2018济南市槐荫区中考数学第一次模拟考试试题

合集下载

山东省济南市槐荫区2018届中考一模试题-含参考答案

山东省济南市槐荫区2018届中考一模试题-含参考答案

山东省济南市槐荫区2018届九年级语文下学期学业水平阶段性调研测试(一模)试题本试题共6 页,满分为150 分,考试时间为120 分钟。

答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并将考点、姓名、准考证号和座号填写在试卷规定的位置。

考试结束后,将答题卡和试卷一并交回。

注意事项:1.答选择题时,必须使用2B 铅笔填涂答题卡上相应题目的答案标号,修改时,要用橡皮擦干净。

2.答非选择题时,必须使用0.5 毫米黑色签字笔书写,要求笔迹清晰、字体工整。

第Ⅰ卷选择题(共29分)一、(20 分)1.下列词语中加点字的读音完.全.正.确.的一项是()(4 分)A.芳馨.(xīn)鞭挞.(dá)叱咤.风云(z hà)舐.犊情深(s hì)B.蓬蒿.(gāo)绯.红(fēi)惟妙惟肖.(x iào)猝.然长逝(cù)C.哂.笑(shěn)滑稽.(jī)越俎代庖.(páo)锲.而不舍(q iè)D.骈.句(pián)给.予(jí)迥.然不同(j iǒng)长吁.短叹(xū)2.下列词语中没.有.错.别.字.的一项是()(4 分)A.精粹水龙头金榜提名冥思暇想B.追溯连琐店家喻户晓望眼欲穿C.峻工擦边球一视同仁相得益彰D.扉页化妆品墨守成规不胫而走3.下列句子中加点成语使.用.恰.当.的一项是()(4 分)A.同学们正厉兵秣马迎接学考的到来,孜孜不倦,处.心.积.虑.,信心百倍。

B.位于西部新城的济南国际医学科学中心,将成为全国医学领域首.屈.一.指.的产学研高地。

C. “一湖一环”照亮济南,整个景区恍如仙境,美不胜收,灯光倒影在湖中栩.栩.如.生.。

D.《朗读者》用美.轮.美.奂.的文字,至真至情的声音,传播思想、传递情感、传承精神。

4.下列句子没.有.语.病.的一项是()(4 分)A.文字是穿越时空的隧道,读书可以让我们与古人对话,与未来交流。

<合集试卷3套>2018届济南市中考数学模拟卷

<合集试卷3套>2018届济南市中考数学模拟卷

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于x 的分式方程230x x a +=-解为4x =,则常数a 的值为( ) A .1a =B .2a =C .4a =D .10a = 【答案】D【解析】根据分式方程的解的定义把x=4代入原分式方程得到关于a 的一次方程,解得a 的值即可.【详解】解:把x=4代入方程230x x a+=-,得 23044a+=-, 解得a=1.经检验,a=1是原方程的解故选D .点睛:此题考查了分式方程的解,分式方程注意分母不能为2.2.如图,钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32m ,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC'的位置,此时露在水面上的鱼线B′C′为33m ,则鱼竿转过的角度是( )A .60°B .45°C .15°D .90°【答案】C 【解析】试题解析:∵sin ∠CAB=32262BC AC == ∴∠CAB=45°.∵333B C sin C AB AC '''∠===' ∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,鱼竿转过的角度是15°.故选C .考点:解直角三角形的应用. 3. 如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°【答案】C【解析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数. 【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.4.用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应( )A .32⨯+⨯①②B .3-2⨯⨯①②C .53⨯+⨯①②D .5-3⨯⨯①②【答案】C【解析】利用加减消元法53⨯+⨯①②消去y 即可.【详解】用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应①×5+②×3,故选C【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 5.如图,已知∠1=∠2,要使△ABD ≌△ACD ,需从下列条件中增加一个,错误的选法是()A .∠ADB =∠ADC B .∠B =∠C C .AB =ACD .DB =DC【答案】D【解析】由全等三角形的判定方法ASA证出△ABD≌△ACD,得出A正确;由全等三角形的判定方法AAS 证出△ABD≌△ACD,得出B正确;由全等三角形的判定方法SAS证出△ABD≌△ACD,得出C正确.由全等三角形的判定方法得出D不正确;【详解】A正确;理由:在△ABD和△ACD中,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA);B正确;理由:在△ABD和△ACD中,∵∠1=∠2,∠B=∠C,AD=AD∴△ABD≌△ACD(AAS);C正确;理由:在△ABD和△ACD中,∵AB=AC,∠1=∠2,AD=AD,∴△ABD≌△ACD(SAS);D不正确,由这些条件不能判定三角形全等;故选:D.【点睛】本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键.6.某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( )A.1000(1+x)2=1000+500B.1000(1+x)2=500C.500(1+x)2=1000D.1000(1+2x)=1000+500【答案】A【解析】设该公司第5、6个月投放科研经费的月平均增长率为x,5月份投放科研经费为1000(1+x),6月份投放科研经费为1000(1+x)(1+x),即可得答案.【详解】设该公司第5、6个月投放科研经费的月平均增长率为x,则6月份投放科研经费1000(1+x)2=1000+500,故选A.【点睛】考查一元二次方程的应用,求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .7.如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E ;B 、E 是半圆弧的三等分点,BD 的长为43π,则图中阴影部分的面积为( )A .4633π-B .8933π-C .33223π-D .8633π- 【答案】D 【解析】连接BD ,BE ,BO ,EO ,先根据B 、E 是半圆弧的三等分点求出圆心角∠BOD 的度数,再利用弧长公式求出半圆的半径R ,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S △ABC ﹣S 扇形BOE ,然后分别求出面积相减即可得出答案. 【详解】解:连接BD ,BE ,BO ,EO ,∵B ,E 是半圆弧的三等分点,∴∠EOA =∠EOB =∠BOD =60°,∴∠BAD =∠EBA =30°,∴BE ∥AD ,∵BD 的长为43π , ∴6041803R ππ= 解得:R =4,∴AB =ADcos30°=3,∴BC =12AB =3 ∴AC 3=6,∴S △ABC =12×BC×AC =12×23=63∵△BOE 和△ABE 同底等高,∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为:S △ABC ﹣S 扇形BOE =2604863633603ππ⨯-=- 故选:D .【点睛】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.8.如图,在矩形ABCD 中,E 是AD 上一点,沿CE 折叠△CDE ,点D 恰好落在AC 的中点F 处,若CD =3,则△ACE 的面积为( )A .1B 3C .2D .3【答案】B 【解析】由折叠的性质可得3DE=EF ,AC=23由三角形面积公式可求EF 的长,即可求△ACE 的面积.【详解】解:∵点F 是AC 的中点,∴AF=CF=12AC , ∵将△CDE 沿CE 折叠到△CFE ,∴3DE=EF ,∴AC=3在Rt △ACD 中,22AC CD -.∵S △ADC =S △AEC +S △CDE ,∴12×AD×CD=12×AC×EF+12×CD×DE ∴3233,∴DE=EF=1,∴S △AEC=12×33 故选B .【点睛】本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键. 9.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为( ).A .50°B .40°C .30°D .25°【答案】B 【解析】解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,根据平角为180°可得,∠2=90°﹣50°=40°.故选B .【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.10.如图,将木条a ,b 与c 钉在一起,∠1=70°,∠2=50°,要使木条a 与b 平行,木条a 旋转的度数至少是( )A .10°B .20°C .50°D .70°【答案】B 【解析】要使木条a 与b 平行,那么∠1=∠2,从而可求出木条a 至少旋转的度数.【详解】解:∵要使木条a 与b 平行,∴∠1=∠2,∴当∠1需变为50 º,∴木条a 至少旋转:70º-50º=20º.故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.二、填空题(本题包括8个小题)11.已知函数22y x x =--,当 时,函数值y 随x 的增大而增大.【答案】x≤﹣1.【解析】试题分析:∵22y x x =--=2(1)1x -++,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x≤﹣1时,y 随x 的增大而增大,故答案为x≤﹣1.考点:二次函数的性质.12.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.【答案】127或2 【解析】由折叠性质可知B’F=BF ,△B’FC 与△ABC 相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x ,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF ,设B’F=BF=x ,故CF=4-x当△B’FC ∽△ABC ,有'B F CF AB BC =,得到方程434x x -=,解得x=127,故BF=127; 当△FB’C ∽△ABC ,有'B F FC AB AC =,得到方程433x x -=,解得x=2,故BF=2; 综上BF 的长度可以为127或2. 【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.13.已知关于 x 的函数 y=(m ﹣1)x 2+2x+m 图象与坐标轴只有 2 个交点,则m=_______.【答案】1 或 0 15± 【解析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m 的值.【详解】解:(1)当 m ﹣1=0 时,m=1,函数为一次函数,解析式为 y=2x+1,与 x 轴 交点坐标为(﹣12,0);与 y 轴交点坐标(0,1).符合题意. (2)当 m ﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与 x 轴有两个不同的交点,于是△=4﹣4(m ﹣1)m >0,解得,(m ﹣12)2<54,解得 m<2 或 m>2. 将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与 x 轴只有一个交点,与 Y 轴交于交于另一点, 这时:△=4﹣4(m ﹣1)m=0,解得:. 故答案为1 或 0或12. 【点睛】此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解.14.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解, 则a 的取值范围是 ________. 【答案】2a ≥-【解析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】3122x a x x ->⎧⎨->-⎩①②, 解①得:x >a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故答案是:a≥-2.【点睛】本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤..15.将23x =代入函数1y x =-中,所得函数值记为1y ,又将11x y =+代入函数1y x=-中,所得的函数值记为2y ,再将21x y =+代入函数中,所得函数值记为3y …,继续下去.1y =________;2y =________;3y =________;2006y =________. 【答案】32- 2 13- 2 【解析】根据数量关系分别求出y1,y2,y3,y4,…,不难发现,每3次计算为一个循环组依次循环,用2006除以3,根据商和余数的情况确定y2006的值即可.【详解】y 1=32-,y 2=−1312-+=2, y 3=−112+=13-, y 4=−1113-+=32-, …,∴每3次计算为一个循环组依次循环,∵2006÷3=668余2,∴y2006为第669循环组的第2次计算,与y2的值相同,∴y2006=2, 故答案为32-;2;13-;2. 【点睛】本题考查反比例函数的定义,解题的关键是多运算找规律.16.让我们轻松一下,做一个数字游戏:第一步:取一个自然数15n =,计算211n +得1a ;第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ; 第三步:算出2a 的各位数字之和得3n ,再计算231n +得3a ;依此类推,则2019a =____________【答案】1 【解析】根据题意可以分别求得a 1,a 2,a 3,a 4,从而可以发现这组数据的特点,三个一循环,从而可以求得a 2019的值.【详解】解:由题意可得,a 1=52+1=26,a 2=(2+6)2+1=65,a 3=(6+5)2+1=1,a 4=(1+2+2)2+1=26,…∴2019÷3=673,∴a 2019= a 3=1,故答案为:1.【点睛】本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a2019的值.17.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.【答案】4.4×1【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.详解:44000000=4.4×1,故答案为4.4×1.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.△的顶点A,B,C均在格点上,D为AC边上的18.如图,在每个小正方形边长为1的网格中,ABC一点.△的线段AC的值为______________;在如图所示的网格中,AM是ABC+的值最小,请用无刻度的直尺,画出AM和点P,并简要说角平分线,在AM上求一点P,使CP DP明AM和点P的位置是如何找到的(不要求证明)___________.【答案】(Ⅰ)5(Ⅱ)如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P. 【解析】(Ⅰ)根据勾股定理进行计算即可.(Ⅱ)根据菱形的每一条对角线平分每一组对角,构造边长为1的菱形ABEC,连接AE交BC于M,即可得出AM是ABC的角平分线,再取点F使AF=1,则根据等腰三角形的性质得出点C与F关于AM对称,+的值最小.连接DF交AM于点P,此时CP DP【详解】(Ⅰ)根据勾股定理得22+=;345故答案为:1.(Ⅱ)如图,如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P,则点P即为所求.说明:构造边长为1的菱形ABEC,连接AE交BC于M,则AM即为所求的ABC的角平分线,在AB上取点F,使AF=AC=1,则AM垂直平分CF,点C与F关于AM对称,连接DF交AM于点P,则点P即为所求.【点睛】本题考查作图-应用与设计,涉及勾股定理、菱形的判定和性质、几何变换轴对称—最短距离等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.三、解答题(本题包括8个小题)19.某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少?【答案】(1)50(2)36%(3)160【解析】(1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数.【详解】(1)该校对50名学生进行了抽样调查.()2本次调查中,最喜欢篮球活动的有18人,18100%36%50⨯=, ∴最喜欢篮球活动的人数占被调查人数的36%.(3)()130%26%24%20%-++=,20020%1000÷=人,8100%100016050⨯⨯=人. 答:估计全校学生中最喜欢跳绳活动的人数约为160人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.20.先化简:2222421121x x x x x x x ---÷+--+,然后在不等式2x ≤的非负整数解中选择一个适当的数代入求值. 【答案】21x +;2. 【解析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式=()()()()222121112x x x x x x x ---⋅++-- =()21211x x x x --++ =21x + 2x ≤的非负整数解有:2,1,0,其中当x 取2或1时分母等于0,不符合条件,故x 只能取0∴将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.21.有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨. 请问1辆大货车和1辆小货车一次可以分别运货多少吨? 目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?【答案】(1)1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨;(2)货运公司应安排大货车8辆时,小货车2辆时最节省费用.【解析】(1)设1辆大货车和1辆小货车一次可以分别运货x 吨和y 吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,所以列不等式,大货车运费高于小货车,故用大货车少费用就小进行安排即可.【详解】(1)解:设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨,依题可得: 34182617x y x y +=⎧⎨+=⎩, 解得:432x y =⎧⎪⎨=⎪⎩. 答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨. (2)解:设大货车有m 辆,则小货车10-m 辆,依题可得:4m+32(10-m )≥33 m≥010-m≥0解得:365≤m≤10, ∴m=8,9,10;∴当大货车8辆时,则小货车2辆;当大货车9辆时,则小货车1辆;当大货车10辆时,则小货车0辆;设运费为W=130m+100(10-m )=30m+1000,∵k=30〉0,∴W 随x 的增大而增大,∴当m=8时,运费最少,∴W=130×8+100×2=1240(元),答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【点睛】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.22.已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC .求证:BG=FG ;若AD=DC=2,求AB 的长.【答案】(1)证明见解析;(2)AB=3【解析】(1)证明:∵90ABC ∠=,DE ⊥AC 于点F ,∴∠ABC=∠AFE .∵AC=AE,∠EAF=∠CAB ,∴△ABC ≌△AFE∴AB=AF .连接AG ,∵AG=AG,AB=AF ∴Rt △ABG ≌Rt △AFG∴BG=FG(2)解:∵AD=DC ,DF ⊥AC∴1122AF AC AE == ∴∠E=30°∴∠FAD=∠E=30°∴323.某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A 、B 、C 、D 、E 、F )六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.【答案】(1)50人;(2)补图见解析;(3)1 10.【解析】分析:(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.详解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:化学生物政治历史地理化学生物、化学政治、化学历史、化学地理、化学生物化学、生物政治、生物历史、生物地理、生物政治化学、政治生物、政治历史、政治地理、政治历史化学、历史生物、历史政治、历史地理、历史地理化学、地理生物、地理政治、地理历史、地理由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为21= 2010.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.24.如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.求证:DF是BF和CF的比例中项;在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.【答案】证明见解析【解析】试题分析:(1)根据已知求得∠BDF=∠BCD,再根据∠BFD=∠DFC,证明△BFD∽△DFC,从而得BF:DF=DF:FC,进行变形即得;(2)由已知证明△AEG∽△ADC,得到∠AEG=∠ADC=90°,从而得EG∥BC,继而得EG BF ED DF=,由(1)可得BF DFDF CF=,从而得EG DFED CF=,问题得证.试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中点,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴AE AGAD AC=,又∵∠A=∠A,∴△AEG ∽△ADC ,∴∠AEG=∠ADC=90°,∴EG ∥BC , ∴EG BF ED DF = , 由(1)知△DFD ∽△DFC ,∴BF DF DF CF= , ∴EG DF ED CF = , ∴EG·CF=ED·DF.25.班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了________名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.【答案】50 见解析(3)115.2° (4)35【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名) 补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.26.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:△ADE≌△CBF;求证:四边形BFDE 为矩形.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.【详解】解:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,{AED CFB A CAD BC∠=∠∠=∠=,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE为矩形.【点睛】本题考查1.矩形的判定;2.全等三角形的判定与性质;3.平行四边形的性质.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )A.M B.N C.P D.Q【答案】A【解析】解:∵点P所表示的数为a,点P在数轴的右边,∴-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数-3a所对应的点可能是M,故选A.点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍.2.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【答案】D【解析】试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.试题解析:(ab2)3=a3•(b2)3=a3b1.故选D.考点:幂的乘方与积的乘方.3.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【答案】D【解析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.4.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A.15πcm2B.24πcm2C.39πcm2D.48πcm2【答案】B【解析】试题分析:底面积是:9πcm1,底面周长是6πcm,则侧面积是:12×6π×5=15πcm1.则这个圆锥的全面积为:9π+15π=14πcm1.故选B.考点:圆锥的计算.5.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )A.22B.4 C.32D.42【答案】B【解析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B .【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.6.如图所示的图形,是下面哪个正方体的展开图( )A .B .C .D .【答案】D 【解析】根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详解】A. 因为A 选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:B. 因为B 选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;C .因为C 选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.D. 因为D 选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;故选D.【点睛】本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.7.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段 AC 的长为( )A .3B .2C .6D .4【答案】B 【解析】由已知条件可得ABC DAC ~,可得出AC BC DC AC=,可求出AC 的长. 【详解】解:由题意得:∠B=∠DAC ,∠ACB=∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC=8,得DC=4,代入可得AC=2, 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.8.若直线y=kx+b 图象如图所示,则直线y=−bx+k 的图象大致是( )A .B .C .D .【答案】A【解析】根据一次函数y=kx+b 的图象可知k >1,b <1,再根据k ,b 的取值范围确定一次函数y=−bx+k 图象在坐标平面内的位置关系,即可判断.【详解】解:∵一次函数y=kx+b 的图象可知k >1,b <1,∴-b >1,∴一次函数y=−bx+k 的图象过一、二、三象限,与y 轴的正半轴相交,故选:A .【点睛】本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <1;函数值y 随x 的增大而增大⇔k >1;一次函数y=kx+b 图象与y 轴的正半轴相交⇔b >1,一次函数y=kx+b 图象与y 轴的负半轴相交⇔b <1,一次函数y=kx+b 图象过原点⇔b=1. 9.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x ﹣k )2+h .已知球与D 点的水平距离为6m 时,达到最高2.6m ,球网与D 点的水平距离为9m .高度为2.43m ,球场的边界距O 点的水平距离为18m ,则下列判断正确的是( )A .球不会过网B .球会过球网但不会出界C .球会过球网并会出界D .无法确定【答案】C 【解析】分析:(1)将点A(0,2)代入2(6) 2.6y a x =-+求出a 的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.。

