单电源运算放大器的问与答

合集下载

运算放大器输入、输出、单电源和轨到轨问题

运算放大器输入、输出、单电源和轨到轨问题

Rev.0, 10/08, WK
Page 1 of 12
MT-035
为了保持低电源电压应用的宽动态范围,也需要轨到轨放大器输出级。单电源/轨到轨放 大器的输出电压摆幅应在任一电源轨的至少100 mV范围内(标称负载下)。输出电压摆幅与输 出级拓扑结构和负载电流密切相关。图1列出了单电源运算放大器的设计问题。
图3:偏置电流补偿双极性输入级
简单的双极性输入级(例如图2所示)会表现出高偏置电流,因为外部看到的电流事实上是两 个输入晶体管的基极电流。如果通过内部电流源提供该必要的偏置电流,如图3所示,那么 基极电流与电流源之间的差分电流将是流入输入端的唯一“外部”电流,它可能相当小。
Page 3 of 12
MT-035
Page 5 of 12
MT-035
+VS +VS
PNPs OR PMOS
Page 2 of 12
MT-035
VIN
Low Offset: As low as 10µV Low Offset Drift: As low as 0.1µV/ºC Temperature Stable IB Well-Matched Bias Currents Low Voltage Noise: As low as 1nV/√Hz
Hicept Super-Beta: 50pA - 5nA, More Complex and Slower) Medium Current Noise: 1pA/√Hz Matching source impedances minimize offset error due to bias current
图2:双极性晶体管输入级
偏置电流补偿双极性输入级
VIN

单电源供电的交流放大运放电路

单电源供电的交流放大运放电路

运放作为模拟电路的主要器件之一,在供电方式上有单电源和双电源两种,而选择何种供电方式,是初学者的困惑之处,本人也因此做了详细的实验,在此对这个问题作一些总结。

首先,运放分为单电源运放和双电源运放,在运放的datasheet上,如果电源电压写的是(+3V-+30V)/(±1。

5V—±15V)如324,则这个运放就是单电源运放,既能够单电源供电,也能够双电源供电;如果电源电压是(±1。

5V—±15V)如741,则这个运放就是双电源运放,仅能采用双电源供电。

但是,在实际应用中,这两种运放都能采用单电源、双电源的供电模式.具体使用方式如下:1:在放大直流信号时,如果采用双电源运放,则最好选择正负双电源供电,否则输入信号幅度较小时,可能无法正常工作;如果采用单电源运放,则单电源供电或双电源供电都可以正常工作;2:在放大交流信号时,无论是单电源运放还是双电源运放,采用正负双电源供电都可以正常工作;3:在放大交流信号时,无论是单电源运放还是双电源运放,简单的采用单电源供电都无法正常工作,对于单电源运放,表现为无法对信号的负半周放大,而双电源运放无法正常工作。

要采用单电源,就需要所谓的“偏置"。

而偏置的结果是把供电所采用的单电源相对的变成“双电源”。

具体电路如图:首先,采用耦合电容将运放电路和其他电路直流隔离,防止各部分直流电位的相互影响。

然后在输入点上加上Vcc/2的直流电压,分析一下各点的电位,Vcc是Vcc,in是Vcc/2,-Vcc是GND,然后把各点的电位减去Vcc/2,便成了Vcc是Vcc/2,in是0,-Vcc 是-Vcc/2,相当于是“双电源”!!在正式的双电源供电中,输入端的电位相对于输入信号电压是0,动态电压是Vcc是+Vcc,in是0+Vin,-Vcc 是-VCC,而偏置后的单电源供电是Vcc是+Vcc,in是Vcc/2+Vin,-Vcc是GND,相当于Vcc是Vcc/2,in是0+Vin,-Vcc是-Vcc/2,与双电源供电相同,只是电压范围只有双电源的一半,输出电压幅度相应会比较小.当然,这里面之所以可以相对的分析电位,是因为有了耦合电容的隔直作用,而电位本身就是一个相对的概念。

关于运算放大器的几个容易忽略的问题

关于运算放大器的几个容易忽略的问题

关于运算放大器的几个容易忽略的问题1:传感器+运算放大器+ADC+处理器是运算放大器的典型应用电路,在这种应用中,一个典型的问题是传感器提供的电流非常低,在这种情况下,如何完成信号放大?ANSWER:对于微弱信号的放大,只用单个放大器难以达到好的效果,必须使用一些较特别的方法和传感器激励手段,而使用同步检测电路结构可以得到非常好的测量效果。

这种同步检测电路类似于锁相放大器结构,包括传感器的方波激励、电流转电压放大器和同步解调三部分。

需要注意的是电流转电压放大器需选用输入偏置电流极低的运放。

另外同步解调需选用双路的SPDT 模拟开关。

另外,在运放、电容、电阻的选择和布板时,要特别注意选择高阻抗、低噪声运算和低噪声电阻。

同时还应考虑以下几点:(1)电路设计时注意平衡的处理,尽量平衡,对于抑制干扰有效,这些在美国国家半导体、BB(已被TI 收购)、ADI 等公司关于运放的设计手册中均可以查到。

(2)推荐加金属屏蔽罩,将微弱信号部分罩起来(开个小模具),金属体接电路地,可以大大改善电路抗干扰能力。

(3)对于传感器输出的nA 级,选择输入电流pA 级的运放即可(如果对速度没有多大的要求),运放也不贵。

仪表放大器当然最好了,就是成本高些。

(4)若选用非仪表运放,反馈电阻就不要太大了,M 欧级好一些。

否则对电阻要求比较高。

后级再进行2 级放大,中间加入简单的高通电路,抑制50Hz 干扰。

2:在双电源运放在接成单电源电路时,在偏置电压的设置方面会遇到一些两难选择,比如作为偏置的直流电压是用电阻分压好还是接参考电压源好?ANSWER:其实用何种方式不是绝对的。

