,having a transducer with a maximum active area of1in.2[650mm2]with3⁄4in.[20mm]minimum to11⁄8in.[30mm]maximum dimensions shall be used for straight-beam scanning(see9.2);and search units with1⁄2in. [13mm]minimum to1in.[25mm]maximum dimensions shall be used for angle-beam scanning(see9.3).6.2.1Transducers shall be utilized at their rated frequencies.6.2.2Other search units may be used for evaluating and pinpointing indications.6.3Couplants,having good wetting characteristics such as SAE No.20or No.30motor oil,glycerin,pine oil,or water shall be used.Couplants may not be comparable to one another and the same couplant shall be used for calibration and examination.6.4Reference Blocks,containingflat-bottom holes may be used for calibration of equipment in accordance with6.1.1and may be used to establish recording levels for straight-beam examination when so specified by the order or contract.6.5DGS Scales,matched to the ultrasonic test unit and transducer to be utilized,may be used to establish recording levels for straight beam examination,when so specified by the order or contract.The DGS scale range must be selected to include the full thickness cross-section of the forging to be examined.An example of a DGS overlay is found in Appendix X3.6.5.1As an alternative to using DGS overlays,an ultrasonic instrument having integral decibel gain or attenuator controls in combination with a specifically paired transducer and DGS diagram may be used to evaluate ultrasonic indications.7.Personnel Requirements7.1Personnel performing the ultrasonic examinations to this practice shall be qualified and certified in accordance with a written procedure conforming to Recommended Practice No. SNT-TC-1A(1988or later)or another national standard that is acceptable to both the purchaser and the supplier.8.Preparation of Forging for Ultrasonic Examination 8.1Unless otherwise specified in the order or contract,the forging shall be machined to provide cylindrical surfaces for radial examination in the case of round forgings;the ends of the forgings shall be machined perpendicular to the axis of the forging for the axial examination.Faces of disk and rectangular forgings shall be machinedflat and parallel to one another.8.2The surface roughness of exteriorfinishes shall not exceed250µin.[6µm]unless otherwise shown on the forging drawing or stated in the order or the contract.8.3The surfaces of the forging to be examined shall be free of extraneous material such as loose scale,paint,dirt,and so forth.9.Procedure9.1General:9.1.1As far as practicable,subject the entire volume of the forging to ultrasonic examination.Because of radii at change of sections and other local configurations,it may be impossible to examine some sections of a forging.9.1.2Perform the ultrasonic examination after heat treat-ment for mechanical properties(exclusive of stress-relief treatments)but prior to drilling holes,cutting keyways,tapers, grooves,or machining sections to contour.If the configuration of the forging required for the treatment for mechanical properties prohibits a subsequent complete examination of the forging,it shall be permissible to examine prior to treatment for mechanical properties.In such cases,reexamine the forging ultrasonically as completely as possible after heat treatment.9.1.3To ensure complete coverage of the forging volume, index the search unit with at least15%overlap with each pass.9.1.4For manual scanning,do not exceed a scanning rate of 6in./s[150mm/s].9.1.5For automated scanning,adjust scanning speed or instrument repetition rate,or both,to permit detection of the smallest discontinuities referenced in the specification and to allow the recording or signaling device to function.At no time shall the scanning speed exceed the speed at which an acceptable calibration was made.9.1.6If possible,scan all sections of forgings in two perpendicular directions.9.1.7Scan disk forgings using a straight beam technique from at least oneflat face and radially from the circumference, wheneverpracticable.9.1.8Scan cylindrical sections and hollow forgings radially using a straight-beam technique.When practicable,also exam-ine the forging in the axial direction.9.1.9In addition,examine hollow forgings by angle-beam technique from the outside diameter surface as required in 9.3.1.9.1.10In rechecking or reevaluation by manufacturer or purchaser,use comparable equipment,search units,frequency, and couplant.9.1.11Forgings may be examined either stationary or while rotating in a lathe or on rollers.If not specified by the purchaser,either method may be used at the manufacturer’s option.9.2Straight-Beam Examination:9.2.1For straight-beam examination use a nominal21⁄4-MHz search unit whenever practicable;however,1MHz is the preferred frequency for coarse grained austenitic materials and long testing distances.In many instances on examining coarse grained austenitic materials it may be necessary to use a frequency of0.4MHz.Other frequencies may be used if desirable for better resolution,penetrability,or detectability of flaws.9.2.2Establish the instrument sensitivity by either the reflection,reference-block technique,or DGS method(see Appendix X3for an explanation of the DGS method).9.2.2.1Back-Reflection Technique(Back-Reflection Cali-bration Applicable to Forgings with Parallel Entry and Back Surfaces)—With the attenuator set at an appropriate level,for example5to1or14dB,adjust the instrument controls to obtain a back reflection approximately75%of the full-screen height from the opposite side of the forging.Scan the forging at the maximum amplification setting of the attenuator(attenu-ator set at1to1).Carry out the evaluation of discontinuities with the gain control set at the reference level.Recalibration is required for significant changes in section thickness or diam-eter.N OTE1—High sensitivity levels are not usually employed when in-specting austenitic steel forgings due to attendant high level of“noise”or “hash”caused by coarse grain structure.9.2.2.2Reference-Block Calibration—The test surface roughness on the calibration standard shall be comparable to, but no better than,the item to be examined.Adjust the instrument controls to obtain the required signal amplitude from theflat-bottom hole in the specified reference block. Utilize the attenuator in order to set up on amplitudes larger than the vertical linearity of the instrument.In those cases, remove the attenuation prior to scanning the forging.N OTE2—Whenflat-surfaced reference block calibration is specified, adjust the amplitude of indication from the reference block or blocks to compensate for examination surface curvature(an example is given in Appendix X1).9.2.2.3DGS Calibration—Prior to use,verify that the DGS overlay matches the transducer size and frequency.Accuracy of the overlay can be verified by reference blocks and procedures outlined in Practice E317.Overlays are to be serialized to match the ultrasonic transducer and pulse echo testing system that they are to be utilized with.9.2.2.4Choose the appropriate DGS scale for the cross-sectional thickness of the forging to be examined.Insert the overlay over the CRT screen,ensuring the DGS scale base line coincides with the sweep line of the CRT screen.Place the probe on the forging,adjust the gain to make thefirst back-wall echo appear clearly on CRT ing the Delay and Sweep control,shift the screen pattern so that the leading edge of the initial pulse is on zero of the DGS scale and the back-wall echo is on the DGS scale value corresponding to the thickness of the forging.Adjust the gain so the forging back-wall echo matches the height of the DGS reference slope within61Db.Once adjusted,increase the gain by the Db shown on the DGS scale for the reference slope.Instrument is now calibrated andflaw sizes that can be reliably detected can be directly read from the CRT screen.Theseflaw sizes are the equivalentflat bottom reflector that can be used as a reference point.N OTE3—The above can be utilized on all solid forgings.Cylindrical hollow forgings,and drilled or bored forgings must be corrected to compensate for attenuation due to the central hole(see Appendix X4).9.2.3Recalibration—Any change in the search unit,cou-plant,instrument setting,or scanning speed from that used for calibration shall require recalibration.Perform a calibration check at least once every8h shift.When a loss of15%or greater in the gain level is indicated,reestablish the required calibration and reexamine all of the material examined in the preceding calibration period.When an increase of15%or greater in the gain level is indicated,reevaluate all recorded indications.9.2.4During the examination of the forging,monitor the back reflection for any significant reduction in amplitude. Reduction in back-reflection amplitude may indicate not only the presence of a discontinuity but also poor coupling of the search unit with the surface of the forging,nonparallel back-reflection surface,or local variations of attenuation in the forging.Recheck any areas causing loss of back reflection.9.3Angle-Beam Examination—Rings and Hollow Forgings: 9.3.1Perform the examination from the circumference of rings and hollow forgings that have an axial length greater than 2in.[50mm]and an outside to inside diameter ratio of less than2.0to1.9.3.2Use a1MHz,45°angle-beam search unit unless thickness,OD/ID ratio,or other geometric configuration results in failure to achieve calibration.Other frequencies may be used if desirable for better resolution,penetrability,or detectability offlaws.For angle-beam inspection of hollow forgings up to 2.0to1ratio,provide the transducer with a wedge or shoe that will result in the beam mode and angle required by the size and shape of the cross section under examination.9.3.3Calibrate the instrument for the angle-beam examina-tion to obtain an indication amplitude of approximately75% full-screen height from a rectangular or a60°V-notch on inside diameter(ID)in the axial direction and parallel to the axis of the forging.A separate calibration standard may be used; however,it shall have the same nominal composition,heat treatment,and thickness as the forging it represents.The test surfacefinish on the calibration standard shall be comparable but no better than the item to be examined.Where a groupof --` , , ` ` ` , , , ` , ` ` ` , ` , ` , ` ` , , ` ` ` ` ` -` -` , , ` , , ` , ` , , ` ---identical forgings is made,one of these forgings may be used as the separate calibration standard.Cut the ID notch depth to 3%maximum of the thickness or1⁄4in.[6mm],whichever is smaller,and its length approximately1in.