有限元考试试题及答案第一组

合集下载

有限单元法考试题及答案

有限单元法考试题及答案

有限单元法考试题及答案一、单项选择题(每题2分,共10分)1. 有限元法中,单元刚度矩阵的计算是基于()。

A. 位移法B. 势能原理C. 能量守恒定律D. 牛顿第二定律答案:B2. 在有限元分析中,以下哪项不是网格划分时需要考虑的因素?()A. 网格数量B. 网格形状C. 材料属性D. 边界条件答案:C3. 有限元分析中,以下哪项不是结构分析的基本步骤?()A. 离散化B. 求解C. 后处理D. 优化设计答案:D4. 在有限元分析中,以下哪种类型的单元不适用于平面应力问题?()A. 三角形单元B. 四边形单元C. 六面体单元D. 楔形单元答案:C5. 有限元分析中,以下哪种边界条件不属于几何边界条件?()A. 固定支座B. 压力C. 温度D. 位移答案:C二、多项选择题(每题3分,共15分)6. 有限元法中,以下哪些因素会影响单元的精度?()A. 单元形状B. 单元数量C. 材料属性D. 网格划分答案:ABD7. 在有限元分析中,以下哪些是常见的数值积分方法?()A. 一阶积分B. 二阶积分C. 高斯积分D. 牛顿-莱布尼茨积分答案:ABC8. 有限元分析中,以下哪些是常见的单元类型?()A. 线性单元B. 二次单元C. 三次单元D. 非线性单元答案:ABCD9. 在有限元分析中,以下哪些是常见的后处理技术?()A. 应力云图B. 位移云图C. 模态分析D. 热分析答案:ABC10. 有限元分析中,以下哪些是常见的非线性问题?()A. 几何非线性B. 材料非线性C. 接触非线性D. 热应力问题答案:ABCD三、填空题(每题2分,共20分)11. 有限元法中,单元刚度矩阵的计算通常基于___________原理。

答案:势能12. 在有限元分析中,网格划分的目的是将连续的___________离散化为有限数量的单元。

答案:域13. 有限元分析中,___________是将实际问题转化为数学问题的关键步骤。

有限元考试试题及答案

有限元考试试题及答案

江西理工大学研究生考试试卷一、 简答题(共40分,每题10分)1. 论述单元划分应遵循的原则。

2. 说明形函数应满足的条件。

3. 说明四边形等参数单元中“等参数”的含义,即为什么要引入等参数单元。

4. 阐述边界元法的主要优缺点。

二、 计算题(共60分,每题20分)1. 一杆件如图3所示,杆件上方固定后,在下方受垂直向下的集中力作用,已知:杆件材料的杨氏模量2721/100.3in lbf E E ⨯==,截面积2125.5in A =,2275.3in A =,长度in L L 1221==,集中力lbf P 100=,用有限元方法求解B 点和C 点位移。

备注:(1)1 lbf (磅力,libra force ) = 4.45 N 。

(2)杨氏模量、弹性模量、Young 氏弹性模量具有相同含义(10分)2. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷20__12__—20__13__ 学年 第___一___学期 课程名称:_____有限元及数值模拟________ 考试时间:___2012___ 年__11__月___3___日考试性质(正考、补考或其它):[ 正考 ] 考试方式(开卷、闭卷):[ 开卷 ] 试卷类别(A 、B):[ A ] 共 九 大题温 馨 提 示请考生自觉遵守考试纪律,争做文明诚信的大学生。

如有违犯考试纪律,将严格按照《江西理工大学学生违纪处分规定》(试行)处理。

学院 专业 学号 姓名 题号 一二三四五六七八九十十一十二总 分得分pyA1A2L1L2图1F=20KN/m,设泊松比µ=0,材料的弹性模量为E,试求它的应力分布。

