6静定桁架和组合结构讲解

合集下载

结构力学静定平面桁架

结构力学静定平面桁架
三角形:内力分布不均
精品课件
5.6 组合结构 是指只承受轴力的二力杆和承受弯矩、剪力、轴 力的梁式杆组合而成的结构。如屋架等
钢筋混凝土
钢筋混凝土
型钢
E D C


E E
精品课件
型钢
例 计算图示组合结构的内力。
8kN
解:1)求支反力
AD
C
FAy F
E
B
MB 0 得
FBy G
2m
FAy=5kN
FBy=3kN
2.5 1.125 0.75
1.125
剪力与轴力
FS FYcosFHsin
M图( kN.m)
FN FYsinFHcos
精品s 课件 in 0 .083c5 o s0 .99
FS FY
FN
15 A
FH
2.5 1.74
剪力与轴力
FS FYcosFHsin FN FYsinFHcos
sin 0 .083c5 o s0 .99
FN
l
ly
FN

=
FX lx
= FY ly
3)、结点上两杆均为斜杆的杆件内力计算:
F1x B b
F1
F 如图,若仍用水平和竖向投影来求F1 F2, A 则需解联立方程,要避免解联立方程可用
h
F2
力矩平衡方程求解。
a
如以C为矩心,F1沿1杆在B点处分解为F1x,
C
F2x
d
则由
MC 0得: F1x=Fhd
由图(c)所示截面左侧隔离体求出截面截断的三根杆的轴 力后,即可依次按结点法求出所有杆的轴力。
精品课件
取截面II—II下为隔离体,见图(d)

6静定桁架和组合结构讲解

6静定桁架和组合结构讲解

1
a
AD
B
P
2 P
a
C aaaa
解: 复杂桁架,结构对称。将荷载分为对称和反对
称两种情况求解。
(1)对称结构对称荷载 EI F
0A P
10 D P/2 2 P
00
IC aaa
a B P/2 Pa
a
结点C位于对称轴上,所以两 斜杆轴力等于零,见右图。
00 C
结点D
Y 0 N 1 ' P 2
N
2m
2m E
II
2m
I
B
2m 60kN
(2) 求N1、N2
Y 0 X 0
FyBE 60kN FxBE 60kN NBC FxBE 0 NBC FxBE 60kN(拉)
取截面I-I以左为隔离体
MD0
I
D
N2
1 22
(60
2
80kN
60 2 80 2)
A
8 0 2 8 .2 8 k N ( 压 ) 60kN 2m
(4) 运用比拟关系 N Fx Fy 。 l lx ly
结点受力的特殊情况
(1)
N1 0 90。 0 N2
s
结点上无荷载,则N1=N2=0。
由∑FS=0,可得N2=0,故N1=0。
(2)
N1
N2
0 N3
Y0 N3 0 X 0 N1 N2
(3) N1
N4 N2
N3
Y0 N3 N4 X0 N1 N2
由∑Y=0 , N1=-N2
6.3 截 面 法
对于联合桁架或复杂桁架,单纯应用结点 法不能求出全部杆件的轴力,因为总会遇到有 三个未知轴力的结点而无法求解,此时要用截 面法求解。即使在简单桁架中,求指定杆的轴 力用截面法也比较方便。

静定桁架和组合结构

静定桁架和组合结构
B
d A FN1
1
I
0
FN1= - 3FP
d
I d d
FP
例:求图示桁架杆1轴力。
解: 求反力。 取截面I-I右部。 由∑x’=0
a/2
FP I
x’
-
a A FN1 B
FN1
· cos45o+F
cos45o=0
By·
I 1
a/2 FBy= 3FP /4 a/2 a/2 a/2
FN1= FBy =0.75 FP

FP2

FP1

E
ⅡDⅡFra bibliotekFP2
FxD

FP1
FxE
FxA
A

B FyB
C
FyD
FyD

FyE
FyC
FEy

FyA

FxA
FyA
FxC
∑MC=0,求出FxD、 FxE FyB
§6-4 结点法与截面法的联合应用
在桁架计算中,对于某一杆件的内 力,如果只用一个的平衡条件或只作一次 截面均无法解决时,可把结点法和截面法 联合起来应用,往往能收到良好的结果。
实例说明。
例:截面隔离体与结点隔离体联合求解杆内力
求a ,b两杆轴力。

FP
作截面 I - I ∑y=0 FNa cos45o-FNc cos45o+FP=0
取结点K: ∑x=0 FNa = - FNc 2FNa cos45o= - FP FNa = - 0.707FP 作截面Ⅱ-Ⅱ ∑MD=0 →FNb
FNDF= - 1.5kN (压力)
同理可得: FNEB=2.5kN (拉力) FNEG= -1.5kN (压力) 提问:

[理学]06静定桁架和组合结构--习题

[理学]06静定桁架和组合结构--习题

N4
5P 4
(压)
结构力学电子教程
6 静定桁架和组合结构
6.23 选用较简便方法计算图示桁架中指定杆的轴力。
D
I II
60kN
1
D I-I截面右部分: II-II截面右部分:
4m
C2
3
I
II
A
B
3m 3m 3m 3m
4m
N1
C N2
N4
3
B
22.5kN
45kN
N5
N3
解:(1)反力如图。 30kN (2)I-I截面右部分
结构力学电子教程
6 静定桁架和组合结构
20kN
20kN C
20kN
(4)以结点C为研究对象
Y 0 :
0 +20
0
3m
D A
XA 0
FE
43m =12m
YA30kN
20
20 C
20
B
YB30kN
1
NCE 20 5
2 20 0 5
NCE 20kN
由对称知 X 0
N (kN)
D
A +60 +60
0 0
3m
A
B
(3)以结点A为研究对象
XA 0
FE
43m =12m
YA30kN
20
20 C
20
N (kN)
D
A +60 +60
+60 +60
1
YB 30kN
Y0:NAD
300 5
NAC30 5=67.08kN
B
2
X0:NAF NAD
0 5

6-3 超静定桁架和组合结构

6-3 超静定桁架和组合结构

第6章 力法
X1 1P
防 灾 FN FN 1 X 1 FN P 科 技 学 院
11

0 .0 4 3 m 0 . 0 0 0 4 1 9 m /k N
1 0 4 .5 k N
M M 1X1 M
P
第6章 力法
练习
用力法计算下图所示组合结构,求
防 出各桁架杆的轴力,并作梁式杆的弯矩图。 灾 已知梁式杆的抗弯刚度EI=常数,各桁架杆 科 的轴向刚度EA=常数,且A=I/16。 技 q1k / = N 0 m 学 A C B 院
X1 EA
2a
第6章 力法
作业 防 灾 科 技 学 院
用力法求图示桁架杆BC的轴力,各杆EA相同。
P C D
a A B
a
第6章 力法
2、超静定组合结构 防 灾 科 技 学 院
组合结构包含梁式杆和二力杆,梁式杆要考虑 弯矩作用,而二力杆则考虑轴力作用。 例2 用力法计算图示组合结构,求出各桁架杆的轴 力,并作梁式杆的弯矩图。 已知梁式杆的 EI 1 . 40 10 KN m , EA 1 . 99 10 KN 各桁架杆的轴向刚度:
5 6 2
1 .8 6 5 .9 5 1
2
1 .9 3 3 .0 9
2
0 .8
0 . 0 0 0 4 1 9 m /k N
第6章 力法
防 灾 科 技 学 院
M P图 m
第6章 力法
防 灾 科 技 学 院
1P

M1
2 5 ds 13 . 25 2 . 975 1 . 49 2 4 EI 1 . 4 10 3 8

6-3超静定桁架和组合结构

6-3超静定桁架和组合结构
P
0
1 1 N E 1 2 l A E 1A N 1 2 l E 12 A 22a
P
NP
1 P N E 1 N P l A E 1 A N 1 N P l E 1 A P 23 a 22
a 0.396P -0.604P
(4)解方程
防 灾 科 (5)内力 技 学 院
M图m
第6章 力法

11
M
2 1
d
s
EI
FN21 l EA
灾 科 技
2 1.4 104
1.49 2.975 2
2 3
1.49
学 院
1 1.99
106
1.862 5.95
2 2.56
105
1.932 3.09
1 2.02
105
12 0.8
0.000419 m/kN
灾 F N F N 1 X 1 F N P M M 1 X 1 M P
科 技 学 院
第6章 力法
练习 用力法计算下图所示组合结构,求
防 出各桁架杆的轴力,并作梁式杆的弯矩图。
灾 已知梁式杆的抗弯刚度EI=常数,各桁架杆
科 技
的轴向刚度EA=常数,且A=I/16。