2018年山东省济南市市中区中考数学一模试卷

2018年山东省济南市市中区中考数学一模试卷

2018年山东省济南市市中区中考数学一模试卷参考答案与试题解析一、选择题(本大题共15个小题.每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)4的算术平方根是()A.﹣2 B.2C.±2 D.16考点:算术平方根.分析:根据算术平方根的定义进行解答即可.解答:解:∵22=4,∴4的算术平方根是2.故选B.点评:本题考查了算术平方根的定义,熟记定义是解题的关键.2.(3分)据萧山区旅游局统计,2012年春节约有359525人来萧旅游,将这个旅游人数(保留三个有效数字)用科学记数法表示为()A.3.59×105B.3.60×105C.3.5×105D.3.6×105考点:科学记数法与有效数字.专题:计算题.分析:根据科学记数法与有效数字的定义将359525保留三个有效数字得到3.60×105.解答:解:359525≈3.60×105.故选B.点评:本题考查了科学记数法与有效数字:把一个数表示成a×10n(1≤a<10)叫科学记数法;从一个数的左边第一个不为零的数字数起,到最后一个数字止,所有数字都是这个数的有效数字.3.(3分)下列运算正确的是()A.﹣(a﹣1)=﹣a﹣1 B.(﹣2a3)2=4a6C.(a﹣b)2=a2﹣b2D.a3+a2=2a5考点:完全平方公式;合并同类项;去括号与添括号;幂的乘方与积的乘方.专题:常规题型.分析:根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.解答:解:A、因为﹣(a﹣1)=﹣a+1,故本选项错误;B、(﹣2a3)2=4a6,正确;C、因为(a﹣b)2=a2﹣2ab+b2,故本选项错误;D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误.故选B.点评:本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键.4.(3分)如图,由几个小正方体组成的立体图形的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在三视图中.解答:解:从物体左面看,左边2列,右边是1列.故选A.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.5.(3分)已知α为锐角,sin(α﹣20°)=,则α=()A.20°B.40°C.60°D.80°考点:特殊角的三角函数值.分析:根据特殊角的三角函数值直接解答即可.解答:解:∵α为锐角,sin(α﹣20°)=,∴α﹣20°=60°,∴α=80°,故选D.点评:本题考查的是特殊角的三角函数值,属较简单题目.6.(3分)下列事件中确定事件是()A.掷一枚均匀的硬币,正面朝上B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上考点:随机事件.分析:确定事件包括必然事件和不可能事件.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.解答:解:A、掷一枚均匀的硬币,正面朝上是随机事件;B、买一注福利彩票一定会中奖是随机事件;C、把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,即确定事件;D、掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上是随机事件.故选C.点评:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.注意确定事件包括必然事件和不可能事件.7.(3分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,则∠2的余角的度数是()A.30°B.55°C.55°D.60°考点:平行线的性质;余角和补角.分析:由两直线平行,内错角相等,即可求得∠3的度数,又由等腰直角三角形的性质,可求得∠2的度数,继而求得∠2的余角的度数.解答:解:∵a∥b,∴∠3=∠1=15°,∵∠ABC=45°,∴∠2=∠ABC﹣∠3=45°﹣15°=30°,∴∠2的余角的度数是:90°﹣∠2=60°.故选D.点评:此题考查了平行线的性质与余角的定义.此题比较简单,解题的关键是掌握两直线平行,内错角相等定理的应用,掌握数形结合思想的应用.8.(3分)若式子有意义,则x的取值范围为()A.x≥2 B.x≠3 C.x≥2或x≠3 D.x≥2且x≠3考点:二次根式有意义的条件;分式有意义的条件.专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:解:根据二次根式有意义,分式有意义得:x﹣2≥0且x﹣3≠0,解得:x≥2且x≠3.故选D.点评:本题考查了二次根式有意义的条件和分式的意义.考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.9.(3分)已知,且﹣1<x﹣y<0,则k的取值范围为()A.﹣1<k<﹣B.0<k<C.0<k<1 D.<k<1考点:解一元一次不等式组.分析:利用第二个方程减去第一个方程,得到一个不等式,根据﹣1<x﹣y<0得到一个不等式,组成不等式组解这个不等式即可.解答:解:第二个方程减去第一个方程得到x﹣y=1﹣2k,根据﹣1<x﹣y<0得到:﹣1<1﹣2k<0即解得<k<1k的取值范围为<k<1.故选D.点评:要求k的取值范围可以通过解方程组,得到关于k的不等式组解决.10.(3分)下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A.x2+1=0 B.x2+2x+1=0 C.x2+2x+3=0 D.x2+2x﹣3=0考点:根的判别式.分析:要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.解答:解:A、x2+1=0中△<0,没有实数根;B、x2+2x+1=0中△=0,有两个相等的实数根;C、x2+2x+3=0中△<0,没有实数根;D、x2+2x﹣3=0中△>0,有两个不相等的实数根.故选D.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.(3分)二次函数y1=ax2﹣x+1的图象与y2=﹣2x2图象的形状,开口方向相同,只是位置不同,则二次函数y1的顶点坐标是()A.(﹣,﹣)B.(﹣,)C.(,)D.(,﹣)考点:二次函数的性质.分析:因为图象的形状,开口方向相同,所以a=﹣2.利用公式法y=ax2+bx+c的顶点坐标公式即可求.解答:解:根据题意可知,a=﹣2,又∵=﹣,=,∴顶点坐标为(﹣,).故选B.点评:此题考查了二次函数的性质.12.(3分如图,点A、B、C、D、E、F为圆O的六等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O的路线作匀速运动.设运动时间为x秒,∠APF的度数为y度,则下列图象中表示y与x之间函数关系最恰当的是()A .B .C .D .考点: 动点问题的函数图象.专题: 压轴题.分析:根据图象分别求出当动点P 在OC 上、在上、在DO 上运动时,∠APB 的变化情况即可得出表示y 与x 之间函数关系最恰当的图象.解答: 解:如图:当动点P 在OC 上运动时,∠APF 逐渐减小;当动点P 在上运动时,∠APF 不变;当动点P 在DO 上运动时,∠APF 逐渐增大.则表示y 与x 之间函数关系最恰当的是C ;故选C .点评: 此题考查了动点问题的函数图象,用到的知识点是圆周角、圆内的角及函数图象,关键是得出动点P 从圆心O 出发,沿O ﹣C ﹣D ﹣O 的路线作匀速运动时∠APF 的度数是如何变化的.13.(3分)如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( )A .B .C .D .考点: 菱形的性质;勾股定理.专题: 压轴题.分析: 根据菱形的性质得出BO 、CO 的长,在RT △BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC ×AE ,可得出AE 的长度.解答:解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=cm,故选D.点评:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.14.(3分)如图,P1是反比例函数y=在第一象限图象上的一点,点A1的坐标为(2,0).若△P1OA1与△P2A1A2均为等边三角形,则A2点的坐标为()A.2B.2﹣1 C.2D.2﹣1考点:反比例函数综合题.分析:由于△P1OA1为等边三角形,作P1C⊥OA1,垂足为C,由等边三角形的性质及勾股定理可求出点P1的坐标,根据点P1是反比例函数y=图象上的一点,利用待定系数法求出此反比例函数的解析式;作P2D⊥A1A2,垂足为D.设A1D=a,由于△P2A1A2为等边三角形,由等边三角形的性质及勾股定理,可用含a的代数式分别表示点P2的横、纵坐标,再代入反比例函数的解析式中,求出a的值,进而得出A2点的坐标.解答:解:(1)因为△P1OA1为边长是2的等边三角形,所以OC=1,P1C=2×=,所以P1(1,).代入y=,得k=,所以反比例函数的解析式为y=.作P2D⊥A1A2,垂足为D.设A1D=a,则OD=2+a,P2D=a,所以P2(2+a,a).∵P2(2+a,a)在反比例函数的图象上,∴代入y=,得(2+a)•a=,化简得a2+2a﹣1=0解得:a=﹣1±.∵a>0,∴a=﹣1+.∴A1A2=﹣2+2,∴OA2=OA1+A1A2=2,所以点A2的坐标为(2,0).故选C.点评:此题综合考查了反比例函数的性质,利用待定系数法求函数的解析式,正三角形的性质等多个知识点.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.15.(3分)在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2012个正方形的面积为()A.B.C.D.考点:相似三角形的判定与性质;坐标与图形性质;正方形的性质.专题:压轴题;规律型.分析:首先设正方形的面积分别为S1,S2…S2012,由题意可求得S1的值,易证得△BAA1∽△B1A1A2,利用相似三角形的对应边成比例与三角函数的性质,即可求得S2的值,继而求得S3的值,继而可得规律:S n=5×()2n﹣2,则可求得答案.解答:解:∵点A的坐标为(1,0),点D的坐标为(0,2),∴OA=1,OD=2,设正方形的面积分别为S1,S2 (2012)根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x,∵∠ABA1=∠A1B1A2=90°,∴△BAA1∽△B1A1A2,在直角△ADO中,根据勾股定理,得:AD==,∴AB=AD=BC=,∴S1=5,∵∠DAO+∠ADO=90°,∠DAO+∠BAA1=90°,∴∠ADO=∠BAA1,∴tan∠BAA1===,∴A1B=,∴A1C=BC+A1B=,∴S2=×5=5×()2,∴==,∴A2B1=×=,∴A2C1=B1C1+A2B1=+==×()2,∴S3=×5=5×()4,由此可得:S n=5×()2n﹣2,∴S2012=5×()2×2012﹣2=5×()4022.故选D.点评:此题考查了相似三角形的判定与性质、正方形的性质以及三角函数等知识.此题难度较大,解题的关键是得到规律S n=5×()2n﹣2.二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上)16.(3分)分解因式:2x2+4x+2=2(x+1)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式2,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.解答:解:2x2+4x+2=2(x2+2x+1)=2(x+1)2.故答案为:2(x+1)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.17.(3分)当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为cm.考点:垂径定理的应用;勾股定理.专题:压轴题;探究型.分析:连接OA,过点O作OD⊥AB于点D,由垂径定理可知,AD=AB=(9﹣1)=4,设OA=r,则OD=r﹣3,在Rt△OAD中利用勾股定理求出r的值即可.解答:解:连接OA,过点O作OD⊥AB于点D,∵OD⊥AB,∴AD=AB=(9﹣1)=4cm,设OA=r,则OD=r﹣3,在Rt△OAD中,OA2﹣OD2=AD2,即r2﹣(r﹣3)2=42,解得r=cm.故答案为:.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.18.(3分)化简的结果是m+1.考点:分式的混合运算.专题:计算题.分析:把原式括号中通分后,利用同分母分式的加法运算法则:分母不变,只把分子相加进行计算,同时将除式的分母利用平方差公式分解因式,并根据除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后即可得到结果.解答:解:(1+)÷=(+)÷=•=•=m+1.故答案为:m+1点评:此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时若分子分母是多项式,应先将多项式分解因式后再约分.19.(3分)在一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球,记下颜色后,再放回暗箱,通过大量的重复试验后发现,摸到红球的频率稳定在25%.那么估计a大约有12个.考点:利用频率估计概率.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解答:解:由题意可得,×100%=25%,解得,a=12个.故估计a大约有12个.点评:本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.20.(3分)如图,在矩形ABCD中,AB=3,AD=4,P是AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF=.考点:矩形的性质;相似三角形的判定与性质.专题:动点型.分析:根据△AEP∽△ADC;△DFP∽△DAB找出关系式解答.解答:解:设AP=x,PD=4﹣x,由勾股定理,得AC=BD==5,∵∠PAE=∠CAD,∠AEP=∠ADC=90°,∴Rt△AEP∽Rt△ADC;∴=,即=﹣﹣﹣(1).同理可得Rt△DFP∽Rt△DAB,∴=﹣﹣﹣(2).故(1)+(2)得=,∴PE+PF=.另解:∵四边形ABCD为矩形,∴△OAD为等腰三角形,∴PE+PF等于△OAD腰OA上的高,即Rt△ADC斜边上的高,∴PE+PF==.点评:此题比较简单,根据矩形的性质及相似三角形的性质解答即可.21.(3分)将边长为8cm的正方形ABCD的四边沿直线l向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A所经过的路线的长是16π+8πcm.考点:弧长的计算;正方形的性质.专题:压轴题.分析:可先计算旋转周时,正方形的顶点A所经过的路线的长,可以看出是四段弧长,根据弧长公式计算即可.解答:解:第一次旋转是以点C为圆心,AC为半径,旋转角度是90度,所以弧长==4π;第二次旋转是以点D为圆心,AD为半径,角度是90度,所以弧长==4π;第三次旋转是以点A为圆心,所以没有路程;第四次是以点B为圆心,AB为半径,角度是90度,所以弧长==4π;所以旋转一周的弧长共=4π+8π.所以正方形滚动两周正方形的顶点A所经过的路线的长是16π+8π.点评:本题的关键是理清第一次旋转时的圆心及半径和圆心角的度数,然后利用弧长公式求解.三、解答题(本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤)22.(7分)(1)计算:(2)解方程:考点:特殊角的三角函数值;零指数幂;解分式方程.专题:计算题.分析:(1)分别根据0指数幂、特殊角的三角函数值、绝对值计算出各数,再根据实数的运算法则进行计算,(2)本题的最简公分母是x(x+1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.解答:解:(1)原式=1﹣3×+﹣2=﹣1,(2)方程两边都乘x(x+1),得:x+1=2x,x=1,经检验:x=1是原方程的解.点评:本题考查了0指数幂、特殊角的三角函数值、绝对值,是基础知识比较简单,分式方程都通过去分母转化成整式方程求解,检验是解分式方程必不可少的一步,难度适中.23.(7分)(1)一个人由山底爬到山顶,需先爬45°的山坡200m,再爬30°的山坡300m,求山的高度(结果可保留根号).(2)如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.证明:考点:解直角三角形的应用-坡度坡角问题;全等三角形的判定与性质.分析:(1)由已知可得到山的高度由两部分组成分别是45°和30°所对的高度,所以利用三角函数分别求得这两部分的值,此时山的高度就不难求了;(2)要使AC=BD,可以证明△ABC≌△BAD,从而得到结论.解答:(1)解:依题意,可得山高h=200sin45°+300sin30°=200×+300×=100+150(m)所以山高为(100+150)m.(2)解:添加条件例举:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC 等.证明例举(以添加条件AD=BC为例):∵在△ABC与△BAD中,,∴△ABC≌△BAD(SAS).∴AC=BD.点评:(1)考查了坡度坡角的理解及解直角三角形的综合运用.(2)考查了全等三角形的判定及性质;判定两个三角形全等的方法有:SSS,SAS,ASA,AAS,本题已知一边一角,所以可以寻找夹这个角的另外一边或者是另外两个角.24.(8分)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?考点:一元二次方程的应用.专题:增长率问题;优选方案问题;压轴题.分析:(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.解答:解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.点评:本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.25.(8分)“五•一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票.下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:(1)若去D地的车票占全部车票的10%,请求出D地车票的数量,并补全统计图;(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A地的概率是多少?(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?考点:游戏公平性;条形统计图;概率公式;列表法与树状图法.分析:(1)首先设D地车票有x张,根据去D地的车票占全部车票的10%列方程即可求得去D地的车票的数量,则可补全统计图;(2)根据概率公式直接求解即可求得答案;(3)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较是否相等即可求得答案.解答:解:(1)设D地车票有x张,则x=(x+20+40+30)×10%,解得x=10.即D地车票有10张.补全统计图如图所示.(2)小胡抽到去A地的概率为=.(3)不公平.以列表法说明:1 2 3 4小李掷得数字小王掷得数字1 (1,1)(1,2)(1,3)(1,4)2 (2,1)(2,2)(2,3)(2,4)3 (3,1)(3,2)(3,3)(3,4)4 (4,1)(4,2)(4,3)(4,4)或者画树状图法说明(如图)由此可知,共有16种等可能结果.其中小王掷得数字比小李掷得数字小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴小王掷得数字比小李掷得数字小的概率为=.则小王掷得数字不小于小李掷得数字的概率为=.∴这个规则对双方不公平.点评:本题考查的是用列表法或画树状图法求概率与概率公式得到应用.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.26.(9分)如图,反比例函数(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=.(1)求k的值;(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数(x>0)的图象恰好经过DC的中点E,求直线AE的函数表达式;(3)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论并说明理由.考点:反比例函数综合题.分析:(1)在直角△AOB中利用三角函数求得A的坐标,然后利用待定系数法即可求得k的值;(2)已知E是DC的中点,则E的纵坐标已知,代入反比例函数的解析式即可求得E的坐标,然后利用待定系数法即可求得直线的解析式;(3)首先求得M、N的坐标,延长DA交y轴于点F,则AF⊥ON,利用勾股定理求得AN和EM 的长,即可证得.解答:解:(1)由已知条件得,在Rt△OAB中,OB=2,tan∠AOB=,∴=,∴AB=3,∴A点的坐标为(2,3)…(1分)∴k=xy=6…(2分)(2)∵DC由AB平移得到,点E为DC的中点,∴点E的纵坐标为,…(3分)又∵点E在双曲线上,∴点E的坐标为(4,)…(4分)设直线MN的函数表达式为y=k1x+b,则,解得,∴直线MN的函数表达式为.…(5分)(3)结论:AN=ME…(6分)理由:在表达式中,令y=0可得x=6,令x=0可得y=,∴点M(6,0),N(0,)…(7分)解法一:延长DA交y轴于点F,则AF⊥ON,且AF=2,OF=3,∴NF=ON﹣OF=,∴根据勾股定理可得AN=…(8分)∵CM=6﹣4=2,EC=∴根据勾股定理可得EM=∴AN=ME…(9分)解法二:连接OE,延长DA交y轴于点F,则AF⊥ON,且AF=2,∵S△EOM=,S△AON=…(8分)∴S△EOM=S△AON,∵AN和ME边上的高相等,∴AN=ME…(9分)点评:本题是待定系数法求一次函数的解析式,以及勾股定理的综合应用,求得E的坐标是关键.27.(9分如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;等腰直角三角形;正方形的性质;旋转的性质.专题:几何综合题;压轴题.分析:(1)△ABC是等腰直角三角形,四边形ADEF是正方形,易证得△BAD≌△CAF,根据全等三角形的对应边相等,即可证得BD=CF;(2)①由△BAD≌△CAF,可得∠ABM=∠GCM,又由对顶角相等,易证得△BMA∽△CMG,根据相似三角形的对应角相等,可得BGC=∠BAC=90°,即可证得BD⊥CF;②首先过点F作FN⊥AC于点N,利用勾股定理即可求得AE,BC的长,继而求得AN,CN的长,又由等角的三角函数值相等,可求得AM=AB=,然后利用△BMA∽△CMG,求得CG的长,再由勾股定理即可求得线段BG的长.解答:解(1)BD=CF成立.理由:∵△ABC是等腰直角三角形,四边形ADEF是正方形,∴AB=AC,AD=AF,∠BAC=∠DAF=90°,∵∠BAD=∠BAC﹣∠DAC,∠CAF=∠DAF﹣∠DAC,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS).∴BD=CF.…(3分)(2)①证明:设BG交AC于点M.∵△BAD≌△CAF(已证),∴∠ABM=∠GCM.∵∠BMA=∠CMG,∴△BMA∽△CMG.∴∠BGC=∠BAC=90°.∴BD⊥CF.…(6分)②过点F作FN⊥AC于点N.∵在正方形ADEF中,AD=DE=,∴AE==2,∴AN=FN=AE=1.∵在等腰直角△ABC 中,AB=4,∴CN=AC﹣AN=3,BC==4.∴在Rt△FCN中,tan∠FCN==.∴在Rt△ABM中,tan∠ABM==tan∠FCN=.∴AM=AB=.∴CM=AC﹣AM=4﹣=,BM==.…(9分)∵△BMA∽△CMG,∴.∴.∴CG=.…(11分)∴在Rt△BGC中,BG==.…(12分)点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质、等腰直角三角形的性质、矩形的性质、勾股定理以及三角函数等知识.此题综合性很强,难度较大,注意数形结合思想的应用,注意辅助线的作法.28.(9分)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.考点:二次函数综合题.专题:综合题;压轴题;数形结合;分类讨论.分析:(1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C的坐标,在△POB和△POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:∠POC=∠POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=﹣x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.(3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.解答:解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=3,∴B的坐标是(3,0).∵A为顶点,∴设抛物线的解析为y=a(x﹣1)2﹣4,把B(3,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3.(2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时PO平分第二象限,即PO的解析式为y=﹣x.设P(m,﹣m),则﹣m=m2﹣2m﹣3,解得m=(m=>0,舍),∴P(,).(3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=,即Q1(0,);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,作AE⊥y轴于E,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,)或(0,)或(0,﹣1)或(0,﹣3).点评:本题主要考查了利用待定系数法求函数解析式的方法、直角三角形的判定、全等三角形与相似三角形应用等重点知识.(3)题较为复杂,需要考虑的情况也较多,因此要分类进行讨论.。