[25mm].Thickness is defined as the thickness of the forging to be examined at the time of examination.At the same instrument setting,obtain a reflection from a similar OD notch.Draw a line through the peaks of thefirst reflections obtained from the ID and OD notches.This shall be the amplitude reference line.It is preferable to have the notches in excess metal or test metal when possible.When the OD notch cannot be detected when examining the OD surface,perform the examination when practicable(some ID’s may be too small to permit examina-tion),as indicated above from both the OD and ID surfaces. Utilize the ID notch when inspecting from the OD,and the OD notch when inspecting from the ID.Curve wedges or shoes may be used when necessary and practicable.9.3.4Perform the examination by scanning over the entire surface area circumferentially in both the clockwise and counter-clockwise directions from the OD surface.Examine forgings,which cannot be examined axially using a straight beam,in both axial directions with an angle-beam search unit. For axial scanning,use rectangular or60°V-notches on the ID and OD for the calibration.These notches shall be perpendicu-lar to the axis of the forging and the same dimensions as the axial notch.10.Recording10.1Straight-Beam Examination—Record the following in-dications as information for the purchaser.These recordable indications do not constitute a rejectable condition unless negotiated as such in the purchase order or contract.10.1.1For individual indications,report:10.1.1.1In the back-reflection technique,individual indica-tions equal to or exceeding10%of a nominal back reflection from an adjacent area free from indications,and10.1.1.2In the reference-block or DGS technique,indica-tions equal to or exceeding100%of the reference amplitude.10.1.2For indications that are planar,traveling,or clustered, determine the location of the edges and the major and minor axes using the half-amplitude(6dB drop)technique and report: 10.1.2.1The variation in depth or planar area,or both,of traveling indications,10.1.2.2The length of major and minor axes of planar indications,and10.1.2.3The volume occupied by indication levels and the amplitude range.10.2Angle-Beam Examination—Record discontinuity indi-cations equal to or exceeding50%of the indication from the reference line.When an amplitude reference line cannot be generated,record discontinuity indications equal to or exceed-ing50%of the reference notch.These recordable indications do not constitute a rejectable condition unless negotiated as such in the purchase order.10.3Report reduction in back reflection exceeding50%of the original measured in increments of10%.10.4When recording,corrections must be made for beam divergence at the estimatedflaw depth(See Guide E1065).10.5Report indication amplitudes in increments of10%.11.Report11.1Report the following information:11.1.1All recordable indications(see Section10);11.1.2For the purpose of reporting the locations of record-able indications,a sketch shall be prepared showing the physical outline of the forging including dimensions of all areas not inspected due to geometric configuration,the pur-chaser’s drawing number,the purchaser’s order number,and the manufacturer’s serial number,and the axial,radial,and circumferential distribution of recordable ultrasonic indica-tions;11.1.3The designation(including year date)to which the examination was performed as well as the frequency used, method of setting sensitivity,type of instrument,surfacefinish, couplant,and search unit employed;and11.1.4The inspector’s name or identity and date the exami-nation was performed.12.Quality Levels12.1This practice is intended for application to forgings, with a wide variety of sizes,shapes,compositions,melting processes,and applications.It is,therefore,impracticable to specify an ultrasonic quality level which would be universally applicable to such a diversity of products.Ultrasonic accep-tance or rejection criteria for individual forgings should be based on a realistic appraisal of service requirements and the quality that can normally be obtained in the production of the particular type forging.12.2Austenitic stainless steel forgings are more difficult to penetrate ultrasonically than similar carbon or low-alloy steel forgings.The degree of attenuation normally increases with section size;and the noise level,generally or in isolated areas, may become too great to permit detection of discrete indica-tions.In most instances,this attenuation results from inherent coarse grained microstructure of these austenitic alloys.For these reasons,the methods and standards employed for ultra-sonically examining carbon and low-alloy steel forgings may not be applicable to austenitic steel forgings.In general,only straight beam inspecting using a back-reflection reference standard is used.However,utilization of Practice A745/ A745M for austenitic steel forgings can be considered ifflat bottom hole reference standards or angle beam examination of these grades are required.12.3Acceptance quality levels shall be established between purchaser and manufacturer on the basis of one or more of the following criteria.12.3.1Straight-Beam Examination:12.3.1.1No indications larger than some percentage of the reference back reflection.12.3.1.2No indications equal to or larger than the indication received form theflat-bottom hole in a specific reference block or blocks.12.3.1.3No areas showing loss of back reflection larger than some percentage of the reference back reflection.12.3.1.4No indications per12.3.1.1or12.3.1.2coupled with some loss of resultant back reflection per12.3.1.3. 12.3.1.5No indications exceeding the reference level speci-fied in the DGSmethod12.3.2Angle-Beam Examination—No indications exceed-ing a stated percentage of the reflection from a reference notch or of the amplitude reference line.12.4Intelligent application of ultrasonic quality levels in-volves an understanding of the effects of many parameters on examination results.13.Keywords13.1angle beam examination;back-reflection;DGS; reference-block;straight beam examination;ultrasonicSUPPLEMENTARY REQUIREMENTSThe following supplementary requirements shall apply only when specified by the purchaser in the inquiry,contract,or order.Details shall be agreed upon by the manufacturer and the purchaser.S1.Reporting CriteriaS1.1Reference block calibration shall be performed using at least three holes,spaced to approximate minimum,mean, and maximum thickness as tested,and shall be used to generate a distance amplitude correction(DAC)curve.The following hole sizes apply:1.1⁄16in.[1.5mm]flat bottom holes(FBH)for thicknesses lessthan1.5in.[40mm]2.1⁄8in.[3mm]FBH for thicknesses of1.5-6in.[40-150mm]inclusive3.1⁄4in.[6mm]FBH for thicknesses over6in.[150mm]S1.2Reporting criteria include:1.All indications exceeding the DAC curve2.Two or more indications separated by1⁄2in.[12mm]or lessAPPENDIXES(Nonmandatory Information)X1.TYPICAL TUNING LEVEL COMPENSATION FOR THE EFFECTS OF FORGING CURV ATURE X1.1The curve(Fig.X1.1)was determined for the follow-ing test conditions:Material nickel-molybdenum-vanadium alloy steel(Specification A469/A469M,Class4)Instrument Type UR ReflectoscopeSearch unit11⁄8-in.[30-mm]diameter quartzFrequency21⁄4MHzReference block ASTM No.3-0600(aluminum)Reflection area of refer-ence curve 0.010in.2[6.5mm2]in nickel-molybdenum-vana-dium alloy steelSurfacefinish250µin.[6µm],max,roughnessX1.2To utilize curve,adjust reflectoscope sensitivity to obtain indicated ultrasonic response on ASTM No.3-0600 reference block for each diameter as shown.A response of1in. [25mm]sweep-to-peak is used forflat e attenuator to obtain desired amplitude,but do testing at1to1setting.FIG.X1.1Typical Compensation Curve for Effects of ForgingCurvature--`,,```,,,`,```,`,`,``,,`````-`-`,,`,,`,`,,`---X2.INDICATION AMPLITUDE COMPENSATION FOR TEST DISTANCE V ARIATIONSX2.1The curve (Fig.X2.1)has been determined for the following test conditions:Materialnickel-molybdenum-vanadium alloy steel (Specification A 469/A 469M ,Class 4)Instrument Type UR ReflectoscopeSearch unit 11⁄8-in.[30-mm]diameter quartz Frequency 21⁄4MHz CouplantNo.20oilReference blockASTM No.3-0600(aluminum)Reflection area of refer-ence curve 0.010in.2[65mm 2]in nickel-molybdenum-vana-dium alloy steelSurface finish250µin.max,roughnessX2.2To utilize curve,establish amplitude from ASTM reference block to coincide with values from Appendix X1.X3.BACKGROUND INFORMATION ON THE DGSMETHODSFIG.X2.1Typical Distance-Amplitude CorrectionCurveFIG.X3.1Example of DGSOverlay--`,,```,,,`,```,`,`,``,,`````-`-`,,`,,`,`,,`---X3.1The overlay in Fig.X3.1was designed for a 2.0MHz,1in.[25mm]diameter probe and a maximum test distance of 39.4in.[1000mm].In order to use this overlay,the sweep time base must be accurately calibrated and aligned with the overlay being used.The back reflection is then adjusted to either the RE +10dB line or the RE +20dB line,based on the thickness being tested;additional gain (10or 20dB)is added asdesignated by the line being used.The RE +20line covers a range to approximately 15.7in.[400mm]and the RE +10line from 15.7to 39.4in.[400to 1000mm].At this calibration level,the flaw size is read directly from the screen.Flaw sizes from 0.078to 1in.[2to 25mm]can be read directly from the overlay.PENSATION FOR CENTER HOLE ATTENUATION ON CYLINDRICAL BORED OR HOLLOW FORGINGSUTILIZING THE DGS METHODX4.1The hole in a cylindrical bored forging causes sound scatter.In these cases,a correction is required which depends on the wall thickness and bore diameter.X4.1.1Determine the correction value in dB from the Nomogram (Fig.X4.1).With the gain-dB control,proceed as described in 9.2.2.4reducing the flaw detector gain by the correction valuedetermined.N OTE —Metric units are presented in this figure to be consistent with DGS scales presently available.Conversion to English units would also be acceptable.FIG.X4.1The Influence of a Central Bore on the Backwall Echo Amplitude of Cylindrical or Plane ParallelForgings--`,,```,,,`,```,`,`,``,,`````-`-`,,`,,`,`,,`---SUMMARY OF CHANGESCommittee A01has identified the location of selected changes to this standard since the last issue (A 388/A 388M –08)that may impact the use of this standard.(Approved May 1,2009.)(1)Added 6.5.1.Committee A01has identified the location of selected changes to this standard since the last issue (A 388/A 388M –07)that may impact the use of this standard.(Approved Nov.1,2008.)(1)Dropped the term heavy from the title and body of the standard.(2)Added Significance and Use (Section 4).ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States.Individual reprints (single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585(phone),610-832-9555(fax),or service@ (e-mail);or through the ASTM website ().--`,,```,,,`,```,`,`,``,,`````-`-`,,`,,`,`,,`---。