A
q=10kN /m
C
B

结构力学
主讲:王 丽
第6章 力法
§6-4 超静定桁架和组合结构
防 1、超静定桁架结构

杆件只有轴力,故系数和自由项只考虑轴力的影响。

ii
Ni2l EA
iP
NiNPl EA
技 例1 求图示超静定桁架的内力。各杆EA为常数。

FP

第五章 静定桁架

第五章 静定桁架
解:1.求支座反力
4m
a
D
A
60kN
b
M
A
0, VB 6 60 9 0
VB 90kN ()
c
B
3m 3m VB
HA
3m 3m VA
Y 0, X 0,
VA VB 60 0
VA 30kN ()
HA 0
第五章 静定桁架
[例5-3]用截面法求图示桁 架a、b、c三杆的内力。 4m
1)判别零杆 2)由结点法求内力
D
P
图5-10
B
第五章 静定桁架
思考/讨论:试判断下图所示桁架结构中的零杆 p p
第五章 静定桁架
思考/讨论:试判断下图所示桁架结构中的零杆
P P P
第五章 静定桁架
思考/讨论:试判断下图所示桁架结构中的零杆
P
第五章 静定桁架
思考/讨论:试判断下图所示桁架结构中的零杆
F 2
30
o
NAD NAC
RA 2F
N AD 3F N AC 2.598 F
(压力) (拉力)
x
第五章 静定桁架
练习:试求图示桁架的各杆内力
(2)求各杆内力
取D结点为脱离体,列结 点平衡方程: Y 0,
- F cos 30 N DC 0

2F
y
2F
x

N DC 0.866 F
第五章 静定桁架
3、按桁架受竖向荷载作用有否水平反力分为
a、梁式桁架
b、拱式桁架
第五章 静定桁架
§5-2 静定平面桁架的计算
一、结点法: 以结点作为研究对象来计算结构内力的方法 结点法的计算要点:

教学课件第五章静定平面桁架

教学课件第五章静定平面桁架

60
40
20
-
A
-120 C -20 F -20
15kN 15kN
4m
4m
4m
G
15kN
结点分析时把所有杆内力均画成拉力(含已求得的压力)并代 入方程,然后是拉力的得正值,是压力的得负值。结果为正说 明该杆受拉,结果为负说明该杆受压,这样做不易出错。
§5-2 结点法
小结
• 以结点作为平衡对象,结点承受汇交力 系作用;
2.对称结构受对称荷载作用, 内力和反力均为对称: 受反对称荷载作用, 内力和反力均为反对称。
E 点无荷载,红色杆对不称受轴力处垂的直杆对不称受轴的力杆不受力
FFAAyy
FFBBy y
§5-2 结点法
2.对称结构受对称荷载作用, 内力和反力均为对称: 受反对称荷载作用, 内力和反力均为反对称。 对称结构:几何形状和支座对某轴对称的结构.
FP
§5-2 结点法
关于零杆的判断
桁架中的零杆虽然不受力,但却是保持 结构坚固性所必需的。因为桁架中的载荷往 往是变化的。在一种载荷工况下的零杆,在 另种载荷工况下就有可能承载。如果缺少了 它,就不能保证桁架的坚固性。
分析桁架内力时,如首先确定其中的零杆, 这对后续分析往往有利。
§5-2 结点法
• 按与“组成顺序相反”的原则,逐次建 立各结点的平衡方程,则桁架各结点未 知内力数目一定不超过独立平衡方程数;
• 由结点平衡方程可求得桁架各杆内力。
§5-2 结点法 二、结点法计算简化的途径
1. 对于一些特殊的结点,可以应用平衡条件直 接判断该结点的某些杆件内力为零。 零杆
(1) L型结点:两杆交于一点,若结点无荷载,则两杆 的内力都为零。

《结构力学》静定桁架和组合结构的内力分析-知识点归纳总结

《结构力学》静定桁架和组合结构的内力分析-知识点归纳总结

5.2 《结构力学》静定桁架和组合结构的内力分析-知识点归纳总结一、桁架按几何组成特征分类(1)简单桁架:由基础或一个基本铰结三角形依次增加二元体形成;(2)联合桁架:由几个简单桁架按几何不变体系的几何组成规则形成;(3)复杂桁架:不是按简单桁架或联合桁架几何组成方式形成。

二、桁架计算的结点法1、取隔离体截取桁架结点为隔离体,作用于结点上的各力(包括外荷载、反力和杆件轴力)组成平面汇交力系,存在两个独立的平衡方程,可解出两个未知杆轴力。

采用结点法计算桁架时,一般从内力未知的杆不超过两个的结点开始依次计算。

计算时,要注意斜杆轴力与其投影分力之间的关系(图1):图1式中,为杆件长度,和分别为杆件在两个垂直方向的投影长度;为杆件轴力,和分别为轴力在两个相互垂直方向的投影分量。