需要知道的是双电源运放改成单电源电路时,如果采用基准电压的话,效果最好。

这种基准电压使系统设计得到最小的噪声和最高的PSRR。

但若采用电阻分压方式,必须考虑电源纹波对系统的影响,这种用法噪声比较高,PSRR比较低。

3:一般压电加速度传感器会接一级电荷放大器来实现电荷——电压转换,可是在传感器动态工作时,电荷放大器的输出电压会有不归零的现象(零漂现象)发生,如何解决这个问题?ANSWER:有几种可能性会导致零漂:(1)反馈电容ESR特性不好,随电荷量的变化而变化;(2)反馈电容两端未并上电阻,为了放大器的工作稳定,减少零漂,在反馈电容两端并上电阻,形成直流负反馈可以稳定放大器的直流工作点;(3)可能挑选的运算放大器的输入阻抗不够高,造成电荷泄露,导致零漂。

有关运放在单电源下的最关键注意事项

有关运放在单电源下的最关键注意事项

有关运放在单电源下的最关键注意事项在很多电子论坛经常看见运放在单电源供电下,进行测量放大的电路,出现啥啥问题、不能正常工作等等。

实际上其实这一切都是由于不同运放的不同输入结构造成的。

在说明下面这个问题前,首先强调一下:对于单电源应用,我这里指的是"直流"放大应用,此时运放的输入端电位受输入信号的牵制,输入信号的直流电平直接影响到运放的输入端电位。

而对于放大交流信号,因为有输入、输出电容隔离,此时运放用啥电源都没有关系,所以不在此讨论话题内。

对于直流放大,因为没有了隔直电容,输入信号的直流电位就会直接影响到运放的工作点,如果运放输入端工作电压超出运放的Vicom这个参数范围,就不能正常工作了。

Vicom这个参数一般都有正负两个值,究竟是啥含义呢?以NE5532的Vicom参数为例:从NE5532的内部结构知道运放输入端必须要比Vee脚高2V以上,以便可以给公共恒流源提供工作电压。

如果运放输入端接到Vee脚,那么差分管Vbe没有偏压,并且下面的公共恒流源电路也不能正常工作,运放也就工作在非正常状态了。

所以得到Vicom的最小值极限就是必须比Vee高2V同样可以推导到如果运放输入端接到Vcc,他也不能工作,也必须比Vcc低2V才能工作。

所以Vicom的最大极限值就是比Vcc低2V。

所以我们看到NE5532的Vicomm 有2个值,分别是正负13V,意思是在正负15V供电下(即Vcc=+15,Vee=-15V),运放差分输入端的电位必须要比Vee 高(-13)-(-15)=2V以上,比Vcc低(+13)-(+15)=-2V。

再看看LM358的输入结构是PNP达林顿输入结构,当输入端接到Vee脚,此时PNP管仍旧能正常工作。

而LM358的Vicom参数如下:说明在单26V供电(Vee=GND,Vcc=26V)下,Vicom的最小值可以为0V,即允许输入端直接接到Vee脚。

但为啥叫称呼他们为单电源运放呢?这主要是相对于输入信号的地来说的,因为一般输入信号是以自己的地为参考信号的,当没有信号输入时,输入信号的直流电位肯定就是地电位0V了。

运算放大器的单电源使用

运算放大器的单电源使用

One of the most common applications questions on opera-tional amplifiers concerns operation from a single supply voltage. “Can the model OPAxyz be operated from a single supply?” The answer is almost always yes. Operation of op amps from single supply voltages is useful when negative supply voltages are not available. Furthermore, certain ap-plications using high voltage and high current op amps can derive important benefits from single supply operation.Consider the basic op amp connection shown in Figure la. It is powered from a dual supply (also called a balanced or split supply). Note that there is no ground connection to the op amp. In fact, it could be said that the op amp doesn’t know where ground potential is. Ground potential is some-where between the positive and negative power supply voltages, but the op amp has no electrical connection to tell it exactly where.eration (a) to single-supply operation in (b).The circuit shown is connected as a voltage follower, so the output voltage is equal to the input voltage. Of course, there are limits to the ability of the output to follow the input. As the input voltage swings positively, the output at some point near the positive power supply will be unable to follow the input. Similarly the negative output swing will be limited to somewhere close to –V S . A typical op amp might allow output to swing within 2V of the power supply, making it possible to output –13V to +13V with ±15V supplies.Figure 1b shows the same unity-gain follower operated from a single 30V power supply. The op amp still has a total of 30V across the power supply terminals, but in this case it comes from a single positive supply. Operation is otherwise unchanged. The output is capable of following the input as long as the input comes no closer than 2V from either supply terminal of the op amp. The usable range of the circuit shown would be from +2V to +28V.Any op amp would be capable of this type of single-supply operation (with somewhat different swing limits). Why then are some op amps specifically touted for single supply applications?Sometimes, the limit on output swing near ground (the “negative” power supply to the op amp) poses a significant limitation. Figure 1b shows an application where the input signal is referenced to ground. In this case, input signals of less than 2V will not be accurately handled by the op amp.A “single-supply op amp” would handle this particularapplication more successfully. There are, however, manyways to use a standard op amp in single-supply applicationswhich may lead to better overall performance. The key to these applications is in understanding the limitations of op amps when handling voltages near their power supplies.There are two possible causes for the inability of a standard op amp to function near ground in Figure 1b. They are (1)limited common-mode range and (2) output voltage swing capability.These performance characteristics are easily visualized with the graphical representation shown in Figure 2. The range over which a given op amp properly functions is shown in relationship to the power supply voltage. The common-mode range, for instance, is sometimes shown plotted with respect to another parameter such as temperature. A ±15V supply is assumed in the preparation of this plot, but it is easy to imagine the negative supply as being ground.In Figure 2a, notice that the op amp has a common-moderange of –13V to +13.5V. For voltages on the input termi-nals of the op amp of more negative than –13V or more positive than +13.5V, the differential input stage ceases to properly function.Similarly, the output stages of the op amp will have limits on output swing close to the supply voltage. This will be load-dependent and perhaps temperature-dependent also. Figure 2b shows output swing ability of an op amp plotted withrespect to load current. It shows an output swing capability of –13.8V to +12.8V for a l0k Ω load (approximately ±1mA)at 25°C.©1986 Burr-Brown Corporation AB-067Printed in U.S.A. March, 1986One of the most common applications questions on opera-tional amplifiers concerns operation from a single supply voltage. “Can the model OPAxyz be operated from a single supply?” The answer is almost always yes. Operation of op amps from single supply voltages is useful when negative supply voltages are not available. Furthermore, certain ap-plications using high voltage and high current op amps can derive important benefits from single supply operation.Consider the basic op amp connection shown in Figure la. It is powered from a dual supply (also called a balanced or split supply). Note that there is no ground connection to the op amp. In fact, it could be said that the op amp doesn’t know where ground potential is. Ground potential is some-where between the positive and negative power supply voltages, but the op amp has no electrical connection to tell FIGURE 1. A simple unity-gain buffer connection of an op amp illustrates the similarity of split-supply op-eration (a) to single-supply operation in (b).The circuit shown is connected as a voltage follower, so the output voltage is equal to the input voltage. Of course, there are limits to the ability of the output to follow the input. As the input voltage swings positively, the output at some point near the positive power supply will be unable to follow the input. Similarly the negative output swing will be limited to somewhere close to –V S. A typical op amp might allow output to swing within 2V of the power supply, making it possible to output –13V to +13V with ±15V supplies.Figure 1b shows the same unity-gain follower operated from a single 30V power supply. The op amp still has a total of 30V across the power supply terminals, but in this case it comes from a single positive supply. Operation is otherwise unchanged. The output is capable of following the input as long as the input comes no closer than 2V from either supply terminal of the op amp. The usable range of the circuit shown would be from +2V to +28V.Any op amp would be capable of this type of single-supply operation (with somewhat different swing limits). Why then are some op amps specifically touted for single supply applications?Sometimes, the limit on output swing near ground (the “negative” power supply to the op amp) poses a significant limitation. Figure 1b shows an application where the input signal is referenced to ground. In this case, input signals of less than 2V will not be accurately handled by the op amp.A “single-supply op amp” would handle this particular application more successfully. There are, however, many ways to use a standard op amp in single-supply applications which may lead to better overall performance. The key to these applications is in understanding the limitations of op amps when handling voltages near their power supplies.There are two possible causes for the inability of a standard op amp to function near ground in Figure 1b. They are (1)limited common-mode range and (2) output voltage swing capability.These performance characteristics are easily visualized with the graphical representation shown in Figure 2. The range over which a given op amp properly functions is shown in relationship to the power supply voltage. The common-mode range, for instance, is sometimes shown plotted with respect to another parameter such as temperature. A ±15V supply is assumed in the preparation of this plot, but it is easy to imagine the negative supply as being ground.In Figure 2a, notice that the op amp has a common-mode range of –13V to +13.5V. For voltages on the input termi-nals of the op amp of more negative than –13V or more positive than +13.5V, the differential input stage ceases to properly function.Similarly, the output stages of the op amp will have limits on output swing close to the supply voltage. This will be load-dependent and perhaps temperature-dependent also. Figure 2b shows output swing ability of an op amp plotted with respect to load current. It shows an output swing capability of –13.8V to +12.8V for a l0k Ω load (approximately ±1mA)at 25°C.©1986 Burr-Brown Corporation AB-067Printed in U.S.A. March, 1986SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS 运算放大器的单电源供电单电源电压供电是运算放大器最常见的应用问题之一。

