经典数学应用题目:时钟问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典数学应用题目:时钟问题
数学运算解题方法之时钟问题——找准路程、时间和速度
【常考知识点】
任何事物,万变不离其宗。
抓事物要抓它本质的东西,解数学运算题也一样。
这次主要讲解的内容是时钟问题,它是中等难度的数学运算题型。
在公务员考试,选调生考试,或者是事业单位招聘考试中,经常可以看见它的身影。
联创世华公考中心为大家做如下分析:
时钟问题与行程问题中的追及问题类似,因此,可按追及问题的规律解决时钟问题。
无论什么样行程问题的题目,弄清楚三个量,即路程、速度和时间,就够了。
当然,在解题的过程中,这三个量可能有所变化。
对于时钟问题要弄清楚的量为:时针的速度,路程和时间;分针的速度,路程和时间。
分针每小时走一周,旋转360o,速度为6o/分钟;时针每小时走周,旋转30 o,速度为0.5 o/分钟。
解时钟问题的关键点:
时针分针
速度:0.5度/分钟6度/分钟
路程:? ??
时间:未知未知
路程=速度×时间
特别说明:这里的路程单位为度,即转过的角度。
解决时钟问题的关键就是找准两者之间的路程之间的关系。
一般,时针路程和分针路程之间存在一定的联系,通过这些联系来解决时针和分针问题。
当然,要知道路程这个问题,首先要准确的画图。
【例题解析】
1、钟面问题
例1:在四点与五点之间,两针成一直线(不重合),则此时时间是多少?
A. 4点分
B. 4点分
C. 4点分
D. 4点分
【分析】根据图可知当时针和分针在一条线上时,分针赶上了时针并且超过时针180度,解此题的关键就是找到时针和分针之间的关系,这里时针和分针之间的主要关系是时针的路程-分针的路程=180度+120度=300度,而时针的路程=时针的速度×时间,分针的路程=分针速度×时间。
解题思路出现了。
【解答】B。
设两针从正四点开始,x分钟后两针成一直线,正四点的时候时针和分针的夹角为120度。
由题意得:
解得
答:两针成一直线时,是4点分。
注:此种类型的题目主要为成一定角度时候的情况,多数时候是画图进行解决,一般情况下是时针和分针的路程差为一特定的值。
——————————————————————————————————————
2、坏钟问题
例2:王亮与同学约好,下午4点半到球类馆打乒乓球,为此,他们在早上8点钟每人都将自己的表对准,王亮于4点半准时到达,而同学却没来。
原来同学的表比正确时间每小时慢4分钟,如果同学按自己的手表4点到达,那么王亮还得等多少时间(正确时间)?
A.36 分钟
B. 35 分钟
C. 36 分钟
D. 35 分钟
【分析】此题是关于时钟正确与否的题目,这类题目相对于前面来说是比较难的类型,需要实际进行考虑,同样考虑时间速度和路程之间的关系,这里路程始终是不变的,变的就是速度,每小时慢4分钟,即时针的速度为(30–4×0.5)=28度/小时= 度/分钟,分针为(360–4×6)=336度/小时=5.6度/分钟,分针需要走的总路程为360×(16.5-
8)=3060度,所需花费的实际时间为:3060÷5.6=546 分
钟。
【解答】A。
抓住关键点:路程、速度、时间。
1. 路程:早8点到晚4点半,分针总共转的角度为:360×(16.5-8)=3060度;
2. 速度:由于每小时同学时间慢4分钟,则正确时候分针的速度为360度/每小时,现在的速度为360–4×6=336度/小时=5.6度/分钟;
3. 时间:未知
时间= 路程÷速度,即有3060÷5.6=546 分钟=9小时6 分钟
即同学要到下午5点6 分钟才能到,则有,王亮还将等同学36 分钟。
注:初次接触钟表问题似乎会觉得它很难,其实只要弄清楚时间,速度和路程的各自的特点,就能有效的解决时钟问题。
——————————————————————————————————————
【针对性练习】
1. 十点与11点之间,两针在什么时刻成直线(不包括重合情况)?( )
A. 10时21 分
B. 10时22 分
C.10时21
D.10时21 分
2 现在是下午3点,从现在起时针和分针什么时候第一次重合?
3。
分针和时针每隔多少时间重合一次?一个钟面上分针和时针一昼夜重合几次?
4。
钟面上5点零8分时,时针与分针的夹角是多少度?
5。
在4点与5点之间,时针与分针什么时候成直角?
6.9点过多少分时,时针和分针离“9”的距离相等,并且在“9”的两边?
【参考答案详解】
1. 答案A满足. 分针:6度/分时针0.5度/分,十点时,两针夹角为60度,设需要时间为x分,则如图有60-0.5x=180-6x,x= 分,即10时分两针成直线。
答案A 满足。
2. 现在是下午3点,从现在起时针和分针什么时候第一次重合?
解析:分针:6度/分时针0.5度/分
3点整,时针在分针前面15格,所以第一次重合时,分针应该比时针多走15格,即90度,用追及问题的处理方法解:90/(6-0.5)度/分=16 分钟,所以下午3点16 分钟,时针和分针第一次重合。
3. 分针和时针每隔多少时间重合一次?一个钟面上
分针和时针一昼夜重合几次?
解析:分针:6度/分时针0.5度/分
当两针第一次重合到第二次重合,分针比时针多转360度。
所以两针再次重合需要的时间为:360/(6-0.5)=720/11分,一昼夜有:24×60=1440分,所以两针在一昼夜重合的次数:1440分/(720/11)分/次=22次
4. 钟面上5点零8分时,时针与分针的夹角是多少度?
解析:分针:6度/分时针0.5度/分
5点零8分,时针成角:5×30+8×0.5=154度,分针成角:8×6=48度,所以夹角是154-48=106度。
5 在4点与5点之间,时针与分针什么时候成直角?
解析:整4点时,分针指向12,时针指向4。
此时,时针领先分针20格。
时,分两针成直角,必须使时针领先分针15格,或分针领先时针15格。
因此,在相同时间内,分针将比时针多走(20-15)格或(20+15)格。
(20-15)/(1-1/12)=60/11,即4点5 分,(20+15)/(1-1/12)=38 分,即4点38 分。
6. 9点过多少分时,时针和分针离“9”的距离相等,并且在“9”的两边?
解析:设经过X分,0.5×X=270-6×X ,解得X=540/13
分,所以答案是9点过41 分。