钢锻件超声检测方法-最新国标

钢锻件超声检测方法-最新国标

钢锻件超声检测方法1范围本文件规定了钢锻件超声检测的协议条款、操作规程的编制、人员资格、设备和附件、校准和检查、检测时机、表面状态、灵敏度、扫查、分类、记录水平和验收标准。

本文件适用于铁素体一马氏体锻件、奥氏体和奥氏体一铁素体不锈钢锻件超声脉冲反射式手工检测方法。

供需双方协商后也可使用液浸法检测的机械化扫查方法。

其他组织的锻件也可参照使用。

本文件按形状和生产方法将锻件分为4类。

1、2、3类为简单外形的锻件,4类为复杂形状的锻件。

2规范性引用文件下列文件中的有关条款通过引用而成为本标准的条款。

凡注日期或版次的引用文件,其后的任何修改单(不包含勘误的内容)或修订版本都不适用于本标准,但提倡使用本标准的各方探讨使用其最新版本的可能性。

凡不注日期或版次的引用文件,其最新版本适用于本标准。

GB/T9445无损检测人员资格鉴定与认证(GB/T9445--2015.eqv ISO9712:2012)GB/T11343接触式超声斜射探伤方法GB/T12604.1无损检测术语超声检测GB/T11259超声波检验用钢制对比试块的制作与校验方法GB/T27664.1无损检测超声检测设备的性能与检验第1部分:仪器GB/T27664.2无损检测超声检测设备的性能与检验第2部分:探头GB/T27664.3无损检测超声检测设备的性能与检验第3部分:组合设备GB/T42399.1无损检测仪器相控阵超声设备的性能与检验第一部分:仪器GB/T42399.2无损检测仪器相控阵超声设备的性能与检验第二部分:探头GB/T42399.3无损检测仪器相控阵超声设备的性能与检验第二部分:组合系统GB/T19799.1无损检测超声检测1号校准试块JB/T4009无损检测接触式超声纵波脉冲回波检测和评定不连续方法JB/T4008无损检测液浸式超声纵波脉冲回波检测和评定不连续方法3术语与定义GB/T12604.1界定的术语和定义适用于本文件。