运放问题精粹

运放问题精粹

运放是运算放大器的简称。

在实际电路中,通常结合反馈网络共同组成某种功能模块。

由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”,此名称一直延续至今。

运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。

现今运放的种类繁多,广泛应用于几乎所有的行业当中。

在这里,我们整理出了《电子工程专辑》论坛的一些精华贴,希望前人的问题能帮助到遇到同样问题的你,也希望高手们能常来看看,为新进菜鸟们指点思路并提升自己的价值。

* 运放电路干扰问题此为采用lmv324i运放构成的一个电流采样电路,AIN0-AIN2输入到DSP2407A的AD转换引脚。

板子出来以后,发现采样电路很容易受干扰,在旁边打手机,用示波器看以看到采样电路中产生了一个正弦波,幅值可以达到几百毫伏,而且产生以后,关掉电话,有的板子中的干扰一直存在。

我对模拟电路不大懂,特地请教高手一下,此采样电路设计上有没有问题?干扰是不是打电话的时候引起了自激震荡?有没有办法消除干扰,提高抗干扰能力?* 运放供电问题探讨?双电源供电固然很好,但现实中许多时候希望是单电源供电,这就遇到问题了。

常规的解决方法是给输入信号一个偏置电压,这样信号高于0V,正负周都能被放大。

如果遇到一双电源供电的电路,IN+,IN-都有相应的设计,(不是简单一信号输入,一接地,比如IN+),这时候要改成单电源供电,怎么加偏置电压?直接加一偏置电压?* 运放电路设计问题恳请大家帮忙解答帮忙给我看看附件的运放电路设计的几个问题,我是新手,恳请大家的帮助,谢谢大家啊。

* 关于运放的几个问题,请大家帮帮忙1、为什么运放的频率响应特性有时在拐弯处会出现峰值呢?这对运放稳定性会造成怎样的影响?2、为什么运放对于矩形脉冲为什么会有上冲的现象出现呢?* 如何权衡N路模拟开关+单路运放+单路A/D OR N路运放+N路A/D ?如题,如何权衡 N路模拟开关+单路运放+单路A/D OR N路运放+N路A/D ?* 关于运放的零极点问题各位大侠,我经常看到一些资料上有这样的内容。

运算放大器设计应用及经典详解30问

运算放大器设计应用及经典详解30问

运算放大器设计应用及经典问答30例子(超级详解)1.用运算放大器做正弦波振荡有哪些经典电路问:用运算放大器做正弦波振荡器在学校时老师就教过,应该是一个常用的电路。

现在我做了几款,实际效果都不理想。

哪位做过,可否透露些经验或成功的电路?答:(1)用以下方法改进波形质量:选用高品质的电容;对运放的电源进行去耦设计;对震荡器的输出信号进行滤波处理。

(2)我曾经在铃流源电路中用到一种带有AGC电路的文氏电桥振荡器,用来产生25Hz的正弦波,如图所示。

图中使用二极管限幅代替非线性反馈元件,二极管通过对输出电压形成一个软限幅来降低失真。

文氏电桥或低失真的特性要求有个辅助电路来调节增益,辅助电路包括从在反馈环路内插入的一个非线性元件,到由外部元件构成的自动增益控制(AGC)回路。

通过D1对正弦波的负半周取样,且所取样存于C1中,选择R1和R2,必须使Q1的偏置定在中心处,使得输出电压为期望值时,(RG+RQ1)=RF/2。

当输出电压升高时,Q1增大电阻,从而使增益降低。

在上图所示的振荡器中,给运算放大器的正输入端施加0.833V电源,使输出的静态电压处在中心位置处(Vcc/2=2.5V),这里Q1多数用的是小信号的MOSFET 2N7000(N沟道,60V,7.5欧),D1则选用1N4148。