结点法一般适用于求简单桁架中所有杆件轴力。

2、特殊杆件(如零杆、等力杆等)的判断L 形结点(图2a ):呈L 形汇交的两杆结点没有外荷载作用时两杆均为零杆。

T 形结点(图2b ):呈T 形汇交的三杆结点没有外荷载作用时,不共线的第三杆必为零杆,而共线的两杆内力相等且正负号相同(同为拉力或同为压力)。

X 形结点(图2c ):呈X 形汇交的四杆结点没有外荷载作用时,彼此共线的杆件轴力两两相等且符号相同。

K 形结点(图2d ):呈K 形汇交的四杆结点,其中两杆共线,而另外两杆在共线杆同侧且夹角相等。

若结点上没有外荷载作用,则不共线杆件的轴力大小相等但符号相反(即一杆为拉力另一杆为压力)。

Y 形结点(图2e ):呈Y 形汇交的三杆结点,其中两杆分别在第三杆的两侧且夹角相等。

若结点上没有与第三杆轴线方向倾斜的外荷载作用,则该两杆内力大小相等且符号相同。

对称桁架在正对称荷载下,在对称轴两侧的对称位置上的杆件,应有大小相等、性质相y N x x yF F F l l l ==l x l y l N F x F y F同(同为拉杆或压杆)的轴力;在反对称荷载下,在对称轴两侧的对称位置上的杆件,应有大小相等、性质相反(一拉杆一压杆)的轴力。

结构力学I-第三章 静定结构的受力分析(桁架、组合结构)

结构力学I-第三章 静定结构的受力分析(桁架、组合结构)
FNEC FNED 33.54 kN
Y 0 FNEC sin FNED sin FNEA sin 10 kN 0
联立解出
FNEC FNED 10 5 33.5 思考:能否更快呢? FNEC 22.36 kN, FNED 11.18 kN
00:44
静定平面桁架
• 桁架的内力计算
由力矩平衡方程 ∑ ME = 0,可求CD杆内力。
FA×d - FNCD×h = 0
FNCD = FAd / h = M0E / h
F1 F2 F3 F4 F5
M0E FA
6d
M FB
若M0E > 0,则FNCD >0 (下弦杆受拉 )
M0E是什么?
00:44
I
II
静定平面桁架
I
II
• 桁架的内力计算
简支梁
悬臂梁
伸臂梁
刚架:受弯构件,由若干直杆联结而成的结构,其中全部或部份 结点为刚结点;
A
D
B
C
简支刚架
悬臂刚架
三铰刚架
00:44
回顾
• 结构内力图
M–AB (表0) 示结构上各截面内力值的图形:弯矩图、M剪BA (0)
力图、A端轴力图;
A
B
FNA横B 坐标 -- 截面位置;
内力图 - 弯矩
A
FA
FB
– 截面法
• 例1:试求图示桁架中杆EF、ED,CD,DG的内力。
解: ⑶ 求上弦杆EF内力,力矩法;
取 ED 和 CD 杆 的 交 点 D 为 矩 心 , 先 求 EF 杆 的 水 平 分 力
FxEF,由力矩平衡方程∑MD = 0,
FA×2d - F1×d + FxEF×H = 0

第05章静定桁架

第05章静定桁架

力学教研室
黑 龙 江 工 程 学 院
22
P
2019/10/14
第五章 静定平面桁架
A
①对称结构在对称荷载作用下,
对称轴上的K 性结点无外力作
用,两斜杆轴力为零。
②由T性结点受力特点,又

可找到四根零杆。

③内接三角形的三顶点不受 力时,内接三角形不受力。

又找到六根零杆。

00 0
0
0
P
00


00 0
学 院
ad
RA
2019/10/14
d
YED
力学教研室
力矩法
28
三、投影法
第五章 静定平面桁架

求DG杆内力
作Ⅱ-Ⅱ截面,
取左部分为隔离体。 由∑Y=0 ,有
RA-P1-P2-P3+YDG=0
YDG=NDGsin=-(RA-P1-P2-P3)
YDG=-V0
此法又称为剪力法。




RA
RB 工

DG段V0= (RA-P1-P2-P3)
l/2
拱式结构
特点: 轴压为主,受力较均匀
基础需牢固
B H


VB


A
C
B


D 特点: 结构整体来看,受力均匀。

横截面弯矩为主,应力分布不均
A
B
梁式结构
为了充分发挥材料的潜力,有 两种处理方案
2019/10/14
力学教研室
4
第五章 静定平面桁架
沿横向将中性轴附近的材料挖去,以节约材料减轻自重。 这样得到的格构式体系称为桁架。