4协议条款供需双方应在订货时,对下面相关的超声检测达成共识(供需方未注明,供方有权选择检测方法):——在哪个生产阶段进行无损检测(见9.1.6);——栅格扫还是100%扫查(见8.6);——是否要求近表面检查(见7.2.6);——所要求的某个质量等级或多个质量等级和区域(见第11章);——除了第7章和第12章详列出的外,是否要求特殊的设备、耦合剂、扫查范围;——不用手工检测的扫查方法;——长条不连续的定量方法(见第15章);——灵敏度的设置方法(见第11章);——检测时是否需要需方和其代理在场;——是否要求采用横波斜探头检测(11.3);——是否需要提交得到需方认可的一份书面的操作规程;——对于第4类复杂锻件的其他检测要求(见12.2)。

国内外无损检测标准

国内外无损检测标准
JB 4730.6—2005涡流检测
API-6A-第19版中文版
GBT 6402-2008钢锻件超声检测方法
JB 4726-2000压力容器用碳素钢和低合金钢锻GBT 7233-1987铸钢件超声探伤及质量评级标准
JBT 4010-2006汽轮发电机,钢质护环超声波探伤
美国无损检测ASTM标准目录
GBT 7736-2008钢的低倍组织及缺陷超声波检验法
JBT 5000.14-2007重型机械通用技术条件铸钢件无损检测
BS EN 10308-2002钢棒的超声检验
GBT 9445-2008无损检测人员资格鉴定与认证
JBT 5000.15-2007重型机械通用技术条件锻钢件无损检测
GB 11345-1989钢焊缝手工超声波探伤方法和探伤结果分级
JB 4730.4—2005磁粉检测
ASTM E709-1995磁粉的检验的标准推荐操作方法
GBT 1786—2008锻制圆饼超声波检验方法
JB 4730.5—2005渗透检测
API 5CT美国石油学会标准套管和油管规范
GBT 3323-2005金属熔化焊焊接接头射线照相
中国船级社无损检测人员资格鉴定与认证规范(2008)
DIN EN 1290-2002焊缝的无损检验焊缝的磁性粒子检验
GBT 20968-2007无损检测目视检测辅助工具低倍放大镜的选用
EN 13018-2001 BS VT英国标准目视检测
JIS Z 2345-2000超声波探伤检验用标准试块
无损检测标准
国外检测标准
国家标准
行业标准
ASME SA435钢板声直射波检验
GB 4162-2008锻轧钢棒超声检测方法
JB 4730.2—2005射线检测