(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q,单元厚度为t,求单元的等效结点荷载。

图3一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。

机械有限元试卷A、B及标准答案必考

机械有限元试卷A、B及标准答案必考

山东科技大学2012—2013学年第一学期《有限元方法》考试试卷(A卷)班级姓名学号一、选择题(每题1分,共10分)1、弹性力学与材料力学的主要不同之处在于C。

A. 任务;B. 研究对象;C. 研究方法;D. 基本假设。

σ是 C 。

2、在轴对称问题中,径向应力分量rA. 恒为零;B. 与r无关;C. 与θ无关;D. 恒为常数。

3、利用ANSYS进行结构分析时,结果文件为。

A. jobname.rst;B. jobname.rth;C. jobname.rfl;D. jobname.rmg。

4、在ANSYS的单元库中,PLANE42单元属于。

A. 结构梁单元;B. 结构壳单元;C. 结构线单元;D. 结构实体单元。

5、在一个分析中,可能有多个材料特性组,ANSYS通过独特的来识别每个材料特性组。

A. 特性;B. 说明;C. 参考号;D.方法。

6、ANSYS与Pro/E的接口文件类型是。

A..x_t;B. .prt;C. .sat;D. .model。

7、载荷包括所有边界条件以及外部或内部作用效应,下列不属于ANSYS 载荷的是。

A. DOF约束;B. 力;C. 体载荷;D.应力。

8、要求面或者体有规则的形状,即必须满足一定的准则。

A.自由网格;B. 映射网格;C. Sweep分网;D. 其他。

9、独立于有限元网格,即可以改变单元网格而不影响施加的载荷。

A.阶跃载荷;B. 有限元模型载荷;C. 实体模型载荷;D. 斜坡载荷。

10、有限元法首先求出的解是,单元应力和应变可由它求得。

A.节点坐标;B.节点自由度;C. 节点载荷;D. 节点位移。

二、填空题(每空1分,共20分)1、在整个有限元分析的过程中,是分析的基础。

2、平面应力问题与薄板弯曲问题的弹性体几何形状都是,但前者受力特点是,变形发生在板面内;后者受力特点是的力的作用,板将变成有弯有扭的曲面。

3、典型的ANSYS文件包括、、。

4、平面应力问题与平面应变问题都具有个独立的应力分量,个独立的应变分量,但对应的弹性体几何形状前者为,后者为。

2012级有限元1标准答案

2012级有限元1标准答案

一1,数值分析2,离散3,节点节点点二1,三个基本方程①平衡方程②本构方程平面应力平面应变应变协调方程③几何方程二类边界条件①力的边界条件②位移边界条件如今给定的位移边界为,则有(在),,其中分别为边界上x,y方向上的位移分量2,①步骤:⑴将结构离散化⑵单元分析,求得单元节点位移与节点力的关系,计算单元刚度矩阵⑶以节点为隔离体,建立平衡方程⑷施加荷载⑸引入边界条件⑹求解方程,求得节点位移⑺对每一单元循环,由单元节点位移通过单元刚度矩阵求得单元应力或杆件内力②表达式:位移模式几何矩阵[B]=弹性矩阵应力矩阵3,加权余量法:当n有限时,定解方程存在偏差(余量),取权函数,强迫余量在某种平均意义上均为采用使余量的加权积分为0的等效积分以“弱”形式来求得微分方程近似解的方法。

半解析法:离散与解析相结合的方法,减少计算工作量,降低费用。

样条有限元法:具有紧凑型及良好的光滑性,明确的表达式的优点,所得到的结果均在单元节点上,在数据的后处理方面更为方便和精确。

边界单元法:将所研究问题的偏微分方程,设法转换为在边界上定义的边界积分方程,然后将边界积分方程离散化为只含有边界结点未知量的代数方程组,解此方程组可得边界节点上的未知量并可由此进一步求得所研究区域中的未知量,它除了能处理有限元方法所适应的大部分问题外,还能处理有限元法不易解决的无限域问题。

4,⑴整体刚度矩阵是对称矩阵⑵整体刚度矩阵的主对角线上的元素总是正的⑶整体刚度矩阵是一个稀疏阵⑷施加荷载没有支承的整体刚度矩阵是一个奇异阵5,不能。

因为不满足完备性,缺少表示刚体位移的常数项和表示应变是位移一阶导数的常应变项不能保证解的收敛性。

6,维数、单元格划分,节点数目。

7,①②理由:单元刚度矩阵不随单元(或坐标轴)的平行移动或作n元(n为整数)角度的移动而改变8,有限元解位移大于解析解的原因是单元为非完全协调单元。

挠度w是弯曲问题中的基本未知函数且由于忽略了Z方向的变化,因此它只是x,y的函数:,若w已知,则唯一、内力、应力均可按上述相应公式求出。

有限元复习题及答案

有限元复习题及答案

1.两种平面问题的根本概念和根本方程;答:弹性体在满足一定条件时,其变形和应力的分布规律可以用在某一平面内的变形和应力的分布规律来代替,这类问题称为平面问题。

平面问题分为平面应力问题和平面应变问题。

平面应力问题设有张很薄的等厚薄板,只在板边上受到平行于板面并且不沿厚度变化的面力,体力也平行于板面且不沿厚度变化。

由于平板很薄,外力不沿厚度变化,因此在整块板上有:,,剩下平行于XY面的三个应力分量未知。

平面应变问题设有很长的柱体,支承情况不沿长度变化,在柱面上受到平行于横截面而且不沿长度变化的面力,体力也如此分布。

平面问题的根本方程为:平衡方程几何方程物理方程〔弹性力学平面问题的物理方程由广义虎克定律得到〕•平面应力问题的物理方程平面应力问题有•平面应变问题的物理方程平面应变问题有在平面应力问题的物理方程中,将E替换为、替换为,可以得到平面应变问题的物理方程;在平面应变问题的物理方程中,将E替换为、替换为,可以得到平面应力问题的物理方程。

2弹性力学中的根本物理量和根本方程;答:根本物理量有:空间弹性力学问题共有15个方程,3个平衡方程,6个几何方程,6个物理方程。

其中包括6个应力分量,6个应变分量,3个位移分量。

平面问题共8个方程,2个平衡方程,3个几何方程,3个物理方程,相应3个应力分量,3个应变分量,2个位移分量。

根本方程有:1.平衡方程及应力边界条件:平衡方程:边界条件:2.几何方程及位移边界条件:几何方程:边界条件:3.物理方程:3.有限元中使用的虚功方程。

对于刚体,作用在其上的平衡力系在任意虚位移上的总虚功为0,这就是刚体的平衡条件,或者称为刚体的虚功方程。

对于弹性变形体,其虚位移原理为:在外力作用下处于平衡的弹性体,当给予物体微小的虚位移时,外力的总虚功等于物体的总虚应变能。

设想一处于平衡状态的弹性体发生了任意的虚位移,相应的虚应变为,作用在微元体上的平衡力系有〔X,Y,Z〕和面力。

外力的总虚功为实际的体力和面力在虚位移上所做的功,即:在物体产生微小虚变形过程中,整个弹性体内应力在虚应变上所做的功为总虚应变能,即:其中为弹性体单位体积内的应力在相应的虚应变上做的虚功,由此得到虚功方程:4.节点位移,单元位移及它们的关系。

