薄透镜焦距的测量
薄透镜焦距的测定
实验八 薄透镜焦距的测定透镜是光学仪器中最基本的元件,反映透镜特性的一个重要参数是焦距。
由于使用目的和条件的不同,需要选择不同焦距的透镜或透镜组,为了在实验中能正确选用透镜,必须学会测定透镜的焦距。
常用的测定透镜焦距的方法有自准法和物距像距法。
对于凸透镜还可以用位移法(共轭法)进行测定。
光具座是光学实验中的一种常用设备。
光具座结构的主体是一个平直的导轨,另外还有多个可以在导轨上移动的滑块支架。
可根据不同实验的要求,将光源、各种光学部件装在夹具架上进行实验。
在光具座上可进行多种实验,如焦距的测定,显微镜、望远镜的组装及其放大率的测定、幻灯机的组装等,还可进行单缝衍射、双棱镜干涉、阿贝成像与空间滤波等实验。
进行各种光学实验时,首先应正确调好光路。
正确调节光路对实验成败起着关键的作用,学会光路的调节技术是光学实验的基本功。
【实验目的】1.学习测量薄透镜焦距的几种方法。
2.掌握透镜成像原理,观察薄凸透镜成像的几种主要情况。
3.掌握简单光路的分析和调整方法。
【实验仪器】光具座(全套)、照明灯、凸透镜、平面反射镜、物屏、白屏等。
【实验原理】1.薄透镜成像公式由两个共轴折射曲面构成的光学系统称为透镜。
透镜的两个折射曲面在其光轴上的间隔(即厚度)与透镜的焦距相比可忽略或者称为薄透镜。
透镜可分为凸透镜和凹透镜两类。
凸透镜具有使光线会聚的作用,即当一束平行于透镜主光轴的光线通过透镜后,将会聚于主光轴上的一点,此会聚点F 称为该透镜的焦点,透镜光心O 到焦点F 的距离称为焦距f 图1(a)。
凹透镜具有使光束发散的作用,即当一束平行于透镜主光轴的光线通过透镜后将偏离主光轴成发散光束。
发散光的延长线与主光轴的交点f 为该透镜的焦点。
如图1(b)近轴光线是指通过透镜中心部分与主轴夹角很小的那一部分光线。
在近轴光线条件下,薄透镜成像的规律可表示为f u 111=+υ (1) 式中u 为物距,υ为像距,f 为透镜的焦距。
u 、υ和f 均从透镜光心O 点算起。
实验一 薄透镜焦距的测定
实验一 薄透镜焦距的测定【实验目的】1. 进一步理解透镜成像的规律;2. 掌握测量薄透镜焦距的几种方法;3. 学会光具座上各元件的共轴调节方法。
【实验仪器】光具座、凸透镜、凹透镜、平面镜、像屏、物屏、光源。
【实验原理】1、薄透镜焦距的测定透镜的厚度相对透镜表面的曲率半径可以忽略时,称为薄透镜。
薄透镜的近轴光线成像公式为:fs s 111'=+ (3—1—1)式中s 为物距,s '为像距,f 为焦距。
其符号规定如下:实物时s 取正,虚物s 取负;实像时s '取正,虚像时s '取负;f 为透镜焦距,凸透镜取正,凹透镜取负 。
(1) 位移法测定凸透镜焦距 (贝塞尔法又称共轭成像法)如图1所示,如果物屏与像屏的距离A 保持不变,且A > 4f ,在物屏与像屏间移动凸透镜,可以两次看到物的实像,一次成倒立放大实像,一次成倒立缩小实像,两次成像透镜移动的距离为L 。
据光线可逆性原理可得:s 1= s 2′,s 2= s 1′,则2s '21L A s -==,2'12L A s s +==, 将此结果代入式(3—1—1)可得:AL A f 422-= (3—1—2)只要测出A 和L 的值,就可算出f 。
(2) 自准直法测凸透镜焦距光路图如图2所示。
当物体AB 处在凸透镜的焦距平面时,物AB 上各点发出的光束,经透镜后成为不同方向的平行光束。
若用一与主光轴垂直的平面镜将平行光反射回去,则反射光再经透镜后仍会聚焦于透镜的焦平面上,此关系就称为自准直原理。
所成像是一个与原物等大的倒立实像A ′B ′(此时物到透镜的距离即为焦距)。
所以自准直法的特点是:物、像在同物像像屏屏图2 自准直法测凸透镜焦距一焦平面上。
自准直法除了用于测量透镜焦距外,还是光学仪器调节中常用的重要方法。
(3) 物距—像距法测凹透镜焦距(利用虚物成实像求焦距) 如图3所示,先用凸透镜L 1使AB 成实象A 1B 1,像A 1 B 1便可视为凹透镜L 2的物体(虚物)所在位置,然后将凹透镜L 2放于L 1和A 1B 1之间,如果O 2A 1<∣f 2∣,则通过L 1的光束经L 2折射后,仍能形成一实象A 2B 2。
薄透镜焦距的测定物理实验报告
薄透镜焦距的测定物理实验报告一、实验目的1、加深对薄透镜成像原理的理解。
2、学习几种测量薄透镜焦距的方法。
3、掌握光学实验中的基本测量技术和数据处理方法。