槐荫中考一模数学试卷

槐荫中考一模数学试卷

考试时间:120分钟满分:120分一、选择题(每小题3分,共30分)1. 下列选项中,不是有理数的是()A. -3.5B. 0.6C. √2D. -π2. 若a=√3,b=-√3,则a与b的()A. 同号B. 异号C. 相等D. 不能确定3. 下列方程中,解为x=2的是()A. 2x-4=0B. x^2=4C. x+3=7D. 3x=64. 若a、b是方程x^2-3x+2=0的两个根,则a+b的值为()A. 2B. 3C. 4D. 55. 下列函数中,图象是直线的是()A. y=x^2+1B. y=2x+3C. y=|x|D. y=x^36. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()A. (-2,-3)B. (2,3)C. (-2,-3)D. (2,-3)7. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 等边三角形D. 长方形8. 若a、b、c是等差数列,且a+b+c=12,则b的值为()A. 4B. 6C. 8D. 109. 下列选项中,不是一元二次方程的是()A. x^2+2x+1=0B. 2x^2-5x+3=0C. x^2=4D. 2x+3=510. 若函数f(x)=ax^2+bx+c的图象开口向上,则a的取值范围是()A. a>0B. a<0C. a=0D. a≥0二、填空题(每小题3分,共30分)11. 若a、b是方程2x^2-3x+1=0的两个根,则a^2+b^2的值为______。

12. 在直角坐标系中,点A(1,2)关于y轴的对称点是______。

13. 若m、n是方程x^2-5x+6=0的两个根,则m+n的值为______。

14. 下列函数中,是奇函数的是______。

15. 若a、b、c是等比数列,且abc=8,则b的值为______。

16. 在直角坐标系中,点P(-3,4)关于原点的对称点是______。

17. 若函数f(x)=ax^2+bx+c的图象开口向下,则a的取值范围是______。

济南市2018年中考数学模拟综合检测试卷(一)含答案.docx

济南市2018年中考数学模拟综合检测试卷(一)含答案.docx

济南市 2018 年中考数学模拟综合检测试卷(一)含答案济南市 2018 年中考数学模拟综合检测卷 ( 一)一、选择题1.下列各数中,比 3 大的数是 ( )1A.-3B.- |3|C.πD.2 22.如图所示的工件是由两个长方体构成的组合体,则它的主视图是( )3.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达 204 000 米/ 分,这个数用科学记数法表示,正确的是 ( )A.204×10B.20.4 ×1043C.2.04 ×105D.2.04 ×1064.下列选项中,哪个不可以得到l 1∥l2()A.∠ 1=∠ 2B.∠ 2=∠3C.∠ 3=∠ 5D.∠ 3+∠ 4=180°5.下列汽车标志中,既是轴对称图形又是中心对称图形的是( )a46.计算a+2-a2+2a的结果是()2a-2a-4A. a B.a-2 C. a D.a2+2a7.函数 y =x+1 与 y=ax+b(a ≠0) 的图象如图所示,这两个函数12图象的交点在 y 轴上,那么使 y1,y2的值都大于 0 的 x 的取值范围是( )A.x>- 1B.x>2C.x<2D.- 1<x<28.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30 天) 每天健步走的步数 ( 单位:万步 ) ,将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是( )A.1.2,1.3B.1.4 ,1.3C.1.4,1.35D.1.3 ,1.39.如图,在矩形 ABCD中,AB=2,AD= 2,以点 A 为圆心, AD的长为半径的圆交 BC边于点 E,则图中阴影部分的面积为( )A.22-1-πB.22-1-π32C.22-2-πD.22-1-π2410.如图所示,在△ ABC中, AD⊥BC于点 D,CE⊥AB 于点 E,且 BE3=2AE,已知 AD=33,tan ∠BCE=3,那么 CE等于 ( )A.2 3 B .3 3-2 C .5 2 D .4 311.函数 y=x3-3x 的图象如图所示,则以下关于该函数图象及其性质的描述正确的是 ( )A.函数最大值为2B.函数图象最低点为(1 ,- 2)C.函数图象关于原点对称D.函数图象关于y 轴对称12.如图, E,F 分别是正方形 ABCD的边 CD,AD上的点,且 CE=DF,AE,BF相交于点 O,下列结论: (1)AE =BF;(2)AE ⊥BF;(3)AO=OE;(4)S=S中,正确的有 ( )△AOB四边形 DEOFA.4 个B.3 个C.2 个D.1 个二、填空题13.计算: 3tan 60 °-12=________.14.分解因式: (a -b) 2-4b2=________.15.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏( 每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等 ) ,则飞镖落在阴影区域的概率是 ________.16.如图,△ ABC内接于⊙ O,∠ ACB=90°,∠ ACB的角平分线交⊙O于D.若 AC=6,BD=5 2,则 BC的长为 ________.1317.如图,函数 y=x和 y=-x的图象分别是 l 1和 l 2. 设点 P在 l 1上,PC⊥x轴,垂足为 C,交 l 2于点 A,PD⊥y轴,垂足为 D,交 l 2于点 B,则△ PAB的面积为 ______.18.如图,在平面直角坐标系 xOy 中,矩形 OABC 的边 OA ,OC 分别在x 轴和 y 轴上, OC =3,OA =2 6,D 是 BC 的中点,将△ OCD 沿直线OD 折叠后得到△ OGD ,延长 OG 交 AB 于点 E ,连接 DE ,则点 G 的坐标为 ________.三、解答题2x>3x +2,19.解不等式组: 2x +1 x 23 ≤2-3.20.如图,AB 是⊙O 的直径, CA 与⊙O 相切于点 A ,连接 CO 交⊙O 于点 D ,CO 的延长线交⊙O 于点 E ,连接 BE ,BD ,∠ ABD =25°,求∠C 的度数.21. “母亲节”前夕,某商店根据市场调查,用 3 000 元购进第一批盒装花,上市后很快售完,接着又用 5 000 元购进第二批这种盒装花,已知第二批所购花的盒数是第一批所购花盒数的 2 倍,且每盒花的进价比第一批的进价少 5 元.求第一批盒装花每盒的进价是多少元?22.如图,在四边形 ABCD中, BD为一条对角线, AD∥BC, AD=2BC, ∠ABD=90°, E 为 AD的中点,连接 BE.(1)求证:四边形 BCDE为菱形;(2)连接 AC,若 AC平分∠ BAD,BC=1,求 AC的长.23.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设大美济南,关注环境保护”的知识竞赛,竞赛结果分为四个等级 (A. 不及格, B. 及格, C.良好, D. 优秀 ) ,并将调查结果绘制成了如下两幅不完整的统计图.请根据统计图回答下列问题:(1)这次被调查的学生共有多少人;(2)请将统计图 2 补充完整;(3)统计图 1 中 A 项目对应的扇形的圆心角是多少度;(4)已知该校共有学生 5 000 人,请根据调查结果估计该校成绩优秀的学生人数.24.如图,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且 P(-1,- 2) 为双曲线上的一点,点 Q为坐标平面上一动点,PA垂直于 x 轴, QB垂直于 y 轴,垂足分别是A,B.(1)写出正比例函数和反比例函数的表达式;(2)当点 Q在直线 MO上运动时,直线 MO上是否存在这样的点 Q,使得△ OBQ与△ OAP面积相等?如果存在,请求出点的坐标;如果不存在,请说明理由.25. 如图 1,在平行四边形 ABCD中,AB=12,BC=6,AD⊥BD.以 AD 为斜边在平行四边形ABCD的内部作Rt△AED,∠EAD=30°,∠AED =90°.(1)求△ AED的周长;(2)若△ AED以每秒 2 个单位长度的速度沿 DC向右平行移动,得到△A0E0D0,当点E0 恰好在BC上时停止移动,设运动时间为t秒,△A0E0D0与△ BDC重叠的面积为S,请直接写出S 与 t 之间的函数关系式,并写出 t 的取值范围;(3)如图 2,在(2) 中,当△ AED移动至△ BEC的位置时,将△ BEC绕点C 按顺时针方向旋转α(0°<α<90°),在旋转过程中,B的对应点为 B1,E 的对应点为 E1,设直线 B1E1与直线 BE交于点 P、与直线 CB 交于点 Q.是否存在这样的α,使△ BPQ为等腰三角形?若存在,求出α 的度数;若不存在,请说明理由.26.在平面直角坐标系中,已知抛物线经过A(-4,0) ,B(0,-4) ,C(2,0) 三点.(1)求抛物线的表达式;(2)若点 M为第三象限内抛物线上的一动点,点 M的横坐标为 m,△AMB 的面积为 S,求 S关于 m的函数关系式,并求出S 的最大值;(3)若点 P 是抛物线上的动点,点 Q是直线 y=- x 上的动点,判断有几个位置能够使得以点 P,Q,B,O 为顶点的四边形为平行四边形?直接写出相应的点 Q的坐标.参考答案1. C 2.A 3.C 4.C 5.D 6.C 7.D 8.B 9.B 10.D11.C12.B113. 314.(a -3b)(a +b) 15. 416.8 17.86 6 318.( 5 ,5)2x>3x +2,①19.解: 2x +1 x 23 ≤2-3. ②由①得 x<-2,由②得 x ≤- 6,∴不等式组的解集为 x ≤- 6. 20.解:∵∠ ABD =25°, ∴∠ AOD =2∠ABD =50°.∵CA 与⊙O 相切于点 A ,OA 是半径,∴OA ⊥AC ,∴∠ C =90°-∠ AOD =40°.21.解:设第一批盒装花的进价是 x 元/ 盒,则2×3 000 5 000x = x -5 , 解得 x =30,经检验, x =30 是原方程的根.答:第一批盒装花每盒的进价是 30 元.22.(1) 证明:∵E 为 AD 的中点, AD =2BC ,∴ BC =ED.∵AD ∥BC, ∴四边形 BCDE 是平行四边形.又∵E 为 AD 的中点,∴ BE = ED.∴四边形 BCDE是菱形.(2) 解:∵ AD∥BC, AC平分∠ BAD,∴∠ BAC=∠ DAC=∠ BCA,∴ BA= BC=1.1∵AD= 2BC=2,∴ sin∠ADB=2,∠ ADB=30°,∴∠ DAC=30°,∠ADC=60°.在Rt△ACD中, AD=2,CD=1,∴ AC= 3.23.解:(1) 由题图知 C等级的人数有 140,占调查总人数的 28%,则调查总人数是 140÷28%= 500.(2)A 等级的人数为 500-75-140-245=40.(3)40 ÷500×100%= 8%,360°× 8%=28.8 °.答: A等级对应的扇形的圆心角是28.8 °.(4)245÷500×100%= 49%,5 000 ×49%= 2 450(人) .答:该校成绩优秀的学生大约有 2 450人.k24.解:(1)设反比例函数的表达式为y=x(k ≠0) ,正比例函数的表达式为y=k′x,∵正比例函数和反比例函数的图象都经过点M(-2,- 1) ,k∴- 1=-2,- 1=- 2k′,1∴k=2,k′=2.12∴正比例函数的表达式为y=2x,反比例函数的表达式为y=x.(2)当点 Q在直线 MO上运动时,假设在直线 MO上存在这样的点 Q(x,112x) ,使得△ OBQ与△ OAP的面积相等,则B(0 ,2x) .111∴2·x·2x=2×2×1.解得 x=± 2.1当x=2 时,2x=1;1当x=- 2 时,2x=- 1.∴存在点 Q(2,1) 或( -2,- 1) .25.解: (1) ∵四边形 ABCD是平行四边形,∴AD= BC=6.在Rt△ADE中, AD=6,∠ EAD=30°,∴AE=AD·cos 30 °= 33,DE=AD·sin 30 °= 3,∴△ AED的周长为 6+3 3+3=9+3 3.(2)在△ AED向右平移的过程中:( Ⅰ) 当 0≤t ≤1.5 时,如图,此时重叠部分为△D0NK.∵DD0=2t ,∴ ND0=DD0·sin30°= t ,NK=ND·tan 30 °=3t ,11 3 2∴S=S△D0NK=2ND0·NK=2t ·3t =2 t .( Ⅱ) 当1.5 <t≤4.5时,如图,此时重叠部分为四边形D0E0KN.∵AA0=2t ,∴A0B=AB-AA0=12- 2t ,1∴A0N=2A0B=6-t,3NK=A0N·tan 30 °=3 (6 -t) .∴S=S 四边形 D0E0 KN=S△A0D0E0-S△A0NK113=2×3×3 3-2×(6 -t) ×3 (6 -t)3233=-6 t +23t -2 .综上所述, S与 t 之间的函数关系式为3 2t ,0≤t ≤1.5 ,S=-6 t 2+2 3t -323,1.5<t ≤4.5.(3)存在α,使△ BPQ为等腰三角形.理由如下:∵∠ BQP=∠B1QC,∠ QBP=∠QB1C,∴△ BPQ∽△B1CQ.3故当△ BPQ为等腰三角形时,△B1QC也为等腰三角形.( Ⅰ) 如图,当 QB=QP时,则QB1=QC,∴∠B1CQ=∠B1=30°,即∠ BCB1=30°. ∴ α=30°.( Ⅱ) 当 BQ=BP时,则 B1Q=B1C,如图,点 Q在线段 B1E1的延长线上,∵∠B1=30°,∴∠B1CQ=∠B1QC=75°,即∠ BCB1=75°. ∴ α=75°.综上所述,存在α=30°或 75°时,△ BPQ为等腰三角形.26.解: (1) 设抛物线的表达式为 y=ax2+bx+c(a ≠0) ,将 A,B,C三点代入得116a-4b+c=0,a=2,c=- 4,解得b=1,4a+2b+c=0,c=- 4,1 2∴函数表达式为y=2x +x-4.(2)∵M点的横坐标为 m,且点 M在抛物线上,121 1 21∴M(m,2m+m-4),∴ S=S△AOM+S△OBM-S△AOB=2×4( -2m-m+4)+2 122×4×( - m)-2×4×4=- m-4m=- (m+2)+4.∵- 4<m<0,∴当 m=- 2 时, S 有最大值为 S=4.12(3) 设 P(x ,2x -x+4) ,当 OB为边时,∵ PB∥OQ,∴Q的横坐标的绝对值等于P的横坐标的绝对值,∴ Q(x,- x) .由PQ=OB,得| -x-( 1x2+x-4)| =4,2解得 x=0( 舍去 ) 或 x=- 4 或 x=- 2±2 5.当 BO为对角线时,点A 与点 P 重合, OP=4,∴BQ= PO=4,即点 Q的横坐标为 4,∴ Q(4,- 4) .综上 Q(-4,4) 或( -2+2 5,2-2 5) 或( -2-2 5,2+25) 或(4 ,-4) .。

(完整版)2018济南市槐荫区数学中考二模试题(含答案)

(完整版)2018济南市槐荫区数学中考二模试题(含答案)

∴2019 年五一节选择去 E 景点旅游的人数约为: 80×12%= 9.6(万人 ). 5 分 (3) 画树状图可得:
8分 ∴共有 9 种可能出现的结果, 分别为 (A,A)(A, B)(A, D)(B, A)( B, B)(B, D)(D , A)( D, B)(D ,D ) 这些结果出现的可能性相等,其中甲乙两个旅行团同时选择去同一个景点的结果有
Ⅰ在 Rt ⅠDEC 中,
,DE =CD· cosCⅠDE= 2× =
ⅠⅠODE= ⅠDEA = 90°, ⅠODⅠAC,
. 7分
ⅠSⅠOCE = SⅠDCE=
. 8分
24.解: (1)50 , 108 °; 2 分 补全条形统计图略 . 3 分
(2) ∵ E 景点接待游客数所占的百分比为:
=12%, 4 分
三、解答题 (本大题共 9 个小题,共 78 分.解答应写出文字说明,证明过程或演算步骤
.)
19. (本小题满分 6 分 ) 因式分解: m3n- 4m2n+4mn
20. (本小题满分 6 分 ) 解方程: x2- 4x- 5= 0
21. (本小题满分 6 分 ) 如图,正方形 ABCD中,点 E、F分别在 AD、 CD上,且 AE=DF ,连接 BE、 AF. 求证: BE=AF .
(3)当 w的值最小时,求 ⅠAEP的面积与 S的数量关系.
二模数学试题 第 6 页 共 11 页
一、选择题
题号 1
2
答案 B
A
二、填空题
13. 3 14. 2.1 ×-15 0
数学试题参考答案与评分标准