有限元习题及答案

有限元习题及答案

有限元习题及答案有限元习题及答案有限元方法是一种常用的数值计算方法,用于求解各种工程和科学问题。

在学习有限元方法的过程中,练习习题是非常重要的,可以帮助学生巩固所学的知识,并提高解决实际问题的能力。

本文将介绍一些有限元习题及其答案,希望对学习有限元方法的同学有所帮助。

习题一:一维热传导问题考虑一个长度为L的一维杆,其两端固定,杆上的温度满足以下热传导方程:∂²T/∂x² = 0,其中T为温度,x为位置。

已知杆的两端温度分别为T1和T2,求解杆上的温度分布。

解答一:根据热传导方程,可以得到温度分布的一般解为T(x) = Ax + B,其中A和B为常数。

根据边界条件,可以得到方程组:T(0) = B = T1T(L) = AL + B = T2解方程组可得A = (T2 - T1) / L,B = T1。

因此,温度分布为T(x) = ((T2 - T1) / L) * x + T1。

习题二:二维弹性问题考虑一个矩形薄板,其长为L,宽为W,材料的弹性模量为E,泊松比为ν。

已知薄板的边界上施加了一定的边界条件,求解薄板上的位移场。

解答二:对于二维弹性问题,可以使用平面应力假设,即假设薄板内部的应力只有两个分量σx和σy,并且与z轴无关。

根据平面应力假设和胡克定律,可以得到位移场的偏微分方程:∂²u/∂x² + ν * (∂²u/∂y²) + (1 - ν) * (∂²v/∂x∂y) = 0∂²v/∂y² + ν * (∂²v/∂x²) + (1 - ν) * (∂²u/∂x∂y) = 0其中u和v分别为位移场在x和y方向上的分量。

边界条件根据具体情况给定。

通过数值方法,如有限元方法,可以求解位移场的近似解。

习题三:三维流体力学问题考虑一个三维流体力学问题,流体在一个封闭容器内流动,容器的形状为一个长方体,已知流体的速度场和压力场的初始条件,求解流体的运动状态。

(完整版)有限元考试试题及答案

(完整版)有限元考试试题及答案

e an dAl l t h i ng si nt he i rb ei n ga re go o2. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷F=20KN/m ,设泊松比µ=0,材料的弹性模量为E ,试求它的应力分布。

(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q ,单元厚度为t ,求单元的等效结点荷载。

图3图1一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。

b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所有点都具有相同的应变。

当单元尺寸取小时,则单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。

c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元位移协调。

3. 答:含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。

意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。

4. 答:有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。

有nl⎥⎦⎤⎢⎣⎡5.0025.025.011212---==E k k ⎥⎦⎤⎢⎣⎡5.0025.0011313-==E k k ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡5.125.025.05.125.0005.05.00025.075.025.025.075.032222212222E E E E k k k k +=++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---5.025.025.0125.025.005.025.0025.05.032312323E E E k k k =+=⎥⎦⎤⎢⎣⎡---5.0025.025.022424E k k ==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡025.025.00025.0000025.0032522525E E E k k k =+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.15.00025.075.025.025.075.025.0005.043333313333E E E E k k k k =++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---125.025.05.05.0025.025.05.025.0025.043533535E E E k k k =+=⎥⎦⎤⎢⎣⎡0025.0043636E k k ==⎥⎦⎤⎢⎣⎡75.025.025.075.024444E k k ==⎥⎦⎤⎢⎣⎡---25.0025.05.024545E k k == ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.175.025.025.075.05.00025.025.0005.045535525555E E E E k k k k =++=⎥⎦⎤⎢⎣⎡---25.0025.05.045656E k k ==⎥⎦⎤⎢⎣⎡25.0005.046666E k k ==把上面计算出的,…,对号入座放到总刚矩阵中去,于是得到11k 66k []K的具体表达式。

有限元方法例题解答

有限元方法例题解答

2023《有限元技术》习题一参考答案1、用欧拉方程求泛函()1022[()]'2(0)0,(1)0J y x y y xy dx y y ⎧=--⎪⎨⎪==⎩⎰的极值曲线。

解:22'2F y y xy =--,代入欧拉方程'0y y dF F dx-=, 得:''++0y y x =,解微分方程得通解:12sin cos y C x C x x =+-,代入边界条件(0)0,(1)0y y ==,解得sin sin1xy x =-。

2、如图所示,一长度为L 质量为M 的项链悬挂在跨度为2a 的A 和B 两点,项链在重力场中自然下垂,试求该链悬在稳定状态时的曲线方程。

(重力加速度为g )解: (方法一)将原坐标系(),x y 向下平移1C 个单位(),x y ,拟采用1cosh y C t =代换求解 在新坐标系中,悬链在稳定状态时能量处于最小值。

悬链线质量密度MLλ=, 长度为dl 的势能为:()Mgy dW dmgy dl gy dl L λ====,悬链总势能泛函:(a a a a Mg W dW dx dx L --===⎰⎰⎰,约束条件为:悬链线长度aL -=⎰,泛函的被积函数:(),F y y '=,势能泛函取极小值时的欧拉方程为:'1'y F y F C -=, 即:21C -=,化简得:y C =于是:dx =x =,令1cosh y C t =(在新坐标系下才能作此代换),得:1sinh sinh dy C tdt t =⎧=,代入x =,得112x C dt C t C ==+⎰所以,21x C t C -=,21cosh cosh x C t C ⎛⎫-= ⎪⎝⎭回代1cosh y C t =得:211cosh x C y C C ⎛⎫-= ⎪⎝⎭,曲线关于y 轴对称得20C =,1C由悬链线长度112sinhaaL C C -==⎰给出, 故新坐标系下所求曲线方程为11cosh x y C C ⎛⎫=⎪⎝⎭, 1C 由11sinh 2L aC C =确定。