以上供你参考。

(3)为克服RC移相振荡器的缺点,常采用RC串并联电路作为选频反馈网络的正弦振荡电路,也称为文氏电桥振荡电路,如图Z0820所示。

它由两级共射电路构成的同相放大器和RC 串并联反馈网络组成。

由于φA= 0,这就要求RC串并联反馈网络对某一频率的相移φF=2nπ,才能满足振荡的相位平衡条件。

下面分析RC串并联网络的选频特性,再介绍其它有关元件的作用。

图Z0820中RC串并联网络在低、高频时的等效电路如图Z0821所示。

这是因为在频率比较低的情况下,(1/ωC)>R,而频率较高的情况下,则(1/ωC)为调节频率方便,通常取R1 = R2 = R,C1 = C2 = C,如果令ω0=1/ RC,则上式简化为:可见,RC串并联反馈网络的反馈系数是频率的函数。

单电源放大电路的直流偏置若干问题

单电源放大电路的直流偏置若干问题

单电源放大电路的直流偏置若干问题运算放大器的理想模型有:1、输出电压的饱和极限值等于运放的电源电压。

2、运放的开环电压增益很高。

3、若输出电压未达到饱和极限,则差分输入电压必趋近于0值。

4、输入电阻近似为无穷大。

5、输出电阻近似为0。

由以上结论推知,当运算放大器处于上图状态时,输出电压的饱和极限值就是0V、12V。

而输入信号为正弦电压信号时,是以0V为基准电压波动的,由于极限值的限制使得正弦波的小于0V的半波形无法得到放大,所以为了解决这个问题,我们就需要给输入加上一个直流偏置,即下图中的R1、R2。

R1、R2的加入使得输入电压有了一个直流的偏置电压,使得输入信号放大后的输出信号不失真的动态范围变得更大,最好情况是取输入的直流偏置为电源电压的一半时,动态范围最大,即6V 。

但是细心的同学就会发现,如果依照上图来计算直流电压的话,输入为2126I CC R V V V R R ==+ 由运算放大器的特性可知,负相端同样为6V ,那么0Vo Vn Vn Rf Rn--= 得到66Vo V =这个结果显然是无法实现的,Vo 将会受限而等于电源电压,因此这会造成输出电压信号波形的失真,为了保证输出电压的信号的放大,同时保证输出直流偏置取得较为合适,也就是说,为了使输出端只放大输入的电压信号,而不放大直流偏置电压,于是在运算放大器的负相端加一个电容,得下图。

画上图的直流通路得由于同相放大器的虚短虚断可以得到=Vp Vn=In V由于Rf上没有电流,所以没有压降,所以Vo Vi=对直流偏置电压而言相当于一个电压跟随器,而交流电压信号通过了电容,得到了放大,至于输出串联的电容则是为了消除负载对静态工作点的影响。

初稿:刘彪定稿:周迎新2013/11/28。

放大器知识经典问答(第三部分)

放大器知识经典问答(第三部分)

欲打印此文章,从您的浏览器菜单中选择“文件”后再选“打印”。

放大器知识经典问答(第三部分)上网时间:2009年10月14日来源:美国国家半导体公司41. 什么是电流反馈?电流反馈(Current Feedback )是一种用于电流反馈放大器的技术,它的输出信号反应的是电流输入到反相输入端的值(跨阻增益功能)。

在某些方面,与传统的电压反馈相比,这种拓扑结构具有操作的优势。

请看应用笔记 " OA-30, 电流反馈放大器和电压反馈放大器的比较。

42. 什么是闭环缓冲器?闭环缓冲器(Closed Loop Buffer )就是一个高输入阻抗和低输出阻抗、并具有固定增益+1的放大器。

它的典型应用是用于隔离、增加输出驱动、容性负载驱动等。

不需要去设置增益电阻。

43. 我的放大器设计在单5v 电源可以正常工作,但是如果我试图把4V 电压给输入端,输出将不会超出3.6V 。

这有什么不对呢?在器件的数据手册中,查找规格标定的输入电压范围或输入共模电压范围。

这个规格有放大器能够工作的接近上限或下限工作电压。

大多数放大器当输入和电源轨电 压只差1到2V 时便不能工作。

有些运算放大器只能工作在负电源轨,而不能工作在正电源轨。

如果你需要输入非常接近[20mv 至200mv 以内]电压轨,选择一个轨对轨( Rail-to-Rail )输入放大器,或一个允许输入达到电源轨的放大器。

如果输出也必须非常接近正的电源轨,选择一个轨对轨输入/输出(RRIO )放 大器。

你可以使用/appinfo/webench/放大器放大器 WEBENCH 去识别并选择能够满足你的输入输出电压范围要求的运算放大器。

44. 什么是闭环增益?闭环增益是指经反馈的输出电压的变化量与反馈和输入网络增加后的输入电压变化量的比值。

一般情况下,使用一个外部电阻设置这个参数。

45. “CMR”是什么的宿写?它是什么意思?“CMR”是“Common Mode Range”(共模范围)的宿写。

运放单电源供电探讨

运放单电源供电探讨

关于运算放大器的单电源供电方法文章出处: 发布时间: 2011-9-3 9:22:08 | 865 次阅读 | 0次推荐| 0条留言运算放大器(Operati ON al AMP lifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出的高增益电压放大器。

在实际电路中,通常结合反馈网络和不同的反馈方式,共同组成某些功能和特性不同的模块,这些模块是各种电子电路中最基本的环节。

可见运放在电子电路中的应用之广。

大部分运算放大器要求双电源(正负电源)供电,只有少部分运算放大器可以在单电源供电状态下工作,如LM358(双运放)、LM324(四运放)、CA3140(单运放)等。

