三菱伺服电机解释伺服电机在使用中的常见问题

合集下载

伺服电机常见故障与维修

伺服电机常见故障与维修

伺服电机常见故障与维修伺服电机常见故障与维修伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。

伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。

分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。

伺服电机常见结构如下:伺服电机常见故障与维修方法如下:一、电机上电,机械振荡(加/减速时)引发此类故障的常见原因有:①脉冲编码器出现故障。

此时应检查伺服系统是否稳定,电路板维修检测电流是否稳定,同时,速度检测单元反馈线端子上的电压是否在某几点电压下降,如有下降表明脉冲编码器不良,更换编码器;②脉冲编码器十字联轴节可能损坏,导致轴转速与检测到的速度不同步,更换联轴节;③测速发电机出现故障。

修复,更换测速机。

维修实践中,测速机电刷磨损、卡阻故障较多,此时应拆下测速机的电刷,用纲砂纸打磨几下,同时清扫换向器的污垢,再重新装好。

二、电机上电,机械运动异常快速(飞车)出现这种伺服整机系统故障,应在检查位置控制单元和速度控制单元的同时,还应检查:①脉冲编码器接线是否错误;②脉冲编码器联轴节是否损坏;③检查测速发电机端子是否接反和励磁信号线是否接错。

一般这类现象应由专业的电路板维修技术人员处理,负责可能会造成更严重的后果。

三、主轴不能定向移动或定向移动不到位出现这种伺服整机系统故障,应在检查定向控制电路的设置调整、检查定向板、主轴控制印刷电路板调整的同时,还应检查位置检测器(编码器)的输出波形是否正常来判断编码器的好坏(应注意在设备正常时测录编码器的正常输出波形,以便故障时查对)。

四、坐标轴进给时振动应检查电机线圈、机械进给丝杠同电机的连接、伺服系统、脉冲编码器、联轴节、测速机。

五、出现NC错误报警NC报警中因程序错误,操作错误引起的报警。

伺服电机出现故障的常见原因有那些?

伺服电机出现故障的常见原因有那些?

伺服电机出现故障的常见原因有那些?伺服电机可以控制速度,位置精度⾮常准确,可以将电压信号转化为转矩和转速以驱动控制对象。

伺服电机转⼦转速受输⼊信号控制,并能快速反应,在⾃动控制系统中,⽤作执⾏元件,且具有机电时间常数⼩、线性度⾼等特性,可把所收到的电信号转换成电动机轴上的⾓位移或⾓速度输出。

分为直流和交流伺服电动机两⼤类,其主要特点是,当信号电压为零时⽆⾃转现象,转速随着转矩的增加⽽匀速下降。

伺服电机常见问题以及正确的维修⽅法1. 电源或驱动器故障⼀种可能是伺服电机电源不⾜或驱动器损坏。

在这种情况下,电机本⾝是好的,但是外部系统的故障会导致它出现故障。

有故障的驱动器或电源可能会通过在流向电机的电源中产⽣电压尖峰或不规则来损坏伺服电机。

通常,绕组需要重绕。

2、轴承故障通常,困扰伺服电机的是轴承故障。

磨损或未润滑的轴承会引起刺⽿的刺⽿噪⾳或呜呜声,因此如果您的电机出现这种症状,则可能是轴承造成的。

有时您可以更改设置和参数来弥补这个问题,但如果这不起作⽤,您可能需要更换伺服电机的轴承。

⼀定要⽴即这样做——随着时间的推移,有故障的轴承会导致电机完全故障。

3. 灰尘刹车布满灰尘的制动器也会导致伺服电机发出尖锐的尖叫声。

如果您的伺服电机有刹车,刹车⽚上的灰尘可能会渗⼊刹车本⾝。

然后灰尘会移动到轴承上,吸收油,并导致摩擦和尖叫。

尽管伺服电机轴承通常有防护罩,但灰尘通常会设法侵⼊并破坏它们。

4、定位误差定位错误也会导致伺服电机出现问题。

如果发⽣这种情况,电机将静⽌不动并发出嗡嗡声或颤动声,输出轴即使处于静⽌状态也会轻微摆动。

5. 设置问题或参数丢失设置问题和参数丢失会导致与定位错误类似的抖动问题。

您可以通过运⾏电机和驱动器的设置程序来检查这些问题是否是导致故障的原因。

如果不是,则电机中的反馈问题可能需要维修。

6. 电⽓故障电容器、电阻器、⼆极管、编码器、旋转变压器和其他电⽓元件都会随着时间的推移⽽磨损。

随着您的电⽓设备性能下降,它最终会开始损害您的电机性能并需要维修。

伺服电机使用过程中常见的故障原因及排除措施

伺服电机使用过程中常见的故障原因及排除措施

伺服电机使用过程中常见的故障原因及排除措施在很多的工业企业中,三相交流伺服电动机应用最为广泛,但通过长期运行后,会发生各种故障,及时判断故障原因,进行相应处理,是防止故障扩大,保证设备正常运行的一项重要的工作。

所以今天小编就给大家详细的介绍一下伺服电机使用过程中常见的故障原因及排除措施,希望对大家有所帮助。

一、通电后电动机不能转动,但无异响,也无异味和冒烟1.故障原因①电源未通(至少两相未通);②熔丝熔断(至少两相熔断);③过流继电器调得过小;④控制设备接线错误。

2.故障排除①检查电源回路开关,熔丝、接线盒处是否有断点,修复;②检查熔丝型号、熔断原因,换新熔丝;③调节继电器整定值与电动机配合;④改正接线。

二、通电后电动机不转有嗡嗡声1.故障原因①转子绕组有断路(一相断线)或电源一相失电;②绕组引出线始末端接错或绕组内部接反;③电源回路接点松动,接触电阻大;④电动机负载过大或转子卡住;⑤电源电压过低;⑥小型电动机装配太紧或轴承内油脂过硬;⑦轴承卡住。

2.故障排除①查明断点予以修复;②检查绕组极性;判断绕组末端是否正确;③紧固松动的接线螺丝,用万用表判断各接头是否假接,予以修复;④减载或查出并消除机械故障,⑤检查是否把规定的面接法误接;是否由于电源导线过细使压降过大,予以纠正;⑥新装配使之灵活;更换合格油脂;⑦修复轴承。

三、电动机起动困难,额定负载时,电动机转速低于额定转速较多1.故障原因①电源电压过低;②面接法电机误接;③转子开焊或断裂;④转子局部线圈错接、接反;③修复电机绕组时增加匝数过多;⑤电机过载。