9
C
D
B
A
A
D
D
10 11 12

济南市槐荫区中考数学一模试卷含答案解析

济南市槐荫区中考数学一模试卷含答案解析

山东省济南市槐荫区中考数学一模试卷一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.方程x﹣2=0的解是()A. B.C.2 D.﹣22.如图所示的几何体是由五个小正方体组合而成的,它的主视图是()A.B.C.D.3.是“十二五”规划收官之年,济南市政府围绕“打造四个中心,建设现代泉城”中心任务,统筹推进稳增长,实现生产总值6200亿元,6200亿元用科学记数法表示为()A.6.2×1010元B.6.2×1011元C.6.2×1012元D.0.62×1012元4.下列计算正确的是()A. =3 B.﹣(﹣3)2=9 C.﹣(﹣2)0=1 D.|﹣3|=﹣35.下列运算正确的是()A.a2•a4=a8B.2a+3a=5a C.(x﹣2)2=x2﹣4 D.(x﹣2)(x+3)=x2﹣66.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形7.已知一次函数y=ax+b(a、b为常数且a≠0)经过(1,3)和(0,﹣2),求a﹣b的值()A.﹣1 B.﹣3 C.3 D.78.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?()A.100只B.150只C.180只D.200只9.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30° B.60°C.80°D.120°10.下列说法错误的是()A.抛物线y=﹣x2+x的开口向下B.角平分线上的点到角两边的距离相等C.一次函数y=﹣x+1的函数值随自变量的增大而增大D.两点之间线段最短11.如图,矩形ABCD中,AD=10,点P为BC上任意一点,分别连接AP、DP,E、F、G、H分别为AB、AP、DP、DC的中点,则EF+GH的值为()A.10 B.5 C.2.5 D.无法确定12.已知二次函数y=﹣x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b≥﹣1 B.b≤﹣1 C.b≥1 D.b≤113.如图,在平面直角坐标系中,点A(0,4)、B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为()A.y=﹣B.y=﹣x+C.y=﹣D.y=﹣2x+14.如图,点P在以AB为直径的半圆内,连接AP、BP,并延长分别交半圆于点C、D,连接AD、BC并延长交于点F,作直线PF,下列说法一定正确的是()①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.A.①③B.①④C.②④D.③④15.如图,直线y=﹣2x与抛物线y=﹣x2+mx+6交于A、B两点,过A、B两点的双曲线的解析式分别为、,则k1k2的值为()A.﹣6 B.36 C.72 D.144二、填空题(本大题共6个小题,每小题3分,共18分.)16.﹣6的相反数是.17.分解因式:3m2﹣27=.18.方程的解是x=.19.在的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是.20.如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF的中点,连接PG、PC.若∠ABC=∠BEF=60°,则的值为.21.如图所示,⊙O的面积为1,点P为⊙O上一点,令记号[n,m]表示半径OP从如图所示的位置开始以点O为中心连续旋转n次后,半径OP扫过的面积.旋转的规则为:第1次旋转m度;第2次从第1次停止的位置向相同的方向再次旋转度;第3次从第2次停止的位置向相同的方向再次旋转度;第4次从第3次停止的位置向相同的方向再次旋转度;…依此类推.例如[2,90]=,则[,180]=.三、解答题(共7小题,满分57分)22.(1)解不等式组:.(2)先化简,再求值:,其中x可取任何一个你喜欢的数值.23.(1)如图,在△ABC和△BAD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA.求证:AC=BD.(2)如图,▱ABCD中,AB=3,AD=5,∠BAD的平分线交BC于点E.求EC的长.24.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?25.一个不透明的袋子中装有分别标注着汉字“美”“丽”“槐”“荫”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一球,请直接写出球上的汉字恰好是“美”的概率;(2)若从袋中任取一球,记下汉字后放回袋中,然后再从中任取一球,再次记下球上的汉字,求两次的汉字恰好组成“美丽”或“槐荫”这两个词的概率.26.如图,直线y1=x+2与双曲线y2=交于A(m,4),B(﹣4,n).(1)求k值;(2)当y1>y2时请直接写出x的取值范围;(3)P为x轴上任意一点,当△ABP为直角三角形时,求P点坐标.27.如图1所示,过点M作⊙N的切线MA、MB,切点分别为A、B,连接MN(1)求证:∠AMN=∠BMN.(2)如图2所示,在图1的基础上作⊙M,过⊙N的圆心N作⊙M的切线NC、ND,切点分别为C、D,MA、MB分别与⊙M交于点E、F,NC、ND分别与⊙N交于点G、H,MA与ND交于点P.求证:sin∠DPM=.(3)求证:四边形EFGH是矩形.28.如图,抛物线y=﹣x+4与y轴交于点A、与x轴分别交于B、C两点.(1)求A、B两点坐标;(2)将Rt△AOB绕点A逆时针旋转90°得到△ADE,求点E的坐标;(3)求出第一象限内的抛物线上与直线AE距离最远的点的坐标.山东省济南市槐荫区中考数学一模试卷参考答案与试题解析一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.方程x﹣2=0的解是()A. B.C.2 D.﹣2【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程移项即可求出解.【解答】解:方程x﹣2=0,解得:x=2,故选C【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.2.如图所示的几何体是由五个小正方体组合而成的,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】从正面看得到从左往右3列正方形的个数依次为1,1,2,依此判断即可.【解答】解:从正面看得到从左往右3列正方形的个数依次为1,1,2,故选A【点评】此题考查三视图,关键是根据三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.3.是“十二五”规划收官之年,济南市政府围绕“打造四个中心,建设现代泉城”中心任务,统筹推进稳增长,实现生产总值6200亿元,6200亿元用科学记数法表示为()A.6.2×1010元B.6.2×1011元C.6.2×1012元D.0.62×1012元【考点】科学记数法—表示较大的数.【分析】数据>10时科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【解答】解:6200亿=6.2×1011.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列计算正确的是()A. =3 B.﹣(﹣3)2=9 C.﹣(﹣2)0=1 D.|﹣3|=﹣3【考点】立方根;绝对值;有理数的乘方;零指数幂.【分析】根据立方根、有理数的乘方、0次幂、绝对值,逐一判断即可解答.【解答】解:A、=3,正确;B、﹣(﹣3)2=﹣9,故错误;C、﹣(﹣2)0=﹣1,故错误;D、|﹣3|=3,故错误;故选:A.【点评】本题考查了立方根、有理数的乘方、0次幂、绝对值,解决本题的关键是熟记立方根的定义.5.下列运算正确的是()A.a2•a4=a8B.2a+3a=5a C.(x﹣2)2=x2﹣4 D.(x﹣2)(x+3)=x2﹣6【考点】完全平方公式;合并同类项;同底数幂的乘法;多项式乘多项式.【分析】根据同底数幂的乘法、合并同类项、完全平方公式、多项式乘以多项式,即可解答.【解答】解:A、a2•a4=a6,故错误;B、2a+3a=5a,故正确;C、(x﹣2)2=x2﹣4x+4,故错误;D、(x﹣2)(x+3)=x2+x﹣6,故错误;故选:B.【点评】本题考查了同底数幂的乘法、合并同类项、完全平方公式、多项式乘以多项式,解决本题的关键是熟记同底数幂的乘法、合并同类项、完全平方公式、多项式乘以多项式.6.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形【考点】多边形内角与外角.【分析】此题可以利用多边形的外角和和内角和定理求解.【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.【点评】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,多边形的内角和为(n﹣2)•180°.7.已知一次函数y=ax+b(a、b为常数且a≠0)经过(1,3)和(0,﹣2),求a﹣b的值()A.﹣1 B.﹣3 C.3 D.7【考点】一次函数图象上点的坐标特征.【分析】先把(1,3)和(0,﹣2)代入一次函数y=ax+b,求出a、b的值,进而可得出结论.【解答】解:∵一次函数y=ax+b(a、b为常数且a≠0)经过(1,3)和(0,﹣2),∴,解得,∴a﹣b=5+2=7.故选D.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?()A.100只B.150只C.180只D.200只【考点】用样本估计总体.【分析】从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,即在样本中有标记的所占比例为,而在整体中有标记的共有20只,根据所占比例即可解答.【解答】解:∵从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,∴在样本中有标记的所占比例为,∴池塘里青蛙的总数为20÷=200.故选:D.【点评】此题主要考查了用样本去估计总体,统计的思想就是用样本的信息来估计总体的信息.9.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30° B.60°C.80°D.120°【考点】平行线的性质;角平分线的性质.【分析】根据两直线平行,同位角相等可得∠EAD=∠B,再根据角平分线的定义求出∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=2×30°=60°,∴∠C=∠EAC﹣∠B=60°﹣30°=30°.故选:A.【点评】本题考查了平行线的性质,角平分线的定义,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.10.下列说法错误的是()A.抛物线y=﹣x2+x的开口向下B.角平分线上的点到角两边的距离相等C.一次函数y=﹣x+1的函数值随自变量的增大而增大D.两点之间线段最短【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】A.抛物线y=﹣x2+x的开口向下,正确,B.角平分线上的点到角两边的距离相等,正确,C.一次函数y=﹣x+1的函数值随自变量的增大而减小,原命题错误,D.两点之间线段最短,正确,故选:C.【点评】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.如图,矩形ABCD中,AD=10,点P为BC上任意一点,分别连接AP、DP,E、F、G、H分别为AB、AP、DP、DC的中点,则EF+GH的值为()A.10 B.5 C.2.5 D.无法确定【考点】三角形中位线定理;矩形的性质.【分析】E、F、G、H分别是AB、AP、DP、DC的中点,则EF,GH分别是△ABP,△DCP的中位线,得到EF+GH=BC.【解答】解:在矩形ABCD中,BC=AD=10.∵E、F、G、H分别为AB、AP、DP、DC的中点,∴EF是△ABP的中位线,GH是△DPC的中位线,∴EF+GH=BP+PC=BC=5.故选:B.【点评】本题主要考查了三角形的中位线定理.三角形的中位线平行于第三边,并且等于第三边的一半.12.已知二次函数y=﹣x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b≥﹣1 B.b≤﹣1 C.b≥1 D.b≤1【考点】二次函数的性质.【专题】数形结合.【分析】先根据抛物线的性质得到其对称轴为直线x=b,且当x>b时,y随x的增大而减小,由于已知当x>1时,y的值随x值的增大而减小,则可得判断b≤1.【解答】解:∵抛物线y=﹣x2+2bx+c的对称轴为直线x=﹣=b,而a<0,∴当x>b时,y随x的增大而减小,∵当x>1时,y的值随x值的增大而减小,∴b≤1.故选:D.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点式为y=a(x+)2+,的顶点坐标是(﹣,),对称轴直线x=﹣b/2a,当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小,13.如图,在平面直角坐标系中,点A(0,4)、B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为()A.y=﹣B.y=﹣x+C.y=﹣D.y=﹣2x+【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.【分析】由点A(0,4)、B(3,0),可求得AB的长,然后由折叠的性质,求得OA′的长,且△A′OC∽△AOB,再由相似三角形的性质,求得OC的长,继而利用待定系数法求得直线BC的解析式.【解答】解:∵点A(0,4)、B(3,0),∴OA=4,OB=3,∴AB==5,由折叠的性质可得:A′B=AB=5,∠OA′C=∠OAB,∴OA′=A′B﹣OB=2,∵∠A′OC=∠AOB=90°,∴△A′OC∽△AOB,∴,即,解得:OC=,∴点C的坐标为:(0,),设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=﹣x+.故选C.【点评】此题考查了折叠的性质、勾股定理、相似三角形的判定与性质以及待定系数法求一次函数的解析式.注意求得点C的坐标是解此题的关键.14.如图,点P在以AB为直径的半圆内,连接AP、BP,并延长分别交半圆于点C、D,连接AD、BC并延长交于点F,作直线PF,下列说法一定正确的是()①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.A.①③B.①④C.②④D.③④【考点】圆周角定理.【专题】几何图形问题.【分析】①AB为直径,所以∠ACB=90°,就是AC垂直BF,但不能得出AC平分BF,故错,②只有当FP通过圆心时,才平分,所以FP不通过圆心时,不能证得AC平分∠BAF,③先证出D、P、C、F四点共圆,再利用△AMP∽△FCP,得出结论.④直径所对的圆周角是直角.【解答】证明:①∵AB为直径,∴∠ACB=90°,∴AC垂直BF,但不能得出AC平分BF,故①错误,②如图1,连结CD,∵AB为直径,∴∠ADB=90°,∴∠BDF=90°,假设AC平分∠BAF成立,则有DC=BC,∴在RT△FDB中,DC=BC=FC,∴AC⊥BF,且平分BF,∴AC垂直BF,但不能得出AC平分BF,与①中的AC垂直BF,但不能得出AC平分BF相矛盾,故②错误,③如图2:∵AB为直径,∴∠ACB=90°,∠ADB=90°,∴D、P、C、F四点共圆,∴∠CFP和∠CDB都对应,∴∠CFP=∠CDB,∵∠CDB=∠CAB,∴∠CFP=∠CAB,又∵∠FPC=∠APM,∴△AMP∽△FCP,∠ACF=90°,∴∠AMP=90°,∴FP⊥AB,故③正确,④∵AB为直径,∴∠ADB=90°,∴BD⊥AF.故④正确,综上所述只有③④正确.故选:D.【点评】本题主要考查了圆周角的知识,解题的关键是明确直径所对的圆周角是直角.15.如图,直线y=﹣2x与抛物线y=﹣x2+mx+6交于A、B两点,过A、B两点的双曲线的解析式分别为、,则k1k2的值为()A.﹣6 B.36 C.72 D.144【考点】二次函数的性质.【分析】根据反比例函数的性质和一次函数的性质得出k1=﹣2x12,k2=﹣2x22,根据题意x1、x2是方程﹣2x=﹣x2+mx+6的两个根,根据根与系数的关系得出x1•x2=﹣6,从而求得k1k2的值.【解答】解:由直线y=﹣2x和双曲线、交于A、B两点,∴k1=﹣2x12,k2=﹣2x22,∵直线y=﹣2x与抛物线y=﹣x2+mx+6交于A、B两点,∴x1、x2是方程﹣2x=﹣x2+mx+6的两个根,整理方程得x2﹣(m+2)x﹣6=0,∴x1•x2=﹣6,∴k1k2=(﹣2x12)×(﹣2x22)=4×(﹣6)2=144,故选D.【点评】本题考查了一次函数的性质,反比例函数的性质以及二次函数的性质,函数和方程的关系,求得x1•x2=﹣6是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分.)16.﹣6的相反数是6.【考点】相反数.【分析】求一个数的相反数,即在这个数的前面加负号.【解答】解:根据相反数的概念,得﹣6的相反数是﹣(﹣6)=6.【点评】此题考查了相反数的定义,互为相反数的两个数分别在原点两旁且到原点的距离相等.17.分解因式:3m2﹣27=3(m+3)(m﹣3).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】应先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3m2﹣27,=3(m2﹣9),=3(m2﹣32),=3(m+3)(m﹣3).故答案为:3(m+3)(m﹣3).【点评】本题考查了提公因式法和平方差公式分解因式,需要进行二次分解因式,分解因式要彻底.18.方程的解是x=6.【考点】解分式方程.【专题】计算题.【分析】本题的最简公分母是x(x﹣2).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.【解答】解:方程两边都乘x(x﹣2),得3(x﹣2)=2x,解得x=6.检验:当x=6时,x(x﹣2)≠0.∴x=6是原方程的解.【点评】解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解,解分式方程一定注意要代入最简公分母验根.19.在的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是26.【考点】中位数;折线统计图.【分析】根据中位数的定义,即可解答.【解答】解:把这组数据从小到大排列,最中间两个数的平均数是(26+26)÷2=26,则中位数是26.故答案为:26.【点评】本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).20.如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF的中点,连接PG、PC.若∠ABC=∠BEF=60°,则的值为.【考点】菱形的性质.【分析】可通过构建全等三角形求解.延长GP交DC于H,可证三角形DHP和PGF全等,已知的有DC∥GF,根据平行线间的内错角相等可得出两三角形中两组对应的角相等,又有DP=PF,因此构成了全等三角形判定条件中的(ASA),于是两三角形全等,那么HP=PG,可根据三角函数来得出PG、CG的比例关系.【解答】解:如图,延长GP交DC于点H,∵P是线段DF的中点,∴FP=DP,由题意可知DC∥GF,∴∠GFP=∠HDP,在△GFP和△HDP中,∴△GFP≌△HDP(ASA),∴GP=HP,GF=HD,∵四边形ABCD是菱形,∴CD=CB,∴CG=CH,∴△CHG是等腰三角形,∴PG⊥PC,(三线合一)又∵∠ABC=∠BEF=60°,∴∠GCP=60°,∴=sin60°=;故答案为:.【点评】本题主要考查了菱形的性质,以及全等三角形的判定等知识点,根据已知和所求的条件正确的构建出相关的全等三角形是解题的关键.21.如图所示,⊙O的面积为1,点P为⊙O上一点,令记号[n,m]表示半径OP从如图所示的位置开始以点O为中心连续旋转n次后,半径OP扫过的面积.旋转的规则为:第1次旋转m度;第2次从第1次停止的位置向相同的方向再次旋转度;第3次从第2次停止的位置向相同的方向再次旋转度;第4次从第3次停止的位置向相同的方向再次旋转度;…依此类推.例如[2,90]=,则[,180]=.【考点】扇形面积的计算.【专题】规律型.【分析】主要是读懂[2,90]=,它反应的是开始第一次以90°旋转,第二次以旋转,旋转两次.【解答】解:由题意可得:[,180]=.故答案为.【点评】本题是扇形面积的计算,解决本题的关键是读懂这个新定义.三、解答题(共7小题,满分57分)22.(1)解不等式组:.(2)先化简,再求值:,其中x可取任何一个你喜欢的数值.【考点】分式的化简求值;解一元一次不等式组.【分析】(1)分别求出各不等式的解集,再求出其公共解集即可;(2)先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:(1),解不等式①得x≤2;解不等式②得x>﹣1,所以不等式的解集为﹣1<x≤2.(2)原式=(1﹣)÷=•=,当x=2时,原式=2.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.(1)如图,在△ABC和△BAD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA.求证:AC=BD.(2)如图,▱ABCD中,AB=3,AD=5,∠BAD的平分线交BC于点E.求EC的长.【考点】全等三角形的判定与性质;平行四边形的性质.【分析】(1)根据SAS证出△ABC≌△BAD,可直接得出AC=BD.(2)根据平行四边形的性质得出AD=BC,∠DAE=∠BEA,再根据角平分线的性质得出∠BAE=∠DAE,从而得出∠BAE=∠BEA,即可得出BE=BA,再根据EC=BC﹣BE,求出EC的长.【解答】解:(1)在△ABC和△ABD中,∵,∴△ABC≌△BAD (SAS),∴AC=BD.(2)∵四边形ABCD是平行四边形,AB=3,BC=5,∴AD∥BC,AD=BC=5,∴∠DAE=∠BEA,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=BA=3,∴EC=BC﹣BE=2.【点评】此题考查了全等三角形的判定与性质和平行四边的性质,用到的知识点是全等三角形的判定与性质、平行四边的性质、角平分线的定义、等边对等角、平行线的性质等,熟练掌握有关知识是本题的关键.24.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设该品牌电动自行车销售量的月均增长率为x.等量关系为:1月份的销售量×(1+增长率)2=3月份的销售量,把相关数值代入求解即可.(2)根据(1)求出增长率后,再计算出二月份的销量,即可得到答案.【解答】解:(1)设该品牌电动自行车销售量的月均增长率为x,根据题意列方程:150(1+x)2=216,解得x1=﹣220%(不合题意,舍去),x2=20%.答:该品牌电动自行车销售量的月均增长率20%.(2)二月份的销量是:150×(1+20%)=180(辆).所以该经销商1至3月共盈利:(2800﹣2300)×(150+180+216)=500×546=273000(元).【点评】本题考主要查了一元二次方程的应用.判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.25.一个不透明的袋子中装有分别标注着汉字“美”“丽”“槐”“荫”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一球,请直接写出球上的汉字恰好是“美”的概率;(2)若从袋中任取一球,记下汉字后放回袋中,然后再从中任取一球,再次记下球上的汉字,求两次的汉字恰好组成“美丽”或“槐荫”这两个词的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由一个不透明的袋子中装有分别标注着汉字“美”“丽”“槐”“荫”的四个小球,除汉字不同之外,小球没有任何区别,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与两次的汉字恰好组成“美丽”或“槐荫”这两个词的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵一个不透明的袋子中装有分别标注着汉字“美”“丽”“槐”“荫”的四个小球,除汉字不同之外,小球没有任何区别,∴P(美)=;(2)列表得:美丽槐荫二一美美美美丽美槐美荫丽丽美丽丽丽槐丽荫槐槐美槐丽槐槐槐荫荫荫美荫丽荫槐荫荫∵所有可能有16种,满足条件的有2种,∴P(美丽或槐荫)==.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.26.如图,直线y1=x+2与双曲线y2=交于A(m,4),B(﹣4,n).(1)求k值;(2)当y1>y2时请直接写出x的取值范围;(3)P为x轴上任意一点,当△ABP为直角三角形时,求P点坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A、B坐标代入直线y1=x+2可得m、n的值,将A或B坐标代入双曲线y2=可求得k的值;(2)由A、B坐标根据函数图象可得x的取值范围;(3)设P坐标为(a,0),根据A、B坐标分别表示出PA2、PB2、AB2,分∠BAP=90°、∠ABP=90°、∠APB=90°三种情况根据勾股定理列出关于a的方程,解方程可得a的值,即可得点P的坐标.【解答】解:(1)根据题意可将点A(m,4),B(﹣4,n)代入直线y1=x+2,得:m+2=4,﹣4+2=n,解得:m=2,n=﹣2,故点A坐标为(2,4),点B坐标为(﹣4,﹣2),将点A(2,4)代入双曲线y2=,可得k=8;(2)观察图象可得,y1>y2时,﹣4<x<0或x>2;(3)设x轴上的点P坐标为(a,0),∵点A坐标为(2,4),点B坐标为(﹣4,﹣2),∴PA2=(2﹣a)2+42=(a﹣2)2+16,PB2=(﹣4﹣a)2+(﹣2)2=(a+4)2+4,AB2=(﹣4﹣2)2+(﹣2﹣4)2=72,①当∠BAP=90°时,AB2+AP2=PB2,即(a﹣2)2+16+72=(a+4)2+4,解得:a=6,则点P坐标为(6,0);②当∠ABP=90°时,AB2+PB2=AP2,即72+(a+4)2+4=(a﹣2)2+16,解得:a=﹣6,则点P坐标为(﹣6,0);③当∠APB=90°,PA2+PB2=AB2,即(a﹣2)2+16+(a+4)2+4=72,解得:a=﹣1+或a=﹣1﹣,则点P的坐标为(﹣1+,0)或(﹣1﹣);综上,点P的坐标为:(6,0),(﹣6,0),(﹣1+,0),(﹣1﹣).【点评】本题主要考查一次函数与反比例函数交点问题,根据直线与双曲线相交求得点A、B坐标是解题根本,由△ABP为直角三角形根据勾股定理分类讨论是解题的关键.27.如图1所示,过点M作⊙N的切线MA、MB,切点分别为A、B,连接MN(1)求证:∠AMN=∠BMN.(2)如图2所示,在图1的基础上作⊙M,过⊙N的圆心N作⊙M的切线NC、ND,切点分别为C、D,MA、MB分别与⊙M交于点E、F,NC、ND分别与⊙N交于点G、H,MA与ND交于点P.求证:sin∠DPM=.(3)求证:四边形EFGH是矩形.【考点】圆的综合题.【分析】(1)首先连接NA,NB,由MA、MB是⊙N的切线,利用HL易证得Rt△AMN和Rt△BMN,继而证得结论;(2)首先连接MD,由ND是⊙M的切线,可求得sin∠DPM=,继而证得sin∠DPM=;(3)易证得EH∥MN,继而证得∠FEH=90°,∠EFG=∠FGH=90°,则可证得结论.【解答】证明:(1)如图,连接NA、NB,∵MA、MB是⊙N的切线,∴∠MAN=∠MBN=90°,在Rt△AMN和Rt△BMN中,,∴Rt△AMN和Rt△BMN(HL),∴∠AMN=∠BMN;(2)如图2,连接MD,∵ND是⊙M的切线,∴∠MDP=90°,∴sin∠DPM=,∵MD=ME,∴sin∠DPM=;(3)由(2)可得sin∠APN=,∴=,∴EH∥MN,∵ME=MF,∠AMN=∠BMN,∴MN⊥EF,∴EH⊥EF,∴∠FEH=90°,同理可证∠EFG=∠FGH=90°,∴四边形EFGH是矩形.【点评】此题属于圆的综合题,考查了切线的性质、全等三角形的判定与性质、矩形的判定以及三角函数等知识.注意准确作出辅助线是解此题的关键.28.如图,抛物线y=﹣x+4与y轴交于点A、与x轴分别交于B、C两点.(1)求A、B两点坐标;(2)将Rt△AOB绕点A逆时针旋转90°得到△ADE,求点E的坐标;(3)求出第一象限内的抛物线上与直线AE距离最远的点的坐标.【考点】二次函数综合题.【分析】(1)分别令x=0,y=0可求得点A、B的坐标;(2)由点A、B的坐标可求得OA、OB的长,然后由旋转的性质可得到点E的坐标;(3)延长AE交抛物线与点M,过点P作PN⊥x轴,交直线AE与点N,过点P作PW⊥AE垂足为W.先求得直线AE的解析式,然后求得点M的坐标,设点P(t,﹣ t2+t+4),则N(t,﹣t+4),可求得PN=﹣t2+t.从而得到△APM的面积与t的函数关系式,利用配方法可求得△APM的最大值,以及此时点P的坐标.【解答】解:(1)∵当x=0时,y=4,∴A(0,4).∵当y=0时,﹣ x+4=0,∴x1=﹣4,x2=8.∴B(﹣4,0).(2)由(1)得OA=OB=4,∵将△ABO逆时针绕A旋转90°得到△ADE,∴∠ADE=90°,DE=AD=4.∴点D(4,4).∴E(4,0).(3)如图所示:延长AE交抛物线与点M,过点P作PN⊥x轴,交直线AE与点N,过点P作PW⊥AE垂足为W.设直线AE的解析式为y=kx+b.∵将A(0,4),B(,0)代入得:,解得:,∴直线AE的解析式为y=﹣x+4.∵将y=﹣x+4与y=﹣x+4联立解得:,,∴M(12,﹣8).设点P(t,﹣ t2+t+4),则N(t,﹣t+4),PN=﹣t2+t+4﹣(﹣t+4)=﹣t2+t.S△APM=PN•x M=×12×(﹣t2+t)=﹣t2+9t=﹣(t﹣6)2+27.∴当t=6时,△APM的面积最大.∴当t=6时,y=﹣×62+×6+4=.∴P(6,).∵当△APM面积最大时,PW最大,∴直线AE最远的点的坐标为P(6,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了函数解析式与点的坐标的关系、待定系数法求一次函数的解析式、一次函数与二次函数的交点、配方法求二次函数的最值、三角形的面积公式、旋转的性质,列出三角形APM的面积与点P的横坐标t之间的函数关系式是解题的关键.。