结构力学:静定桁架和组合结构

结构力学:静定桁架和组合结构

( FyDF 10kN )
结点C
20kN
Y 0
NCF 20 40 0 NCF 20kN (拉)
20 5
C
20 5
NCF
例6-2 用结点法求AC、AB杆轴力。
P
D C E G 2m 4m
FP
P
A
3m
B F
3m
4m
H 2m
解: 取结点A,将NAC延伸到C分解,将NAB延伸到 P B分解。 A NAC 5 1 NAB FxAC C FxAB 2 B 13 3 FyAB F
结点A
Y 0
A
FyAD
NAD FxAD
FyAD 30kN FxAD FyAD (lx l y ) 30(2 1) 60kN N AD FyAD (l l y ) 30( 5 1) 67.08kN (压)
NAE
30kN
5
2
X 0
N AE FxAD 60kN (拉)
1
结点E
X 0
NEF 60kN (拉)
60kN
0 E
NEF
结点D 将NDF延伸到F结点分解为FxDF及FyDF
1
5
2
M
C
0
FxDF 2 20 2 0
FxDF 20kN
FyDF FxDF (l y / lx ) 20(1/ 2) 10kN N DF FxDF (l / lx ) 20( 5 / 2) 10 5 22.36kN (压)
5
1
2
13 3
2
M
B
0
FyAC ( P 2) / 4 0.5P FxAC FyAC (2 /1) P N AC FyAC (l / l y ) 0.5P( 5 /1) 1.118P(拉)

结构力学第六讲

结构力学第六讲

隔离体上的力是一个平面任意力系,可列出三个独立的 平衡方程。取隔离体时一般切断的未知轴力的杆件不多余三 根。
20
例2.用截面法计算下图桁架1、2、3杆的轴力。
P2 P F
G 1
2
I
E A
a/3 2a / 3 N
2
N1
3
C
YB 解: 1.求支座反力 YA 7 P / 5(),YB 3P / 5() 2.作1-1截面,取右部作隔离体 A O F 0, N 3 2 P / 5
零杆——内力为零的杆件。
(1)不共线的两杆结点,无荷载作用时,则 两杆为零杆。 N1
N2
N1=N2=0
(2)有两杆共线的三杆结点,无荷载作用时 ,则第三杆为零杆。
N3=0
N1 N3
N2
14
(3)四杆对称K结点,结构对称,荷载对称,K 结点位于对称轴上,无荷载作用时,则不在一直 线上的两杆为零杆。
N1 N2
31
再考虑结点D、E的平衡可求出各链杆的内力。
3. 计算梁式杆内力 取AC杆为隔离体,考虑其平衡可求得:
A
12kN
F
8kN C
6kN
=12kN HC
HC=12kN← VC=3kN↑
B
5kN 8kN
V=3kN C
A
1kN 6kN 4 0
C
6kN 12 0
并可作出弯矩图。
3kN
6
0 M图 (kN· m)
32
作业P89 6.10,6.15 6.18,6.28
33
15kN
15kN
+15kN
12
计算中的技巧 当遇到一个结点上未知力均为斜向时,为简化计算: (1)改变投影轴的方向

结构力学——静定桁架

结构力学——静定桁架

C FP
D FP
E
关于桁架计算简图的三个假定
FN
上弦杆
2
斜杆 竖杆 h 桁高
2 FS2=0 1
1
下弦杆
d
节间长度 跨度l
FN
FS1=0
1)各结点都是光滑的理想铰。 2)各杆轴线都是直线,且通过结点铰的中心。 3)荷载和支座反力都作用在结点上,且通过铰的中心。 满足以上假定的桁架,称为理想桁架
第一节
第三节
桁架计算的截面法
截面法计算步骤:
1.求反力;
2.判断零杆;
3.合理选择截面,使待求内力的杆为单杆;
4.列方程求内力
第三节
桁架计算的截面法
具体处理方法 —— 两刚片
F
D
S
组成分析法
E
FP C
FN1
FN2
F
K
DABFx来自AFy FN3
F m m
x K S
0 0 0
FN1 FN2 FN3
FAy
O
FP
E
II
D
5a
H
J
FBy
FN3 XN3 2 a / 3
13 a / 3
a
A
C
D
FAy
YN3
3a
m
O
0
YN3
FN3
第三节
桁架计算的截面法
有些杆件利用其特殊位置可方便计算 任意隔离体中,除某一杆 件外,其余杆都汇交于一 点(或相互平行),则此 杆称截面单杆。
截面单杆性质:
投影方程 由平衡方程直接求单杆内力
柳州市维义大桥主桥采用(108+288+108)m中承式连续钢桁 拱桥结构,为双向8车道城市桥梁,主桁由2片钢桁架组成,采用