二、实验原理1、薄透镜成像公式当光线通过薄透镜时,遵循薄透镜成像公式:$\frac{1}{u} +\frac{1}{v} =\frac{1}{f}$,其中$u$ 为物距,$v$ 为像距,$f$ 为焦距。
2、自准直法当物屏上的物点发出的光线经透镜折射后,变成平行光,若在透镜后面垂直于光轴放置一个平面反射镜,此平行光将沿原路返回,再次通过透镜后仍成像于物屏上的物点处。
此时,物屏与透镜之间的距离即为透镜的焦距。
3、物距像距法当物距和像距分别为$u$ 和$v$ 时,通过测量物距和像距,代入薄透镜成像公式可求得焦距$f$ 。
4、共轭法移动透镜,在物屏和像屏之间分别得到放大和缩小的清晰像。
根据光路可逆原理,两次成像时物距和像距互换,利用公式$\frac{u + v}{4}$可计算出焦距。
三、实验仪器光具座、凸透镜、凹透镜、物屏、像屏、平面反射镜、光源等。
四、实验内容与步骤1、自准直法测凸透镜焦距(1)将凸透镜固定在光具座的一端,在凸透镜的另一侧放置物屏,使物屏上的十字叉丝清晰可见。
(2)在凸透镜后面垂直于光轴放置平面反射镜。
(3)沿光具座移动物屏,直到在物屏上再次看到清晰的十字叉丝与原物大小相等、方向相反。
(4)记录此时物屏与凸透镜的位置,两者之间的距离即为凸透镜的焦距。
(5)重复测量三次,计算焦距的平均值。
2、物距像距法测凸透镜焦距(1)将凸透镜固定在光具座的中间位置。
(2)在凸透镜的一侧放置物屏,另一侧放置像屏。
(3)移动物屏和像屏,直到在像屏上得到清晰的像。
(4)记录物屏和像屏的位置,分别得到物距$u$ 和像距$v$ 。
(5)代入薄透镜成像公式计算焦距,并重复测量三次,计算平均值。
3、共轭法测凸透镜焦距(1)将物屏固定在光具座的一端,凸透镜放在光具座中间附近。
薄透镜焦距的测量-ccm
结果分析与讨论
根据实验数据,我们发现薄透镜的焦距与光源波长成反比关系,符合光学理论。 透镜材料的折射率对焦距也有显著影响,折射率越大,焦距越短。
透镜厚度对焦距的影响较小,在一定范围内可以忽略不计。
与理论值比较及偏差解释
将实验测量得到的焦距与理论计算值 进行比较,发现存在一定的偏差。
通过分析偏差产生的原因,我们可以提出 改进措施,如提高光源稳定性、采用更精 确的测量仪器等,以减小实验误差。
薄透镜焦距的测量ccm
• 引言 • 测量方法与步骤 • 测量误差分析 • 透镜焦距计算与优化 • 实验结果展示与讨论 • 总结与展望
目录
01
引言
目的和背景
研究薄透镜的成像规律,掌握 测量薄透镜焦距的方法和技能。
薄透镜在光学仪器、摄影等领 域应用广泛,了解其焦距对于 正确使用这些设备具有重要意 义。
距f。
计算结果分析与讨论
误差来源分析
在测量过程中,误差主要来源于测量工具精度、人为操作误 差、环境因素(如温度、湿度)等。为了提高测量精度,需 要选用高精度测量工具、规范操作流程并控制环境因素。
数据处理与结果分析
对测量数据进行处理和分析,可以采用多次测量取平均值、 绘制误差棒图等方法来减小误差并提高结果的可靠性。同时 ,还可以与其他测量方法进行比较,以验证结果的准确性。
04
透镜焦距像公式
1/f = 1/u + 1/v,其中f为焦距,u为物距,v为像距。通过测量物距和像距,可以计算 出焦距f。
焦距与曲率半径关系
对于薄透镜,其焦距f与透镜两面的曲率半径R1和R2有关,公式为f = (n-1) * (1/R1 1/R2),其中n为透镜折射率。通过测量透镜两面的曲率半径和折射率,可以计算出焦
薄透镜焦距的测定
的像为止,记录物距s与像距s′,由公式(2)求出焦距f ′。
图4 物距、像距法测焦距光路
2. 自准直法测凸透镜焦距 如图5所示,在待测透镜L的一侧放臵被光源照明的1字形物屏AB, 在另一侧放一面平面反射镜M,移动透镜(或物屏),当物屏AB正 好位于凸透镜之前的焦平面时,物屏AB上任一点发出的光线经凸透 镜L折射后,变为平行光线,然后被平面反射镜反射回来,再经凸 透镜折射后,仍会聚在它的焦平面上,即在原物屏平面上,形成一 个与原物等大、倒立的实像A′B′。此时物屏到凸透镜之间的距离等 于待测透镜的焦距,即
屏位臵(缩小像)x3 .
表三 二次成像法测凸透镜焦距数据记录表
n 1 2 3
x1 /cm
x2/cm
x3/cm
D=(x1- x0)/ cm
d=(x3- x2)/ cm
fi’/cm
4
5
4. 辅助透镜法测凹透镜焦距
经凸透镜成像位臵x1,经凸凹透镜成像位臵x2,凹透镜位臵x3 .