槐荫区初中数学一模试卷

槐荫区初中数学一模试卷

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -2B. 3C. -5D. 1.52. 如果a < b,那么下列各数中,最小的是()A. a + bB. 2a - 3bC. 3a + 2bD. 4a - 5b3. 下列各数中,有理数是()A. √3B. √4C. √-1D. √-44. 已知一个等差数列的前三项分别是1,3,5,则该数列的公差是()A. 2B. 3C. 4D. 55. 在△ABC中,∠A=45°,∠B=60°,则∠C=()A. 30°B. 45°C. 60°D. 75°6. 已知一次函数y=kx+b的图象经过点(2,3),则下列各点中,也在该函数图象上的是()A. (1,2)B. (1,3)C. (3,1)D. (3,2)7. 已知一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长是()A. 22cmB. 24cmC. 26cmD. 28cm8. 若方程x^2-5x+6=0的两个根分别为x1和x2,则x1+x2=()A. 5B. -5C. 6D. -69. 在直角坐标系中,点P(-2,3)关于x轴的对称点为()A. (-2,-3)B. (2,3)C. (-2,3)D. (2,-3)10. 若一个数列的前三项分别是2,5,8,则该数列的通项公式是()A. an=3n-1B. an=3n+1C. an=2n+1D. an=2n-1二、填空题(每题5分,共30分)11. 已知|a|=5,那么a=_________。