锻轧钢棒超声检测方法

锻轧钢棒超声检测方法

锻轧钢棒超声检测方法全文共四篇示例,供读者参考第一篇示例:锻轧钢棒是一种重要的金属材料,常用于机械制造、建筑工程和其他领域。

为了保证锻轧钢棒的质量,必须进行超声检测。

超声检测是一种非破坏性检测方法,通过声波在材料中的传播和反射,可以检测材料内部的缺陷和异物,包括裂纹、杂质、夹杂等。

本文将介绍关于锻轧钢棒超声检测方法的相关知识。

一、超声检测原理超声检测是利用超声波在材料中传播和反射的特性进行缺陷检测的一种方法。

当超声波遇到材料中的不均匀性或缺陷时,会发生声能的反射和散射,通过检测反射信号的强度、时差和波形,可以确定材料内部的缺陷位置、大小和形状。

二、锻轧钢棒超声检测方法1. 超声探头选择在进行锻轧钢棒超声检测时,首先要选择合适的超声探头。

通常使用的超声探头有直接插入式探头、接触式探头和水浸式探头等。

直接插入式探头适用于表面平整的材料,接触式探头适用于不平整的表面,水浸式探头适用于大尺寸和复杂形状的材料。

2. 检测模式选择锻轧钢棒超声检测可以采用脉冲回波和相控阵两种模式。

脉冲回波模式适用于单个探头单向检测,相控阵模式适用于多个探头多向检测。

相控阵模式可以提高检测效率和准确性。

3. 参数设置在进行锻轧钢棒超声检测时,需要设置合适的参数,包括超声波频率、脉冲宽度、增益、门限等。

这些参数的选择应根据具体材料的性质和检测要求进行调整。

4. 数据处理超声检测得到的数据可以通过软件进行处理和分析。

常用的数据处理方法包括波形显示、闪烁显示、缺陷跟踪和缺陷定位等。

通过数据处理可以更直观地了解材料的内部情况。

5. 判定标准锻轧钢棒超声检测的判定标准通常根据国家标准或行业标准进行。

常见的判定标准包括缺陷尺寸、位置和数量等。

根据标准的要求可以判断材料是否合格。

1. 高灵敏度:超声检测可以检测微小的缺陷和异物,对材料内部细微变化具有很高的灵敏度。

2. 高准确性:超声检测可以准确地确定缺陷的位置、大小和形状,为后续处理提供参考。

大棒材超声波探伤方法

大棒材超声波探伤方法


1 — 7

接 触 法 探 伤 采 用 工 作 频 率 为 25 5 Z; 晶 片 直 径 或 边 长 为 .— NH
扫 查
3 测方法 检

现场探伤检测采用纵波和横波接触法 。 纵 波用来检测棒材 内部缺陷 ,适合 于检测棒材 内 部的分层 、 和球状裂纹 ; 夹渣 横波用来检测 棒材 表面和内部 的纵 向线状缺陷。 3 仪器 、 . 1 探头及耦 合剂选用 311 ..仪器 仪器应符合 J 13 — 6 《 B 8 4 7 A型脉冲反射式 超声波探伤仪技术条件》所规定 的技术性 能指 标, 并应具有 衰减器 。 西宁特钢大棒材探伤探测 仪器选用 C S2 伤仪。 T 一 2探
1— 0 0 2 MM的直探头 、 双斜探头及线聚 焦探头 。根据需要也可采用其他类型 的探 头 , 西宁特钢 大棒 材探伤选用 单 晶直探头 和单晶斜探头两种探头。 31 ._ 3耦合剂 接 触 法探 伤采 用 2 # 4 #机 油 0-0 或其他介质作耦合剂。 图 1圆周 、 向 扫 查 图 横 32检测方法 . 不现的方 向上探测 , 缺陷 回波类似。一般 白点 , 3 . 现场 探伤检 测采用 纵波 和横 波接触 .1 2 疏松 , 密集气孑 等属于密集形缺陷。 L 法, 选用单晶直探头和单晶斜探头。 43根据缺陷波型分析缺陷性质 . 3 . 探测仪器选用 C S 2 探伤仪 .2 2 T 一2 静态波形 : 单个缺陷一般是独立出现 的, 而 323探伤灵敏度 的调整 : 据不同规格 的 .- 根 密集缺 陷是杂乱 出现且互相彼连。 材料来确定不同的探伤灵敏度 ,并运用 大平底 动态波形 :不同性质的密集缺 陷的动态波 反射公式 的理 论来计算并获 得其标准灵 敏度 。 形对探头移动的敏感程度不 同。白点对探头移 公 式 d =0 B 21 g 中A 一波 长 、 一工 件 厚 动很敏感 。但夹渣对探 头的移动不太敏感。 度 、 一缺陷 当量 ; 已知 ; 1选用探头 ; 、 0、 直 2 44根据底波分析缺陷的性质 . 2 M 。 缺 陷当量按标准要求 2 . C2 5 当量孔 。 工 3 工件 内部存在缺陷时 , 超声波被缺陷反射 件 厚 度 为 mm。 使底 面的声能减少 , 波高度降低 , 至消失 。 底 甚 当缺陷波很强 , 底波消失时 , 可认 为是大面积缺 z s o- = 0g 21 一 ms z 3 1 ×4 4 l 5 2. 6 陷, 夹层 , 纹等。 如 裂 4 .1 2 .= 3 B 4 7 = 0 X 16 3 d 当缺陷波与底波共存 时 ,可认为是点状缺 所 以 探 测 42 / 用 3 B灵 敏 度 。 , or m ] n 3d 陷( 如气孔 , 夹渣等 ) 或面积较小 的其他缺陷。 调整底波反射度 为 8 %高 , 0 此时 面板旋钮 当缺陷波为互相彼连 高低不 同的缺陷波 , 位置 , 衰减器 3 B 增 益 5 抑制 4 发射 强度 底波 明显下降时 , 3d , , , 可认为是密集缺 陷, 白点 , 如 “ ” 强 。 疏松 , 密集气孔和夹渣等。 3 . 查形 式 : 探伤检 测扫查 中 , 整支 .4 2 在 对 当缺陷波和底波都很低 , 或两者都消失时 , 钢大于 23圆周 、 / 横向扫查 , 方式见 图 l 所示。 可认为是大而倾斜的缺陷或是疏松 。 出现“ 若 林 4波形的分析 状 回波 ”可认为是 内部组织粗大。 , 超声波探伤除了确定工件 中缺陷 的位置和 结束语 大小外 , 还应 尽可能叛定缺 陷的性质 。 同性质 不 在大棒材超声波检验过程 中,发现在伤波 的缺陷危害程度不同 ,例如裂纹就 比气孔危害 显示 中存在大小 、 长度不等的缺陷 , 中缺陷分 其 大 的多。因此 , 缺陷定性 十分重要 。 布 于钢 材 的局 部 、 部 或 贯 穿 整 支 钢材 , 陷伤 头 缺 41根据加工工 艺分析缺陷性质 . 波反射有连续和不连续的形式 ,最后 总结 出了 工件内所形 成的各种缺陷与加工工艺密切 检测方法和缺陷伤波判别定性结果 。 相关 , 如焊接过程可能是气孔 , 夹渣 , 裂纹等 。 铸 参 考 文献 造过程就可能产生缩孔 , 疏松等 。 锻造过程就可 【]贺霖. 1 中厚钢板 的超声波探伤[冲 国设备 工 J 】 能产生夹层, 折叠 , 白点等 。 程 .0 7 2 0 42根据 缺陷的特征分析缺陷性质 . 『1任 森 智 , 新 胜 .我 国钢 结构 焊 缝 无损 检 测 2 张 对于平面缺 陷, 在不 同的方 向上探测 , 回 探 析 lI 西 建 筑 ,0 75 其 J.山 20. 波高度不 同。 在垂直于缺陷方 向探测 , 缺陷 回波 【] 3 张广纯. 金属材料 的超 声波探 伤[ I 京: M. 北 机 高, 在平行 于缺陷方 向探测 , 缺陷 回波低 , 甚至 械 工 业 出版 社 。0 7 20 . 没缺陷回波。一般 的裂纹 , 夹层 , 折叠等缺陷就 作 者简 介 : 丽 霞(9 9 , , 肃镇原 段 17 ~)女 甘 是平面形 缺陷。 人 ,工程 师 , 事 无 损 检 测 。 从 对于点状缺陷, 在不 同方 向上探测 , 缺陷 回 波无明显变化。 一般的气孑 , L小夹渣等是点状缺 陷。 对于密集形 缺陷, 缺陷波密集互相彼连 , 在

超声波探伤检验规程

超声波探伤检验规程

超声波探伤检验规程(ISO9001-2015/IATF16949)1.0目的:本规范适用于采用A形脉冲反射式超声波探伤仪对我公司铸件、锻件产品及焊接(焊补)产品的超声波探伤。

2.0引用标准ASTM A388ASTM E428ASTM A609ASME B16.34JB4730-2005《压力容器无损检测》3.0探伤人员应符合API6A和JB4730-2005中4.3条有关规定,并取得相应资格证书II或III资格。

4.0 API Spec 6A产品要求4.1 取样:在进行改善力学性能的热处理之后和限制检验结果有效解释的机加工之前,应对每个零件尽实际可能选择超声波检测。

对于淬火和回火产品,在改善力学性能热处理(不包括消除应力热处理或重新回火减少硬度)之后,选择超声波检测。

4.2 方法4.2.1 热加工零件热加工零件的超声波检查按ASTM A388(浸渍法除外)和ASTM E428或JB4730规定的平底孔规程进行。

4.2.2 铸件铸件的超声波检查按ASTM A609(浸渍法除外)和ASTM E428或JB4730规定的平底孔规程进行。

4.2.3 校准金属厚度38mm以下时,距离——波幅曲线(D.A.C)应以1.6mm平底孔为基准绘制;金属厚度38~150mm时,D.A.C.曲线应以3.2mm平底孔为基准绘制;金属厚度超过150mm时,D.A.C曲线应以6.4mm平底孔为基准绘制。