表四 辅助透镜法测凹透镜焦距数据记录表
普通物理(光学)实验
薄透镜焦距的测定
薄透镜焦距的测定
实验目的 实验原理 数据处理 实验仪器 实验内容 注意事项
思考问题
实验目的
1.掌握光具座的使用与光学元件等高共轴 调节的方法。
2.学会测量透镜焦距的常用方法,掌握简
单光路的分析。 3.熟悉光学实验的基本操作规范。
实验仪器
2 5 4 3
1
图1 薄透镜焦距测定实验仪器组成
f s
图5 用自准直法测凸透镜焦距
3. 二次成像法(贝塞耳法)
毋须考虑透镜本身 的厚度,因此较准确
物像公式法、自准直法都因凸透镜的中心位臵不易确定而在测量中要 引入误差,用二次成像法来测量凸透镜焦距可以避免这一缺点。如图6所 示,物屏和像屏之间的距离大于,且保持不变,如果沿光轴方向移动透镜, 透镜在物屏和像屏之间必定存在两个位臵能观察到清晰的像,透镜在这两 个位臵之间距离的绝对值为,运用物像的共轭对称性质,可以证明
薄透镜焦距的测定
薄透镜焦距的测定【试验目标】1.控制光路调剂的根本办法;2.进修几种测量薄透镜焦距的试验办法.【试验仪器】照明光源(钠光灯).物屏.白屏.光具座.平面镜.待测透镜等.【试验道理】透镜的厚度相对透镜概况的曲率半径可以疏忽时,称为薄透镜.薄透镜的近轴光线成像公式为(1)l s为物距,s′为像距,f ′为像方焦距.其符号划定如下:什物与实像时取正,虚物与虚像时取负;f 为透镜焦距,凸透镜取正,凹面镜取负 .图1凸透镜自准法1.凸透镜焦距的测量道理(1)自准直法光源置于凸透镜核心处,发出的光线经由凸透镜后成为平行光,若在透镜后放一块于主光轴垂直的平面镜,将此光线反射归去,反射光再经由凸透镜后仍会聚于核心上,此关系称为自准道理.假如在凸透镜的焦平面上放一物体,如图1所示,其像也在该焦平面上,是大小相等的倒立实象,此时物屏至凸透镜光心的距离等于焦距.图2什物成实像法(2)用什物成实像求焦距如图2所示,用什物作为光源,其发出的光线经会聚透镜后,在必定前提下成实像,可用白屏接取实像加以不雅察,经由过程测定物距和像距,运用(1)式即可算出焦距.图3共轭法(3)共轭法如图3所示,假如物屏与像屏的距离D保持不变,且D > 4f,在物屏与像屏间移动凸透镜,可两次成像.当凸透镜移至O1处时,屏上得到一个倒立放大实象A1B1,当凸透镜移至O2处时,屏上得到一个倒立缩小实象A2B2,由图2可知,透镜在O1处时:(2)透镜移至O2处时:(3)由此可得:(4)测出D和d,即可求得焦距.2.凹面镜焦距的测量道理运用虚物成实像求焦距:图4如图4所示,先用凸透镜L1使AB成实象A1B1,像A1B1即可视为凹面镜L2的物体(虚物)地点地位,然后将凹面镜L2放于L1和A1B1之间,假如O1A1<∣f2∣,则经由过程L1的光束经L2折射后,仍能形成一实象A2B2.物距s = O2A1,像距s′= O2A2,代入公式(1),可得凹面镜焦距.【试验内容】1.光路调剂因为运用薄透镜成像公式时,须要知足近轴光线前提,是以必须使各光学元件调节到同轴,并使该轴与光具座的导轨平行,“共轴等高”调节分两步完成:(1)目测粗调:把光源.物屏.透镜和像屏依次装好,先将它们挨近,使各元件中间大致等高在一条直线上,并使物屏.透镜.像屏的平面互相平行.(2)细调:运用共轭法调剂,参看图2,固定物屏和像屏的地位,使D> 4f,在物屏与像屏间移动凸透镜,可得一大一小两次成像.若两个像的中间重合,即暗示已经共轴;若不重合,可先在小像中间作一记号,调节透镜的高度使大像的中间与小像的中间重合.如斯反复调节透镜高度,使大像的中间趋势小像中间(大像追小像),直至完整重合.2.凸透镜焦距的测量因为试验中要工资地断定成像的清楚,斟酌到人眼断定成像清楚的误差较大,常采取阁下逼近测读法测定屏或透镜的地位,即从左至右移动屏或透镜,直至在物屏或像屏上看到清楚的像,这就是阁下逼近测读法.(1)自准直法:参看图1,平面镜靠在凸透镜后,固定物屏地位,采取阁下逼近测读法测定透镜地位,即从左至右移动透镜,直至在物屏上看到与物大小雷同的清楚倒像,记载此时透镜的地位;再从右至左移动透镜,直至在物屏上看到与物大小雷同的清楚倒像,记载此时透镜的地位.反复3次.记载透镜的地位,盘算焦距.(2)用什物成实像法:参看图2,将物屏.透镜固定在导轨上,间距大于焦距(可运用自准法数据),运用阁下逼近测读法,从左至右移动像屏找到清楚的图像,再从右至左移动像屏,找到清楚的图像,反复3次.记载此时物屏.透镜.像屏的地位,盘算焦距.(3)共轭法:参看图3,固定物屏和像屏的地位,使D> 4f(可运用自准法数据),采取阁下逼近测读法分离测定凸透镜在像屏上成一大一小两次像的地位,反复3次,盘算焦距.物屏透镜地位1透镜地位2像屏D(cm)L(cm)f(cm)3.凹面镜焦距的测量(虚物成实像法:)参看图4安顿好光源.物屏.凸透镜和像屏,使像屏上形成缩小清楚的像,用阁下逼近测读法测定像屏()的地位,同时固定物屏和凸透镜.在凸透镜和像屏之间放入凹面镜,移动像屏,直至像屏上消失清楚的像,用阁下逼近测读法测定像屏()的地位,并记载凹面镜的地位,反复3次,盘算凹面镜的焦距.