需要说明的是,单电源供电的运算放大器不仅可以在单电源条件下工作,也可在双电源供电状态下工作。

例如,LM324可以在+5~+12V单电源供电状态下工作,也可以在+5~±12V双电源供电状态下工作。

在一些交流信号放大电路中,也可以采用电源偏置电路,将静态直流输出电压降为电源电压的一半,采用单电源工作,但输入和输出信号都需要加交流耦合电容,利用单电源供电的反相放大器如图1(a)所示,其运放输出波形如图1(b)所示。

该电路的增益Avf=-RF/R1。

R2=R3时,静态直流电压Vo(DC)=1/2Vcc。

耦合电容Cl和C2的值由所需的低频响应和电路的输入阻抗(对于C1)或负载(对于C2)来确定。

Cl及C2可由下式来确定:C1=1000/2πfoRl(μF);C2=1000/2πfoRL(μF),式中,fo是所要求最低输入频率。

若R1、RL单位用kΩ,fo 用Hz,则求得的C1、C2单位为μF。

一般来说,R2=R3≈2RF。

图2是一种单电源加法运算放大器。

该电路输出电压Vo=一RF(V1/Rl十V2/R2十V3/R3),若R1=R2=R3=RF,则Vo=一(V1十V2十V3)。

需要说明的是,采用单电源供电是要付出一定代价的。

运算放大器知识经典问答

运算放大器知识经典问答

运算放大器知识经典问答运算放大器知识经典问答1.什么是开环电压增益?开环电压增益是指当放大器输入输出开路时既开环,放大器输出端的电压变化与输入端的电压变化之比。

2.什么是共模抑制比?共模抑制比是指放大器对差分电压信号放大倍数与共模电压信号放大倍数之比,单位为分贝(dB)。

3. 什么是输入电流噪声(in)?输入电流噪声(Input Current Noise (in )):是和无噪声放大器的输入并联应用的等效电流噪声。

4. 电压反馈放大器和电流反馈放大器之间有什么区别?两种运放的内部电路是不同的,所以对于一个已给的配置,两种类型运放是没有必要去互换的。

电压反馈的运放受制于内部设计,只有非常低的输入偏流,但内部没有限.制差分输入电压,仅仅当外部的反馈需要时才会做出限制。

相反,对于电流反馈放大器,其差分输入电压受制于内部设计,但并没有限制它的输入偏流为低,所以仅仅当外部反馈需要时才会限制。

尽管,大多数高校仍没有授关于电流反馈放大器的基础知识,但使用电流反馈放大器有许多优点,尤其在高速的应用中请看下面的应用笔记:/doc/f44938798.html,/an/OA/OA-30.pdf OA-30,电流电压反馈放大器的比较/doc/f44938798.html,/an/OA/OA-07.pdf OA-07,电流反馈放大器应用电路指导/doc/f44938798.html,/an/OA/OA-13.pdf OA-13,电流闭环反馈增益分析和性能提高/doc/f44938798.html,/an/OA/OA-15.pdf OA-15, 在运用宽带电流反馈放大器时,频繁失真/doc/f44938798.html,/an/OA/OA-20.pdf OA-20,电流反馈误判断/doc/f44938798.html,/appinfo/webench/放大器放大器WEBENCH 支持电流模式和电压模式的放大器类型。

5. 开环和闭环之间有什么差别?“开环增益”实际上是没有反馈的运放的“内部”增益,通常取1,000 到10,000,000之间的任意值。

运算放大器习题及答案

运算放大器习题及答案

运算放大器习题及答案
《运算放大器习题及答案》
运算放大器是一种重要的电子元件,广泛应用于各种电路中。

它具有放大电压
的功能,同时还能进行各种数学运算,如加法、减法、乘法和除法。

为了更好
地掌握运算放大器的原理和应用,下面我们将提供一些习题及答案,供大家参考。

1. 问题:在运算放大器电路中,如果输入电压为2V,放大倍数为1000,求输
出电压是多少?
答案:根据运算放大器的放大倍数公式,输出电压等于输入电压乘以放大倍数,即2V * 1000 = 2000V。

2. 问题:如果给定一个运算放大器电路的输入电压为3V,放大倍数为500,输
出电压为6V,求该电路的输入电压是多少?
答案:根据运算放大器的放大倍数公式,输入电压等于输出电压除以放大倍数,即6V / 500 = 0.012V。

3. 问题:在一个运算放大器电路中,输入电压为1V,放大倍数为200,输出电
压为-4V,求该电路的放大倍数是多少?
答案:根据运算放大器的放大倍数公式,放大倍数等于输出电压除以输入电压,即-4V / 1V = -4。

通过以上习题及答案的练习,相信大家对运算放大器的原理和应用有了更深入
的了解。

同时也希望大家能够在实际应用中,灵活运用运算放大器,为电子电
路设计和调试提供更多的可能性。

单电源运放电路

单电源运放电路

单电源运放电路一、概述单电源运放电路是指在电路中只有一个正电源,没有负电源的情况下使用的运放电路。

这种电路常见于便携式设备中,因为它可以减小设备体积和成本。

二、单电源运放的特点1. 只有一个正电源,没有负电源。

2. 输出信号不能超过正电源和地之间的范围。

3. 不能直接连接负载。

三、解决单电源运放的问题1. 偏置电压:由于单电源运放没有负电源,会导致输出信号出现偏置。

解决方法是添加偏置网络或使用带有输入偏置的运放。

2. 输出信号范围:由于输出信号不能超过正电源和地之间的范围,需要添加一个参考电压来限制输出范围。

3. 直接连接负载:由于单电源运放不能直接连接负载,需要添加一个耦合器来隔离直流偏置并提供交流通路。

四、常用的单电源运放配置1. 非反向比例放大器:将输入信号乘以一个系数并输出。

常用于音频处理和传感器接口等应用。

2. 反向比例放大器:将输入信号取反并乘以一个系数并输出。

常用于信号放大和电压调节等应用。

3. 滤波器:将输入信号通过一个滤波器并输出。

常用于音频处理和信号处理等应用。

五、单电源运放的优缺点1. 优点:(1)体积小,成本低。

(2)适合便携式设备。

(3)易于设计和实现。

2. 缺点:(1)输出范围受限制。

(2)偏置电压会影响精度。

(3)不能直接连接负载。

六、应用案例单电源运放常见于便携式设备中,如移动电话、MP3播放器等。

以移动电话为例,它需要使用单电源运放来处理音频信号并驱动扬声器。

在这种情况下,单电源运放可以减小设备体积和成本,并提供高品质的音频输出。

七、总结单电源运放是一种适合便携式设备的运放电路,它具有体积小、成本低等优点。

但是它也存在着输出范围受限制、偏置电压会影响精度等缺点。

在设计单电源运放电路时需要注意解决这些问题,并根据具体应用需求选择合适的电路配置。

运算放大器单电源供电 模拟负半周

运算放大器单电源供电 模拟负半周

运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子器件,它可以放大电压信号,进行运算、积分、微分等数学运算,被广泛应用在电子电路中。