2.故障排除①测量电源电压,设法改善;②纠正接法;③检查开焊和断点并修复;④查出误接处予以改正;⑤恢复正确匝数;⑥减载。

四、电动机空载电流不平衡,三相相差大1.故障原因①绕组首尾端接错;②电源电压不平衡;③绕组存在匝间短路、线圈反接等故障。

2.故障排除①检查并纠正;②测量电源电压,设法消除不平衡;③消除绕组故障。

三菱伺服电机解释伺服电机在使用中的常见问题

三菱伺服电机解释伺服电机在使用中的常见问题

深圳三菱伺服电机参数计算相必很多人对三菱伺服的参数都没有一个具体的定量,那么下面就由我公司来做出对一些参数的考试与设置!可变频应急电源的参数计算(1可变频逆变器技术参数可变频逆变器采用西门子矢量型逆变器,其电气参数为:输入:DC510V (-15%~650V(+10%输出:0~3AC380额定频率输入:直流输出:0~50Hz额定电流输入:174A输出:146A过载电流:198A 过载时间:60S(2工频正弦波逆变器技术参数直流输入电压:180~300V直流输入电流:13.6A交流旁路输入电压: 380V±15%交流旁路输入电流:4.5A切换时间:≤5ms交流输出电压:380V±3%交流输出电流:3.6A过载能力:120% 1min;150% 10s;200% 1s(3逆变器容量核算a可变频逆变器容量核算氧枪电机容量为55KW,额定电流约110A,考虑氧枪刮渣过负荷情况,电流1.5倍为165A<198A(逆变器过载电流,故逆变器容量能够满足。

b工频正旋波逆变器容量核算该逆变器负载是氧枪抱闸电机(直接启动和控制电源,氧枪抱闸电机容量为0.33kW,额定电流约0.66A,直接启动电流按8倍计算为5.28A,逆变器额定输出电流为3.6A,过载1.5倍电流为5.4A>5.28A.控制电源的负载为氧枪电机、氧枪抱闸电机、转炉抱闸电机输入接触器线圈,因为他们不是同时工作,所以可以按最大线圈的吸合功率考虑,氧枪电机输入接触器为250A,线圈吸合功率为1430W,电流为1430W/220V=6.5A,吸合时间0.5s;而逆变器过载能力:200%1s,既容许电流为3.6×2=7.2A>6.5A.因为氧枪抱闸电机启动和接触器操作不是同时进行的,所以可以按最大负载考虑,由以上计算可以看出逆变器容量可以满足。

三菱伺服报警

三菱伺服报警

三菱伺服报警三菱伺服报警是在使用三菱伺服系统时可能会遇到的一种情况。

当系统检测到异常或故障时,会触发报警,提示用户进行相应的处理。

三菱伺服系统广泛应用于工业自动化领域,其稳定性和可靠性备受信赖。

然而,即使是高质量的产品,在长期使用过程中也难免会出现一些问题,报警就是其中之一。

一、三菱伺服系统报警的原因及处理方法1. 供电电压异常:当供电电压超出正常范围时,三菱伺服系统会报警。

此时,应检查电源线路是否连接良好,电压是否稳定,及时修复故障。

2. 电机过载:如果电机工作负荷过大,超出额定范围,也会导致报警。

可以通过降低负载、调整参数等方式解决问题。

3. 温度过高:三菱伺服系统在工作过程中会产生一定的热量,如果散热不良,温度过高,会触发报警。

应保持系统通风良好,控制温度适宜。

4. 控制系统故障:可能是软件问题、通信故障等引起的报警。

需要重新检查参数设置、重新连接通信线路等进行排查。

5. 机械故障:如果机械部件出现故障,也会引起三菱伺服系统报警。

此时需要检查机械结构是否正常,并进行维修或更换损坏部件。

二、如何有效预防三菱伺服系统报警1. 定期检查维护:定期对三菱伺服系统进行检查和维护,保证各部件正常工作,避免因故障引发报警。

2. 合理使用:在操作三菱伺服系统时,要按照使用手册上的要求进行操作,避免因错误操作导致系统报警。

3. 提高操作技能:操作人员应具备一定的技能和经验,能够熟练操作三菱伺服系统,及时处理各种异常情况,降低报警概率。

三、三菱伺服系统报警的处理流程1. 接收报警信号:当三菱伺服系统检测到异常时,会产生报警信号,通知操作人员进行处理。

2. 分析原因:操作人员需根据报警代码或报警信息,分析报警的具体原因,确定故障点。

3. 处理故障:根据故障的具体情况,采取相应的措施进行处理,例如检查线路、调整参数、更换零部件等。

4. 清除报警:在故障处理完成后,重新启动三菱伺服系统,并确认报警已经清除,确保系统正常运行。

三菱伺服报警

三菱伺服报警

三菱伺服报警代码使用三菱交流伺服系统主要由三个系列:MR-ES、MR-J2S、MR-J3。

通常故障情况可由伺服驱动器上显示代码来初步判断,以下是几种常见的故障及其排查方法:1、AL.E6 -表示伺服紧急停止。

引起此故障的原因一般有两个,一个是控制回路24V电源没有接入,另一个是CN1口EMG和SG之间没有接通。

2、AL.37-参数异常。

内部参数乱,操作人员误设参数或者驱动器受外部干扰导致。

一般参数恢复成出厂值即可解决。

3、AL.16-编码器故障。

内部参数乱或编码器线故障或电机编码器故障。

参数恢复出厂值或者更换线缆或者更换电机编码器,若故障依旧,则驱动器底板损坏。

4、AL.20-编码器故障。

电机编码器故障或线缆断线、接头松动等导致。

更换编码器线或伺服电机编码器。

MR-J3系列发生此故障时,还有一种可能是驱动器CPU接地线烧断导致。

5、AL.30-再生制动异常。

若刚通电就出现报警,则驱动器内部制动回路元件损坏。

若在运行过程中出现,可检查制动回路接线,必要时外配制动电阻。

6、AL.50、AL.51-过载。

检查输出U、V、W三相相序接线是否正确,伺服电机三相线圈烧坏或接地故障。

监控伺服电机负载率是否长时间超过100%,伺服响应参数设置过高,产生共振等原因。

7、AL.E9-主回路断开。

检查主回路电源是否接入,若正常则主模块检测回路故障,须更换驱动器或配件。

8、AL.52-误差过大。

电机编码器故障或驱动器输出模块回路元件损坏,通常油污较多的使用场合此故障较多。

另外简单判断伺服电机故障方法:去掉电机所有接线后,转动电机轴承,如能感觉到明显的阻力,转动时不顺畅,则机身线圈烧坏,另外装配联轴器不当时很容易把编码器敲坏,可摇动电机编码器部分,若能听到编码器碎片的声音,则编码器被敲坏。

附上三菱伺服MR-J2S系列所有代码伺服报警的代码:—— AL10 欠压—— AL12 存储器异常—— AL13 时钟异常—— AL15 存储器异常2—— AL16 编码器异常1—— AL 17 电路异常2—— AL 19 存储器异常3—— AL 1A 电机配合异常—— AL 20 编码器异常2 —— AL 24 电机接地故障—— AL 25 绝对位置丢失—— AL 30 再生制动异常—— AL 31 超速—— AL 32 过流—— AL 33 过压—— AL 35 指令脉冲频率异常—— AL 37 参数异常—— AL 45 主电路器件过热—— AL 46 电机过热—— AL 50 过载1—— AL 51 过载2—— AL 52 误差过大—— AL 8A 串行通讯超时—— AL 8E 串行通讯异常伺服警告代码:—— AL 92 电池断线警告—— AL 96 原点设定错误警告—— AL 9F 电池警告—— AL E0 再生制动电流过大警告—— AL E1 过载警告—— AL E3 绝对位置计数器警告—— AL E5 ABS超时警告—— AL E6 伺服电机异常停止—— AL E9 主电路OFF警告—— AL EA ABS伺服ON警告。