留意符号.A'B'地位(cm)A''B''地位(cm)L2地位(cm)s(cm)s′(cm)f(cm)【留意事项】1.在运用仪器时要轻拿.轻放,勿使仪器受到震撼和磨损.2.调剂仪器时,应严厉按各类仪器的运用规矩进行,细心地调节不雅察,沉着地剖析思考,切勿浮躁.3.任何时刻都不克不及用手去接触玻璃仪器的光学面,以免在光学面上留下陈迹,使成像隐约或无法成像.如必须用手拿玻璃仪器部件时,只准拿毛面,如透镜周围,棱镜的上.下底面,平面镜的边沿等.4.当光学概况有污痕或手迹时,对于非镀膜概况可用干净的擦镜纸轻轻擦拭,或用脱脂棉蘸擦镜水擦拭.对于镀膜面上的污痕则必须请专职教师处理.【数据表格】1.会聚透镜焦距的测量(1)物象距法:(2)贝塞尔法(3)自准直法2.发散透镜焦距的测定【数据处理及成果】1、会聚透镜焦距的测量 (1) 物象距法:由 p p p p f '-'='得: 1f '=67.1545.980.2345.980.23=-⨯ (cm )16.1615.909.2115.909.212=-⨯='f (cm )63.1431.960.2531.960.253=-⨯='f (cm)40.1585.880.2085.880.204=-⨯='f (cm)45.1506.989.2106.989.215=-⨯='f (cm)46.15)45.1540.1563.1416.1667.15(51=++++⨯='f (cm))(22.0)46.1545.15()46.1540.15()46.1563.14()46.1516.16()46.1567.15(51)(22222cm f =-+-+-+-+-⨯='μ故 22.046.15)(±='±'='f f f μ (cm )(2) 贝塞尔法由ld l f 422-='得19.1500.63489.1100.63221=⨯-='f (cm )21.1500.68406.2200.68222=⨯-='f (cm )27.1600.73406.2400.73223=⨯-='f (cm )86.1678470.2800.78224=⨯-='f (cm )52.1500.83465.4100.83225=⨯-='f (cm )81.15552.1586.1627.1621.1519.15=++++='f (cm ))(29.0)81.1552.15()81.1586.16()81.1527.16()81.1521.15()81.1519.15(51)(22222cm f =-+-+-+-+-='μ故29.081.15)(±='±'='f f f μ (cm )(3) 自准直法:91.14)98.1493.1491.1489.1485.14(51=++++⨯='f (cm ))(02.0)91.1498.14()91.1493.14()91.1491.14()91.1489.14()91.1485.14(51)(22222cm f =-+-+-+-+-⨯='μ故02.091.14)(±='±'='f f f μ (cm )2、发散透镜焦距的测定由ss s s f -''=' 得: 25.12)17.1170.1185.1243.1211.13(51=++++⨯='f (cm ))(29.0)25.1217.11()25.1270.11()25.1285.12()25.1243.12()25.1211.13(51)(22222cm f =-+-+-+-+-⨯='μ故 29.025.12)(±='±'='f f f μ (cm ) 【评论辩论】1. 剖析本试验的体系误差,对于物距像距法,主如果测量物屏,透镜及像地位时,滑座上的读数准线和被测平面是否重合,假如不重合将带来误差.对于位移法测凸透镜焦距,不消失这一问题.经由过程上述两种办法测透镜焦距相符程度来肯定体系误差对成果的影响.本试验的有时误差主如果人眼不雅察,成像清楚度引起的误差,因为人眼对成像的清楚分辩才能有限,所以不雅察到的像在必定规模内都清楚,加之球差的影响,清楚成像地位会偏离高斯像.2. 本试验的体系误差经前面的剖析和检讨可知,对测量成果影响较小, 而平均值的尺度误差又较小,以得出结论,该试验准确度较高,平均值可以作为一组测量值中接近真值的最佳值.。
薄透镜焦距的测量
實驗二十五 薄透鏡焦距測量1.目的:(1) 測量薄透鏡焦距。
(2) 練習基本光學實驗技術,如對軸、視差等。
2.原理:薄透鏡成像如圖1,在忽略透鏡厚度及近軸近似之下,成像公式為fq p 111=+ (1) p 、q 、f 依次為物距、像距及焦距,其符號規則為:實物的p 、實像的q 、聚光透鏡的f 為正,虛物的p 、虛像的q 、發散透鏡的f 為負。
由物(像)空間入射的軸平行光束聚於前(後)焦點,當物空間及像空間介質折射率相等時,前焦距與後焦距相等。
圖1測定焦距的方法很多,下面介紹比較簡單的三種:(1) 牛頓成像法:測量物距、像距,再計算焦距。
凸透鏡p > f 時成實像,用光屏可以找出像的位置。
凹透鏡成虛像,可用另一輔助物的像,藉視差法定出像的位置。
如圖2,物P 由透鏡L 成虛像於Q ,另置一物P’使高於透鏡,由透鏡內觀察Q ,透鏡外觀察P’,若QP’不重合,左右(或上下)移動眼睛時,由於有視差,二像會相對移動,調整使QP’重合時,沒有視差,從任何角度觀察,二像均重合,無相對運動的情形。