汽车结构有限元分析试题及答案(精华)

汽车结构有限元分析试题及答案(精华)

一、20分)(×) 1. 节点的位置依赖于形态,而并不依赖于载荷的位置( √ ) 2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元(×) 3. 不能把梁单元、壳单元和实体单元混合在一起作成模型( √ ) 4. 四边形的平面单元尽可能作成接近正方形形状的单元(×) 5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(×) 6. 用有限元法不可以对运动的物体的结构进行静力分析( √ ) 7. 一般应力变化大的地方单元尺寸要划的小才好(×) 8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度( √ ) 9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小( √ ) 10 一维变带宽存储通常比二维等带宽存储更节省存储量。

二、填空(20 分)1.平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是:平行于板面且沿厚度均布载荷作用,变形发生在板面内;后者受力特点是:垂直于板面的力的作用,板将变成有弯有扭的曲面。

2 .平面应力问题与平面应变问题都具有三个独立的应力分量:σx,σy,τxy ,三个独立的应变分量:εx,εy,γxy,但对应的弹性体几何形状前者为薄板,后者为长柱体。

3.位移模式需反映刚体位移,反映常变形,满足单元边界上位移连续。

4 .单元刚度矩阵的特点有:对称性,奇异性,还可按节点分块。

5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为二维问题处理。

6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。

等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。

7.有限单元法首先求出的解是节点位移,单元应力可由它求得,其计算公式为} = [D][B]6}e 。

有限元试题及答案[1]

有限元试题及答案[1]
同理可得 所以由与作用下,在微体上产生能量为: 证明2:若证明等式成立,必须首先证明 又因分解后见下表。
∴ 又因
证明3、如图所示纯弯梁
梁的厚度很薄,外载沿厚度方向无变化,其中性层为y层,梁长为, 弹性模量为E,基本变量为:
位移(对中性层) 应力(为主应力,其方向很小,不考虑) 应变(为主要应变,中性层取微段莱推导三大方程)
解:根据力得平衡方程(体积力为零时) 知 上两个等式成立,即平衡方程成立,即此情况满足平衡条件。 其边界应力,
, ,
作图如下: 故边界下应力如图2.2所示:
其边界得剪应力如图2.3所示:
四、如图所示 已知,,(平面应力问题)
求:(1)斜面上应力,的表达式 (2)最大主应力,最小主应力及此时斜面的方向余弦。
衡。 (2) 当时,、并不一定为零,此情况下平衡方程并不一定成立,
故此情况下不满足平衡,只有在时,才满足平衡。 (3) 当时,平衡方程成立,故此情况下满足平衡。 (4) 所有均为非零时,只有当,时,平衡方程才成立,才能够满
足平衡,否则不平衡。 三、下列应力分布是否满足平衡条件(体积力为零),(2D平面应力问 题),描述就如图所示平面结构,该应力函数所表示时得边界应力。
解之知 所以: 所以,其形态函数矩阵 又因 所以几何矩阵 又 所以其应力矩阵 单元的势能为: 其刚度矩阵为: 十五、如图所示,为一由两根杆组成的结构(二杆分别沿X,Y)方向, 结构参数 试写成下列FEM分析
(1) 写出各单元的刚度矩阵 (2) 写出总刚度矩阵 (3) 求出节点2的位移 (4) 求各单元应力
如图所示8.4所示力的平衡:
几何方程:由变形后的几何关系可知 其中y为距中性层坐标,为挠度曲率。 即 由虎克定律知物理方程为: 整理上述方程得知下基本方程组 故纯弯梁的应变能: 九、如图所示为1个1D拉压问题 (1)写出描写该问题的所有基本变量 (2)写出所有基本方程,包括BC (3)写出应变能,外力功 (4)写出最小势能原理的一般表达式(1D问题) (5)证明(4)(即该原理与原基本方程的关系) 解(1)基本变量 位移 应力 应变 (2)基本方程 平衡方程 几何方程 物理方程 BC(): BC(p): 由平衡方程得知 (待定) 由几何方程得知 (待定) 由BC()知 由BC(p)知 ∴ (3)应变能 外力功 (4)最小势能一般表达式(1D问题)

(完整word版)有限元考试试题及答案

(完整word版)有限元考试试题及答案

江西理工大学研究生考试试卷一、 简答题(共40分,每题10分)1. 论述单元划分应遵循的原则。

2. 说明形函数应满足的条件。

3. 说明四边形等参数单元中“等参数”的含义,即为什么要引入等参数单元。

4. 阐述边界元法的主要优缺点。

二、 计算题(共60分,每题20分)1. 一杆件如图3所示,杆件上方固定后,在下方受垂直向下的集中力作用,已知:杆件材料的杨氏模量2721/100.3in lbf E E ⨯==,截面积2125.5in A =,2275.3in A =,长度in L L 1221==,集中力lbf P 100=,用有限元方法求解B 点和C 点位移。

备注:(1)1 lbf (磅力,libra force ) = 4.45 N 。

(2)杨氏模量、弹性模量、Young 氏弹性模量具有相同含义(10分)20__12__—20__13__ 学年 第___一___学期 课程名称:_____有限元及数值模拟________ 考试时间:___2012___ 年__11__月___3___日考试性质(正考、补考或其它):[ 正考 ] 考试方式(开卷、闭卷):[ 开卷 ] 试卷类别(A 、B):[ A ] 共 九 大题温 馨 提 示请考生自觉遵守考试纪律,争做文明诚信的大学生。