伺服电机常见故障分析

伺服电机常见故障分析

伺服电机常见故障分析伺服电机是一种利用电子控制系统精确控制位置、速度和加速度的电机。

它具有高精度、高响应速度、高可靠性等优点,在现代工业自动化领域得到广泛应用。

然而,在使用过程中,伺服电机也可能会出现故障,下面将对伺服电机常见故障进行分析。

1.控制器故障:控制器是伺服电机的核心部件,负责接收指令并控制电机运动。

控制器故障可能导致电机无法正常运行。

故障原因可能包括供电电压不稳定、控制器内部元件损坏等。

对于这种故障,需要检查供电线路和控制器内部元件是否损坏,并及时更换。

2.编码器故障:编码器是伺服电机用于反馈位置信息的装置,通过检测电机转子位置,将信息反馈给控制器。

如果编码器故障,将导致控制器无法准确感知电机位置,从而影响电机的运行。

故障原因可能包括连接线路断开、编码器损坏等。

解决方法是检查连接线路是否正常并重新连接,如果编码器损坏,则需要更换新的编码器。

3.电机电源故障:伺服电机需要稳定的电源供应才能正常工作,如果电机电源电压不稳定或出现波动,将导致电机不能正常运行。

故障原因可能包括电源线路接触不良、电源电压异常等。

解决方法是检查电源线路连接是否牢固,并使用稳定的电源供应。

4.电机过热:长时间高负载运行、环境温度过高等原因可能导致电机过热。

过热将使电机内部零部件受损,甚至引起电机烧坏。

解决方法是及时降低负载、提高散热能力,并确保环境温度在合理范围内。

5.电机震动和噪音:电机震动和噪音可能由于电机内部零部件松动、不平衡等原因引起。

这些问题可能导致电机性能下降,甚至损坏其他设备。

解决方法是检查电机内部零部件是否松动,松动部件需要予以紧固。

如果问题仍然存在,可能需要更换新的电机。

6.通信故障:伺服电机控制器通常通过串口或网络与上位机进行通信。

如果通信线路出现故障,将导致控制器不能正常接收指令,从而影响电机的工作。

解决方法是检查通信线路是否正常连接,并修复或更换故障线路。

综上所述,伺服电机常见故障分析主要包括控制器故障、编码器故障、电机电源故障、电机过热、电机震动和噪音以及通信故障等。

伺服电机常见故障处理技巧

伺服电机常见故障处理技巧

伺服电机常见故障处理技巧伺服电机是一种控制系统中常用的电动机,它能够根据输入的控制信号来精确控制电机的运动。

然而,由于长时间的使用以及其他原因,伺服电机也会出现一些常见故障,下面将介绍一些常见故障的处理技巧。

首先,伺服电机可能会出现电机无法正常启动的故障。

在这种情况下,可以首先检查电源线是否接触良好,并确保电源电压是否正常。

如果电源电压正常,则可以通过检查伺服驱动器的报警灯来确定是否有故障代码显示。

如果有故障代码显示,可以根据伺服驱动器的说明书查找故障原因,并采取相应的措施进行处理。

其次,伺服电机可能会出现无法精准定位的故障。

在这种情况下,可以首先检查接口线是否连接正确,并确保控制信号是否正常。

如果控制信号正常,则可以通过测量伺服电机的反馈信号来确定是否出现误差。

如果误差较大,则可能是伺服电机的编码器出现问题,此时可以尝试重新校准编码器或更换编码器来解决问题。

此外,伺服电机可能会出现运动过程中速度不稳定的故障。

在这种情况下,可以首先检查伺服驱动器的参数设置是否正确,并确保伺服电机的负载是否合适。

如果参数设置正确且负载合适,则可能是伺服电机的控制器出现问题,此时可以尝试进行控制器重新初始化或更换控制器来解决问题。

另外,伺服电机还可能会出现温升过高的故障。

在这种情况下,可以首先检查伺服电机的散热系统是否正常,并清理散热器上的灰尘和污垢。

如果散热系统正常,则可能是伺服电机的驱动器出现问题,此时可以尝试减小负载或更换驱动器来解决问题。

最后,伺服电机还可能会出现噪音过大的故障。

在这种情况下,可以首先检查伺服电机的连接部位是否有松动,并检查传动部件是否正常工作。

如果连接部位正常且传动部件正常工作,则可能是伺服电机的轴承出现问题,此时可以尝试润滑轴承或更换轴承来解决问题。

综上所述,伺服电机常见故障的处理技巧包括:检查电源线和控制信号的连接情况,确保电源电压和控制信号正常;根据伺服驱动器的报警代码或测量反馈信号确定故障原因;检查参数设置和负载情况,尝试重新校准编码器或更换控制器;检查伺服电机的散热系统和连接部位,尝试清理灰尘和润滑轴承。

三菱伺服电机抖动故障维修

三菱伺服电机抖动故障维修

三菱伺服电机抖动故障维修三菱伺服电机运行时抖动现象可能的几个原因:1、伺服负载过大(伺服选小了)2、伺服刚性没调好3、丝杆没选好。

下面我们从伺服配线、伺服参数、机械系统三个方面更详细的分析。

一、伺服配线:
a.使用标准动力电缆,编码器电缆,控制电缆,电缆有无破损;
b.检查控制线附近是否存在干扰源,是否与附近的大电流动力电缆互相平行或相隔太近;
c.检查接地端子电位是否有发生变动,切实保证接地良好。

二、伺服参数:
a.伺服增益设置太大,建议用手动或自动方式重新调整伺服参数;
b.确认速度反馈滤波器时间常数的设置,初始值为0,可尝试增大设置值;
c.电子齿轮比设置太大,建议恢复到出厂设置;
d.伺服系统和机械系统的共振,尝试调整陷波滤波器频率以及幅值。

三、机械系统:
a.连接电机轴和设备系统的联轴器发生偏移,安装螺钉未拧紧;
b.滑轮或齿轮的咬合不良也会导致负载转矩变动,尝试空载运行,如果空载运行时正常则检查机械系统的结合部分是否有异常;
c.确认负载惯量,力矩以及转速是否过大,尝试空载运行,如果空载运行正常,则减轻负载或更换更大容量的驱动器和电机。

交流伺服电机的常见问题

交流伺服电机的常见问题

交流伺服电机的常见问题
不管是什么机械,使用的时间长了总会出现点小毛病,或者刚开始使用时,因为操作不当,也会损坏机器,出了问题我们也不用太着急,首先找到问题是出在哪了,然后想办法怎么样才可以解决。

交流伺服电机的常见问题是不多的,一个个熟悉了就能得心应手。

问:如果三菱伺服电机在ZRN指令执行前,将回零方向控制输出位Y置位或复位来确定方向,例如规定向左为回零方向,如果工作台在开机前处于近点开关与右限位开关之间,这时原点回归就向左行,碰近点开关并回到原点,但是如果开机前工作台位于近点开关与左限位开关之间,按原点回归则电机也向左行,这时会碰左限开关,而不能碰近点开关,此时如何原点回归?
解答:
原点回归的方式有多种,基本的有三种。