在实际应用中,运算放大器的单电源供电和模拟负半周成为了一个重要的研究课题。

1. 运算放大器单电源供电的问题传统的运算放大器通常采用双电源供电,即正负电源供电,但在一些特定的场合,由于系统的需求或者限制,需要采用单电源供电的方式。

这就涉及到了一些问题。

单电源供电将导致运算放大器的输入、输出范围受到限制,无法完全覆盖整个电源范围,在一些特定的应用场合会造成不便或者限制。

需要考虑如何有效地抑制运算放大器在单电源供电情况下的共模电压漂移问题,以保证电路的正常运行。

2. 解决方案针对运算放大器单电源供电的问题,研究人员提出了一些解决方案。

通过改进运算放大器的结构和原理,设计出了一些专门用于单电源供电的运算放大器芯片,解决了输入、输出范围受限的问题,同时在电路设计上进行了优化,提高了电路的性能和稳定性。

针对共模电压漂移问题,研究人员提出了一些有效的抑制方法,采用了新的电路结构和技术,使得运算放大器在单电源供电情况下能够更好地抑制共模电压漂移,提高了电路的稳定性和可靠性。

3. 模拟负半周的问题在运算放大器的实际应用中,由于一些特定的场合,需要进行模拟负半周的计算和处理,但传统的运算放大器在负半周的性能和稳定性存在一些问题,需要进行针对性的改进和优化。

4. 解决方案针对模拟负半周的问题,研究人员提出了一些解决方案。

通过改进运算放大器的内部电路结构和参数设计,使得运算放大器在负半周的性能得到了提高,提高了电路的稳定性和可靠性。

采用了一些新的电路结构和技术,使得运算放大器在负半周的计算和处理能够更加准确和可靠,满足了一些特定应用领域的需求。

5. 结语针对运算放大器单电源供电和模拟负半周的问题,研究人员提出了一些有效的解决方案,通过改进运算放大器的结构和原理,优化电路设计和技术,使得运算放大器在单电源供电和负半周的应用中能够得到更好的性能和稳定性,为实际应用提供了更多的可能性和选择。

运算放大器习题及答案

运算放大器习题及答案

运算放大器习题及答案运算放大器是电子电路中常用的一种功能强大的放大器,具有放大电压、电流和功率的能力。

它在各种电子设备和系统中都发挥着重要作用,如模拟信号处理、传感器接口和通信系统等。

为了更好地理解和掌握运算放大器的原理和应用,以下将提供一些习题及其答案,帮助读者加深对这一主题的理解。

习题一:1. 什么是运算放大器?2. 运算放大器有哪些常见的输入和输出端口?3. 描述运算放大器的典型特性。

4. 运算放大器的放大倍数如何计算?答案一:1. 运算放大器是一种电子放大器,具有高增益、高输入阻抗和低输出阻抗的特点。

它可以将微弱的输入信号放大到较大的输出信号。

2. 运算放大器的常见输入端口有非反相输入端口(+)和反相输入端口(-),输出端口为输出端口(OUT)。

3. 运算放大器的典型特性包括无输入偏置电流、无输入偏置电压、无输入偏置电流漂移、无输入偏置电压漂移等。

4. 运算放大器的放大倍数可以通过计算非反相输入端口和反相输入端口之间的电压差与输出端口电压之间的比值得出。

习题二:1. 什么是运算放大器的共模抑制比?2. 描述共模抑制比对运算放大器性能的影响。

3. 如何计算共模抑制比?4. 如何提高运算放大器的共模抑制比?答案二:1. 运算放大器的共模抑制比是衡量其抑制共模信号的能力的指标。

它表示在输入信号中存在共模信号时,输出信号中的共模成分相对于差模成分的抑制程度。

2. 共模抑制比越高,表示运算放大器对共模信号的抑制能力越强,输出信号中的差模成分占比越高,性能越好。

3. 共模抑制比可以通过计算运算放大器输出信号中的共模成分与差模成分之间的比值得出。

4. 要提高运算放大器的共模抑制比,可以采取一些措施,如增加差模输入信号的增益,降低共模输入信号的增益,优化电路设计等。

习题三:1. 什么是运算放大器的输入偏置电流?2. 描述输入偏置电流对运算放大器性能的影响。

3. 如何计算输入偏置电流?4. 如何降低运算放大器的输入偏置电流?答案三:1. 运算放大器的输入偏置电流是指在非反相输入端口和反相输入端口之间的电流差异。

电子电路中的运算放大器问题解析

电子电路中的运算放大器问题解析

电子电路中的运算放大器问题解析运算放大器(Operational Amplifier,简称Op Amp)是电子电路中广泛应用的一种重要器件,其作用是将输入信号放大并产生一个输出信号。