5.0探伤器材5.1探伤仪5.1.1 应采用A形脉冲反射式超声波探伤仪,其工作频率范围为1~5MHz。

5.1.2 仪器至少在荧光屏满刻度的80%范围内呈线性显示,水平线误差不大于1%,垂直线性误差应不大于5%。

5.1.3 探伤仪应具有80dB以上的连续可调衰减器,步进级每档不大于2dB,其精度为任意相邻12dB误差在±1dB以内,最大累计误差不超过1dB。

5.2探头5.2.1 仪器和探头的组合频率与公称频率误差不得大于±10%。

锻钢件超声波探伤方法

锻钢件超声波探伤方法

锻钢件超声波探伤方法1996-09-03 发布1997-07-01 实施中华人民共和国机械工业部发布前言本标准非等效采用AS T M A 38 8—84《大型锻钢件超声波探伤方法标准》.本标准力求以规定的检测设备,检测要求,检测方法,保证探伤结果的一致性.大型锻钢件的质量等级分类,由于质量要求差异太大,在本标准中不宜做统一的规定.对锻件的质量验收,由供需双方根据技术要求协商解决.本标准由机械工业部德阳大型铸锻件研究所提出并归口.本标准起草单位:太原重型机械集团公司.本标准主要起草人:宋书林.JB/T 8467-199611 范围本标准规定了锻钢件纵波或横波接触式脉冲反射法超声波探伤方法.本标准适用于厚度或直径等于或大于100 mm碳素钢及低合金钢锻钢件.奥氏体不锈钢锻件的超声波探伤也可参照执行.2 引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文.本标准出版时,所示版本均为有效.所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性. GB/T 12604.1—90 无损检测术语超声检测JB 4126—84 超声波检验用钢质试块的制造和控制JB 4730—94 压力容器无损检测ZBY 230—84 A型脉冲反射式超声波探伤仪通用技术条件ZBY 231—84 超声波探伤用探头性能测试方法3 定义本标准所用术语除了根据GB/T 12604.1 外,还采用下列定义.3. 1 当量直径在条件相同的情况下,缺陷回波的幅度与超声波束相垂直的某一直径平底孔的回波幅度相等,称该直径为缺陷当量直径,简称为当量直径.3. 2 连续缺陷回波在某个测距上缺陷当量直径不小于 2 mm,回波的波动幅度范围,在探头持续移动距离等于或大于30 mm的间距内不大于2 dB的缺陷回波.3. 3 密集缺陷边长小于或等于50 mm正方体内,有五个或五个以上的缺陷回波.注:译自ASTM A388/A388M—84中8.1.3.2.3. 4 波底降低量BG/BF(dB)无缺陷完好区第一次底波幅度BG值与有缺陷区的第一次底波幅度BF值之比的dB差值.注:根据JB 4730—94 中 3.2.3. 5 单个缺陷回波间距大于50 mm,当量直径不小于2 mm的缺陷回波.3. 6 分散缺陷回波在边长为50 mm正方体内,缺陷回波的数量少于五个,缺陷的当量直径不小于2 mm的缺陷回波.机械工业部1996-09-03 批准中华人民共和国机械行业标准锻钢件超声波探伤方法JB/T 8467-19961997-07-01 实施JB/T 8467-199623. 7 游动缺陷回波在锻件的表面上移动探头,缺陷回波的前沿移动距离相当于锻件厚度25 mm 或25 mm以上的缺陷回波.4 技术要求4. 1 一般要求4. 1. 1 从事大型锻钢件超声波探伤人员,应具有一定的冶炼,锻造,热处理的基础知识和锻件探伤经验,并经过认可的有关部门考核合格,且取得相应等级资格证的探伤人员方可从事锻件的超声波探伤.4. 1. 2 锻件探伤表面,不得有影响探伤灵敏度的附着物,如油漆,氧化皮,污物等.4. 1. 3 锻件探伤面的表面粗糙度Ra值,应不大于6.3 μm.4. 1. 4 锻件探伤应在相互垂直的两个探伤面上进行,应尽可能地对锻件的整体做全面扫查.饼形,长方形锻件,探伤面应选在相互垂直的两个面上.轴类锻件应在外圆表面做径向探测,必要时在轴的端面做轴向探测.4. 1. 5 锻件探伤的钢质对比试块应符合JB 4126 的规定.4. 1.5. 1 纵波直探头平面对比试块,采用CS-1 和CS -2 试块,也可以自行加工,其形状和尺寸应符合有关标准的规定.检测曲面时,采用的曲面对比试块见图 1.注:R为工件曲面半径的0.9~1. 5.图1 曲面对比试块4. 1.5. 2 横波斜探头的对比试块,应采用化学成分,热处理条件,表面粗糙度,曲率等都应与检测锻件相同或相似的锻件制作.4. 1.5. 3 对空心锻件用的对比试块的内壁切成与轴平行的矩形或60°V形槽,其长度为25 mm.推荐槽深为锻件厚度3%的试块.槽深最大不超过6 mm的试块.4. 2 探伤设备和探头4. 2. 1 探伤设备应符合ZBY 230 的规定.4. 2. 1. 1 探伤仪的工作频率至少为1~5 M Hz,配备的衰减器精度在任意相邻12 dB,误差在±1 dB.总调节量应大于60 dB.4. 2. 1. 2 探伤仪的垂直线性至少在屏高的75%范围内,其误差应小于5%.水平线性误差应不大于2%.JB/T 8467-199634. 2. 1. 3纵波直探头探伤发现深度为200 mm,φ2平底孔时,灵敏度余量应不小于40 dB,远场分辨力应大于或等于30 dB.4. 2. 2 探头应符合ZBY 231 的规定.4. 2. 2. 1 纵波直探头的晶片直径为12~28 mm,斜探头晶片最大有效面积为25mm×25 mm ,各种探头都应在标称频率下使用,频率误差不超过标称值的±10%.4. 2. 2. 2 探头的其余参数都应符合ZBY 231 的规定.4. 3 耦合剂推荐采用机油,甘油,有机浆糊.在不影响探伤灵敏度的条件下,也可以采用其他耦合剂.5 探伤要求5. 1 原则上锻件应在最终热处理以后进行超声波探伤.如锻件要在热处理以前进行钻孔,切槽,车锥度等加工工序使探伤受到影响时,锻件也可在此加工工序前进行超声波探伤,热处理以后凡可探测部位,必须进行100%的复探.5. 2 探头扫查速度应不大于150 mm/s.5. 3 探头移动每次至少重叠覆盖晶片宽度的15%.5. 4 对锻件进行复探或重新评定时,应选用可比较的探伤条件.6 探伤方法6. 1 纵波法探伤6. 1. 1 探伤频率通常为1~5 MHz,一般锻件探伤推荐2~2.5 MHz探伤频率.6. 1. 2 探伤灵敏度的调节,原则上推荐底面回波反射法调节.由于锻件的几何形状,尺寸的限制,也可以用对比试块法调节.6. 1. 3 用底面回波反射法调节将探头置于锻件入射面与反射面相平行的探伤面上,且无缺陷和边界反射波.调节探伤仪灵敏度旋钮,将底面回波调到屏高的40%~80%,然后按如下的计算公式调节锻件的增益值:a) 实心锻件的增益值ΔdB = 20lg22πφλT (1)式中:ΔdB——需要提高的增益值,dB;T——探测锻件的厚度或直径,mm;φ——要求探伤灵敏度平底孔直径,mm;λ——波长,mm.b) 有中心孔锻件的增益值ΔdB = 20lg22πφλT-10lgdD (2)式中:D——探测锻件部位的外径,mm;d——探测锻件部位的内径,mm.6. 1. 4 对比试块法调节灵敏度6. 1. 4. 1 使用的对比试块的材质,表面粗糙度,热处理条件应与检测锻件相同或相似.6. 1. 4. 2 用CS -1 或CS-2 对比试块或具有等效作用的其他试块上进行调节.JB/T 8467-199646. 1. 4. 3 按6.1.4.2 选取的CS试块平底孔的反射波调到屏高的40%~80%.6. 1. 5 计算缺陷当量时,锻件的材质衰减超过4 dB/m时,应进行修正. 衰减系数的测定按式(3)计算:α=()TBB2dB621 (3)式中:B1——一次底面回波的dB值;B2——二次底面回波的dB值;T——锻件的厚度,mm;α——衰减系数,dB/mm.6. 1. 6 锻件探伤时,要注意底面回波明显降低的部位,并查明底面回波下降的原因,对底面回波明显下降的任何区域都要复探.6. 2 横波法探伤6. 2. 1 横波探伤主要用于环形或空心锻件,其轴向长度应大于50 mm,外径与内径之比应小于2:1.6. 2. 2 如锻件外径与内径之比或锻件的几何形状不影响所要求的探伤灵敏度时,则采用折射角45°的斜探头探伤.为了用斜探头探测外径与内径之比达2:1 的空心锻件,可在探头上加一个曲面楔块或接触块形成所需的波形和角度,以达到要求的灵敏度.6. 2. 3 横波探伤灵敏度的校正从外圆探测内壁上平行于锻件轴向的矩形或60°V形槽,得到一个满屏高60%的回波.也可以采用单独的对比试块进行校正,对比试块制作与选择应符合 4.1.5 的要求.若锻件成批生产,则取其中一件制成校正用的对比件,在其内壁切一个槽,槽深为工件最大厚度的3%,但最深不得超过 6 mm,槽长为25 mm.对比件的厚度应与被检工件厚度相同.在同一仪器条件下探伤,从外圆上的一个类似槽上得到一个反射回波,通过内,外槽一次反射波峰画一条对比振幅线.如可能,最好在检验件上或其余料上直接切槽.实际探伤中,可能从外圆面上探不出外圆上的槽,如可行(有的锻件内径小,无法探伤),应从内,外表面进行探伤,在外表面探测内表面的槽,在内表面探测外表面的槽.必要与可能时,也可以采用曲面楔块或接触块进行探伤.6. 3 重新调节探伤灵敏度6. 3. 1 锻件探伤过程中,如探头,耦合剂,仪器的设定值有任何改变都要重新调节探伤灵敏度.6. 3. 2 锻件在探伤过程中应至少校验一次探伤灵敏度.在探伤结束后应校验探伤灵敏度.当探伤灵敏度变化2 dB以上时,应重新调节探伤灵敏度.在此之前所探的锻件都要重新复探.7 测量与记录7. 1 纵波缺陷定量采用当量法,横波采用百分比法.7. 2 缺陷当量直径大于或等于探伤灵敏度的单个或分散缺陷回波时,都要记录.7. 3 按技术条件要求记录密集缺陷回波,并标记缺陷的位置和分布范围.7. 4 记录游动缺陷回波的当量直径,位置和分布范围.7. 5 记录底面回波严重降低或消失的部位和分布范围.7. 6 横波探伤,记录不小于对比槽回波幅度60%的缺陷回波的位置和分布范围.JB/T 8467-199658 探伤报告探伤报告应包括如下的内容:8. 1 锻件的名称,材质,尺寸简图,探伤位置,探伤面的粗糙度.8. 2 委托日期,委托单位,委托编号.8. 3 探伤条件:探伤仪的型号,探头的频率,晶片的尺寸,斜探头的K值和β值.8. 4 探伤灵敏度,耦合剂的名称,对比试块的型号.8. 5 探伤结果,评定等级.8. 6 探伤人员的姓名,资格证号,资格等级,复审人员的姓名,资格证号,等级及日期.JB/T 8467-1996中华人民共和国机械行业标准锻钢件超声波探伤方法JB/T 8467-1996。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ASTM A 388-05大型钢锻件超声检测标准操作方法1 适用范围1.1 本操作方法包括用直射波和斜射波技术对大型钢锻件作接触式脉冲回波式超声波检测规程。