1确定一个方向运动找到原点(这种适用于转盘类)
2确定一个方向,找两端其一的限位做原点。

(在PLC 里可以自己写这种程序,有的运动控制卡有这种回零方式选择)
3确定一个方向,先找一端的限位,再反向回来找原点。

(你的这个运动,大部分都用这种回零方式。

)
要想有个好点的售后保障,找三菱的代理商购买产品相对会好一些,三菱代理商经营时间长,也比较稳定。

由此三种基本方式衍生出的,快速找点再爬行一段距离再反向爬行找点再加Z相信号再加偏置等等(控制器不同库函数里封装的回零方式也不同,有的加一种,有的加几种。

但如果你想要做其中的某种方式,一般都可以自己辅助的写一段程序来完成)
你的这个就用第三种方式,如果使用PLC来控制,回零开始时,先写一段运动指令让小车先向一个方向运行,不管经过不经过原点都不停直到碰到这端限位停止,再把方向控制输出位Y反向输出,这时再用ZRN指令就一定能够找到原点。

伺服电机常见故障分析及处理

伺服电机常见故障分析及处理

伺服电机常见故障分析及处理伺服电机是一种能够实现精确控制的电机,其常见故障分析及处理如下:1.电机无法启动或无转动-检查电机的供电电压是否正常,如果不正常,检查电源系统并修复。

-检查电机的连接线路是否松动或损坏,如有问题,重新连接或更换电缆。

-检查电机的驱动器或控制器是否正常,如有故障,修复或更换。

-检查电机本身是否损坏,如有需要,修理或更换电机。

2.电机转速不稳定或不一致-检查控制器或驱动器的参数设置是否正确,如有问题,调整参数进行稳定控制。

-检查电机的传感器或编码器是否损坏或松动,如有问题,修复或重新固定。

-检查电机的机械连接部分是否松动或损坏,如有问题,进行调整或更换。

-检查电机的绕组或定子是否损坏,如有需要,修理或更换电机。

3.电机运行过热或发热-检查电机供电电压是否过高,如有问题,调整电压。

-检查电机负载是否过大,如有需要,减少负载。

-检查电机的冷却系统是否正常,如有问题,修复或更换冷却设备。

-检查电机的绝缘是否损坏,如有需要,修理或更换电机。

4.电机震动或噪音过大-检查电机的机械部分是否松动或损坏,如有问题,进行调整或更换。

-检查电机的轴承是否损坏或干涉,如有需要,修理或更换轴承。

-检查电机的定子或转子是否不平衡,如有问题,进行平衡处理。

-检查电机的绕组是否损坏,如有需要,修理或更换电机。

5.电机的定位精度不高-检查控制器或驱动器的参数设置是否正确,如有问题,调整参数进行精确控制。

-检查电机的传感器或编码器是否损坏或松动,如有需要,修复或重新固定。

-检查电机的机械连接部分是否松动或损坏,如有问题,进行调整或更换。

-检查控制系统的反馈回路是否正常,如有问题,修复或更换。

伺服电机常见故障分析

伺服电机常见故障分析

伺服电机常见故障分析伺服电机是一种配有编码器的电机,可以对输出的力和位置进行精确控制。

虽然伺服电机具有较高的可靠性和稳定性,但在长时间使用过程中仍然可能出现一些常见故障。

下面将对伺服电机的常见故障进行详细分析。

1.电机不转或启动困难:可能是电源故障导致的,检查电源是否正常供电。

还可能是电机接线不良,进行检查和修复。

此外,还需要检查驱动器是否工作正常,是否有故障信号。

2.电机转速不稳定:这可能是由于驱动器的参数设置不合适或编码器信号异常导致的。

可以通过重新调整驱动器的参数来解决此问题。

如果编码器信号异常,需要进行检查和修复。

3.电机发热过高:这可能是由于电机负载过重、运行时间过长或环境温度过高导致的。

解决方法可能是减少负载,及时停机冷却,或者改善环境温度条件。

4.电机振动过大:这可能是由于机械传动系统不平衡、电机安装不稳定或驱动器参数不合适等原因导致的。

可以通过平衡机械系统、重新安装电机或调整驱动器参数来解决此问题。

5.电机报警或故障停机:这可能是由于驱动器的故障保护功能触发导致的。

检查驱动器的故障代码,根据代码进行相应的处理。

6.电机位置误差过大:这可能是由于编码器信号异常、驱动器参数设置不合适或机械传动系统松动等原因导致的。

可以通过检查编码器信号、重新调整驱动器参数或紧固机械传动系统来解决位置误差过大的问题。

7.电机噪音过大:这可能是由于电机负载过重、机械传动系统不平衡或驱动器工作异常导致的。

可以通过减少负载、平衡机械系统或检查驱动器工作情况来降低噪音。

8.电机电流异常:电机电流异常可能是由于负载过重、驱动器故障或电源电压不稳定等原因引起的。

解决方法可能是减少负载、更换驱动器或修复电源故障。

除了以上列举的常见故障之外,还有一些其他故障可能会出现,例如过压、过流、断电等。

针对不同的故障情况,需要根据具体情况进行检查和修复。

此外,定期进行维护和保养也是预防故障的重要措施,可以延长伺服电机的使用寿命。

三菱伺服电机:处理常见故障分析

三菱伺服电机:处理常见故障分析

三菱伺服电机:处理常见故障分析1、UVT故障常见的欠压检测点都是直流母线侧的电压,经大阻值电阻分压后采样一个低电压值,与标准电压值比较后输出电压正常信号,过压信号或是欠压信号。

对于三菱A5 00系列变频器电压信号的采样值则是从开关电源侧取得的,并经过光电耦合器隔离,在维修过程中,发现光耦的损坏在造成欠压故障的原因中占有了很大的比重。

2、E6、E7故障E6、E7故障对于广大用户来说一定不陌生,这是一个比较常见的三菱变频器典型故障,当然损坏原因也是多方面的。

(1)、集成电路1302H02损坏。

这是一块集成了驱动波形转换,以及多路检测信号于一体的IC集成电路,并有多路信号和CPU板关联,在很多情况下,此集成电路的任何一路信号出现问题都有可能引起E6、E7报警;(2)、信号隔离光耦损坏。

在IC集成电路1302H02与CPU板之间有多路强弱信号需要隔离,隔离光耦的损坏在元器件的损坏比例中还是相对较高的,所以在出现E6、E7报警时,也要考虑到是否是此类因素造成的;(3)、接插件损坏或接插件接触不良。

由于CPU板和电源板之间的连接电缆经过几次弯曲后容易出现折断,虚焊等现象,在插头侧如果使用不当也易出现插脚弯曲折断等现象。

以上一些原因也都可能造成E6、E7故障的出现。

3、常见系列产品故障市场上正在推广使用的就是A700系列、E700系列、F 700系列和D700系列。

(1)、对于A700系列,有时会碰到UV(欠压)故障,可以检查一下整流回路。

A700系列7.5kW以下变频器的整流桥内置一个可控硅,变频器在正常运行时用于切断充电电阻,内置可控硅的损坏会导致欠压故障的出现。

开关电源损坏也是A700系列变频器的常见故障,而常见的损坏器件就是一块M51996波形发生器芯片,此芯片的损坏通常是由于工作电压的突变而导致的。

较容易出现问题的地方主要有芯片14脚的电源,调整电压基准值的7脚,反馈检测的5脚,以及波形输出的2脚等。

三菱伺服放大器内部故障处理方法AL.24主电路异常伺服电机输出端...

三菱伺服放大器内部故障处理方法AL.24主电路异常伺服电机输出端...