运算放大器在各种电子设备中被广泛使用,例如放大电路、滤波电路、比较器和积分器等。

本文将对电子电路中的运算放大器问题进行详细解析。

一、运算放大器的基本结构和特性运算放大器由一个差分放大器和一对级联放大器组成。

差分放大器用来放大输入信号,级联放大器用来提供更高的放大倍数。

运算放大器的特性包括:大的增益、高的输入阻抗、低的输出阻抗和大的带宽等。

二、运算放大器的主要问题及其解决方法在实际应用中,运算放大器可能会遇到一些问题,例如偏置电流、失调电压、共模电压等。

下面将逐一解析这些问题并给出相应的解决方法。

1. 偏置电流运算放大器输入端的偏置电流指的是输入引脚之间通过的微弱电流。

偏置电流可能会引起输出信号的失真,因此需要采取措施来解决这一问题。

常见的解决方法包括使用偏置电流抵消电路和对称电源。

2. 失调电压运算放大器的输入端和输出端之间存在一定的电压差,称为失调电压。

失调电压可能会导致输出信号的偏移和失真。

为了解决这一问题,可以采取手动校准或使用自动补偿电路的方法。

3. 共模电压共模电压是指运算放大器输入端的公共模式电压。

当输入信号的共模电压较大时,可能会影响运算放大器的正常工作。

为了解决这一问题,可以采用差分模式输入和共模反馈的方法来降低共模电压的影响。

4. 噪声在运算放大器电路中,噪声是一个常见的问题。

噪声可能会带来输出信号的不稳定和失真。

为了降低噪声的影响,可以采用滤波器、屏蔽和隔离等措施,提高信噪比。

5. 频率响应运算放大器的频率响应是指在不同频率下的放大倍数。

在一些应用中,频率响应可能会出现失真现象。

解决这一问题的方法包括使用外部补偿电容和增加负反馈等。

总结:本文对电子电路中的运算放大器问题进行了详细解析。

运算放大器在电子设备中的应用非常广泛,但也存在一些问题。

单电源供电交流放大电路的问与答

单电源供电交流放大电路的问与答

单电源供电交流放大电路的问与答1、问:双电源运放改单电源,为什么要取其中点电压供电?答:一般运放以双电源工作时是以((V+)+(V-))/2=0V 作为参考电压的,运放工作在中间的线性区。

运放若以单电源供电,则应将电压参考点设置在V+/2 处。

若是反相放大器,应当将同相输入端的参考电压设为V+/2,反相输入端的输入信号也应当以V+/2 作为参考点。

因为一般的运算放大器是用来对交流信号作放大作用的,交流信号在经过运放时如果只是和地电平做比较的话,将会把交流信号的下半部分“吞噬”掉。

而采用电源的中点电压作比较的话,负半周的交流信号可以几乎没有损耗的被放大。

这也就是大家常说的抬高交流信号的直流电平。

此时输入和输出信号都需要加交流耦合电容。

采用单电源供电是要付出一定代价,一些输出参数势必会变差,当输入信号接近0V 或V+时,会使运放工作在非线性区,放大器输出会出现饱和失真或截止失真。

2、问:什么情况下可以不取中点电压供电答:如果只是对直流信号放大(正电压),则可以不加中点。

如果电源电压远远大于输出要求电压,也可不必将中点电位抬到一半,根据输出要求不同,中点电位只要在两电压之间就可以,因为中点电位和上下电源的差值决定了最大不失真输出的大小。

单电源的中点电位是针对运放的所有输入和输出脚的,要求高点的场合还要求相位不能偏移(如高档的低音炮等),此时用电容隔直还满足不了要求。

如果运放的ICMR(input common mode voltage range)参数,允许输入范围很宽比如rail-to-rail,则必须将输入钳制在中点电压。

3、问:为什么单电源供电时输入和输出都必须加电容耦合答:电容耦合是隔离直流分量的,避免直流分量对前后级之间产生干扰。

4、问:双电源运放在接成单电源电路时,作为偏置的直流电压是用电阻分压好还是接参考电压源好?答:一般来讲,双电源运放改成单电源电路时,如果采用基准电压的话,效果最好。

运算放大器习题及答案

运算放大器习题及答案

运算放大器习题及答案运算放大器习题及答案运算放大器是电子电路中常见的一种放大器,它被广泛应用于模拟电路和信号处理领域。

掌握运算放大器的原理和使用方法对于电子工程师和学生来说是非常重要的。

在这篇文章中,我们将介绍一些运算放大器的习题,并给出相应的答案,希望能帮助读者更好地理解和掌握运算放大器的知识。

1. 请简要介绍运算放大器的基本原理。

运算放大器是一种具有高增益、高输入阻抗和低输出阻抗的放大器。

它通常由一个差分放大器和一个输出级组成。

差分放大器负责放大输入信号,并将放大后的信号传递给输出级。

输出级对放大后的信号进行进一步放大,并将其输出。

2. 运算放大器的开环增益是多少?运算放大器的开环增益非常高,通常在10^5到10^6之间。

3. 运算放大器的输入阻抗是多少?运算放大器的输入阻抗非常高,通常在10^6到10^12欧姆之间。

4. 运算放大器的输出阻抗是多少?运算放大器的输出阻抗非常低,通常在几十欧姆到几百欧姆之间。

5. 什么是运算放大器的共模抑制比?运算放大器的共模抑制比是指在输入信号中存在共模信号时,运算放大器输出中共模信号与差模信号之比。

共模抑制比越高,说明运算放大器对共模信号的抑制能力越强。

6. 运算放大器的共模抑制比如何计算?运算放大器的共模抑制比可以通过以下公式计算:共模抑制比 = 20log10(Ad/Acm)其中,Ad表示差模增益,Acm表示共模增益。

7. 运算放大器的输入偏置电流是什么?运算放大器的输入偏置电流是指在输入端引入的微小电流。

它会对运算放大器的性能产生影响,因此需要尽量小。

8. 运算放大器的输入偏置电流如何计算?运算放大器的输入偏置电流可以通过以下公式计算:输入偏置电流 = (I1 + I2)/2其中,I1和I2分别表示输入端的偏置电流。

9. 运算放大器的输入失调电压是什么?运算放大器的输入失调电压是指在输入端引入的微小电压差。

它会对运算放大器的性能产生影响,因此需要尽量小。

放大器知识精彩问答

放大器知识精彩问答

放大器知识经典问答(第二部分)121. 什么是比较器的输出高电压(VOH)?输出高电压(Output High Voltage) 是指比较器高的直流输出电压,产生高的需要的输出电流。