12. 如果a^2=9,那么a=_________。

13. 下列各数中,无理数是_________。

14. 在△ABC中,∠A=30°,∠B=75°,则∠C=_________。

15. 一次函数y=2x-3的图象与x轴的交点坐标为_________。

三、解答题(每题10分,共30分)16. 已知一个等差数列的前三项分别是2,5,8,求该数列的通项公式。

┃精选3套试卷┃2018年济南市某名校中考数学1月质量监测试题

┃精选3套试卷┃2018年济南市某名校中考数学1月质量监测试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.化简221x -÷11x -的结果是( ) A .21x + B .2x C .21x - D .2(x +1)【答案】A 【解析】原式利用除法法则变形,约分即可得到结果.【详解】原式=211x x +-()()•(x ﹣1)=21x +. 故选A .【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.2.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,若∠CAE=65°,∠E=70°,且AD ⊥BC ,∠BAC 的度数为( ).A .60 °B .75°C .85°D .90°【答案】C 【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD ⊥BC 于点F .则∠AFB=90°,∴在Rt △ABF 中,∠B=90°-∠BAD=25°,∴在△ABC 中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC 的度数为85°.故选C .考点: 旋转的性质.3.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF,则CF 的长为( )A .95B .185C .165D .125【答案】B【解析】连接BF ,由折叠可知AE 垂直平分BF ,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245 ,再证明∠BFC=90°,最后利用勾股定理求得CF=185. 【详解】连接BF ,由折叠可知AE 垂直平分BF ,∵BC=6,点E 为BC 的中点,∴BE=3,又∵AB=4, ∴222243AB BE +=+=5, ∵1122AB BE AE BH ⋅=⋅, ∴1134522BH ⨯⨯=⨯⨯, ∴BH=125,则BF=245, ∵FE=BE=EC ,∴∠BFC=90°,∴2222246()5BC BF -=-=185 . 故选B .【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.4.如图,∠ACB=90°,D 为AB 的中点,连接DC 并延长到E ,使CE=13CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F ,若AB=6,则BF 的长为( )A .6B .7C .8D .10【答案】C 【解析】 ∵∠ACB=90°,D 为AB 的中点,AB=6,∴CD=12AB=1. 又CE=13CD , ∴CE=1,∴ED=CE+CD=2.又∵BF ∥DE ,点D 是AB 的中点,∴ED 是△AFB 的中位线,∴BF=2ED=3.故选C .5.若0<m <2,则关于x 的一元二次方程﹣(x+m )(x+3m )=3mx+37根的情况是( )A .无实数根B .有两个正根C .有两个根,且都大于﹣3mD .有两个根,其中一根大于﹣m【答案】A【解析】先整理为一般形式,用含m 的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.【详解】方程整理为22x 7mx 3m 370+++=,△()()22249m 43m 3737m 4=-+=-,∵0m 2<<,∴2m 40-<,∴△0<,∴方程没有实数根,故选A .【点睛】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【答案】A【解析】根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.【详解】依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.【点睛】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键. 7.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx +4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<1【答案】C【解析】试题分析:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选C.考点:一次函数与一元一次不等式.8.如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A .60cm 2B .50cm 2C .40cm 2D .30cm 2【答案】D 【解析】标注字母,根据两直线平行,同位角相等可得∠B=∠AED ,然后求出△ADE 和△EFB 相似,根据相似三角形对应边成比例求出53DE BF =,即53EF BF =,设BF=3a ,表示出EF=5a ,再表示出BC 、AC ,利用勾股定理列出方程求出a 的值,再根据红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积计算即可得解.【详解】解:如图,∵正方形的边DE ∥CF ,∴∠B=∠AED ,∵∠ADE=∠EFB=90°,∴△ADE ∽△EFB , ∴10563DE AE BF BE ===, ∴53EF BF =, 设BF=3a ,则EF=5a ,∴BC=3a+5a=8a , AC=8a×53=403a , 在Rt △ABC 中,AC 1+BC 1=AB 1, 即(403a )1+(8a )1=(10+6)1, 解得a 1=1817, 红、蓝两张纸片的面积之和=12×403a×8a-(5a )1, =1603a 1-15a 1, =853a 1, =853×1817, =30cm 1.故选D .【点睛】本题考查根据相似三角形的性质求出直角三角形的两直角边,利用红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积求解是关键.9.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B的大小是( )A.32°B.64°C.77°D.87°【答案】C【解析】试题分析:由旋转的性质可知,A C=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.考点:旋转的性质.10.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同【答案】B【解析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.二、填空题(本题包括8个小题)11.若不等式(a﹣3)x>1的解集为13xa<-,则a的取值范围是_____.【答案】3a<.【解析】∵(a−3)x>1的解集为x<13a-,∴不等式两边同时除以(a−3)时不等号的方向改变,∴a−3<0,∴a<3.故答案为a<3.点睛:本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a-3小于0.12.如图,点A,B,C在⊙O上,∠OBC=18°,则∠A=_______________________.【答案】72°.【解析】解:∵OB=OC,∠OBC=18°,∴∠BCO=∠OBC=18°,∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,∴∠A=12∠BOC=12×144°=72°.故答案为72°.【点睛】本题考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是本题的解题关键.13.如图,在矩形ABCD中,E、F分别是AD、CD的中点,沿着BE将△ABE折叠,点A刚好落在BF上,若AB=2,则AD=________.【答案】22【解析】如图,连接EF ,∵点E 、点F 是AD 、DC 的中点,∴AE=ED ,CF=DF=12CD=12AB=1, 由折叠的性质可得AE=A′E ,∴A′E=DE ,在Rt △EA′F 和Rt △EDF 中,EA ED EF EF ='⎧⎨=⎩, ∴Rt △EA′F ≌Rt △EDF (HL ),∴A ′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt △BCF 中, 22223122BF CF -=-=∴2 .点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF ,证明Rt △EA′F ≌Rt △EDF ,得出BF 的长,再利用勾股定理解答即可.14.一个布袋里装有10个只有颜色不同的球,这10个球中有m 个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m 的值约为__________.【答案】3【解析】在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【详解】解:根据题意得,10m =0.3,解得m =3.【点睛】本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近.15.不等式组340 12412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.【答案】1【解析】解:34012412xx+≥⎧⎪⎨-≤⎪⎩①②,解不等式①得:43x≥-,解不等式②得:50x≤,∴不等式组的整数解为﹣1,1,1…51,所以所有整数解的积为1,故答案为1.【点睛】本题考查一元一次不等式组的整数解,准确计算是关键,难度不大.16.如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O过A、C两点,则图中阴影部分的面积之和为_____.【答案】1.【解析】∵∠AOB=∠COD,∴S阴影=S△AOB.∵四边形ABCD是平行四边形,∴OA=12AC=12×1=2.∵AB⊥AC,∴S阴影=S△AOB=12OA•AB=12×2×1=1.【点睛】本题考查了扇形面积的计算.17.已知(x+y)2=25,(x﹣y)2=9,则x2+y2=_____.【解析】先利用完全平方公式展开,然后再求和.【详解】根据(x+y )2=25,x 2+y 2+2xy=25;(x ﹣y )2=9, x 2+y 2-2xy=9,所以x 2+y 2=17.【点睛】(1)完全平方公式:2222a b a ab b ±=±+().(2)平方差公式:(a+b)(a-b)=22a b +.(3)常用等价变形:()2222 ,a b b a b a a b -=-=-+=-+ ()33a b b a -=--, ()()b a b a -=--,()22a b a b --=+.18.如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分的面积为_____.【答案】4π 【解析】解:∵弦CD ∥AB ,∴S △ACD =S △OCD ,∴S 阴影=S 扇形COD =2901360π⨯=4π.故答案为4π. 三、解答题(本题包括8个小题)19.“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表.对雾霾了解程度的统计表对雾霾的了解程度 百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题:统计表中:m=,n=;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?【答案】(1)20;15%;35%;(2)见解析;(3)126°.【解析】(1)根据被调查学生总人数,用B的人数除以被调查的学生总人数计算即可求出m,再根据各部分的百分比的和等于1计算即可求出n;(2)求出D的学生人数,然后补全统计图即可;(3)用D的百分比乘360°计算即可得解.【详解】解:(1)非常了解的人数为20,60÷400×100%=15%,1﹣5%﹣15%﹣45%=35%,故答案为20;15%;35%;(2)∵D等级的人数为:400×35%=140,∴补全条形统计图如图所示:(3)D部分扇形所对应的圆心角:360°×35%=126°.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小20.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.降价前商场每月销售该商品的利润是多少元?要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?【答案】(1) 4800元;(2) 降价60元.【解析】试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润×商品的销售数量=总利润”列出方程,解方程即可解决问题.试题解析:(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;(2)设每件商品应降价x元,由题意得(360-x-280)(5x+60)=7200,解得x1=8,x2=60.要更有利于减少库存,则x=60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键.21.如图,在平面直角坐标系中,△AOB的三个顶点坐标分别为A(1,0),O(0,0),B(2,2).以点O为旋转中心,将△AOB逆时针旋转90°,得到△A1OB1.画出△A1OB1;直接写出点A1和点B1的坐标;求线段OB1的长度.【答案】(1)作图见解析;(2)A1(0,1),点B1(﹣2,2).(3)22【解析】(1)按要求作图.(2)由(1)得出坐标.(3)由图观察得到,再根据勾股定理得到长度.【详解】解:(1)画出△A1OB1,如图.(2)点A1(0,1),点B1(﹣2,2).(3)OB1=OB==2.【点睛】本题主要考查的是绘图、识图、勾股定理等知识点,熟练掌握方法是本题的解题关键.22.为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?【答案】(1)10,144;(2)详见解析;(3)96【解析】(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.【详解】解:(1)2÷20%=10(人),410×100%×360°=144°,故答案为10,144;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400×210×20%=96(人),答:估计该校将有96名留守学生在此关爱活动中受益.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30︒,∠CBD=60︒.求AB的长(精确到0.1米,参考数据:3 1.732 1.41≈≈,);已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.【答案】(1)24.2米(2) 超速,理由见解析【解析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【详解】解:(1)由題意得,在Rt△ADC中,CDADtan30︒=213?3=,在Rt△BDC中,CDBD73tan603===︒,∴AB=AD-BD=213?73=14314 1.73=24.2224.2-≈⨯≈(米).(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB路段超速.24.先化简,再求值:22212212x x xxx x x--+÷-+-,其中x=1.【答案】2【解析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的加法法则计算得到最简结果,将x的值代入计算即可求出值.【详解】原式=()()()()21121•21x x x x x x x +--+-- =111x x ++- =21x x -, 当x=1时,原式=23331⨯=-. 【点睛】 此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.25.如图,在△ABC 中,AB=AC ,D 为BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,求证:DE=DF .【答案】答案见解析【解析】由于AB=AC ,那么∠B=∠C ,而DE ⊥AC ,DF ⊥AB 可知∠BFD=∠CED=90°,又D 是BC 中点,可知BD=CD ,利用AAS 可证△BFD ≌△CED ,从而有DE=DF .26.如图,在矩形ABCD 中,AB=1DA ,以点A 为圆心,AB 为半径的圆弧交DC 于点E ,交AD 的延长线于点F ,设DA=1.求线段EC 的长;求图中阴影部分的面积.【答案】(1)423-;(1)8233π- 【解析】(1)根据矩形的性质得出AB=AE=4,进而利用勾股定理得出DE 的长,即可得出答案;(1)利用锐角三角函数关系得出∠DAE=60°,进而求出图中阴影部分的面积为:FAE DAE S S 扇形∆-,求出即可.【详解】解:(1)∵在矩形ABCD 中,AB=1DA ,DA=1,∴AB=AE=4,∴2223AE AD -=,∴3(1)∵sin∠DEA=12 ADAE=,∴∠DEA=30°,∴∠EAB=30°,∴图中阴影部分的面积为:S扇形FAB-S△DAE-S扇形EAB=9041304822323 36023603πππ⨯⨯-⨯⨯-=-.【点睛】此题主要考查了扇形的面积计算以及勾股定理和锐角三角函数关系等知识,根据已知得出DE的长是解题关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A.32B.3 C.1 D.43【答案】A【解析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC ﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=3 2故选A.2.下列各式计算正确的是( )A.633-=B.1236⨯=C.3535+=D.1025÷=【答案】B【解析】A选项中,∵63、不是同类二次根式,不能合并,∴本选项错误;B选项中,∵123=36=6⨯,∴本选项正确;C选项中,∵35=35⨯,而不是等于3+5,∴本选项错误;D选项中,∵10102=52÷≠,∴本选项错误;故选B.3.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>0【答案】C【解析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,∴a+b<1,ab<1,a﹣b<1,a÷b<1.故选:C.4.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A.0 B.3 C.﹣3 D.﹣7【答案】B【解析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.【详解】∵一次函数y=﹣2x+3中k=﹣2<0,∴y随x的增大而减小,∴在0≤x≤5范围内,x=0时,函数值最大﹣2×0+3=3,故选B.【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小.5.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)【答案】D【解析】设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.6.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E【答案】C【解析】根据平行线性质和全等三角形的判定定理逐个分析.AB ED,得∠B=∠D,【详解】由//,因为CD BF若ABC ≌EDF ,则还需要补充的条件可以是:AB=DE,或∠E=∠A, ∠EFD=∠ACB,故选C【点睛】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.7.如图,在△ABC 中,AC ⊥BC ,∠ABC=30°,点D 是CB 延长线上的一点,且BD=BA ,则tan ∠DAC 的值为( )A .2+3B .23C .3+3D .33【答案】A 【解析】设AC=a ,由特殊角的三角函数值分别表示出BC 、AB 的长度,进而得出BD 、CD 的长度,由公式求出tan ∠DAC 的值即可.【详解】设AC=a ,则BC=30AC tan ︒=3a ,AB=30AC sin ︒=2a , ∴BD=BA=2a ,∴CD=(2+3)a ,∴tan ∠DAC=2+3.故选A.【点睛】本题主要考查特殊角的三角函数值.8.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )A .参加本次植树活动共有30人B .每人植树量的众数是4棵C .每人植树量的中位数是5棵D .每人植树量的平均数是5棵 【答案】D【解析】试题解析:A、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D不正确.故选D.考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.9.分式方程213xx=-的解为()A.x=-2 B.x=-3 C.x=2 D.x=3【答案】B【解析】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B.10.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则b a的值是( ) A.B.-C.4 D.-1【答案】A【解析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=,∴b a=()2=.故选A.二、填空题(本题包括8个小题)11.某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.【答案】5750【解析】根据题意设甲产品的成本价格为b 元,求出b ,可知A 原料与B 原料的成本和40元,然后设A 种原料成本价格x 元,B 种原料成本价格(40﹣x)元,生产甲产品m 袋,乙产品n 袋,列出方程组得到xn =20n ﹣250,最后设生产甲乙产品的实际成本为W 元,即可解答 【详解】∵甲产品每袋售价72元,则利润率为20%. 设甲产品的成本价格为b 元, ∴72-bb=20%, ∴b =60,∴甲产品的成本价格60元,∴1.5kgA 原料与1.5kgB 原料的成本和60元, ∴A 原料与B 原料的成本和40元,设A 种原料成本价格x 元,B 种原料成本价格(40﹣x)元,生产甲产品m 袋,乙产品n 袋, 根据题意得:10060(240)50060(802)m n m x x n m n x x +≤⎧⎨++-+=+-+⎩, ∴xn =20n ﹣250,设生产甲乙产品的实际成本为W 元,则有 W =60m+40n+xn ,∴W =60m+40n+20n ﹣250=60(m+n)﹣250, ∵m+n≤100, ∴W≤6250;∴生产甲乙产品的实际成本最多为5750元, 故答案为5750; 【点睛】此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格12.已知21x y =⎧⎨=⎩是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________ 【答案】4; 【解析】试题解析:把21x y =⎧⎨=⎩代入方程组得:25{21a b b a ++=①=②, ①×2-②得:3a=9,即a=3, 把a=3代入②得:b=-1, 则a-b=3+1=4,13.如图,点A ,B 在反比例函数y =1x (x >0)的图象上,点C ,D 在反比例函数y =kx(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为_____.【答案】1【解析】过A 作x 轴垂线,过B 作x 轴垂线,求出A (1,1),B (2,12),C (1,k ),D (2,2k),将面积进行转换S △OAC =S △COM ﹣S △AOM ,S △ABD =S 梯形AMND ﹣S 梯形AAMNB 进而求解. 【详解】解:过A 作x 轴垂线,过B 作x 轴垂线,点A ,B 在反比例函数y =1x(x >0)的图象上,点A ,B 的横坐标分别为1,2, ∴A (1,1),B (2,12), ∵AC ∥BD ∥y 轴, ∴C (1,k ),D (2,2k ), ∵△OAC 与△ABD 的面积之和为32, 111112222OACCOMAOMk SSSk ∴=-=⨯-⨯⨯=-, S △ABD =S 梯形AMND ﹣S 梯形AAMNB 1k 11k 1111122224-⎛⎫⎛⎫=+⨯-⨯+⨯= ⎪ ⎪⎝⎭⎝⎭, 1132242k k -∴-+=, ∴k =1, 故答案为1. 【点睛】本题考查反比例函数的性质,k 的几何意义.能够将三角形面积进行合理的转换是解题的关键. 14.某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标 价为___________元.【答案】28【解析】设标价为x元,那么0.9x-21=21×20%,x=28.15.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是__m.【答案】1【解析】设抛物线的解析式为:y=ax2+b,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y=﹣x2+2.4,根据题意求出y=1.8时x的值,进而求出答案;【详解】设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(1,0)在抛物线上,∴,解得:,∴抛物线的解析式为:y=﹣x2+2.4,∵菜农的身高为1.8m,即y=1.8,则1.8=﹣x2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:1米,故答案为1.16.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P 的坐标是_______.【答案】(2019,2)【解析】分析点P的运动规律,找到循环次数即可.【详解】分析图象可以发现,点P的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2) 故答案为(2019,2). 【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环. 17.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米. 【答案】1【解析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系和两圆位置关系求得圆心距即可.【详解】解:∵两圆的半径分别为2和5,两圆内切, ∴d =R ﹣r =5﹣2=1cm , 故答案为1. 【点睛】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系.18.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.【答案】525 1 【解析】如图所示:①当AP=AE=1时,∵∠BAD=90°,∴△AEP 是等腰直角三角形,∴底边2AE=52 ②当PE=AE=1时,∵BE=AB ﹣AE=8﹣1=3,∠B=90°,∴22PE BE -=4,∴底边22AB PB +2284+45③当PA=PE 时,底边AE=1;综上所述:等腰三角形AEP 的对边长为52451; 故答案为5251.三、解答题(本题包括8个小题)19.如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A 到达点B 时,它经过了200m ,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B 到达点D 时,它又走过了200m ,缆车由点B 到点D 的行驶路线与水平面夹角∠β=42°,求缆车从点A 到点D 垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)【答案】缆车垂直上升了186 m .【解析】在Rt ABC △中,sin 200sin1654BC AB α=⋅=⨯︒≈米,在Rt BDF 中,sin 200sin42132DF BD β=⋅=⨯︒≈,即可求出缆车从点A 到点D 垂直上升的距离.【详解】解:在Rt ABC △中,斜边AB=200米,∠α=16°, sin 200sin1654BC AB α=⋅=⨯︒≈(m ), 在Rt BDF 中,斜边BD=200米,∠β=42°,sin 200sin42132DF BD β=⋅=⨯︒≈,因此缆车垂直上升的距离应该是BC+DF=186(米). 答:缆车垂直上升了186米. 【点睛】本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.20.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:收集数据从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:整理、描述数据将成绩按如下分段整理、描述这两组样本数据:(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如表所示:(1)表格中a的值为______;请你估计该校九年级体质健康优秀的学生人数为多少?根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)【答案】(1)81;(2) 108人;(3)见解析.【解析】(1)根据众数的概念解答;(2)求出九年级学生体质健康的优秀率,计算即可;(3)分别从不同的角度进行评价.【详解】解:(1)由测试成绩可知,81分出现的次数最多,∴a=81,故答案为:81;(2)九年级学生体质健康的优秀率为:10+2100%=60% 20,九年级体质健康优秀的学生人数为:180×60%=108(人),。