三菱伺服放大器内部故障处理方法AL.24主电路异常伺服电机输出端...三菱伺服放大器内部故障处理方法AL.24 主电路异常伺服电机输出端(U·V·W相)接地故障。

<主要原因><处理方法>·在主电路端子(TE1)上电源输入和输出接线有断路。

→修理电线。

·伺服电机动力线表面损坏。

→更换电线。

·伺服放大器主电路故障。

→更换伺服放大器。

制动电流超过内置再生制动电阻或再生制动选件的允许值。

再生制动晶体管异常。

内容:制动电流超过内置再生制动电阻或再生制动选件的允许值。

<主要原因><处理方法>·参数No.0设定错误。

→正确设定参数No.0 。

·未连接内置的再生制动电阻或再生制动选件。

→正确接线。

·电源电压异常(260V以上)。

→检查电源。

·高频度或连续再生制动运行使再生电流超过了内置再生制动电阻或再生制动选件的允许值。

→降低制动频度。

→更换容量大的再生制动电阻或再生制动选件。

→减小负载。

内容:再生制动晶体管异常。

<主要原因><处理方法>·内置再生制动电阻或再生制动选件故障。

→更换伺服放大器或再生制动选件。

·再生制动晶体管故障。

→更换伺服放大器。

AL.25 绝对位置数据丢失电池连接线松动或电压偏低AL.30 再生报警检查再生能耗电路、减小负载AL.31 超速转速超出了瞬时允许转速。

<主要原因><处理方法>·指令输入脉冲频率过高。

→正确设定指令脉冲频率。

·加减速时间过小导致超调过大。

→增大加减速时间常数。

·伺服系统不稳定导致超调。

→重新设定增益。

不能重新设定增益的场合:①负载转动惯量比设定的小一些。

②重新检查加减速时间常数的设定。

·电子齿轮比太大。

(参数No.3、No.4) →正确设定。

·编码器故障。

→更换伺服电机。

参数No.3有*标记的参数,设定后需将电源断开,再重新接通电源,参数才会生效。

三菱CNC伺服系统故障诊断及排除

三菱CNC伺服系统故障诊断及排除

三菱CNC伺服系统故障诊断及排除机床电器2011.2数控?数显——三菱CNC伺服系统故障诊断及排除三菱CNC伺服系统故障诊断及排除黄风(武汉兴东机电设备工程公司,430070)摘要:本文介绍了10例三菱数控伺服系统故障诊断和排除的过程和方法.关键词:三菱,CNC;伺服系统;参数;报警;故障诊断中图分类号:TP306.3文献标识码:B文章编号:1004—0420(2011)02—0018—04 1案例11.1故障现象:上电后伺服电机电流持续上升直至报警有很多例这样的情况.开机不久,某一伺服电机出现"过载"或"过电流"报警,有几例是如果不驱动伺服轴,该轴不报警,一旦仅作点动运行,也发生"过载"或"过电流"报警.而实际情况是电机空载运行.1.2分析及处理既然是"过载","过电流"报警,应该是伺服电机带上了很大负载,但电机现在是空载,为什么会出现这种故障现象呢?打开CNC上的"伺服监视"画面,观察到下列现象:只要发出"点动"信号,伺服电机转动后即使立即停止点动,电机电流还是会持续上升,直到超过设定的极限后发出报警.1.3调试阶段a.检查电机型号参数#2225(参数#2225设置错误也会出现上述故障现象);b.检查电机与驱动器的三相电源U,V,W是否对应,若相序错误会引起此类故障;C.机械安装有问题:如伺服电机轴受到了来自机械方面过大的扭矩,伺服电机的工作特性是保持在NC 系统的"指令位置",而来自机械方面的过大的扭矩迫使伺服电机离开其"指令位置",两方面相互作用,使伺服电机一直在工作,所以在"伺服监视"画面就看到"电流持续上升";d.如果"反向间隙"#2011,#2012设置过大也会加剧由于机械安装不当引起的这类过载现象.1.4故障排除要求厂家将伺服电机拆下,检查安装的同心度及一18一其他影响伺服电机轴受力的情况.重新安装后,该故障排除.也有几例是工作过一段时间后电机仍然出现上述故障现象,经过重新拆装电机后故障消除.2案例22.1故障现象:上电后运行.伺服电机发热直至冒烟某公司大型压力机数控系统为三菱M64,伺服电机7.5kW,交付使用三个月后,点动运行时,该电机出现发热,手摸上去烫手,甚至冒烟.但并未出现"过载","过电流"报警.2.2观察和分析在显示屏的"伺服监视"画面,电流偏高.用手摸伺服电机,电机发热烫手.该电机带有抱闸,其电机发热部位正是抱闸处,其余部位不发热.因此判断是抱闸未打开,电机强制运行而引起的摩擦发热.三菱伺服电机抱闸电压是DC24V,不分极性,用万用表检查控制柜内的DC24V电源,电压为DC24V,而且上电后已经发出打开抱闸信号,电机是新电机,(先假设电机不存在问题),到底是那个环节出了问题呢?仔细观察该设备,该设备是大型压力机,从控制柜到伺服电机距离约10m,这段距离可能造成电压降.用万用表检查伺服电机的抱闸接头,其电压只有DC22V,而标准要求为DC24×(1±5%)V,即抱闸电压在DC22.8V~DC25.2V.很可能是由于抱闸接头处的DC电压过低,造成了抱闸不能打开.2.3故障排除将控制柜内的DC24V电源电压调高,使抱闸处电压达到DC24V,这样抱闸就可以打开,电机就可以正常运行了.2.4小结运行中电机无故出现抖动,运行不畅,电机电流升数控?数显——三菱CNC伺服系统故障诊断及排除机床电器2011.2 高甚至过热过载也应该首先检查抱闸是否打开,三菱伺服电机的电动运行能力较强,即使带抱闸运行,有时也未必报警,但可以观察到运行不畅,电机电流升高,因此,凡是出现电机运行不畅,检查抱闸是必须的.而且该抱闸对电压的要求较高,如果达不到DC24V就可能时断时续,引起电机运行的抖动.引起电机运行不畅的第二个原因是相序不对,相序不对会引起电机颤动,闷响,这是必须注意的.3案例33.1故障现象:伺服轴一运行就出现"过极限报警"基本配置:数控热处理机床,三菱数控C64系统NC轴:5轴,使用绝对值检测系统.5个轴的绝对值原点全部能正常设置,无报警;但点动试运行时,第1~第4轴能正常运行,第5轴不能正常运行,一运行就出现"过极限报警".3.2检查第5轴软极限参数#2013,#2014设置正常,该参数没有问题.将第5轴改为"相对值检测系统",可点动运行.不出现"过极限报警".该系统参数是直接从另一多轴(8轴)系统复制过来.3.3分析如果该现象与"绝对值检测系统"有关,为何其他4轴能在"绝对值检测系统"下正常工作?如果与轴数有关,同样系统已使用多次,如果与参数有关,为何在"相对值检测系统"下能够点动?这使人感到迷惑. 3.4判断既然第5轴在"绝对值检测系统"下点动出现"过极限报警",而在"相对值检测系统"又可正常工作,该系统可控制NC轴为8轴,所以可判定系统硬件无问题,问题仍然是参数问题,要么有某一参数在起作用, 要么有参数互相冲突.3.5处理继续检查参数,特别是检查"绝对值检测系统"与软极限有关的参数,当检查到参数#8024时,发现第5 轴参数与其他轴不同,将其修改后,第5轴能够正常运行;参数#8024的含义是一行程极限负值.参数}} 8202,#8203,#8204,#8205都与行程范围有关.参数# 8204,#8205规定了第2类行程限制范围.而参数#8202,#8203规定了对第2类行程限制范围的检查是有效还是无效,一般默认值是有效,所以一旦对第2类行程限制范围设定了数值(参数#8204,}} 8205的数值),上电后就进行检查.对于上述的故障现象而言:在使用"绝对值检测系统"时,系统在上电后就已经建立了坐标系,如果对第2类行程极限也进行了设置,系统一直在进行检测,当行程极限很小时,一点动就会出现报警.而使用"相对值检测系统"时,上电后并未马上进行回原点操作,系统尚未建立坐标系,所以可进行点动操作而不报警.