直声波法包括DGS(距离-增益-当量)法。

见附录X31.2 凡因询价,合同,订货或技术条件的规定要求按照ASTM A388/A388M 进行超声检测时,均用采用本操作方法。

1.3 以英制或SI 制单位表示的数值均为标准数值,两种单位表示的数值不准确相等,因此每种单位必须单独使用。

两种单位组合使用产生的结果可能和本方法不一致。

1.4 本方法和材料规范均用英制和SI 制表示。

但除了订货规范采用规范符号M(SI)外,应使用英制加工材料。

1.5 本标准不是关于与使用有关的安全问题,使用本标准的用户有责任在使用前建立适当的安全健康操作方法并确定这种方法的可行性。

2.引用文件2.1ASTM 标准A469/A 469M 发电机用钢锻件真空熔炼技术规范A745/A745M 奥氏体钢锻件的超声检测操作方法E317 无电子测量设备的脉冲回波式超声检测系统性能评定操作方法。

E428 超声检测用参考试块的制作和质量控制操作方法。

E 1065 超声检测探头的性能评定指南。

2.2 ANSI 标准(美国国家标准)B 46.1 表面结构2.3 其它文件推荐的无损检测人员资格鉴定和认证的操作方法SNT-TC-1A(1988 版或其后的)3.术语单个指示—指当探头沿任何方向移动时波幅从最高点下降至一定波高的一个指示,由于太小被认为非平面型指示或游动指示。

密集型指示—指在锻件边长2in(50mm)的立方体内或更小体积内有五个或更多的指示平面型指示—指指示的最大长度大于1in[25mm]或大于探头主要尺寸两倍的指示,但无论哪种都不是游动的指示。

游动指示—指探头在锻件表面移动时波的前沿在工件深度方向上移动1in[25mm]或更多距离的指示。

4.订货信息4.1 当本方法用于询价签合同,订货时,订货单位应当声明,并提供如下信息:4.1.1 标准数据(包括日期)4.1.2 按照8.2.2 和8.3.3 确定探伤灵敏度的方法。

(V-或矩形切槽)4.1.2.1 按照8.2.2.2 确定参考试块的材料和平底孔直径及金属声程4.1.3 按照11.3 确定整个锻件或其中某些部分的质量等级。

4.1.4 任何选择方案应符合1.4,5.4,5.5,6.1,7.1,7.2,8.1.11,9.1 和9.2 的要求5 仪器5.1 在检验中应使用脉冲反射式超声仪,,仪器至少应具有在1-5MHZ 频率下检验的能力,在检验奥氏体不锈钢时系统的检验频率应能降低至0.4MHZ。

5.1.1 超声仪器应在至少75%屏高(扫描线至屏顶)内具有的线性显示误差小于5%,所谓5%线性是指波幅在显示屏上的显示状况的描述。

仪器的线性应按照E317 推荐的操作方法检验,按照 E317 或E428 推荐的操作方法制作的试块都可以用来测试仪器的+-5%的线性。

5.1.2 电子仪器应具有衰减器( 其准确度在使用的范围内达到幅度比值的+10%(+1dB),从而对超出仪器线性范围的显示信号进行测量。

5.2 探头,直射波扫查时,(见8.2)可用探头的最大有效截面积为1In2(650mm2),其最小尺寸为3/4in(20mm)最大为11/8in(30mm),斜射波扫查时探头尺寸为1/2i n×1in(13×25mm)—1in×1in (25×25mm)(见8.3)。

5.2.1 探头应在标称频率下使用。

5.2.2 评定和精确测定显示信号时可以采用其它探头。

5.3 耦合剂应具有很好的浸润性,如SAE20 号30 号机油,甘油,松节油,或水。

由于不同耦合剂的性能可能不同,在校准和检验时应使用相同的耦合剂。

5.4 对比试块,按照5.1.1 校准设备时应采用具有平底孔的对比试块,当在订货或签合同时有规定时,这些试块可用来确定记录灵敏度水平。

5.5 当在订货或签合同中有规定时可采用与所用的探头和仪器相配的DGS 图来确定直射波检验时的记录灵敏度水平。

所选用的DGS 图的范围必须包括所检验的锻件的这个厚度截面。

附录X3 为DGS 图实例。

6.人员要求6.1 按本方法进行超声检测的人员资格鉴定和认证应符合按照SNT-TC-1A(1988 版或其后)或其它供需双方接受的国家标准编制的书面工艺 。

7.超声检测前的锻件准备7.1 除非在订货或合同中有特殊规定,一般对圆形锻件的径向检测时应保证加工出圆柱形的表面,对锻件进行轴向检测时应保证锻件端面加工到锻件轴线垂直,圆盘型或矩形锻件表面加工平直,而且要互相平直。