第五章静定平面桁架

第五章静定平面桁架
(2)求FNEF:Σ mD=0, FNEF沿作用线平移到F点分解
1 F [ F 2 dF dFd ] x E F A 1 2 2 H
M H
0 D
(压力)
结论:可证简支桁架,竖直向下荷载作用 下弦杆受拉力,上弦杆受压力 —— 对应梁,受竖直向下荷载的下、上边缘
(3)斜杆FNED EF、CD交点O,Σm0=0,FNED平移到D分解
桁架各部分名称
弦杆:上、下弦杆 腹杆:斜杆、竖杆 节间:弦杆上, 相邻结点区间 跨度、桁髙
桁架类型
(外形) a)平行弦 b)折弦 c)三角形 (是否有推力) a,b,c)无推力 d)有推力(拱式)
(几何组成方式)——与求解方法有关 (1)简单桁架(a,b,c)——二元体 (2)联合桁架(d,e)——三、二刚片规则 (3)复杂桁架(f)——非基本组成规则方式
1 F [ F aF ( ad ) ] Y E D A 1aF 2 a 2 d
(可能+、-)
2.投影(方程)法 (上、下弦杆平行) (1)求斜杆DG Ⅱ—Ⅱ截面(左) ∑Y=0 FYDG=-(FA-F1-F2-F3) =-F0SDG ——剪力法
F0SDG
截面法: ①所截杆件一般不超过三根 ——三个独立平衡方程可解 ②截面多于三个未知力, 如其中除一根外,其余均交于一点、或平行 ——可解此杆——截面单杆 ③几何组成相反次序求解
§5-6 组 合 结 构 计 算
组合结构——链杆与梁式杆,组合而成结构 (轴力杆:FN)(受弯杆件:M、FS、FN) 计算顺序:反力—链杆—梁式杆 【例5-3】 ①几何组成 ②求解次序 ③反力 FAV=5kN, FBV=3kN ④链杆 FNDE: ⑤梁式杆:受荷载、 链杆的作用力FN ⑥校核结点A/B,F/G

组合结构及静定结构性质

组合结构及静定结构性质

§3 - 7
静定结构的一般性质
(5)若结构某一部分能够平衡外荷载,则其它部分 )若结构某一部分能够应的柱子受了压力, 图示结构在 作用下,只使相应的柱子受了压力, 而其它杆件的内力均为零。可以说: 而其它杆件的内力均为零。可以说:静定结构具有局 部平衡的性质,具有“见死不救”的特点, 部平衡的性质,具有“见死不救”的特点,也可以认 为静定结构受力不均匀。 为静定结构受力不均匀。

q=10kNm
A G 3m D 2m 2m C H E 3m B 1.5m
解:
1) 计算支座反力
q=10kNm
A F Ax =0 F Ay =37.5kN C G D I
I B H E F By=12.5kN
2)取截面I 2)取截面I—I右侧,计算杆DE的轴力和铰C处的约束 取截面 右侧,计算杆DE的轴力和铰C DE的轴力和铰 力
qL2/32
§3-8 各种结构型式的受力特点
(5)三铰拱 它的上面两根曲杆受有弯矩,但一般来说比较小, 它的上面两根曲杆受有弯矩,但一般来说比较小, 主要内力是压力。当接近合理拱轴线时弯矩很小。 主要内力是压力。当接近合理拱轴线时弯矩很小。因此 它的受力要好于组合结构, 它的受力要好于组合结构,但它的竖向高度一般来说要 大于组合结构。 大于组合结构。
FCy =-12.5kN
∑MC = 0
FNED 1 = (12.5 × 5) = 41.67kN 1.5
C FCx =-41.67kN H F NED=41.67kN E
B
12.5kN
取结点E: 取结点E
FNEH ==-20.83kN F NEH −20.83kN
FNEB = 20.83kN F YED=20.83kN

03-讲义:5.1 桁架结构的特点及类型

03-讲义:5.1 桁架结构的特点及类型

第五章静定桁架和组合结构在结点荷载作用下,桁架中杆件只受轴力(无弯矩无剪力),截面应力均匀分布,故材料性能可得到充分发挥。

组合结构是由两种受力特性不同的杆件(梁式杆和链杆)组成,能发挥这两类杆件的各自优势。

本章主要讨论了桁架的特点、分类和求解方法(结点法、截面法及其联合应用),以及静定组合结构的分析计算。

第一节桁架结构的特点及类型一、桁架的特点梁式杆在荷载作用下,产生的内力主要为弯矩,这会导致截面上的应力分布是很不均匀的(图5-1(a))。

弹性设计时,一般是以某截面的最大应力来决定整个构件的断面尺寸,因而材料强度不能得到充分利用。

桁架结构是由直链杆组成的铰接体系(图5-1(b)),当荷载只作用在结点上时,各杆只有轴力(拉力或压力),截面上应力是均匀分布的,故材料性能可得到充分的发挥。

因此,桁架结构较梁式结构具有更大的优势:(1)材料应用较为经济,自重较轻,是大跨度结构常用的一种形式;(2)可用各种材料制造,如钢筋混凝土、钢或木材均可;(3)结构体型可以多样化,如平行弦桁架、三角形桁架及梯形桁架等形式;(4)施工方便,桁架可以整体制造后吊装,也可以在施工现场高空进行杆件拼装。