这就是造成令人迷惑的原因.4案例44.1故障现象:伺服轴运行出现闷响某配用三菱M64系统的加工中心经过搬迁后重新安装,客户报告开机运行时轴工作台运行出现极大的闷响声.而在原厂运行时一切正常.原参数未修改过.4.2分析伺服电机运行出现闷响是振动的一种,一般是如果伺服电机的运行频率区域与机床的固有频率区重合,就会形成共振而表现成剧烈的振动.由于该加工中心经过搬迁后重装,其固有频率可能发生改变而形成了共振.4.3处理建议客户修改参数#2238.该参数的作用是设定"共振频率",即使电机运行时避开这一频率.如果机床的安装比以前更紧固,共振频率会降低,则降低该参数值,反之升高.客户照此建议修改参数后,振动消除.5案例55.1故障现象:伺服电机运行时有闷响声,电机有5.2基本配置立式淬火机床,E60数控系统,运动轴为垂直轴;该机床刚交付使用.5.3分析与处置建议客户先检查参数,发现速度环增益参数#2205=60,远小于标准值,要求客户将#2205参数设置一】9一机床电器2011.2数控?数显——三菱CNC伺服系统故障诊断及排除为适当值#2205=150后,故障消除.当#2205参数设置过小时,会出现上电后颤动,抖动,巨大噪声等现象.对于成批交货的机床,可能会出现参数未正确设定的现象.速度环增益参数#2205是重要参数.5.4问题的处理对立式淬火机床而言,其伺服电机带动垂直轴运行,垂直方向带有平衡配重,如果平衡配重不合理,就会造成电机上,下行的工作负载相差过大,造成电机某~方向运行时电流过大,电机就会发热.简易的调整方法是:打开"伺服电机诊断画面",观察伺服电机上,下行运行时的电流,先调整稳态时的电流,通过加减配重块使上,下行稳态时的电流大致相等.再观察加减速时的电流是否有超过额定电流3倍的情况,如果有这种情况,就将加减速时间延长.使最大电流减小.6案例66.1故障现象:上电后,系统总是出现"SO10052"系数控车床配三菱E60数控系统,上电后,系统总是出现"SO10052"系统过载报警.发生时段:交付使用一年后.6.2分析与判断上电后机床没有动作就出现"过载"显然不是正常报警.先检查外围的问题,如接地,动力电的绝缘.最后查明是伺服驱动器上的三相电源线有一相松动, 这是一个很隐蔽的故障.系统也没有发出"电源断相"报警,而发出"过载报警".本例可作为一案例参考.7案例77.1故障现象:z轴一移动就"过载报警"大型热处理机床,数控系统为三菱E68系统Z轴~移动就出现"过载"报警.发生时段:交付使用3个月.7.2观察与分析电机已经脱开负载,独立运行,用手轮移动该轴,观察到显示屏上z轴位置数据变化,电机无反应,操作2.3S就发生"过载报警".复位后系统又正常.一20—7.3分析用手轮移动观察到显示屏上z轴位置数据变化说明系统正常,2.3S后报警,而电机又不带负载,因此判断:a.外围配线的接地,绝缘有故障;b.抱闸未打开;c.驱动器及电机有故障.检查到抱闸时,发现电机上的抱闸电源插头松动,而且抱闸电源线太细,按要求应该0.5mm,线径太细造成压降大,要求厂家更换抱闸电源插头和电源线后, 故障消除.8案例88.1故障现象:E60系统出现"EMG009FSVR 0052"报警某客户焊接机使用三菱E60数控系统,该系统有两伺服轴.其A轴为旋转轴,带动工件旋转;Y轴为直线轴带动焊枪前进后退,该系统运行三个月后客户报告CNC系统出现"急停"报警,报警号为:EMG009FSVR0052系统处于急停状态,不能正常运行.该报警是"电池电压低"或"编码器电缆故障".8.2分析和判断要求客户自行更换电池后,仍然未消除报警.笔者到达现场后对CNC系统进行了仔细观察.报警号依然是:EMGO09FSVR0052这些报警与伺服系统相关,进一步在"伺服监视"画面观察,发现上电后""轴编码器电流直线上升,直到出现报警:"0050"一负载过大报警.而当时该轴电机已经拆下摆在地上,显然这样报警是编码器已经发生故障所引起.而同时】,轴电机上电后出现一次猛烈窜动,随即报警"0052"一误差过大.而当时未对系统有任何操作.电机也已经拆下摆在地上.因此判断l,轴编码器也出现故障.此次该设备两伺服电机编码器同时发生故障,从质量管理学的角度来说应该是一个"固定因素"在起作用,而不是偶然的因素.将损坏的编码器拆开检查,发现编码器的地线烧毁,其形成的烟雾颗粒遮住了编数控?数显——三菱CNC伺服系统故障诊断及排除机床电器2011.2 码器的检测部件,所以造成了编码器故障.8.3判断系统内有强电通过.这印证了工厂维修人员反映发生故障后,打开机柜,闻到一股电气烧糊味道的情况.仔细查看电气柜并询问工厂维修人员,证实电柜的地线与零线相连.而在三菱CNC是禁止地线接到零线上的.可以判定有强电通过零线进入到CNC系统.8.4处置a.要求客户正确连接地线;b.更换两台编码器后系统恢复正常,CNC系统未出现报警.9案例99.1故障现象:三菱C64系统发生"S010018报警"客户的大型工作机械,采用三菱C64系统,其伺服电机与伺服驱动器之间距离超过20m,系统经常出现内部报警,不能正常工作.而同一台设备另外几套伺服系统却不发生报警,其差别在于伺服电机与伺服驱动器之间距离小于10m.9.2分析与判断由于同一台设备的伺服系统型号相同,其差别在于伺服电机与伺服驱动器之间距离不同,分析是编码器电缆制作有问题,仔细检查编码器电缆制作图,当电缆长度大于15m时,其制作方法与小于15m时有所不同,在电缆长度大于15m时,要求对电源线实行3根线并联绞合,而且要求每条电线粗0.5mm.检查客户实际制作的电缆,电源线只用了1根0.12mm.的电线,这当然不符合编码器电缆制作要求,由于电缆线太细,电缆过长,造成电源电压压降过大,以致编码器工作电压不足,所以编码器不能正常工作,造成系统报警.9.3处理按编码器电缆制作要求:将3根0.5mm线绞合并联制作电源线,故障消除并且没有再发生.这种现象在使用三菱通用伺服系统MR—J2S, MR—J3S也出现同样故障,按同样方式可解决.10案例1O10.1故障现象:数控车床加工端面时.表面出现周期性波纹三菱E60系统数控车床,在加工端面时,表面出现周期性波纹.10.2分析与处理数控车床端面加工时,表面出现振纹的原因很多,在机械方面如:刀具,丝杠,主轴等部件的安装不良,机床的精度不足等都可能产生以上问题.因该故障周期性出现有一定规律性,一般应与主轴的位置反馈系统有关,但仔细检查机床主轴各部分, 并未发现任何问题.仔细观察振纹与轴的丝杠螺距相对应,因此对轴进行了检查.其结构是伺服电机与滚珠丝杠问通过齿形带进行联接,位置反馈编码器采用的是分离型布置.检查发现轴的分离式编码器安装位置与丝杠不同心,即:编码器轴心线与丝杠中心不在同一直线上,从而造成了轴移动过程中的编码器的旋转不均匀,反应到加工中,则出现周期性波纹.重新安装,调整编码器后,机床恢复正常.收稿日期:2010—12—15(上接第14页)由于本机的操作语言不同于一般通用设备,它的特点是一条语句就可以完成一个动作.编制可绕制任意电机的运行程序,机床上附带有与电脑连接的感应探针,可随时修正送丝长度与各轴旋转角度的误差,对任一轴系统出现的故障时电脑报警,整机系统停止工作,这时用户可在监控显示窗口观察,检查故障原因,针对显示内容对硬件或程序作出相应的修改.4结束语本设备填补了国内空白,生产的钢丝螺套已被广泛应用于汽车,航空,航天及专用设备等行业,随着工业的发展,钢丝螺套紧固件使用越来越广,该设备市场前景看好.参考文献:[1]日本三洋的R型交流伺服控制器手册及电机手册[z][2]台湾的六轴电脑控制器说明书[z].收稿日期:2011—01—11作者简介:范春荣,女,电气工程师,从事电气控制及其自动化专业.一21—。