LL(a)(2) 共軛法:凸透鏡成像,如圖3所示,當 P + O > 4f 時,對固定的物像位置Q ,透鏡有兩個可能位置(I 與II)。
可以證明ld l f 422−= (2)式中l = p + q ,d 為兩個透鏡位置間的距離。
圖3凹透鏡的兩個位置分別在物P 的左右兩側,其中一種情況之物P 必須為虛物,解決這個問題實物R 可以利用輔助凸透鏡所成的實像做為虛物P 。
如圖4所示,實物R 由輔助凸透鏡K 成實像於P ,P 之位置可直接測定。
在K 與P 之間位置放置待測凹透鏡I ,則P 變成凹透鏡I 的虛物,經由凹透鏡I 成實像於Q ,此位置亦可直接測定。
將另一輔助物P’置於Q 處,並使高於凹透鏡。
將凹透鏡I 移至Q 的右側,此時P 是凹透鏡II 的實物,在適當的凹透鏡位置(II ),將成虛像於Q (用視差法與P’重合),測量P 與Q 距離l 及I 與 II 距離d ,用公式(2)可計算f 。
薄透镜焦距的测定方法
薄透镜焦距的测定方法
薄透镜焦距的测定方法
薄透镜是一种广泛应用于各种光学仪器中的光学元件,焦距是衡量薄透镜功能的重要参数。
焦距的准确测量将直接影响光学系统的性能。
因此,测量薄透镜焦距的方法显得至关重要。
测量薄透镜焦距的方法很多,其中最常用的是衍射技术。
它主要利用一种叫做Fresnel衍射的物理现象,使用光线在表面的反射和折射,从而测量到薄透镜的焦距。
此外,光束投影技术也可以用来测量薄透镜焦距,它主要利用一种叫做Huygens原理的光学原理,通过把薄透镜投影到一个指定的屏幕上,然后测量出屏幕上焦点处的光线,从而测量出薄透镜的焦距。
此外,还有一种叫做投影像差法的方法可以用来测量薄透镜焦距。
它利用一种叫做像差的相干现象,使用两束光线,其中一束光经过薄透镜,另一束光绕过薄透镜,然后把它们投射到屏幕上,再通过测量屏幕上焦点处的光线,从而测量出薄透镜的焦距。
综上所述,衍射技术、光束投影技术和投影像差法都可以用来测量薄透镜焦距。
由于它们的测量原理不同,在实际应用中应注意选择适合的方法以及相应的测量方法,以确保测量的精度。
薄透镜焦距的测量
(1)共轴调节 只有当各光学元件如光源,发光物,透镜等的主光轴重合时,薄透 镜成像公式在近轴光线的条件下才成立。如果用几个光学元件做实验,
应调节各个元件,使透镜的光轴共线且与光学平台平面平行,光轴垂直 通过非透镜元件的中心,这些步骤统称为共轴调节,方法如下:
a.粗调 在光学平台上使透镜、像屏中心大致都在平行于光学平台平面 的直线上,并使物屏、像屏的平面互相平行,且垂直于光学平台平面.
图35-1牛顿环的示意图及光路图 列越密,这些圆环就叫做牛顿环,如图35-1(c)所示.如在透射方向观 察,恰好相反.中心为亮斑,如图35—1(b),明暗正好与(c)相反.
牛顿环是由光的干涉产生的,有透镜和平板玻璃之间有一层很薄的 空气层,通过透镜的单色光一部分在透镜在空气层的交界面上反射,另 一部分通过空气层在平板玻璃的上表面的反射,这两部分反射光符合相 干条件,将会产生干涉现象.
不规则的圆片.在确定干涉环的半径和确定干涉级数时不易做得准确,
因此,我们希望只测半径(或直径)之差 .
设第个干涉暗环的级数 (为干涉级数的修正值),第个干涉暗环的
级数为,由(35.5)式有
上式表明,任意两环半径平方差只与两个环的序数差有关,而与干涉级
数及环序数无关.实验中只要测出两个干涉暗环的半径和定出它们的序
圆心左边环的位置
环数 环的 位置
圆心右边环的位置
环数 环的 位置
五、 注意事项 1.使用读数显微镜,应避免回程差. 2.钠光灯点燃后,直到测量结束再关断电源,中途如果关灭,应在 十分钟后再开启。 六、思考与问答 1.实验中为什么要测量多组数据和分组处理所测数据? 2.为什么牛顿环离中心越近,条纹越疏?
在图35-1(a)中,设透镜的曲率半径为,离接触点任一距离处的空
实验 薄透镜焦距的测定
好处在凹透镜上沿。移动带痕玻片并仔细观察凹透镜内虚像的
顶端和凹透镜外玻片刻痕间的相对位置有无变化。当相对位置 不变,即无视差时,记录下此时玻片刻痕的位置。重复测量三次,
将数据填于表3-8-4中, 求出f。
2) 自准法 先对光学系统进行共轴调节,然后把凸透镜放在稍大于 两倍焦距处。移动凹透镜和平面反射镜 , 当物屏上出现与 原物大小相同的实像时 ,记下凹透镜的位置读数。然后去掉
图 3 - 8 - 5 自准法测凹透镜焦距光路图
四、实验内容
1. 光学系统的共轴调节 薄透镜成像公式仅在近轴光线的条件下才成立。对于几个 光学元件构成的光学系统进行共轴调节是光学测量的先决条件, 对几个光学元件组成的光路,应使各光学元件的主光轴重合,才 能满足近轴光线的要求。习惯上把各光学元件主光轴的重合称 为同轴等高。本实验要求光轴与光具座的导轨平行, 调节分两 步进行: (1) 粗调。将安装在光具座上的所有光学元件沿导轨靠拢 在一起, 仔细观察, 使各元件的中心等高, 且与导轨垂直。
立实像A′B′。此时, 物屏到透镜之间的距离就等于透镜的焦距f。