7.2 除了在订货或签合同时另有规定,或锻件图纸另有标注,加工后的表面粗糙度不应超过250um。

7.3 被检表面应无松散氧化皮,油漆,污物等外来物质。

8.检验工艺8.1 总述8.1.1 应尽可能对整个锻件作超声检测,由于截面变化处的圆角或其它拒不的外形所限,也有可能对锻件的某些部位检验不到。

8.1.2 超声检验应在性能热处理(不包括去应力退火)后,在钻孔、开键槽、车斜度、开槽或加工外部轮廓之前进行。

如果性能热处理后的工件的外形影响全面的检测,可以允许在性能热处理前检验,并在热处理后尽可能全面重新检验。

8.1.3 位保证完全覆盖检验到整个锻件,要求探头每次扫查至少应有15%的重叠覆盖。

8.1.4 手工扫查,扫描速度不能超过6in/s[150mm/s]。

8.1.5 对于自动扫查,可调节扫描速度和设备的重复频率或同时调节两者保证能检测到规定中的最小的不连续或使相关的记录或信号装置显示。

决不使其速度超过可接受的标准速度。

8.1.6 如果可能,锻件的所有表面应至少从两个相互垂直的方向扫查。

8.1.7 用直射波扫查圆盘形锻件时,如有可能应至少从一个平面和圆周方向扫查。

8.1.8 用直射波检测圆柱形和空心锻件时,如有可能,也应对径向进行检测。

8.1.9 另外,按照8.3.1 要求要用斜射波技术从外表面对空心锻件进行检验。

8.1.10 当供货方或订货方进行复探或重新评定时,应采用与初探时相近的仪器、探头、频率和耦合剂。

8.1.11 锻件可以在固定时或转动的车床和移动的滚轮上进行检验,如果订货方未规定,制造方可选择上述任何一种方法。

8.2 直射波检验8.2.1 如有可能,直射波检验时采用公称频率为21/4MHZ 的探头,然而当检验粗晶粒的奥氏体材料和长检测距离时宜选用1MHZ 的探头。

一般在许多情况下检验粗晶粒的奥氏体材料甚至采用0.4MHZ 的探头。

另外为了获得更好的分辨率,穿透性,或很好检测到缺陷时可选用其它频率的探头。

8.2.2 调整设备的灵敏度可采用底面反射法,对比试块法或DGS 法。

(见附录X3 关于DGS 法的注解)8.2.2.1 底面反射技术(底面反射技术适合于入射面和底面平行的锻件)将衰减器调到合适的水平,例如5:1 或14dB,调整仪器控制器使从地面得到的信号波幅达到大致满屏高的75%。

将衰减器调到最大的放大率(衰减器调到1:!)扫查锻件,将增益控制调到参考水平来当评定不连续。

当工件截面厚度或直径有明显变化时,应重新校准灵敏度。

注1:由于粗晶带来高的噪声或杂波信号,检验奥氏体钢锻件时不应采用高的检测灵敏度水平。

8.2.2.2 对比试块法:对比试块的表面粗糙度应与被检工件相当,调整从对比试块平底孔上得到需要的灵敏度。

利用衰减器调节波高使其高于仪器的垂直线性。

对于这些情况,在扫查锻件前要除去衰减量。

注2:对于曲面检测时,当用规定的平面对比试块校准时,应通过调整对比试块的波高来对检测做出补偿。

8.2.2.3DGS 法校准:使用前先核实一下DGS 图所对应得探头的尺寸和频率。

可以用对比试块并按照E317 所述的方法验证图的准确性。

与探头及检测系统配套的DGS 图系列化后可用于检测。

8.2.2.4 挑选与受检锻件截面厚度相应得DGS 刻度,将面板插在示波屏上保证DGS 刻度线和示波屏的扫描线重合。

将探头放在锻件上,调整增益使一次底波清晰的出现在示波屏上。

调节延迟和扫描按钮移动示波屏上的波形使始脉冲的前沿对准DGS 刻度线的零位,则底波则对应得DGS 刻度值为锻件的厚度调整增益使锻件的底波达到DGS 参考线(误差在+1dB)在此参考线上按DGS 刻度板上标明的dB值提高增益,此时完成仪器的校准,可以从示波屏上读出缺陷的当量尺寸,这些缺陷尺寸均以平底孔当量为参考。

注3:上述方法可用于实心锻件,筒形锻件。

钻孔或冲孔锻件由于有中心孔的原因必须进行衰减补偿。

(见附录x4)8.2.3 重新校准任何校准时由于探头,耦合剂,仪器调整,或扫查速度的改变都应重新校准,至少每一个8 小时工作班要对校准检查一次,当增益电平降低15%或更大时要重新按规定校准,并且要对上次校准以来所检验的所有材料重新检验,当增益电平增加15%或更大时,要对所有做记录的信号重新进行评定。

8.2.2.4 挑选与受检锻件截面厚度相应得DGS 刻度,将面板插在示波屏上保证DGS 刻度线和示波屏的扫描线重合。

将探头放在锻件上,调整增益使一次底波清晰的出现在示波屏上。

调节延迟和扫描按钮移动示波屏上的波形使始脉冲的前沿对准DGS 刻度线的零位,则底波则对应得DGS 刻度值为锻件的厚度调整增益使锻件的底波达到DGS 参考线(误差在+1dB)在此参考线上按DGS 刻度板上标明的dB值提高增益,此时完成仪器的校准,可以从示波屏上读出缺陷的当量尺寸,这些缺陷尺寸均以平底孔当量为参考。

注3:上述方法可用于实心锻件,筒形锻件。

钻孔或冲孔锻件由于有中心孔的原因必须进行衰减补偿。

(见附录x4)8.2.3 重新校准任何校准时由于探头,耦合剂,仪器调整,或扫查速度的改变都应重新校准,至少每一个8 小时工作班要对校准检查一次,当增益电平降低15%或更大时要重新按规定校准,并且要对上次校准以来所检验的所有材料重新检验,当增益电平增加15%或更大时,要对所有做记录的信号重新进行评定。

8.2.4,在检测锻件时要注意底波是否有明显的的降低量,底波降低不仅表明有缺陷而且有可能是由于探头和工件的耦合效果不好,或底面的不平行或锻件有局部的衰减变化,对于这些区域要复检。

8.3 斜射波检测—环形和空心锻件8.3.1 对于轴向长度超过2in[50mm]和外内径之比小于2:1的环形和空心锻件,要从圆周上检验。

8.3.2 除了因为壁厚,外内径比或其它几何形状的原因以外,一般采用1MHZ,45°的斜探头。

为了获得好的分辨率,穿透率和缺陷检测能力,可以采用其它频率的探头。

对外内径比达到2:1 的环形锻件采用斜声束检测时,探头应带有能产生根据工件表面形状和尺寸需要的波型和折射角的斜锲。

相关文档
最新文档