伺服电机的13种故障及维修知识汇总

伺服电机的13种故障及维修知识汇总

伺服电机的13种故障及维修知识汇总伺服电机是一种将电能转化为机械能的设备,广泛应用于各种机械设备中。

尽管伺服电机在工作过程中有着高效、准确和可靠的特点,但是由于各种原因,仍然存在一些故障。

下面将介绍一些常见的伺服电机故障以及相应的维修知识。

1.电机无法启动:-检查电源线路和继电器是否正常。

-检查电机的供电电压是否符合要求。

-检查电机驱动器的软件是否设置正确。

2.电机运行速度不稳定:-检查电机驱动器的PID参数设置是否正确。

-检查电机的编码器是否损坏或松动。

3.电机运行过热:-检查电机的散热器是否正常工作。

-检查电机驱动器的电流限制是否设置正确。

-检查负载是否过重。

4.电机产生噪音:-检查电机的轴承是否需要润滑或更换。

-检查电机的定子线圈是否故障。

5.电机振动:-检查电机是否与机床固定牢固。

-检查电机的平衡性。

6.电机控制精度低:-检查电机驱动器的PID参数设置是否正确。

-检查电机的编码器分辨率是否满足要求。

7.电机出现漏油:-检查电机的密封圈是否损坏。

-检查电机的润滑系统是否正常工作。

8.电机无法停止:-检查电机驱动器的停机指令是否正常传递。

-检查电机的反馈信号是否正常。

9.电机电流过大:-检查电机负载是否过重。

-检查电机驱动器的电流限制是否设置正确。

10.电机震荡:-检查电机的电源线路是否干净稳定。

-检查电机驱动器的PID参数设置是否正确。

11.电机输出功率下降:-检查电机的定子线圈是否烧损。

-检查电机的轴承是否损坏。

12.编码器信号异常:-检查编码器的连接线是否松动。

-检查编码器是否需要校准。

13.电机无法停留在设定位置:-检查电机驱动器的PID参数设置是否正确。

-检查电机的编码器是否损坏或松动。

维修故障通常需要一定的专业知识和技能。

在维修伺服电机时,应首先确保安全,并遵循以下步骤:1.确认故障现象:准确了解电机的故障现象和表现。

2.断电检查:断开电源,确保电机处于安全状态。

3.检查电缆连接:检查电机的电缆连接是否松动或损坏。

伺服电机在使用过程中常见的问题故障介绍

伺服电机在使用过程中常见的问题故障介绍

伺服电机在使用过程中常见的问题故障介绍伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。

伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。

使用过程中会出现诸多故障问题,下面就给大家列举一下我们都会遇到哪些故障呢?1、电机产生轴电流电机的轴—轴承座—底座回路中电流称为轴电流。

轴电流的产生原因:1)磁场不对称;2)供电电流中有偕波;3)制造、安装不好,由于转子偏心造成气隙不匀;4)可拆式定子铁心两个半圆有缝隙;5)有扇形叠成式的定子铁心的拼片数目选择不合适。

危害:使电机轴承表面或滚珠受到侵蚀,形成点状微孔,使轴承运转性能恶化,摩擦损耗和发热增加,最终造成轴承烧毁。

预防:1)消除脉动磁通和电源偕波(如在变频器输出侧加装交流电抗器);2)电机设计时,将滑动轴承的轴承座和底座绝缘,滚动轴承的外端和端盖绝缘。

2、电机一般不能用于高原地区海拔高度对电机温升,电机容量(高压电机)及直流电机的换向均有不利影响,应注意以下三方面:1)海拔高,电机温升越大,输出功率越小,但当气温随海拔的升高而降低足以补偿海拔对温升的影响时,电机的额定输出功率可以不变;2)高压电机在高原时使用时要采取防电晕措施,海拔高度对直流电机换向不利,要注意碳刷材料的选用。

3、电机不宜轻载运行电机轻载运行时会造成:1)电机因数功率低;2)电机效率低,会造成设备浪费,运行不经济。

4、电机过热的原因1)负载过大;2)缺项;3)风道阻塞;4)低速运行时间过长;5)电源偕波过大。

5、久置不用的电机投入前需要做的工作1)测量定子,绕阻各项及绕阻对地绝缘电阻:绝缘电阴R 应满足下式:R>UN/(1000+P/1000) (MΩ)UN:电机绕阻额定电压(V)P:电机功率(KW)对下UN=380V 的电机R>0.38 MΩ如绝缘电阻低,可:●电机空载运行2~3h 烘干;●用30%额定电压的低压交流电通入绕阻或将三相绕阻串联后用直流电烘,保持电流在50%的额定电流;●用风机送入热空气或加热元件加热。