这个规格通常与比较器的图腾柱或推挽输出相关。

22. 什么是输出源电流(ISC+)?输出电源电流(ISC+) 是指由比较器推挽式输出状态产生的最大的输出正电流。

23. 放大器的输出电流和短路电流两者之间有什么区别?“短路”电流是指如果输出直接接到电源线上,器件产生的电流。

这个表明输出级电流的限制,具体取决于器件的设计。

然而,短路电流并不代表输出级驱动能力的真实输出。

由于输出级的阻抗特性,最大的输出电流由输出电压在负载下的摆动来决定。

负载越轻,输出的摆动越大;负载越重,输出的摆动越小。

如果运放能够安全的驱动负载达到期望的电平,那么“输出和负载”或“Vout 和Iou t”的关系图在器件的用户手册中应该被讨论确定。

不要忘了计算反馈电阻负载,当在高速和微功率电路中,反馈电阻的作用就很明显了。

24. 什么是总谐波失真(THD)?当一个纯正弦信号作为Vin (w) = Vp sin(wt)给运放输入时,输出将有谐波失真: Vout (w)a1 Vp sin(wt)+a2 Vp sin(wt)+...+an Vp sin(nwt). THD 表达式是: THD(%) = [sqrt(a2xa2 +a3xa3 +...+anxan)/a1 ] x 10025. 什么是共模输入电阻?共模输入电阻是指共模输入电压的变化量和反相端或同相端输入电流变化量的比值。

26. 我怎么保护放大器输入,使其不高于或低于电源电压?你必须做的是要么对器件的输入箝位,要么限制器件的输入电流,或者理想情况下,两者均做。

最简单的方法就是选择一个限流电阻来限制这个电流。

选择的依据是,在最大的输入电压下电路输入产生的电流要小于该输入引脚的最大电流额定值。

通常情况下,在这个输入引脚上串联一个1K到100K的电阻就可以了。

关于运算放大器的基本知识问答

关于运算放大器的基本知识问答

1.一般反相/同相放大电路中都会有一个平衡电阻,这个平衡电阻的作用是什么呢?(1) 为芯片内部的晶体管提供一个合适的静态偏置。

芯片内部的电路通常都是直接耦合的,它能够自动调节静态工作点,但是,如果某个输入引脚被直接接到了电源或者地,它的自动调节功能就不正常了,因为芯片内部的晶体管无法抬高地线的电压,也无法拉低电源的电压,这就导致芯片不能满足虚短、虚断的条件,电路需要另外分析。

(2)消除静态基极电流对输出电压的影响,大小应与两输入端外界直流通路的等效电阻值平衡,这也是其得名的原因。

2.同相比例运算放大器,在反馈电阻上并一个电容的作用是什么??(1)反馈电阻并电容形成一个高通滤波器, 局部高频率放大特别厉害。

(2)防止自激。

3.运算放大器同相放大电路如果不接平衡电阻有什么后果?(1)烧毁运算放大器,有可能损坏运放,电阻能起到分压的作用。

4.在运算放大器输入端上拉电容,下拉电阻能起到什么作用??(1)是为了获得正反馈和负反馈的问题,这要看具体连接。

比如我把现在输入电压信号,输出电压信号,再在输出端取出一根线连到输入段,那么由于上面的那个电阻,部分输出信号通过该电阻后获得一个电压值,对输入的电压进行分流,使得输入电压变小,这就是一个负反馈。

因为信号源输出的信号总是不变的,通过负反馈可以对输出的信号进行矫正。

5.运算放大器接成积分器,在积分电容的两端并联电阻RF的作用是什么?(1) 泄放电阻,用于防止输出电压失控。

6.为什么一般都在运算放大器输入端串联电阻和电容?(1)如果你熟悉运算放大器的内部电路的话,你会知道,不论什么运算放大器都是由几个几个晶体管或是MOS管组成。

在没有外接元件的情况下,运算放大器就是个比较器,同相端电压高的时候,会输出近似于正电压的电平,反之也一样……但这样运放似乎没有什么太大的用处,只有在外接电路的时候,构成反馈形式,才会使运放有放大,翻转等功能……7.运算放大器同相放大电路如果平衡电阻不对有什么后果?(1)同相反相端不平衡,输入为0时也会有输出,输入信号时输出值总比理论输出值大(或小)一个固定的数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单电源供电交流放大电路的问与答
1、问:双电源运放改单电源,为什么要取其中点电压供电?
答:一般运放以双电源工作时是以((V+)+(V-))/2=0V 作为参考电压的,运放工作在中间的线性区。

运放若以单电源供电,则应将电压参考点设置在V+/2 处。

若是反相放大器,应当将同相输入端的参考电压设为V+/2,反相输入端的输入信号也应当以V+/2 作为参考点。

因为一般的运算放大器是用来对交流信号作放大作用的,交流信号在经过运放时如果只是和地电平做比较的话,将会把交流信号的下半部分“吞噬”掉。

而采用电源的中点电压作比较的话,负半周的交流信号可以几乎没有损耗的被放大。

这也就是大家常说的抬高交流信号的直流电平。

此时输入和输出信号都需要加交流耦合电容。

采用单电源供电是要付出一定代价,一些输出参数势必会变差,当输入信号接近0V 或V+时,会使运放工作在非线性区,放大器输出会出现饱和失真或截止失真。

2、问:什么情况下可以不取中点电压供电
答:如果只是对直流信号放大(正电压),则可以不加中点。

如果电源电压远远大于输出要求电压,也可不必将中点电位抬到一半,根据输出要求不同,中点电位只要在两电压之间就可以,因为中点电位和上下电源的差值决定了最大不失真输出的大小。

单电源的中点电位是针对运放的所有输入和输出脚的,要求高点的场合还要求相位不能偏移(如高档的低音炮等),此时用电容隔直还满足不了要求。

如果运放的ICMR(input common mode voltage range)参数,允许输入范围很宽比如rail-to-rail,则必须将输入钳制在中点电压。

3、问:为什么单电源供电时输入和输出都必须加电容耦合
答:电容耦合是隔离直流分量的,避免直流分量对前后级之间产生干扰。

4、问:双电源运放在接成单电源电路时,作为偏置的直流电压是用电阻分压好还是接参考电压源好?
答:一般来讲,双电源运放改成单电源电路时,如果采用基准电压的话,效果最好。

这种基准电压使系统设计得到最小的噪声和最高的PSRR。

若采用电阻分压方式,必须考虑电源纹波对系统的影响,这种用法噪声比较高,PSRR 比较低。

如果电源本身就很稳定,采用电阻分压网络无疑是最廉价、最简单的。

相关文档
最新文档