如有违犯考试纪律,将严格按照《江西理工大学学生违纪处分规定》(试行)处理。

学院 专业 学号 姓名 题号 一二三四五六七八九十十一十二总 分得分pyA1A2L1L2图12. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m,载荷F=20KN/m,设泊松比µ=0,材料的弹性模量为E,试求它的应力分布。

(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q,单元厚度为t,求单元的等效结点荷载。

图3一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。

汽车结构有限元分析试题及答案(精华)

汽车结构有限元分析试题及答案(精华)

一 、20分)(×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置(√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元(×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好(×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 (√)10一维变带宽存储通常比二维等带宽存储更节省存储量。

二、填空(20分)1.平面应力问题与薄板弯曲问题的弹性体几何形状都是 薄板 ,但前者受力特点是: 平行于板面且沿厚度均布载荷作用 ,变形发生在板面内;后者受力特点是: 垂直于板面 的力的作用,板将变成有弯有扭的曲面。

2.平面应力问题与平面应变问题都具有三个独立的应力分量: σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。

3.位移模式需反映 刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。

4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。

5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。

6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。

等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。

7.有限单元法首先求出的解是 节点位移 ,单元应力可由它求得,其计算公式为{}{}[][]eD B σδ=。

有限元考试复习题

有限元考试复习题

第1章 杆件结构1.1 单元刚度如何叠加成结构的整体刚度矩阵?为什么这样叠加?如何从刚度矩阵的物理意义去理解此叠加关系?叠加成的整体刚度矩阵又有什么特点?答:(1)首先对杆件结构进行自然离散,并对其进行节点编号和单元编号,然后通过坐标转换公式将局部坐标系下的单元刚度矩阵转换为整体坐标系下的单元刚度矩阵。

将所得的单元刚度矩阵按节点编号进行组装,即可形成整体刚度。

(2)这样的叠加方法条理清晰,便于电脑程序编程,分块进行,效率较高,且尤其适用于大量杆件结构体系,将所有的计算程序化后,大大节省了时间,并且精度较高。

(3)刚度矩阵的物理意义是表示结构或构件单元在单位位移或变形下所能承受的力的大小。

通过单元刚度矩阵建立单元节点力与节点位移之间的关系,通过整体刚度矩阵建立所受外荷载与整体位移之间的关系。

通过单元刚度矩阵叠加构建整体刚度矩阵,则建立起了结构整体外荷载与整体位移之间的方程,进而通过求得的整体位移进一步求出单元之间的节点位移,并最终求得各单元之间的节点力。

(4)特点:1)对称性。

由于杆单元的单刚是对称矩阵,则由它们集成的总刚也具有对称性。

2)奇异性。

即无论是单刚还是总刚都是奇异的,它们不存在逆阵。

3)存在相当数量的零元素。

由于杆系结构的特点,一个节点可能只连接少数几个单元,因此可能与周围邻近的几个节点之间存在非零的元素。

1.2 如图所示的圆杆,由两个不同截面的杆件(1)与(2)组成,在节点1,2,3上作用有轴向节点载荷1Q 、2Q 、3Q 而平衡。

试写出3个轴向载荷与节点的轴向位移1u 、2u 、3u 之间的矩阵关系。

解:杆件1的单元刚度矩阵为:[]1111111EA k l -⎡⎤=⎢⎥-⎣⎦;杆件2的单元刚度矩阵为:[]2221111EA k l -⎡⎤=⎢⎥-⎣⎦; 结构的整体刚度矩阵为:1111111112112211222122111211222221222222EA EA l l k k EA EA EA EA K k k k k l l l l k k EA EA l l ⎡⎤-⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥=+=-+-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦而又12l l L ==,所以11112222A A E K A A A A L A A -⎡⎤⎢⎥=-+-⎢⎥⎢⎥-⎣⎦令节点位移向量为{}123,,Tu u u δ=,节点力为{}123,,TF Q Q Q =,从而可得3个轴向载荷与节点的轴向位移其关系为11112112223223Q A A u E Q A A A A u L Q A A u -⎧⎫⎡⎤⎧⎫⎪⎪⎪⎪⎢⎥=-+-⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥-⎩⎭⎣⎦⎩⎭1.3 如图所示为三角桁架,已知25/101.2mm N E ⨯=,两直边的长度m l 1=,各杆的截面积21000mm A =,求此结构的整体刚度矩阵[]K ,若节点的编号改变后,问[]K 的有无变化?解:杆件的单元刚度矩阵为:[]1111ii iEA k l -⎡⎤'=⎢⎥-⎣⎦,从而可得各个单元在局部坐标系下的单元刚度矩阵为:[]11111EA k l -⎡⎤'=⎢⎥-⎣⎦;[]21111EA k l -⎡⎤'=⎢⎥-⎣⎦;[]31111k -⎡⎤'=⎢⎥-⎣⎦平面杆单元坐标转置矩阵:cos sin cos sin T αααα⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,而又00012390045ααα===-、和,从而各个单元的坐标转置矩阵分别为:10101T ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦;21010T ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦;3222T ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎢-⎢⎣⎦根据上面给出的坐标转置矩阵,可得各个单元在整体坐标系下的单元刚度矩阵为[][]1111000000101101000101001100010000010101T EA EA k T k T l l ⎡⎤⎡⎤⎢⎥⎢⎥--⎡⎤⎡⎤'⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦[][]2222101010001110000000011100101010000000T EA EA k T k T l l -⎡⎤⎡⎤⎢⎥⎢⎥-⎡⎤⎡⎤'⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦[][]3333101111101111001111011100111111011111T k T k T --⎡⎤⎡⎤⎢⎥⎢⎥-----⎡⎤⎡⎤'⎥⎢⎥===⎢⎥⎢⎥⎥⎢⎥----⎣⎦⎣⎦⎥⎢⎥---⎣⎦⎣⎦令节点位移向量为{}112233,,,,,Tu v u v u v δ=,节点力为{}112233,,,,,Tx y x y x y F q q q q q q =,按照整体刚度矩阵的拼装原则,可得[]1010000100011010000011 EAKl-⎡⎤⎢⎥-⎢⎥⎢⎥-+⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦若节点的编号改变后,[]K会发生变化,但是并不影响最终的计算结果。