伺服电机系统的常见故障都有哪些

伺服电机系统的常见故障都有哪些

伺服电机系统的常见故障都有哪些伺服电机系统中的故障会对整个设备产生很大的影响。

以下是伺服电机系统中常见的故障及其解决方法。

1. 误差增加在使用伺服电机系统时,深度了解误差增加所导致的问题是非常重要的。

误差增加通常是由于模式开关设置不正确、控制器过载、电机通电鼠咬似的震动等原因导致的。

通过检查电机的状态,可以清楚地了解到误差增加的原因。

在解决这种情况时,应选择适当的解决方案,以便恢复伺服电机系统的正常运行。

2. 缺失控制伺服电机系统的缺失控制可能是由于其电源电压不足、输出阻塞、控制器压力不均等原因导致的。

为了避免这种情况的发生,应该进行常规的维护和调整,确保电机正常工作。

如果出现控制不足的情况,通常可以调整电机控制器的参数,以改善其工作。

3. 过载伺服电机系统中的过载可能是由于负载过大、电机故障或过热等原因导致的。

这时,应停止电机运作并进行深入的检查,以了解问题的本质。

为了避免过载情况的发生,应根据实际需求选择恰当的配置方式,并进行经常性的维护和检查。

4. 震动异常在使用伺服电机系统时,震动的异常是一个非常常见的故障。

通常,这种情况是由于电机的旋转方向不正确或控制器工作不正常导致的。

为了避免这种情况的发生,需要进行常规性的检修和调整,确保伺服电机系统的正常工作。

5. 感应器异常感应器异常通常是由于感应器位置错误或损坏所导致的。

为了解决这种故障,需要进行一些常规性的调整和维护。

这种故障可以通过更换或重新调整传感器来解决。

总而言之,伺服电机系统中常见的故障主要包括误差增加、缺失控制、过载、震动异常和感应器异常等。

需要进行定期维护和检修,并根据实际情况选择适当的解决方案,以确保伺服电机系统的正常工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳三菱伺服电机-伺服电机编码器正确安装法对于一些三菱伺服电机的安装和正确的使用方法一直是广大厂家和技术员争议,那么我公司对一些做出了整理和好的工作方法,具体如下:
一、工作内容
1、这项技术适用于对德国西门子伺服电机(型号为1FT603-1FT613,1FK604-1FK610)内置编码器损坏后的安装、调试,配置的增量型编码器为德国海德汉公司的ERN1387.001/020, 绝对值编码器为海德汉公司EQN1325.001。

2、使用工具公制内六方扳手一套,自制专用工具一个,十字改锥及一字改锥各一把,梅花改锥6件套。

3、可解决的问题对有故障的西门子伺服电机进行修理或更换损坏的伺服电机内置编码器,做到修旧利废,节约维修费用。

二、操作方法
1、该操作方法和一般操作方法的区别
在数控机床配置的西门子数控系统中,驱动电机分主轴电机和伺服电机两种。

当电机定子、转子、轴承有故障或其电机内置编码器损坏时,我们都需要对编码器拆卸进行修理或更换。

对主轴电机来说,更换或安装编码器只要用专用工具将其安装到相应位置就可以试车了,不需要调整电机轴或编码器的角度及位置。

但对伺服电机来说,则必须按照编码器的安装要求,严格执行安装步骤。

只要安装过程中出一点差错,就会出现编码器方面的报警而不能起动机床或出现飞车事故,导致电机报废或机械部件损坏。

因此正确安装非常重要。

2、该项技术的操作步骤
2.1拆卸损坏的编码器
关掉机床电源,解掉伺服电机的电源电缆及反馈电缆,把电机从机床上拆下来放到工作台案上,用内六方扳手去掉电机端盖上的四条螺栓,打开端盖,先卸下编码器盖,拔下编码器上的插接电缆,用十字改锥卸下支持盘上的两条小螺丝,用内六方扳手卸出编码器中心孔内的螺栓,然后用自制专用工具把编码器从电机轴上顶出来。

这样第一步工作即告完成。

2.2.1先安装支持盘
不同型号的电机,其支持盘的外形也不一样,如图2和图3,这由购买的备件提供。

用4条M2.5*6的小螺丝将支持盘安装到编码器的轴端。

注意事项:确保支持盘面和编码器的底面间距为5.2mm或12mm。

2.2.2调整电机轴
依据电机的型号,用手转动电机轴,把电机轴上的标记调整到如图4中箭头所示位置,即标记要和安装支持盘的孔保持一致。

2.2.3调整编码器
揭掉编码器盖,对ERN1387.001/020来说,把编码器内部玻璃盘上的标记1调整到和电路板上的标记2相重合;对EQN1325.001来说,把编码器内部齿轮上的标记3调整到和外壳上标记鼻4相重合,如图5所示
2.2.4安装编码器到电机轴上
把调整好标记的编码器锥形轴对准已调好位置的电机轴轻轻地推上去,确保电缆出口位于正确的位置上,如图
1FT606-1FT613和1FK606-1FK610电机,其安装支持盘的螺孔必须要位于支持盘上的长孔中间,对于
1FT603-604和1FK604电机来说,安装支持盘的螺孔必须要位于支持盘的焊接区域中间。

其调整角度范围如图7
2.2.5固定编码器
--对ERN1387.001/020编码器来说,用M5*50螺栓穿过中心孔将其固定
--对EQN1325.001编码器来说,用M5*70螺栓穿过中心孔将其固定
注意固定时用力要适当,防止编码器旋转。

然后安上固定支持盘的2条螺丝,把电源线插头插上,盖上金属外壳,保证电源线顺利地放在外壳的槽内,并使屏蔽层和金属外壳良好接触,安上固定外壳的螺丝。

2.2.6试验电机
编码器安装好后,装上电机端盖,在工作台案上连接好电机的动力电缆和反馈电缆,先进行电机的空载试验。

给机床送电,待机床起动方式组就绪后,可点动试验电机,如果电机能够正常转动无报警、无飞车现象,说明编码器安装成功。

否则还需拆下重新进行安装,若直接在机床上试车如果出现飞车现象,将会严重损坏机床的机械部分。

2.2.7将电机安装到机床上
电机空载试验好后,即可将其安装到机床上,然后再通电试车,检验其运动性能,通过参数观察电机电流和负荷情况,了解电机所带轴的运动情况,并根据需要随时进行调整。

3.操作中容易出现的错误及应注意的问题
第一、安装支持盘时要确保支持盘面和编码器的底面保持平行,并注意其间距及公差范围。

否则在旋转过程中容易损坏支持盘或编码器轴。

第二、要注意电机轴上的标记,如图4,这个标记随电机型号不同,其所处的方向亦不一样。

例如我在修理1FT608电机时,一开始没有认识到这个标记的重要性,没细看电机轴上的的标记,结果装上后试验电机时出现飞车现象,马上压下急停开关紧急停车,才没有造成电机的损坏。

第三、要注意编码器上的标记,对ERN1387.001/020编码器来说,玻璃盘和电路板上的标记较清楚,也容易调整。

而对编码器EQN1325.001来说,齿轮上的标记是一个小黑点,如果将标记对偏后将出现报警或飞车,飞车现象导致的后果较严重,必须引起足够的重视。

常见的报警内容有:
第四,电机在拆卸、搬动过程中,要轻拿轻放,防止碰撞,特别是编码器部位绝对不能用锤敲击,否则很容易损坏编码器内部的光学元件和电机的抱闸装置。

第五,如果是垂直轴电机,其内部有抱闸装置,无法用手转动电机轴。

这样在调整轴上的标记之前还需要给抱闸电源端子上通一个24V直流电源,并注意极性,使抱闸装置松开。

若电源极性接反,抱闸装置将不能松开。

4.如何掌握这项技能
首先,要了解数控机床的结构及工作原理,了解伺服电机的作用和结构特点。

第二,要了*的性能,是增量型还是绝对值型。

对报警内容要有足够的认识与理解,当遇到机床报警时,可根据报警分析故障所在。

第三,安装过程中手法要稳、准、轻,使编码器能够正确地安装到合适的位置。

相关文档
最新文档