(汇总3份试卷)2018年济南市中考数学毕业升学考试一模试题

(汇总3份试卷)2018年济南市中考数学毕业升学考试一模试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知△ABC 中,∠C=90°,AC=BC=2,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为( )A .2-2B .32C .3-1D .1【答案】C 【解析】延长BC′交AB′于D ,根据等边三角形的性质可得BD ⊥AB′,利用勾股定理列式求出AB ,然后根据等边三角形的性质和等腰直角三角形的性质求出BD 、C′D ,然后根据BC′=BD -C′D 计算即可得解.【详解】解:延长BC′交AB′于D ,连接BB ',如图,在Rt △AC′B′中,AB′=2AC′=2,∵BC′垂直平分AB′,∴C′D=12AB=1, ∵BD 为等边三角形△ABB′的高,∴BD=3AB′=3, ∴BC′=BD -C′D=3-1.故本题选择C.【点睛】熟练掌握勾股定理以及由旋转60°得到△ABB′是等边三角形是解本题的关键.2.设点()11A ,x y 和()22B ,x y 是反比例函数k y x=图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】∵点()11A ,x y 和()22B ,x y 是反比例函数k y x =图象上的两个点,当1x <2x <1时,1y <2y ,即y 随x 增大而增大,∴根据反比例函数k y x =图象与系数的关系:当0k >时函数图象的每一支上,y 随x 的增大而减小;当0k <时,函数图象的每一支上,y 随x 的增大而增大.故k <1. ∴根据一次函数图象与系数的关系:一次函数1y=k x+b 的图象有四种情况:①当1k 0>,b 0>时,函数1y=k x+b 的图象经过第一、二、三象限;②当1k 0>,b 0<时,函数1y=k x+b 的图象经过第一、三、四象限;③当1k 0<,b 0>时,函数1y=k x+b 的图象经过第一、二、四象限;④当1k 0<,b 0<时,函数1y=k x+b 的图象经过第二、三、四象限.因此,一次函数2y x k =-+的1k 20=-<,b=k 0<,故它的图象经过第二、三、四象限,不经过第一象限.故选A .3.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F ,则图中阴影部分的面积是( )A .2-4πB .324π-C .2-8πD .324π- 【答案】B【解析】利用矩形的性质以及结合角平分线的性质分别求出AE ,BE 的长以及∠EBF 的度数,进而利用图中阴影部分的面积=S ABCD 矩形-S ABE -S EBF 扇形,求出答案.【详解】∵矩形ABCD 的边AB=1,BE 平分∠ABC ,∴∠ABE=∠EBF=45°,AD ∥BC ,∴∠AEB=∠CBE=45°,∴2 ,∵点E 是AD 的中点,∴AE=ED=1,∴图中阴影部分的面积=S ABCD 矩形 −S ABE −S EBF 扇形 =1×2−123-24π 故选B.【点睛】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式4.下列调查中,调查方式选择合理的是( )A .为了解襄阳市初中每天锻炼所用时间,选择全面调查B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C .为了解神舟飞船设备零件的质量情况,选择抽样调查D .为了解一批节能灯的使用寿命,选择抽样调查【答案】D【解析】A .为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A 不符合题意;B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B 不符合题意;C .为了解神舟飞船设备零件的质量情况,选普查,故C 不符合题意;D .为了解一批节能灯的使用寿命,选择抽样调查,故D 符合题意;故选D .5.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为( )A .7.6×10﹣9B .7.6×10﹣8C .7.6×109D .7.6×108【答案】A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.0000000076用科学计数法表示为97.610-⨯.故选A.【点睛】本题考查了用科学计数法表示较小的数,一般形式为a×10n -,其中110a ≤<,n 为由原数左边起第一个不为0的数字前面的0的个数所决定.6.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t (分钟),所走的路程为s (米),s 与t 之间的函数关系如图所示,下列说法错误的是( )A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度【答案】C【解析】根据图像,结合行程问题的数量关系逐项分析可得出答案.【详解】从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A正确;小明休息前爬山的平均速度为:28007040=(米/分),B正确;小明在上述过程中所走的路程为3800米,C错误;小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:380028002510060-=-米/分,D正确.故选C.考点:函数的图象、行程问题.7.如图,⊙O 是等边△ABC 的外接圆,其半径为3,图中阴影部分的面积是()A.πB.32πC.2πD.3π【答案】D【解析】根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可.【详解】∵△ABC 为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积= 21203360π⨯=3π. 故选D .【点睛】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得∠BOC=120°是解决问题的关键.8.如图,BD 为⊙O 的直径,点A 为弧BDC 的中点,∠ABD =35°,则∠DBC =( )A .20°B .35°C .15°D .45°【答案】A 【解析】根据∠ABD =35°就可以求出AD 的度数,再根据180BD ︒=,可以求出AB ,因此就可以求得ABC ∠的度数,从而求得∠DBC【详解】解:∵∠ABD =35°,∴的度数都是70°,∵BD 为直径,∴的度数是180°﹣70°=110°,∵点A 为弧BDC 的中点,∴的度数也是110°, ∴的度数是110°+110°﹣180°=40°,∴∠DBC ==20°, 故选:A .【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力.9.已知抛物线y =ax 2+bx+c (a <0)与x 轴交于点A (﹣1,0),与y 轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n ),则下列结论:①4a+2b <0; ②﹣1≤a≤23-; ③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程ax 2+bx+c =n ﹣1有两个不相等的实数根.其中结论正确的个数为( ) A .1个B .2个C .3个D .4个 【答案】C【解析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误;②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c ,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确; ③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥ax 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.【详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴-2b a=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0),∴a-b+c=3a+c=0,∴a=-3c . 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点),∴2≤c≤3,∴-1≤a≤-23,结论②正确; ③∵a <0,顶点坐标为(1,n ),∴n=a+b+c ,且n≥ax 2+bx+c ,∴对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,又∵a <0,∴抛物线开口向下,∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.故选C .【点睛】本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.10.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个〇.A.6055 B.6056 C.6057 D.6058【答案】D【解析】设第n个图形有a n个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a n=1+3n(n 为正整数)",再代入a=2019即可得出结论【详解】设第n个图形有a n个〇(n为正整数),观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴a n=1+3n(n为正整数),∴a2019=1+3×2019=1.故选:D.【点睛】此题考查规律型:图形的变化,解题关键在于找到规律二、填空题(本题包括8个小题)11.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.【答案】﹣1【解析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因为k≠0,所以k的值为﹣1.故答案为:﹣1.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.因式分解:3x3﹣12x=_____.【答案】3x(x+2)(x﹣2)【解析】先提公因式3x,然后利用平方差公式进行分解即可.【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是_____.【答案】40°【解析】根据外角的概念求出∠ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为40°.【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.14.如图,已知点C为反比例函数6yx=-上的一点,过点C向坐标轴引垂线,垂足分别为A、B,那么四边形AOBC的面积为___________.【答案】1【解析】解:由于点C为反比例函数6yx=-上的一点,则四边形AOBC的面积S=|k|=1.故答案为:1.15.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.【答案】2π3【解析】根据弧长公式可得:602180π⨯⨯=23π,故答案为23π.16.如图,在正六边形ABCDEF的上方作正方形AFGH ,联结GC,那么GCD∠的正切值为___.【答案】31+【解析】延长GF与CD交于点D,过点E作EM DF⊥交DF于点M,设正方形的边长为a,则,CD GF DE a===解直角三角形可得DF,根据正切的定义即可求得GCD∠的正切值【详解】延长GF与CD交于点D,过点E作EM DF⊥交DF于点M,设正方形的边长为a,则,CD GF DE a===AF//CD,90,CDG AFG∴∠=∠=1209030,EDM∠=-=3cos30,DM DE=⋅=23,DF DM a∴==)331,DG GF FD a a a∴=+==()3131tan.aGDGCDCD a∠===3 1.【点睛】考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.17.A .如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条. B .用计算器计算:7•tan63°27′≈_____(精确到0.01).【答案】20 5.1【解析】A 、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;B 、利用计算器计算可得.【详解】A 、根据题意,此正多边形的边数为360°÷45°=8,则这个正多边形对角线的条数一共有8(83)2⨯-=20, 故答案为20;B 、7•tan63°27′≈2.646×2.001≈5.1,故答案为5.1.【点睛】本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.18.如图,⊙O 的半径为6,四边形ABCD 内接于⊙O ,连接OB ,OD ,若∠BOD=∠BCD ,则弧BD 的长为________.【答案】4π【解析】根据圆内接四边形对角互补可得∠BCD+∠A=180°,再根据同弧所对的圆周角与圆心角的关系以及∠BOD=∠BCD ,可求得∠A=60°,从而得∠BOD=120°,再利用弧长公式进行计算即可得.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠BCD+∠A=180°,∵∠BOD=2∠A ,∠BOD=∠BCD ,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴BD 的长=41812060ππ=⨯, 故答案为4π.【点睛】本题考查了圆周角定理、弧长公式等,求得∠A 的度数是解题的关键.三、解答题(本题包括8个小题)19.已知m 是关于x 的方程2450x x -=+的一个根,则228m m +=__【答案】10【解析】利用一元二次方程的解的定义得到245m m +=,再把228m m + 变形为()224m m +,然后利用整体代入的方法计算 .【详解】解:m 是关于x 的方程2450x x +-=的一个根,2450m m ∴+-=,245m m ∴+=,()2228242510m m m m ∴+=+=⨯=.故答案为 10 .【点睛】本题考查了一元二次方程的解: 能使一元二次方程左右两边相等的未知数的值是一元二次方程的解 . 20.某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米. 若平行于墙的一边长为y 米,直接写出y 与x 的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.【答案】112.1【解析】试题分析:(1)根据题意即可求得y 与x 的函数关系式为y=30﹣2x 与自变量x 的取值范围为6≤x <11;(2)设矩形苗圃园的面积为S ,由S=xy ,即可求得S 与x 的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.试题解析:解:(1)y=30﹣2x (6≤x <11).(2)设矩形苗圃园的面积为S ,则S=xy=x (30﹣2x )=﹣2x 2+30x ,∴S=﹣2(x ﹣7.1)2+112.1,由(1)知,6≤x <11,∴当x=7.1时,S 最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1.点睛:此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.21.6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m=;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?【答案】(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.【解析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=1050×100=20,故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),补全表格中的数据如下:血型 A B AB O 人数12 10 5 23 故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率=126 5025,3000×625=720,估计这3000人中大约有720人是A型血.【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.22.先化简,后求值:(1﹣11a +)÷(2221a a a a -++),其中a =1. 【答案】11a a +-,2. 【解析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 【详解】解:原式=()()2111111a a a a a a -+⎛⎫-÷ ⎪++⎝⎭+ ()()2111a a a a a +=+- 11a a +=-, 当a =1时, 原式=3131+-=2. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.23.2018年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元.【答案】15元.【解析】首先设每棵柏树苗的进价是x 元,则每棵枣树苗的进价是(2x -5)元,根据题意列出一元一次方程进行求解.【详解】解:设每棵柏树苗的进价是x 元,则每棵枣树苗的进价是(2x -5)元.根据题意,列方程得:200=120(25)x x -, 解得:x=15答:每棵柏树苗的进价是15元.【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24201(1)6tan 303π-︒⎛⎫--+- ⎪⎝⎭解方程:544101236x x x x -++=-- 【答案】 (1)10;(2)原方程无解.【解析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)原式=323169+-⨯+=10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.25.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+1.求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+2x+1;(2)P (97,127);(1)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【解析】(1)先求得点B和点C的坐标,然后将点B和点C的坐标代入抛物线的解析式得到关于b、c的方程,从而可求得b、c的值;(2)作点O关于BC的对称点O′,则O′(1,1),则OP+AP的最小值为AO′的长,然后求得AO′的解析式,最后可求得点P的坐标;(1)先求得点D的坐标,然后求得CD、BC、BD 的长,依据勾股定理的逆定理证明△BCD为直角三角形,然后分为△AQC∽△DCB和△ACQ∽△DCB两种情况求解即可.【详解】(1)把x=0代入y=﹣x+1,得:y=1,∴C(0,1).把y=0代入y=﹣x+1得:x=1,∴B(1,0),A(﹣1,0).将C(0,1)、B(1,0)代入y=﹣x2+bx+c得:9303b cc-++=⎧⎨=⎩,解得b=2,c=1.∴抛物线的解析式为y=﹣x2+2x+1.(2)如图所示:作点O 关于BC 的对称点O′,则O′(1,1).∵O′与O 关于BC 对称,∴PO=PO′.∴OP+AP=O′P+AP≤AO′.∴OP+AP 的最小值=O′A=()()221330--+-=2. O′A 的方程为y=3344x + P 点满足33443y x y x ⎧=+⎪⎨⎪=+⎩﹣解得:97127x y ⎧=⎪⎪⎨⎪=⎪⎩所以P (97 ,127) (1)y=﹣x 2+2x+1=﹣(x ﹣1)2+4,∴D (1,4).又∵C (0,1,B (1,0),∴2,25∴CD 2+CB 2=BD 2,∴∠DCB=90°.∵A (﹣1,0),C (0,1), ∴OA=1,CO=1.∴13AO CD CO BC ==. 又∵∠AOC=DCB=90°,∴△AOC ∽△DCB .∴当Q 的坐标为(0,0)时,△AQC ∽△DCB .如图所示:连接AC ,过点C 作CQ ⊥AC ,交x 轴与点Q .∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽△DCB.∴CD ACBD AQ=,即21025=,解得:AQ=3.∴Q(9,0).综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【点睛】本题考查了二次函数的综合应用,解题的关键是掌握待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想.26.如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.【答案】证明见试题解析.【解析】试题分析:首先根据∠ACD=∠BCE得出∠ACB=∠DCE,结合已知条件利用SAS判定△ABC和△DEC 全等,从而得出答案.试题解析:∵∠ACD=∠BCE ∴∠ACB=∠DCE 又∵AC=DC BC=EC ∴△ABC≌△DEC ∴∠A=∠D考点:三角形全等的证明中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.估算9153+÷的运算结果应在( ) A .2到3之间B .3到4之间C .4到5之间D .5到6之间【答案】D【解析】解:9153+÷=35+ ,∵2<5<3,∴35+在5到6之间.故选D . 【点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键.2.如图,正比例函数11y k x =的图像与反比例函数22k y x =的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >2【答案】D 【解析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论.【详解】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称,∵点A 的横坐标为1,∴点B 的横坐标为-1,∵由函数图象可知,当-1<x <0或x >1时函数y 1=k 1x 的图象在22k y x=的上方, ∴当y 1>y 1时,x 的取值范围是-1<x <0或x >1.故选:D .【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y 1>y 1时x 的取值范围是解答此题的关键.3.如图,圆弧形拱桥的跨径12AB =米,拱高4CD =米,则拱桥的半径为( )米A.6.5B.9C.13D.15【答案】A【解析】试题分析:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O.连接OA.根据垂径定理和勾股定理求解.得AD=6设圆的半径是r,根据勾股定理,得r2=36+(r﹣4)2,解得r=6.5考点:垂径定理的应用.4.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107B.9.6×106C.96×105D.9.6×102【答案】B【解析】试题分析:“960万”用科学记数法表示为9.6×106,故选B.考点:科学记数法—表示较大的数.5.对于一组统计数据1,1,6,5,1.下列说法错误的是()A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是6【答案】D【解析】根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=15[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D.考点:1.众数;2.平均数;1.方差;4.中位数.6.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A .PDB .PBC .PED .PC【答案】C 【解析】观察可得,点P 在线段AC 上由A 到C 的运动中,线段PE 逐渐变短,当EP ⊥AC 时,PE 最短,过垂直这个点后,PE 又逐渐变长,当AP=m 时,点P 停止运动,符合图像的只有线段PE ,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.7.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )A .20%B .11%C .10%D .9.5% 【答案】C【解析】设二,三月份平均每月降价的百分率为x ,则二月份为1000(1)x -,三月份为21000(1)x -,然后再依据第三个月售价为1,列出方程求解即可.【详解】解:设二,三月份平均每月降价的百分率为x .根据题意,得21000(1)x -=1.解得10.1x =,2 1.9x =-(不合题意,舍去).答:二,三月份平均每月降价的百分率为10%【点睛】本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a ,每次降价的百分率为a ,则第一次降价后为a (1-x );第二次降价后后为a (1-x )2,即:原数x (1-降价的百分率)2=后两次数. 8.在半径等于5 cm 的圆内有长为53cm 的弦,则此弦所对的圆周角为A .60°B .120°C .60°或120°D .30°或120° 【答案】C【解析】根据题意画出相应的图形,由OD ⊥AB ,利用垂径定理得到D 为AB 的中点,由AB 的长求出AD 与BD 的长,且得出OD 为角平分线,在Rt △AOD 中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD 的度数,进而确定出∠AOB 的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB 所对圆周角的度数.【详解】如图所示,∵OD⊥AB,∴D为AB的中点,即AD=BD=532,在Rt△AOD中,OA=5,AD=53 2,∴sin∠AOD=5332=52,又∵∠AOD为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=12∠AOB=60°,又∵圆内接四边形AEBC对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C.【点睛】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.9.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G,下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=12S△CEF,其中正确的是()A.①③B.②④C.①③④D.②③④【答案】C【解析】①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,②设BC=a ,CE=y ,由勾股定理就可以得出EF 与x 、y 的关系,表示出BE 与EF ,即可判断BE+DF 与EF 关系不确定;③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF 为等边三角形,④当∠EAF=60°时,设EC=x ,BE=y ,由勾股定理就可以得出x 与y 的关系,表示出BE 与EF ,利用三角形的面积公式分别表示出S △CEF 和S △ABE ,再通过比较大小就可以得出结论.【详解】①四边形ABCD 是正方形,∴AB ═AD ,∠B=∠D=90°.在Rt △ABE 和Rt △ADF 中,AE AF AB AD=⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF∵BC=CD ,∴BC-BE=CD-DF ,即CE=CF ,∵AE=AF ,∴AC 垂直平分EF .(故①正确).②设BC=a ,CE=y ,∴BE+DF=2(a-y )y ,∴BE+DF 与EF 关系不确定,只有当y=()a 时成立,(故②错误).③当∠DAF=15°时,∵Rt △ABE ≌Rt △ADF ,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF 为等边三角形.(故③正确).④当∠EAF=60°时,设EC=x ,BE=y ,由勾股定理就可以得出:(x+y)2+y 2=x)2∴x 2=2y (x+y )∵S △CEF =12x 2,S △ABE =12y(x+y),∴S △ABE =12S △CEF .(故④正确). 综上所述,正确的有①③④,故选C .【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.10.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .8374y x y x -=⎧⎨-=⎩B .8374y x x y -=⎧⎨-=⎩C .8374x y y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩【答案】C 【解析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.二、填空题(本题包括8个小题)11.在Rt △ABC 中,∠C =90°,AB =2,BC sin2A =_____. 【答案】12【解析】根据∠A 的正弦求出∠A =60°,再根据30°的正弦值求解即可.【详解】解:∵sin 2BC A AB == ∴∠A =60°, ∴1sinsin 3022A ︒==. 故答案为12. 【点睛】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.12.如图,直线y 1=kx+n (k≠0)与抛物线y 2=ax 2+bx+c (a≠0)分别交于A (﹣1,0),B (2,﹣3)两点,那么当y 1>y 2时,x 的取值范围是_____.【答案】﹣1<x<2【解析】根据图象得出取值范围即可.【详解】解:因为直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,所以当y1>y2时,﹣1<x<2,故答案为﹣1<x<2【点睛】此题考查二次函数与不等式,关键是根据图象得出取值范围.13.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.【答案】y=2(x+3)2+1【解析】由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.【详解】抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.故答案为:y=2(x+3)2+1【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.14.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.【答案】1【解析】分析:设方程的另一个根为m,根据两根之和等于-ba,即可得出关于m的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=1.故答案为1.点睛:本题考查了根与系数的关系,牢记两根之和等于-ba是解题的关键.15.抛物线y=(x+1)2 - 2的顶点坐标是______ .。

2018济南市槐荫区中考数学第一次模拟考试试题

2018济南市槐荫区中考数学第一次模拟考试试题

ABPC D2018年学业水平阶段性调研测试(2018.06)数 学 试 题本试题分试卷和答题卡两部分.第Ⅰ卷共2页,满分为48分;第Ⅱ卷共4页,满分为102分.本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将试卷、答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共48分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在-4,2,-1,3这四个数中,比-2小的数是A. -4B. 2C. -1D. 32.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是2题图 A B C D3. 在今年全国人民代表大会上,李克强总理在政府工作报告中指出:“五年来,我国经济实力跃上新台阶,国内生产总值从540 000亿元增加到827 000亿元”.数字827 000用科学记数法应表示为 A.5.4×105 B. 5.4×104 C. 8.27×105 D. 8.27×106 4. 下列运算正确的是A .x 3·x 2=x 6B . |1|=1C .x 2+x 2=x 4D .(3x 2)2=6x 4 5. 下列选项中,表示点P 在点O 十点钟方向正确的是6. 下列事件是必然事件的是A. 地球绕着太阳转B. 抛一枚硬币,正面朝上C. 明天会下雨D. 电视上正在播新闻 7. 在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是 A .(4,-3) B .(-4,3) C .(0,-3) D .(0,3) 8. 若关于x 的分式方程11m x --=2的解为非负数,则m 的取值范围是 A .m >-1 B .m ≥-1 C .m >-1且m ≠1 D .m ≥-1且m ≠19. 一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角板的斜边上,ACA B C D E FP12题图10题图 xyO -1 14 11题图 b a 与DM 、DN 分别交于点E 、F ,把△MDN 绕点D 旋转到一定位置,使得DE =DF ,则∠BDN 的度数是 A. 105° B. 115° C. 120° D. 135°10. 如图,AB 是半圆O 的直径,点D 是AB 上任意一点(不与点A 、B 重合),作CD ⊥AB 与半圆交于点C ,设AD =a ,BD =b .则下列选项正确的是 A.2a b +B. 2a b +C. 2a b +D. 2a b+11. 如图,抛物线y =-x 2+mx 的对称轴为直线x =2,若关于x 的一元二次方程-x 2+mx -t =0在1<x <5的范围内有解,则t 的取值范围是A .t >-5B .-5<t <3C .-5<t ≤4D .3<t ≤412. 如图,在Rt △ABC 中,∠ABC =90°,∠ACB =30°,BC △ADC 与△ABC 关于AC 对称,点E 、F 分别是边DC 、BC 上的任意一点,且DE =CF ,BE 、DF 相交于点P ,则CP 的最小值为A. 1B.C.32D. 2 第Ⅱ卷(非选择题 共102分)注意事项:所有答案必须用0.5毫米的黑色签字笔(不得使用铅笔和圆珠笔)写在答题卡各题目指定区域内(超出方框无效),不能写在试卷上,不能使用涂改液、修正带等.不按以上要求做答,答案无效.二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.) 13.分解因式:9m 2-n 2=_________. 14.如图,直线a ∥b ,∠1=125°,则∠2的度数为_________度.9题图18题图21题图17题图15.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是_________.16.张老师到本世纪的公元x 2年时恰好x 岁,则张老师今年的年龄可用含x 的代数式来表示,那么这个代数式的值为_________.17.如图,正方形ABCDE 、F 分别为边AD 、CD 上一点,将正方形分别沿BE 、BF 折叠,点A 的对应点M 恰好落在BF 上,点C 的对应点N 恰好落在BE 上,则图中阴影部分的面积为_________.18.如图,第(1)个多边形由正三角形“扩展”而来,边数记为a 3,第(2)个多边形由正方形“扩展”而来,边数记为a 4,……,依此类推,由正n 边形“扩展”而来的多边形的边数记为a n (n ≥3).则当a n =90时,n 的值是_________.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.) 19.(本小题满分6分)201()(20182019)1)2--+ 20.(本小题满分6分)解不等式组12322x xx->⎧⎪⎨+<⎪⎩- 21.(本小题满分6分)如图,△ABC 的三个顶点都在平面直角坐标系的坐标轴上,BC =6,边AB 所在直线的表达式为y =x +2,求sin ∠ACB .22.(本小题满分8分)某校的春季趣味运动会深受学生喜爱,该校体育教师为了了解该次运动会中四个项目的受欢迎程度,随机抽取了部分学生进行问卷调查,被调查学生须从“托球跑、掷飞盘、推小车、鸭子步”四个项目中选择自己最喜欢的一项.23题图22题图1 推小车掷飞盘 35% 托球跑20%鸭子步22题图2 A B C D E F 24题图根据调查结果,体育教师绘制了图1和图2两个统计图(均未完成),请根据图1和图2的信息,解答下列问题.(1)此次共调查了多少名学生? (2)将条形统计图补充完整.(3)图2中“鸭子步”所在扇形圆心角为多少度?(4)若全校有学生1600人,估计该校喜欢“推小车”项目的学生人数.23.(本小题满分8分)公园原有一块正方形空地,后来从这块空地上划出部分区域栽种鲜花(阴影部分),原空地一边减少了3m ,另一边减少了2m ,剩余空地面积为56m 2,求原正方形空地的边长.24.(本小题满分10分)如图,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 作BE 的平行线与线段ED 的延长线交于点F ,连接AE 、CF .(1)求证:AF =CE ;(2)如果AC =EF ,且∠ACB =135°,试判断四边形AFCE 是什么样的四边形,并证明你的结论.25. (本小题满分10分)如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x(x <0)的图象相交于点A (-1,2)、点B (-4,n ).AB C DE A B C D EFG 26题图2 A DE B CP F26题图326题图1 (1)求此一次函数和反比例函数的表达式; (2)求△AOB 的面积;(3)在x 轴上存在一点P ,使△P AB26.(本小题满分12分)如图1,在△ABC 中,∠C =90°,∠A =30°,D 为AC 边上一点,且CD =2AD =4,过点D 作DE ⊥AB 于点E .(1)求AB 的长;(2)如图2,将△ADE 绕点A 顺时针旋转60°,延长DE 交AC 于点G ,交AB 于点F ,连接CF .求证:点F 是AB 的中点.(3)如图3,在△ADE 绕点A 顺时针旋转的过程中,当DE 的延长线恰好经过点B 时,若点P 为BD 的中点,连接CP 、PF .求证:∠PCE =∠PEC .27.(本小题满分12分)已知直线122y x =-+与x 轴、y 轴分别交于点A 、C ,抛物线212y x bx c =-++过点A 、C ,且与x 轴交于另一点B ,在第一象限的抛物线上任取一点D ,分别连接CD 、AD ,作DE AC ⊥于点E .(1)求抛物线的表达式;(2)求△ACD 面积的最大值; (3)若△CED 与△COB 相似,求点D 的。