有限元试题参考答案

有限元试题参考答案

西北工业大学研究生入学试题参考答案考试科目:结构有限元素法 题 号:05602 说 明: 共 2 页 第 1 页一、 简答题参考答案:1、挠度位移函数 1C w ∈,且应满足位移运动边界条件。

2、① 应具有常数项,以反映常应变项;② 应具有线性项,以反映刚体位移;③ 插值函数应满足元素边界上的协调性;④ 插值函数的阶次越高收敛性越快。

3、具有上界特征,元素刚度偏硬(即系数偏大)。

4、12-n ,积分点数目偏少,可能导致数值积分精度偏低,元素刚阵奇异或结构总刚在置入边界条件后仍然奇异,即所谓的零能模式。

5、对称性、稀疏性、带状性、正定性(置入边界条件后);应用三角分解方法,不破坏结构总刚的带状特性。

6、子结构方法、矩阵分块法、波前法;Nastron 、Ansys,Mark,Ardina 等。

二、 分析证明题参考答案1、⎪⎪⎩⎪⎪⎨⎧=∂∂Ω∈-=∂∂+∂∂Ω∂022222n y x φφφφ 22145ba +=α 2、证明思路: ① 由14321u y N y N y N y N x v y u xy ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+∂∂-∂∂=∂∂+∂∂=γ 说明除0,≠y x 点外,0≠xy γ题 号:05602 共 2 页 第 2 页② 说明J 在积分点上的正定性;③ 由2xy γ的非负性以及J 的正定性,可证明: 02111112≠=∏⎰⎰--ηξγγd d J G xy 三、 计算题参考答案1、()2314808.3μ-=Et P 2、⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-==FN F N F N F N 432122222内力:,支反力:⎪⎩⎪⎨⎧-=-=2F R F R y x 位移:H L H H a L a FL v u 211624121402+⎪⎪⎩⎪⎪⎨⎧+=⎪⎭⎫ ⎝⎛++-== 计算参考图:x y出师表两汉:诸葛亮先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。

然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。

西工大-有限元试题(附答案)

西工大-有限元试题(附答案)

1.针对下图所示的3个三角形元,写出用完整多项式描述的位移模式表达式。

2.如下图所示,求下列情况的带宽:a)4结点四边形元;b)2结点线性杆元。

3.对上题图诸结点制定一种结点编号的方法,使所得带宽更小。

图左下角的四边形在两种不同编号方式下,单元的带宽分别是多大?4.下图所示,若单元是2结点线性杆单元,勾画出组装总刚后总刚空间轮廓线。

系统的带宽是多大?按一右一左重新编号(即6变成3等)后,重复以上运算。

5. 设杆件1-2受轴向力作用,截面积为A ,长度为L ,弹性模量为E ,试写出杆端力F 1,F 2与杆端位移21,u u 之间的关系式,并求出杆件的单元刚度矩阵)(][e k6.设阶梯形杆件由两个等截面杆件○1与○2所组成,试写出三个结点1、2、3的结点轴向力F 1,F 2,F 3与结点轴向位移321,,u u u 之间的整体刚度矩阵[K]。

7. 在上题的阶梯形杆件中,设结点3为固定端,结点1作用轴向载荷F 1=P ,求各结点的轴向位移和各杆的轴力。

8. 下图所示为平面桁架中的任一单元,y x ,为局部坐标系,x ,y 为总体坐标系,x 轴与x 轴的夹角为 。

(1) 求在局部坐标系中的单元刚度矩阵 )(][e k (2) 求单元的坐标转换矩阵 [T];(3) 求在总体坐标系中的单元刚度矩阵 )(][e k9.如图所示一个直角三角形桁架,已知27/103cm N E ⨯=,两个直角边长度cm l 100=,各杆截面面积210cm A =,求整体刚度矩阵[K]。

10. 设上题中的桁架的支承情况和载荷情况如下图所示,按有限元素法求出各结点的位移与各杆的内力。

11. 进行结点编号时,如果把所有固定端处的结点编在最后,那么在引入边界条件时是否会更简便些?12. 针对下图所示的3结点三角形单元,同一网格的两种不同的编号方式,单元的带宽分别是多大?13. 下图所示一个矩形单元,边长分别为2a 与2b ,坐标原点取在单元中心。