图 3 - 8 - 1 自准法测薄透镜焦距光路图
2) 物距像距法(u>f) 物体发出的光线经凸透镜会聚后, 将在另一侧成一实像, 只
要在光具座上分别测出物体、透镜及像的位置, 就可得到物距
和像距。将物距和像距代入式(3 - 8 - 1)中, 得
实验
薄透镜焦距的测定
一、 实验目的 (1) 了解薄透镜的成像规律。 (2) 掌握光学系统的共轴调节。
(3) 测定薄透镜的焦距。
二、 实验仪器
光具座、薄透镜、光源、像屏、观察屏和平面反射镜等。
三、 实验原理
1. 薄透镜成像公式 当透镜的厚度远比其焦距小得多时 , 这种透镜称为薄透镜。 在近轴光线的条件下,薄透镜成像的规律可表示为
测量薄透镜焦距的方法
测量薄透镜焦距的方法
测量薄透镜焦距的常用方法有以下几种:
1. 远点法:将一远处的物体放在薄透镜的前方,使其成像在透镜的另一侧,移动物体位置,直到得到最清晰的像。
此时,物体和像的距离之比即为薄透镜的焦距。
2. 近点法:将一近处的物体放在薄透镜的前方,移动物体位置,直到得到最清晰的像。
测量此时物体和像的距离之差,即为薄透镜的焦距。
3. 比例法:利用光屏和物体的位置与像的位置之比,可以利用几何光学的公式推导出薄透镜的焦距公式。
根据这个公式,可以根据已知的物体和像的距离,计算出薄透镜的焦距。
4. 自准法:将一个物体放在薄透镜的焦点处,此时得到的像将为无穷远,通过调整屏幕位置,使得屏幕与透镜的距离为薄透镜的焦距。
注意:在进行薄透镜焦距的测量时,需要保证光线的直线传播,并且尽量避免误差的产生。
薄透镜焦距的测量
薄透镜焦距的测量透镜是光学仪器中最重要、最基本的元件,它由透明材料(如玻璃、塑料、水晶等)做成。
光线通过透镜折射或反射后可以成像。
掌握透镜的成像规律,是了解光学仪器的原理和正确使用光学仪器的重要基础。
常用的薄透镜按其对光的会聚或发散,可分为凸透镜和凹透镜两大类。
焦距是反映透镜特性的一个重要参数。
无论是单个透镜,还是透镜组;无论是简单的应用,还是复杂的应用,常常会涉及焦距的测量问题。
常用的测量方法有:自准直法、物距像距法、共轭法和平行光管法。
一、实验要求1.实验重点① 掌握简单光路的调整方法——等高共轴调整; ② 学习几种常用的测量薄透镜焦距的方法(自准法、共轭法、物距像距法和平行光管法等); ③ 学习不同测量方法中消除系统误差或减小随机误差的方法; ④ 学习不确定度的计算方法。
2.预习要点① 什么是薄透镜?什么是近轴光线?透镜成像公式的使用条件是什么?② 什么是自准法?利用自准法测透镜焦距时,如何消除透镜中心与支架刻线位置不重合造成的系统误差? ③ 什么是共轭法?用共轭法测透镜焦距有何优点?④ 什么叫等高共轴调节?为什么要进行等高共轴调节?如何进行调节? ⑤ 什么是测读法?何处使用测读法?其目的是为了消除什么误差?⑥ 什么是平行光管法?利用平行光管法测量透镜焦距最突出的优点是什么?二、实验原理这里只讨论涉及薄透镜、近轴光线的实验。
薄透镜是指透镜的中心厚度d 远小于其焦距f (d <<f )的透镜。
近轴光线是指通过透镜中心部分并与主光轴夹角很小的那一部分光线。
为了满足近轴光线条件,常在透镜前(或后)加一带孔的屏障,即光阑,以挡住边缘光线;同时选用小物体,并做等高共轴调节,把它的中点调到透镜的主光轴上,使入射到透镜的光线与主光轴的夹角很小。
在近轴光线条件下,薄透镜的成像规律可用下式表示:fv u 111=+ (1) 式中,u 为物距,实物为正,虚物为负;v 为像距,实像为正,虚像为负;f 为焦距,凸透镜为正,凹透镜为负。
实验一 薄透镜焦距的测定实验报告
实验一 薄透镜焦距的测定实验目的1.学会调节光学系统使之共轴,并了解视差原理的实际应用;2.掌握薄透镜焦距的常用测定方法;实验仪器和用具光具座,会聚透镜,物屏,白屏,光源实验原理 详细见P39-41. 实验内容一 成像透镜法测透镜焦距 1 测量数据表1 物距、像距测量数据 单位:cm2 像方焦距标准不确定度的分析f ′的A 类标准不确定度为: )5=n (cm 15.0=)1-n (n )f ′-f ′(=)f ′(U ∑2iAB 类不确定度:cm 03.03cm05.03Δ=)f ′(U B ==仪;f ′的总标准不确定度为: cm 15.0=)f ′(U +)f ′(U =)f ′(U 2B 2A C 故测得的透镜的像方焦距为:cm )15.0±94.14(=f ′. 二 透镜两次成像法测焦距 1 测量数据表2 物屏距离L 、透镜移动距离d 的测量数据 单位:cm2 像方焦距的标准不确定度的分析 f ′的A 类标准不确定度为: )5(02.0)1-()-()(∑2==''='n cm n n f f f U iAB 类不确定度:cm 03.03cm05.03Δ=)f ′(U B ==仪(测量均匀分布取3=C );f ′的总标准不确定度为: cm 04.0=)f ′(U +)f ′(U =)f ′(U 2B 2AC 故,测得透镜的像方焦距为:cm )04.0±04.15(=f ′.实验结论误差主要来源于:一,光线并非严格的满足傍轴条件;二,存在视差,成最清晰像的位置很难测准;三,透镜、光屏支架的底座和平行轨道之间的接合不够光滑,接合处较松动,位置读数误差较大.采用多次测量求平均值可以减少误差,由测量的不确定度可以确定测量的误差在允许的范围之内.。