图5-1 梁和桁架受力性能比较(a)梁式杆及截面应力分布(b)桁架及应力分布桁架结构在工程实际中有广泛的应用。

如图5-2(a)所示轻型钢屋架和图5-2(b)所示某钢桁架桥等,都是典型的桁架结构实例。

二、桁架的计算简图理想桁架各杆只有轴力(拉力或压力),没有弯矩和剪力,且两端轴力大小相等、方向相反、作用在同一直线上,习惯称为二力杆。

这一受力特点反映了实际桁架结构的主要工作形态。

而实际桁架结构中,如钢筋混凝土桁架的结点是浇铸的,钢桁架使用结点板把各杆焊接在一起的。

这些节点都有一定的刚性,并不是理想铰结点。

同时,杆件也不可能绝对平直,荷载也不可能完全作用在结点上。

这导致实际桁架中杆件内力除轴力外,还有附加的弯矩和剪力对轴力的影响,但这种影响是次要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结点A Y 0
FyAD
NAD
FyAD 30kN FxAD FyAD (lx l y ) 30(2 1)
60kN
N AD FyAD (l l y ) 30( 5 1) 67.08kN(压)
FxAD A
NAE 30kN
51
X 0
2
N A E F x A D 6 0 k N ( 拉 ) 结点E
QFA
3.01
3
0.25
3m
3 0 .2 5
Q A F 2 .5 c o s 1 5 s i n 2 .5 3 .0 1 1 5 3 .0 1 1 .2 4 6 k N
MA 0
1 Q F A 3 .0 1 ( 0 .7 5 1 3 1 .5 ) 1 .7 4 4 k N
15
X 0
60kN 0 NEF
N E F60kN(拉 )
E
结点D 将NDF延伸到F结点分解为FxDF及FyDF
5
1 2
MC 0
F x D F 2 2 0 2 0F x D F 2 0 k N
F y D F F x D F ( ly/lx ) 2 0 ( 1 /2 ) 1 0 k N N D F F x D F ( l/lx ) 2 0 (5 /2 ) 1 05 2 2 .3 6 k N ( 压 )
例6-3 用截面法求轴力N1、N2、N3、N4。
P P IP P P
C
E
1
02
0
a
0A 00
3
D 4I
2.5P a a a a
00 a B
a a 2.5P
解: (1)对称结构对称荷载,支座反力如图示。 (2)零杆如图示。
(3)求轴力N1、N2、N3、N4。
结点C
P
C
N1
N2
1 52
Fy 0
Fy2P0 Fy2P Fx20.5P
QCF 0.25m
MF0.25
3
M F131.5150.25 4.53.750.75kN.m (上 拉 )
求FC杆的剪力和轴力
QCF
15sin150.25NFC F
1.246kN
3.01 QFC
MC0
QFC3.101(0.75131.5)1.744kN
1kN/m
C
(6) PPP
12
αα A
N2
y N1
N3
αα A
N4
上图为对称结构、对称荷载的情况, 但结点 A不在对称轴上。
由∑Y=0 , N1=-N2
6.3 截 面 法
对于联合桁架或复杂桁架,单纯应用结点 法不能求出全部杆件的轴力,因为总会遇到有 三个未知轴力的结点而无法求解,此时要用截 面法求解。即使在简单桁架中,求指定杆的轴 力用截面法也比较方便。
(2)
N1
N2
0 N3
Y0 N3 0 X0 N1 N2
(3) N1
N4 N2
N3
Y0 N3 N4 X0 N1 N2
(4) N1
P N2
N3
Y0 N3 P X0 N1 N2
(5 P
P
P
12
αα 3 A4
N2 0
y 0
N1
N3
αα A
N4
上图为对称结构、对称荷载的情况, 结点A 在对称轴上。
由∑Y=0 , N1= N2=0 ∑X=0, N3= N4
20kN
FyDC NDC
C
30 5 D A
4m
NDF 2m F FyDF
FxDF NDF
51
2
Y 0
FyDC3020FyDF0 (FyDF 10kN) FyDC30201020kN NDCFyDC(l/ly)20( 5/1)44.72kN(压 )
结点C
Y 0
NCF 20400 NCF 20kN(拉)
例6-1 用结点法求各杆轴力。
解:
(1)支座反力
FyA=FyB=30kN(↑)
FxA=0
0
20kN
20kN