机械有限元试卷A、B及标准答案必考

机械有限元试卷A、B及标准答案必考

《有限元方法》考试试卷(A卷)一、选择题1、弹性力学与材料力学的主要不同之处在于。

A. 任务;B. 研究对象;C. 研究方法;D. 基本假设。

σ是。

2、在轴对称问题中,径向应力分量rA. 恒为零;B. 与r无关;C. 与θ无关;D. 恒为常数。

3、利用ANSYS进行结构分析时,结果文件为。

A. jobname.rst;B. jobname.rth;C. jobname.rfl;D. jobname.rmg。

4、在ANSYS的单元库中,PLANE42单元属于。

A. 结构梁单元;B. 结构壳单元;C. 结构线单元;D. 结构实体单元。

5、在一个分析中,可能有多个材料特性组,ANSYS通过独特的来识别每个材料特性组。

A. 特性;B. 说明;C. 参考号;D.方法。

6、ANSYS与Pro/E的接口文件类型是。

A..x_t;B. .prt;C. .sat;D. .model。

7、载荷包括所有边界条件以及外部或内部作用效应,下列不属于ANSYS 载荷的是。

A. DOF约束;B. 力;C. 体载荷;D.应力。

8、要求面或者体有规则的形状,即必须满足一定的准则。

A.自由网格;B. 映射网格;C. Sweep分网;D. 其他。

9、独立于有限元网格,即可以改变单元网格而不影响施加的载荷。

A.阶跃载荷B. 有限元模型载荷C. 实体模型载荷;D. 斜坡载荷。

10、有限元法首先求出的解是,单元应力和应变可由它求得。

A.节点坐标;B.节点自由度;C. 节点载荷;D. 节点位移。

二、填空题(每空1分,共20分)1、在整个有限元分析的过程中,是分析的基础。

2、平面应力问题与薄板弯曲问题的弹性体几何形状都是,但前者受力特点是,变形发生在板面内;后者受力特点是的力的作用,板将变成有弯有扭的曲面。

3、典型的ANSYS文件包括、、。

4、平面应力问题与平面应变问题都具有个独立的应力分量,个独立的应变分量,但对应的弹性体几何形状前者为,后者为。

有限元试题和答案

有限元试题和答案

一。

简答题:1.轴对称体上作用正对称形式的载荷时,沿坐标,,r z θ的三个分量(,,)r P r z θ,z (,,)P r z θ和(,,)P r z θθ有何特点?(P85)(,,)r P r z θ和z (,,)P r z θ是偶函数,傅里叶级数展开式中不含sin k θ,(,,)P r z θθ是奇函数,傅里叶级数展开式中不含cos k θ。

2.某单元的节点上,既有位移自由度又有转动自由度,试述此单元的协调性要求?(P27) 在交界面上满足变形协调条件,变形后既不分裂,也不重叠,从而保证了整个结构的位移连续。

3.用泛函变分求解弹性力学的场问题时,为什么只需要考虑几何边界条件?(P179) 泛函求极值与求满足位移及力边界条件的平衡方程的解是完全等价的。

利用变分求解只需要满足位移边界条件,而力边界条件是在求解泛函的极值中自动满足的。

4.写出用位移梯度表示的格林应变张量和阿尔曼西应变张量,并证明他们的参考变形?(P201)格林应变张量1=+2j i k k ij j i i j u u u u E x x x x ∂∂∂∂∂∂∂∂(+) 阿尔曼西应变张量1=+2j i k k ij j i i ju u u u e x x x x ∂∂∂∂∂∂∂∂(-) 5.写出接触问题中的运动学条件和动力学条件?(P225)运动学条件:满足不可贯穿条件,对于两个接触物体,可表示为0ABV V ⋂=动力学条件:要求连个物体接触面的合力为零0ABq q += 二、三角形单元的位移为:012012(cos 1)(sin )(sin )(cos 1)u u x x v v x x θθθθ=+-+-=++-式中0u 和0v 分别为1x 和2x 方向的刚体位移,θ为逆时针绕原点的刚体转角。

计算单元的柯西应变和格林应变。

证明此位移为刚体运动。

(P201) 解:柯西应变:11=cos 1u x εθ∂=-∂,22=cos 1v x εθ∂=-∂,12212=+sin sin 0u v x x εθθ∂∂=-+=∂∂ 格林应变:1111111111=+(cos 1cos 1(cos 1)(cos 1)sin sin )022u u u u v v E x x x x x x θθθθθθ∂∂∂∂∂∂+-+-+--+=∂∂∂∂∂∂(+)=122121121211==+(sin sin (cos 1)(sin )sin (cos 1))022u v u u v v E E x x x x x x θθθθθθ∂∂∂∂∂∂+-++--+-=∂∂∂∂∂∂(+)=2222222211=+(cos 1cos 1(cos 1)(cos 1)sin sin )022v v u u v v E x x x x x x θθθθθθ∂∂∂∂∂∂+-+-+--+=∂∂∂∂∂∂(+)=三 周向有集中载荷作用的悬臂梁,弯曲刚度为EI ,(1)建立梁的总势能表达式,(2)假定瑞利-里茨能为2323w C x C x =+,计算梁的挠度表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元考试试题及答案一、简答题(5道,共计25分)。

1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分)答:(1)选择适当的单元类型将弹性体离散化;(2)建立单元体的位移插值函数;(3)推导单元刚度矩阵;(4)将单元刚度矩阵组装成整体刚度矩阵;(5)代入边界条件和求解。

2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分)答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。

3.轴对称单元与平面单元有哪些区别?(5分)答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量,平面单元内任意一点非零独立应变分量有三个。

4.有限元空间问题有哪些特征?(5分)答:(1)单元为块体形状。

常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。

(2)结点位移3个分量。

(3)基本方程比平面问题多。

3个平衡方程,6个几何方程,6个物理方程。

5.简述四节点四边形等参数单元的平面问题分析过程。

(5)分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变 分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

二、论述题(3道,共计30分)。

1. 简述四节点四边形等参数单元的平面问题分析过程。

(10分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2) 通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变 分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