薄透镜焦距的测量带有不确定度计算
薄透镜焦距的测量(带有不确定度计算) 测量薄透镜焦距并计算不确定度是一种基本的物理实验技能,它涉及到使用光源、光屏和透镜来测量透镜的焦距。
下面将详细描述这个实验过程,并给出不确定度的计算方法。
一、实验原理在薄透镜的成像过程中,光线通过透镜后,由透镜折射后的光线会聚于一点,这个点被称为焦点。
焦距是指从透镜中心到焦点的距离。
我们可以通过在薄透镜前放置一个光源,并调整光屏与透镜的距离,使得光源在光屏上形成一个清晰的像,然后测量光屏与透镜之间的距离,即为焦距。
二、实验步骤1.将光源、透镜和光屏依次放置在同一直线上,并确保透镜和光屏的位置可以调整。
2.调整光源的位置,使其发出的光线垂直于透镜的主轴。
3.调整光屏的位置,使得光源在光屏上形成一个清晰的像。
4.测量光屏与透镜之间的距离(两次测量,取平均值),即为透镜的焦距。
三、不确定度计算不确定度是指测量结果的不确定性或误差范围。
在这个实验中,我们可以从以下几个方面来考虑不确定度的来源:1.测量工具的精度:例如,我们使用的测量工具可能不是绝对精确的,这会导致测量结果存在误差。
2.光源的光线稳定性:光源发出的光线可能会因为温度、电压等因素而发生改变,这会影响到成像的清晰度,从而影响焦距的测量精度。
3.实验操作:在调整透镜和光屏的过程中,可能会因为人为因素导致操作不准确。
假设上述不确定度来源均为均匀分布,那么我们可以使用以下公式来计算不确定度:u=3Δ其中,u为不确定度,Δ为各个不确定度来源引起的误差范围。
例如,如果我们的测量工具精度为0.01mm,光源光线稳定性引起的误差范围为0.02mm,实验操作引起的误差范围为0.03mm,那么我们可以计算不确定度:u=30.01=0.0189mm四、实验数据处理与结论假设我们在实验中得到的焦距为f,那么我们可以计算出焦距的不确定度uf:uf=f×fu例如,如果我们的焦距为50mm,那么:uf=50mm×50mm0.0189mm=0.0038mm我们可以得出结论:薄透镜的焦距为50mm±0.0038mm。
薄透镜焦距的测量实验报告
一、实验目的1. 掌握测量薄透镜焦距的基本方法。
2. 学会调节光学系统的基本方法。
3. 了解调节系统共轴的重要性及方法。
4. 通过实验加深对透镜成像原理的理解。
二、实验原理薄透镜的焦距是指透镜的光心到焦点的距离。
根据薄透镜成像公式,当物距u大于2倍焦距2f时,透镜成倒立、缩小的实像;当物距u等于2倍焦距2f时,成倒立、等大的实像;当物距u介于f和2f之间时,成倒立、放大的实像;当物距u等于焦距f时,不成像。
本实验采用以下方法测量薄透镜焦距:1. 自准直法:利用透镜的光学特性,通过调节物距和像距,使物体通过透镜成像在透镜的另一侧,从而确定焦距。
2. 物距像距法:通过测量物距和像距,根据薄透镜成像公式计算焦距。
3. 贝塞尔法:通过移动透镜,使物体成像在像屏上两次,分别得到放大像和缩小像,根据像距和物距的关系计算焦距。
三、实验仪器1. 薄透镜2. 平面反射镜3. 物屏4. 狭缝板5. 光具座6. 刻度尺7. 计算器四、实验步骤1. 共轴调节:将光源、狭缝板、透镜、平面反射镜依次放置在光具座上,调整各元件的位置,使它们共轴。
2. 自准直法测量焦距:a. 将物屏放置在透镜的一侧,调整物距,使物体通过透镜成像在另一侧的像屏上。
b. 移动透镜,使像清晰,记录物距和像距。
c. 重复上述步骤,测量多组数据。
3. 物距像距法测量焦距:a. 将物屏放置在透镜的一侧,调整物距,使物体通过透镜成像在另一侧的像屏上。
b. 记录物距和像距。
c. 重复上述步骤,测量多组数据。
4. 贝塞尔法测量焦距:a. 将物屏放置在透镜的一侧,调整物距,使物体通过透镜成像在另一侧的像屏上。
b. 移动透镜,使像清晰,记录物距和像距。
c. 再次移动透镜,使像清晰,记录物距和像距。
d. 重复上述步骤,测量多组数据。
五、数据处理1. 自准直法:根据测量数据,计算物距和像距的平均值,代入薄透镜成像公式计算焦距。
2. 物距像距法:根据测量数据,代入薄透镜成像公式计算焦距。
薄透镜焦距的测定物理实验报告
薄透镜焦距的测定物理实验报告一、实验目的1、学习测量薄透镜焦距的几种方法。
2、加深对薄透镜成像规律的理解。
3、掌握光学实验中的基本测量和读数方法。
二、实验原理1、薄透镜成像公式当物距为$u$,像距为$v$,焦距为$f$ 时,薄透镜成像满足公式:$\frac{1}{u} +\frac{1}{v} =\frac{1}{f}$。
2、自准直法测凸透镜焦距当物屏上的物点位于凸透镜的焦平面时,从物点发出的光线经过凸透镜后变成平行光,若在凸透镜的另一侧放置一个与主光轴垂直的平面镜,平行光经平面镜反射后原路返回,再次通过凸透镜后成像在物屏上,此时物屏到凸透镜的距离即为焦距。
3、物距像距法测凸透镜焦距当物距$u$ 和像距$v$ 都能直接测量时,利用成像公式可计算出焦距$f$ 。