C 20kN
D
0
20 G
0
1m 1m
A 60 E 60 F H B
(2)判断零杆 30kN
2m
2m
2m
2m 30kN
见图中标注。
(3)求各杆轴力
取结点隔离体顺序为:A、E、D、C。
结构对称,荷载对称,只需计算半边结构。
(4) 结构内力如下图示。
0A
FC G
-3.5kN
6kN 15.4kN D 15kN
E
B
6kN
0.75
1.744
C 1.246
C
A 0.75 F 0.75
A
F 1.246 1.744
M图(kN∙m)
Q图(kN)
F
C
A 14.91
14.95
15.2
15.16
N图(kN)
1.5P(压)
Fx2 0.5P Fx3 0.75P N 4 2.75P
6.4 结点法和截面法的联合应用
例6-4 求N1、N2 。
解:
(1) 求支座反力
F
X 0
F xA 8 0 k N ( )
I
M B0
D
F yA
1 8
(8 0
6)
80kN
6 0 kN ( )
A
Y 0
60kN 2m
F yB 6 0 k N ( )
II
1
2 C 2m 2m
80kN G
2m
2m E
II
2m
I
B
2m 60kN
(2) 求N1、N2
Y 0 X 0
FyBE 60kN FxBE 60kN NBC FxBE 0 NBC FxBE 60kN(拉)
取截面I-I以左为隔离体
MD 0
I
D
1
N2 2
(60 2 2
80kN
60 2 80 2)
00 C
结点D
Y 0N 1 ' P 2
N
' 1
D0 P /2
取截面I-I以左为隔离体:
I
Y 0
F y2 P 0 . 5 P 0 F y2 0 . 5 P
N
' 2
2P 2
1a 0A D
P/2 0
a
P
N
' 2
a
I
(2)对称结构反对称荷载
II E F
1 0A D
P/2
F yA
2F
II C
A
8 0 2 8 .2 8 k N (压 ) 60kN 2m
22
结点B
NBE NBC
B 60kN
2 2m
N2 2m
C 60kN I
2m 2m
F 取截面II-II以右为隔
离体:
II 80kN
G
N1
2m
MF 0
Fy1
1 4
(20
24
2)
40kN
N1 40 2 56.57kN (拉 )
E 20 2kN
结点D
X 0
FxDA 15kN
FyDA
0.7153.5kN 3
NDA
3.08061515.4kN(拉) 3
NDA
NDF
D 15kN
0.7 3.0806 3
Y 0
NDFFyDA0 NDF FyDA3.5kN(压)
(3) 求梁式杆的内力M、Q、N 。
取FC段作隔离体:
NFC F QQC
1kN/m
C
NCF 15
a
a
a
整体平衡
a B
P/2 F yB
a
a
MA 0 F y B4 1 a(P 23 aP 2a)1 4P ( )
Y 0
FyA
1 4
P()
结点F
0 F0 0
结点E 0
E0
0
N
" 1
0
取截面II-II以左为隔离体:
Y 0 Fy2 0.25P
0
A 0 II
N2"
2P 4
叠加两种情况的结果得:
P/4
N
" 2
(1)截面只截断彼此不交于同一点(或不彼此 平行)的三根杆件,则其中每一根杆件均为单杆。
(2) 截面所截杆数大于3,但除某一杆外, 其余各杆都交于同一点(或都彼此平行),则此杆 也是单杆。
1
1
1
1
1
2
1
3
2
2 3
3
上列各图中,杆1,2,3均为截面单杆。 截面单杆的性质:截面单杆的轴力可根据截面隔 离体的平衡条件直接求出。
1kN/m
2.5
F NFA
15 A
0.25m
NAF 2.5 QAF0.75kN.m QFA
3.01
3
0.25
3m
N A F2.5sin15cos2.50 3..2 05 1153.3 01
15.16kN (压 )
NFANAF13sin15.1630 3..2 05 1
15.160.24914.91kN(压 )
小结: (1) 支座反力要校核;
(2) 判断零杆及特殊受力杆; (3) 结点隔离体中,未知轴力一律设为拉力, 已知力按实际方向标注;
(4) 运用比拟关系 N Fx Fy 。
l lx ly
结点受力的特殊情况
(1)
N1 0 90。 0 N2
s
结点上无荷载,则N1=N2=0。
由∑FS=0,可得N2=0,故N1=0。
相关文档
最新文档