2.轴对称问题的简单三角形单元是否是常应力,常应变?为什么?(10分)答:不是常应力和常应变。

因为应变与位移分量的关系式为:⎭⎬⎫⎩⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∂∂+∂∂∂∂∂∂=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=w u010r r u r u }{rz z r r z z r r w z u z w γεεεεθ,这里除含有微分算符外,还包含了r 的倒数项1/r ,则即使位移模式为线性的,但由于该项的存在,使得应变与坐标有关,即不会是常应变。

应力应变的物理关系为{}[]{}εσD = ,由于应变不是常应变,则所求得的应力也不会是常应力。

3.在薄板弯曲理论中做了哪些假设?薄板单元和厚板单元的基本假设有什么不同?(10分)答:四种假设: 1)变形前的中面法线在变形后仍为弹性曲面的法线。

2)变形前后板的厚度不变。

3)板变形时,中面无伸缩。

4)板内各水平层间互不挤压。

不同点:薄板单元假设横向纤维无挤压,板的中面法线变形后仍保持为直线,该直线垂直于变形后的中面,但是厚板单元的假设考虑横向变形的影响,板的中面法线变形后仍 基本保持为直线,但该直线不再垂直于变形后的中面,法线绕坐标轴的转角不再是挠度的导数,而是独立的变量。

三、计算题(3道,共计45分)。

1.如图所示等腰直角三角形单元,其厚度为t ,弹性模量为E ,泊松比0ν=;单元的边长及结点编号见图中所示。

求(1) 形函数矩阵N (2) 应变矩阵B 和应力矩阵S(3) 单元刚度矩阵e K (12分)解:设图1所示的各点坐标为点1(a ,0),点2(a ,a ),点3(0,0)于是,可得单元的面积为 12A =2a ,及(1) 形函数矩阵N 为12122121(0a a )a1(00a )a 1(a a 0)a N x y N x y N x y =+-=++=-+g g ;[][]123123 N N N ==N I I I N N N (2) 应变矩阵B 和应力矩阵S 分别为12a 010-a a -a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B ,220010a a a 0⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B ,32-a 0100a 0-a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B ; []123=B B B B12a 00-a a 11-a a 22E ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦S ,22000a a 1a 02E ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦S ,32-a 000a 10-a 2E ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦S ;[][]123123 ==S D B B B S S S (3) 单元刚度矩阵e K2.如图所示的四结点矩形单元,求出节点3的位移。

设厚度t =1m ,μ=0,E为常量。

(13分) 注:对于四节点矩形单元有:()()()()()()()()()⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫+-=++=-+=--=ηξηξηξηξ1141114111411141.14321N N N N →)4,3,2,1()1)(1(41=++=i N i i i ηηξξ()[][][][]eT Aek k k k k k k k k k k k k k k k y x t B D B k ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==⎰⎰44434241343332312423222114131211d d .2, [][][][][][][]()()()()())4,3,2,1,( 3111311a 212123111311218d d d d 21111=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-+-+⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-===⎰⎰⎰⎰--j i b a b b a a b Et B D B abt y x t B D B k j i j i j i j i j i j i j i j i j i j i j i j i jTijTAiijηηξξμξξηηηξμξμηηξμξμηξξηημηηξξμηξ解:对于四节点矩形单元有:()()()()()()()()⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫+-=++=-+=--=ηξηξηξηξ11411141114111414321N N N N →)4,3,2,1()1)(1(41=++=i N i i iηηξξ[][][][]eT Aek k k k k k k k k k k k k k k k y x t B D B k ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==⎰⎰44434241343332312423222114131211d d , []{}{}e e e R k =δ,代入边界条件μ1=ν1=μ2=ν2=μ4=ν4=0,将对应的行和列划掉没剩下的方程为:[]⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧P P k --νμ3333, 又)4,3,2,1()1)(1(41=++=i N i i i ηηξξ,且1133==ηξ,,a=1,b=1所以所以[]⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧P P k --νμ3333→⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡P P E --νμ4114833解得⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧1158-νμ33E P 3.有一如图3(a)所示的剪力墙,墙顶作用竖向荷载P 。

将该剪力墙划分为两个三结点三角形常应力单元,单元和结点编号如图3(b)所示,并将荷载P 分成两个P/2作用在3、4结点。

已知单元厚度为t ,弹性模量为E ,泊松比μ=1/3。

求结点3和结点4的位移,以及单元①的应变和应力。

(20分)解:建立直角坐标系(注Y 轴向下为正),单元①i,j,m 对应的节点编号为3,1,4,单元②对应的节点编号为2,4,1。

对于单元①:i(0,0),j(0,4),m(2,0) bi=yi-ym=4;bj=ym-yi=0;bm=yi-yj=-4 ci=xm-xj=2;cj=xi-xm=-2;cm=xj-xi=0 三角形面积A=1/2*2*4=4几何矩阵[B]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----40000204024202000481弹性矩阵[D]=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--2100010112μμμμE单元刚度矩阵∆=t B D B k T ]][[][][1=314)1(8001684)1(4)1(8)1(40816048)1(2)1(4)1(2)23(4)1(4)9(2)1(162⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------------+--μμμμμμμμμμμμμμEt然后合成总刚[K]。

整体节点力矢量为]0202[}{2211P PF F F F F yx y x =节点位移矢量为[]44330000}{v u v u d =}]{[}{d K F =,采用缩减矩阵法划去位移为零的行与列,得解得[]T Et P v u v u 88.199.850.142.84433-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡单元①的应变{}[]T EtPd B 56.047.0285.0}]{[11-==ε 单元①的应力{}[]T tPd B D 84.068.158.0}]{][[11-==σ。

相关文档
最新文档