4、共轭法测凸透镜焦距设物与像屏的距离为$L$,移动透镜,在屏上分别得到放大和缩小的像,两次成像时透镜移动的距离为$d$,则凸透镜的焦距为$f=\frac{L^2 d^2}{4L}$。
三、实验仪器光具座、凸透镜、凹透镜、物屏、像屏、光源、平面反射镜等。
四、实验步骤1、自准直法测凸透镜焦距(1)将光源、物屏、凸透镜、平面镜依次放在光具座上,调整它们的高度和共轴。
(2)移动凸透镜,使物屏上的物点发出的光经凸透镜和平面镜反射后在物屏上成像。
(3)记录此时物屏到凸透镜的距离,即为凸透镜的焦距。
2、物距像距法测凸透镜焦距(1)在光具座上依次放置光源、物屏、凸透镜和像屏,使它们共轴。
(2)固定物屏,移动凸透镜和像屏,直到像屏上得到清晰的像。
(3)分别测量物距$u$ 和像距$v$ ,重复测量多次,取平均值。
(4)根据成像公式计算出焦距$f$ 。
3、共轭法测凸透镜焦距(1)将光源、物屏、凸透镜、像屏依次放置在光具座上,使它们共轴,并记下物屏和像屏的位置$x_1$ 和$x_2$ 。
(2)移动凸透镜,在像屏上得到一个清晰的放大像,记下此时凸透镜的位置$x_3$ 。
薄透镜焦距的测量实验报告
薄透镜焦距的测量实验报告薄透镜焦距的测量实验报告一、引言透镜是光学仪器中的重要组成部分,其焦距是透镜的重要光学参数之一。
透镜焦距的准确测量对于光学仪器的设计和制造具有重要意义。
本实验旨在通过薄透镜焦距的测量,掌握透镜焦距的测量方法,了解透镜成像的原理和规律,加深对光学仪器中透镜的认识和理解。
二、实验原理薄透镜焦距的测量可以通过物距-像距法来实现。
当物体位于透镜前方时,光线经过透镜后会形成一个清晰的实像。
此时,可以通过测量物体到透镜的距离(物距)和实像到透镜的距离(像距),并根据透镜成像公式计算出透镜的焦距。
透镜成像公式为:1/f=1/u+1/v,其中f为透镜焦距,u为物距,v为像距。
当物体位于透镜前方时,物距u为正数,像距v也为正数;当物体位于透镜后方时,物距u为负数,像距v也为负数。
因此,在计算透镜焦距时,需要考虑物距和像距的符号。
三、实验步骤1.搭建实验光路:将光源、光具座、透镜和光屏依次放置在实验台上,并调整它们的高度,使光线能够垂直通过透镜。
2.测量物距和像距:将物体放置在透镜前方,移动光屏,直到在光屏上观察到清晰的实像。
此时,测量物体到透镜的距离(物距)和实像到透镜的距离(像距)。
3.计算焦距:根据透镜成像公式,计算出透镜的焦距。
为了减小误差,需要进行多次实验,并求出焦距的平均值。
4.绘制光路图:根据实验数据,绘制出物体、透镜和实像之间的光路图。
四、实验结果与分析表1 实验数据记录表有一定的可行性和精度。
在本实验中,通过多次测量并计算焦距的平均值,可以得到较为准确的实验结果。
然而,由于实验过程中存在误差和不确定性,如光源和光屏的调整误差、测量误差等,因此实验结果仍存在一定的误差。
为了提高实验精度,可以采用更精确的测量仪器和方法,如使用显微镜观察实像的位置等。
根据实验数据绘制的光路图如下所示:图1 光路图五、结论本实验通过物距-像距法测量了薄透镜的焦距,掌握了透镜焦距的测量方法,了解了透镜成像的原理和规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
放大镜的焦距测量
——1011班2011年11月3日实验报告
【实验目的】
1.了解薄透镜的成像规律。
实验人:
2.掌握测定透镜焦距的几种方法。
时间:
3.掌握光学系统的共轴、等高调节。
【实验器材】
薄凸透镜、、光具座、小灯、平面镜、物屏、像屏。
【实验内容】
1. 光具座上各元件共轴的调节
(1)粗调:先将物、透镜、像屏等用光具夹夹好以后,再将它们靠拢,用眼睛观察调节高低、左右,使它们的中心大致在一条和导轨平行的直线上,并使它们本身的平面互相平行且与光轴垂直。
(2) 细调:如物不在透镜的光轴上,而发生偏离,那么其像的中心在屏上的位置将会随屏的移动而变化,这时可以根据偏离的方向判断物中心究竟是偏左还是偏右、偏上还是偏下,然后加以调整,直到像的中心在屏上的位置不随屏的移动而变化时即可。
2.测量凸透镜的焦距
(1) 自准法
将被光源照明的带箭头的板(物)、凸透镜和平面镜依次装在光具座的支架上(平面镜要尽量靠近凸透镜),然后移动透镜即改变凸透镜到物的距离,直至物旁出现清晰的箭头像为止。
(注意区分物的光经凸透镜表面反射所成的像和平面镜反射所成的像。
方法是:在凸透镜与平面镜间用一张纸挡一下光线,若像消失,该箭头像即为所找之像。
若像仍在,显然此像不是平面镜反射而成的,即非所找之像)。
测出此时的物距,即为透镜的焦距。
在实际测量时,由于眼睛对成像的清晰程度的判断总不免有些误差,故常采用左右逼近法读数:先使凸透镜自左向右移动,当像刚清晰时停止,记下透镜位置的读数;再使透镜自右向左移动,在像刚清晰时又可读得一数,取两次读数的平均值作为成像清晰时凸透镜的位置。
重复测量5次。
【数据处理】
把各种方法测得的数据记录于自拟的表格中并正确表达测量结果
凸透镜、凹透镜的焦距测量数据(单位:㎝)
凸透镜焦距的测量方法:自准直
f'=|透镜-光源|
最终求得:f=13.8
【最终结论】:
61。