精品山东省济南市历下区2018年精品中考第一次模拟考试数学试题及答案

精品山东省济南市历下区2018年精品中考第一次模拟考试数学试题及答案

2018年济南市历下区第一次模拟考试数学试题一、选择题(本大题共12小题,每小题4分,共48分)1.济南市某天的气温:-5~8℃,则当天最高温与最低温之差是()A.13 B.3 C.-13 D.-32.在下列交通标志图中,既是轴对称图形,又是中心对称图形的是()A B C D3.一个几何体的三视图如图所示,那么这个几何体是()第3题图A B C D4.用科学记数法表85000为()A.0.85×105 B.8.5×104 C.85×10-3 D.8.5×10-45.上图右2,AB∥CD,CE交AB于E,EF平分∠BEC,交CD于F,若∠ECF=50°,则∠CFE=()A.35°B.45°C.55°D.65°6.下列运算正确的是()A.3a2-a2=2 B.a2·a3=a6 C.(-a2)3=-a6 D.a2÷a2=a7.上图右1,从⊙O外一点A引圆的切钱AB,切点为B,连接AO并延长交圆于点C,连接B C.已知∠A=26°,则∠ACB =() A.32° B.30° C.26°D.13°8.我国古代数学名着《孙子算经》中记载了一道数学想题:一百马,一百瓦,大马一个拖三个,小马三个拖一个.大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉l片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y四,那么可列方程组为()A.⎩⎪⎨⎪⎧x+y=1003x+3y=100B.⎩⎪⎨⎪⎧x+y=100x+3y=100C.⎩⎪⎨⎪⎧x+y=1003x+13y=100 D.⎩⎪⎨⎪⎧x+y=1003x+y=1009.若x=3是关于x的方程x2-43x+m=0的一个根,则方程的另一个根是()A.9 B.4 C.4 3 D.3 310.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半输上,OC是△OAB的中线,点B、C在反比例函数y=2x(x>0)的图象上,则△OAB的面积等于()A. 2B. 3C. 4D. 611.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,则电线杆AB的高度为()A.2+2 3B.4+2 3C.2+3 2D.4+3 2BD12.如图1,在矩形ABCD中,动点E从A出发,沿折线A-B-C运动,当点E到达点C时停止运动,过点E作FE⊥AE,交CD于F点,设点E的运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是2 3,则矩形ABCD的面积是() A.235B.254C.6D.5二、填空题(本大题共6个小题,每小题413.分解因式:x2-y2=______________;14.已知扇形AOB的半径OA=4,圆心角为90°,则扇形AOB的面积为__________;15. 上图右2,一次函数y=kx+b的图象如图所示,则当kx+b>0时,x的取值范围为__________;16.菱形ABCD中,∠A=60°,其周长为32,则菱形的面积为__________;17.上图右1,在△ABC中,∠ACB=90°,AC=BC=3,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=2,则sin∠BFD的值为__________;18.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2. 则下列说法正确的是__________ (写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=-2.1时,[x]+(x)+[x)=-7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当-1<x<1时,函数y=[x]+(x)+x的图象与正比例面数y=4x的图象有两个交点.三.解答题(本大题共9个小题,共78分)19.(本题满分6分)先化简,再求值:(x-y)2+y(y+2x),其中x=2,y= 3.20.(本题满分6分)解方程:2xx-2=1-12-x21.(本题满分6分)如图,在口ABCD 中,点E 、F 在对角线BD 上,且BF =DE ,连接AE 、CF . 求证:AE ∥CF .22.(本题满分8分)如图,已知AB 是⊙O 的直径,CD 与⊙O 相切于C ,BE //CO .(1)求证:BC 是∠ABE 的平分线;(2)若DC =8,⊙O 的半径OA =6,求CE 的长.23.(本题满分8分)济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有_____人,扇形统计围中“基本了解”部分所对应扇形的国心角为______°;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数; (4)从对食品安全知识达到“了解”的3个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.DB A了解解很少解本了解24.(本题满分10分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2015年至2017年的年平均增长率;(2)己知2017年该社区居民借阅图书人数有1350人,预计2018年将达到1440人,若2017年至2018年图书借阅总量的增长率不等于2015年至2017年的年平均增长率, 设2018年的人均借阅量比2017年增长a %,求a 的值至少是多少.25.(本题满分10分)如图,直线y=-12x与反比例函数y=kx的图象交于A、B.A点的纵坐标为2.(1)求反比例函数的解析式;(2)将直线y=-12x沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.26.(本题满分12分)以四边形ABCD的边AB、AD为底边分别作等腰三角形ABF和等腰三角形ADE.(1)当四边形ABCD为正方形时(如图①),以边AB、AD为斜边分别向外侧作等腰直角△ABF和等腰直角△ADE,连换EF、FD,线段EB和FD的数量关系是_________;(2)当四边形ABCD为矩形时(如图②),以边AB、AD为斜边分别向矩形内侧、外侧作等腰直角△ABF和等腰直角△ADE,连换EF、BD,线段EF和BD具有怎样的数量关系?请说明理由;(3)当四边形ABCD为平行四边形时,以边AB、AD为底边分别向平行四边形内侧、外侧作等腰△ABF和等腰△ADE,且△EAD与△FBA的顶角都为α,连接EF、BD,交点为G.请用α表示出∠EGD,说明理由.图③图②图①FDD27.(本题满分12分)如图,二次函数y =ax 2+bx +c 的图象交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为(3,0),顶点坐标为(1,4).连接B C. (1)求二次函数的解析式和直线BC 的解析式;(2)M 是线段BC 上的一个动点(不与B 、C 重合),过M 作x 轴的垂线,交抛物线于点N ,交x 轴于P .①如图1,求线段MN 长度的最大值;② 如图2,连接AM ,QN ,QP .试问:抛物线上是否存在点Q ,使得△PQN 与△APM 的面积相等, 且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.备用图图2图1.......... ..........。

山东省济南市槐荫区中考数学一模试题(扫描版)

山东省济南市槐荫区中考数学一模试题(扫描版)

山东省济南市槐荫区2014届中考数学一模试题数学试题参考答案与评分标准二、填空题 16. (1)x x + 17.32.510-⨯ 18. 1x <- 19. 50 20.13-21.12x <<-或01x << 三、解答题22.⑴解:原式()()41222--++=x x x ················ 1分41222+-++=x x x·················· 2分 52+=x ······················· 3分22.⑵解:⎩⎨⎧=-=+②①0252y x y x由②得:③y x 2=······················ 1分 把③代入①得:522=+⨯y y∴1=y ····························· 2分 把1=y 代入③得:2=x ····················· 3分 ∴原方程组的解为:⎩⎨⎧==12y x ···················· 4分23.(1)证明:∵四边形ABCD 为平行四边形∴BC =AD , BC ∥AD∴∠BCA =∠DAC ·························· 1分 又∵AE =CF ∴EC =AF∴△BCE ≌△DAF ·························· 2分 ∴BE =DF . ···························· 3分 23.(2)解:连接AO ························ 1分 ∵点C 是弧AB 的中点,半径OC 与AB 相交于点D ∴OC ⊥AB ∵AB =1223(2)题图 ∴AD =BD =6 ···························· 2分 设⊙O 的半径为R , ∵CD =2 ,∴在Rt △AOD 中,由勾股定理得: 222AD OD AD =+即:22(2)6R R =-+ ························ 3分 ∴10R =答:⊙O 的半径长为10. ···················· 4分 24.解:设文学书有x 本, ····················· 1分 由题意得:1200080004x x=+ ····················· 5分 解这个方程得:8x = ······················ 6分 经检验8x =是原分式方程的根. ·················· 7分 答:文学书有8本. ······················· 8分 25.解:赞成小明的观点. ····················· 1分································· 5分 ∴点P 落在反比例函数8y x=的概率为:41123P ==点在反比例函数图像上() ······ 6分点P 落在正比例函数y x =-的概率为:41123P==点在正比例函数图像上()····· 7分∴()()P P =点在反比例函数图像上点在正比例函数图像上 故赞成小明的观点. ········ 8分 26. 解:(1)连接OC ,∵PC 是⊙O 的切线, ∴OC ⊥PC∴∠OCP =90°. ·························· 1分 ∵∠CPA=30°,∴∠COP =60° ··························· 2分26题图 ∵OA =OC ,∴∠A =∠ACO =30° ························· 3分 ∵PD 平分∠APC , ∴∠APD =15°,∴∠CDP =∠A +∠APD=45°. ······················ 4分 (2)∠CDP 的大小不发生变化. ··················· 5分 ∵PC 是⊙O 的切线,∴∠OCP =90°. ·························· 6分 ∵PD 是∠CPA 的平分线, ∴∠APC =2∠APD .∵OA =OC , ∴∠A =∠ACO , ∴∠COP =2∠A , ·························· 7分 在Rt△OCP 中,∠OCP =90°, ∴∠COP +∠OPC =90°, ······················· 8分 ∴2(∠A +∠APD )=90°, ∴∠CDP =∠A +∠APD =45°.即∠CDP 的大小不发生变化. ···················· 9分 27. 解:(1)把A (0,1),代入213y x bx c =++得1c = ······························ 1分 将10y =代入1y x =-+,得9x =-,∴B 点坐标为(9,10)-, ······················· 2分 将B (9,10)-,代入2113y x bx =++得2b = ······························ 3分 (2)△ABC 是直角三角形 ······················ 4分 ∵221121(3)233y x x x =++=+-∴点C 的坐标为(-3,-2) ····················· 5分 分别作BG 垂直于y 轴,CH 垂直于y 轴 ∵9BG AG == , ∴45BAG ∠=° 同理45CAH ∠=° ∴90CAB ∠=°∴△ABC 是直角三角形 ······················· 6分27题图(3)∵9BG AG == ,∴AB =∵3CH AH ==,∴AC =···················· 7分 ∵ADEF 四边形为平行四边形, ∴AD ∥EF又∵F CD 点为的中点, ∴CE BE =,即EF 为△DBC 的中位线 ∴12EF AD BD ==························· 8分 ∵AB=∴EF AD ==在Rt △ACD AD AC ==中,,∴6CD = ∵6CD =,∴3AF =∴平行四边形ADEF 周长为. ·················· 9分 28.(1)∵△ABC 为等腰直角三角形, ∴O 是AB 的中点∴∠OCB =∠CBO =45°,∠COB =∠AOC =90° ··············· 1分 ∴△BCO 为等腰直角三角形∴OC BC =·························· 2分 ∵△PCD 为等腰直角三角形∴∠PCD =45°,2PC CD =A BCP DO28题图EA BCP DO28题图E∴PC COCD CB=···························· 3分 (2)由(1)可知∴∠PCO +∠OCD =∠BCD +∠OCD =45° ∴∠PCO =∠BCD又∵PC COCD CB=∴△PCO ∽△DCB ·························· 4分 ∴∠CBD =∠AOC =90° ∴∠ABD =∠BAC =45°∴AC ∥BD ····························· 5分 (3)当点P 在线段AO 上时,作PE ⊥BD∵A C=B C=ABC 为等腰直角三角形 ∴AB =2AO =2BO =4∴PO =2-x ,BP=4x - ∵△PCO ∽△DCB ∴OC PO BC BD=2x BD-=∴BD )x- ·························· 6分 ∵∠PBE =45°, ∴PE)x - ·························· 7分 ∴1))2S x x =--=21342x x -+ ·············· 8分 当点P 在线段BO 上时, 作PE ⊥BD可知:OP =2x -,BP =4x -∵△PCO ∽△DCB ∴OC POBC BD=2x BD -=∴BD2)x - ∵∠PBE =45°, ∴PE)x - ∴12))2S x x =--=21342x x -+-·············· 9分。

2018年中考数学模拟试题及答案定稿

2018年中考数学模拟试题及答案定稿

数学试题卷注意事项:1.本试卷分为试题卷(1-4页)和答题卡两部分。

考试时间120分钟,满分120分。

2.考生答题前,请先将姓名、准考证号等信息用黑色字迹签字笔填写在答题卡上的指定位置,待监考教师粘贴条形码后,认真核对条形码上的姓名、准考证号与自己准考证上的信息是否一致。

3.请将选择题答案用2B铅笔填涂在答题卡上的相应位置,非选择题答案用黑色字迹签字笔答在答题卡上的相应位置。

超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;作图题应先用铅笔画,确定不修改后,再用黑色字迹签字笔描黑。

4.考试结束,监考人员必须将参考学生和缺考学生的答题卡、试题卷一并收回。

一、选择题(每小题只有一个选项符合题意,请将正确选项填涂在答题卡上。

每小题3分,共30分)1.2的相反数是()11?D.-C.2A.2B.222.下列运算正确的是()326xx B.x A=·.1?2?2?1224224x+x (3 x )= =6 x C .x D.3.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是()A.204×10 B.20.4×10 C.2.04×10 D.2.04×10 64354.关于2、6、1、10、6 的这组数据,下列说法正确的是()A.这组数据的众数是6B.这组数据的中位数是1D.这组数据的方差是10C .这组数据的平均数是6.要使二次根式在实数范围内有意义,则x的取值范围是( 5 )42x?A.x>2B.x≥2 C.x<2D.x=26.如图所示的几何体,上下部分均为圆柱体,其左视图是()页)9页(共1数学试题卷第7.当k<0时,一次函数y=kx-k的图象不经过()...A.第一象限B.第二象限C.第三象限D.第四象限8.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.)个其中正确的有(A.4 B.1D.3 C.24∠CDB=,CD的中点H,已知cos的直径,且经过弦9.如图,AB是⊙O5的长度为()BD=5,则OH25B.A.367C.1 D.6A轴的交点B(-1, 3),与xy=ax10.如图所示,抛物线+bx+c的顶点为2在(-3, 0)和(-2, 0)之间,以下结论:点c-a=3 2a-b=0 ④>①b-4ac=0 ②a+b+c0 ③2. )个其中正确的有(B.2A.1C.4D .318分)分,共(请把二、填空题最简答案填写在答题卡相应位置。

山东省济南市槐荫区九年级第一次模拟考试数学考试卷(解析版)(初三)中考模拟.doc

山东省济南市槐荫区九年级第一次模拟考试数学考试卷(解析版)(初三)中考模拟.doc

山东省济南市槐荫区九年级第一次模拟考试数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】下列各数中,是无理数的一项是()A. -1B.C.D. 3.14【答案】B【解析】无理数就是无限不循环小数,根据无理数的定义可得只有选项B是无理数,故选B.【题文】某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为()A. 95×10-6B. 9.5×10-6C. 95×10-7D. 9.5×10-7【答案】D【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.00000095=9.5×10﹣7,故选D.【题文】下列计算正确的是A. a3÷a2=1B. a2+a3=a5C. (a3)2=a5D. a2·a3=a5【答案】D【解析】试题解析:A. a3÷a2=a,故原选项错误;B. a2+a3≠a5,故原选项错误;C. ,故原选项错误;D. a2·a3=a5,正确.故选D.【题文】方程的解为A. x =2B. x =6C. x =-6D. 无解【答案】B【解析】试题分析:方程两边同乘以x(x-2),得3(x-2)=2x,解得x=6,将x=6代入x(x-2)=24≠0,所以原方程的解为:x=6,故选B.考点:解分式方程.【题文】岛P位于岛Q的正西方,由岛P、Q分别测得船R位于南偏东30°和南偏西45°方向上.符合条件的示意图是A. B. C. D.【答案】D【解析】试题分析:根据文字语言,画出示意图,如下:故选:D考点:方向角的概念【题文】将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是()A. B. C. D.【答案】B【解析】一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为与点数3相差2的有2种情况,即1,5,所以掷一次这枚骰子,向上的一面的点数为与点数3相差2的概率是.故选B.【题文】某市6月份某周内每天的最高气温数据如下:24、26、29、26、29、32、29(单位:℃),则这组数据的众数和中位数分别是A. 29,29B. 26,26C. 26,29D. 29,32【答案】A【解析】试题解析:将这组数据从小到大的顺序排列24,26,26,29,29,29,32,在这一组数据中29是出现次数最多的,故众数是29℃.处于中间位置的那个数是29,那么由中位数的定义可知,这组数据的中位数是29℃;故选A.【题文】下列等式成立的是()A. B. C. D.【答案】C【解析】选项A,原式=;选项B,原式=;选项C,原式=;选项D,原式=,故选C.【题文】(3分)如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70° B.60° C.55° D.50°【答案】A.【解析】试题分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.考点:平行线的性质.【题文】如图,菱形ABCD的周长为8,高AE长为,则AC∶BD=A. 1∶2B. 1∶3C. 1∶D. 1∶【答案】D【解析】设AC与BD的交点为O,根据周长可得AB=BC=2,根据AE=可得BE=1,则△ABC为等边三角形,则AC=2,BO=,即BD=2,即AC:BD=1:.故选D.【题文】如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是()A.60° B.120° C.60°或120° D.30°或150°【答案】C【解析】试题分析:作OD⊥AB,如图,利用垂线段最短得OD=1,则根据含30度的直角三角形三边的关系得∠OAB=30°,根据三角形内角和定理可计算出∠AOB=120°,则可根据圆周角定理得到∠AEB=∠AOB=60°,根据圆内接四边形的性质得∠F=120°,所以弦AB所对的圆周角的度数为60°或120°.解:作OD⊥AB,如图,∵点P是弦AB上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB=∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB所对的圆周角的度数为60°或120°.故选C.考点:圆周角定理;含30度角的直角三角形;垂径定理.【题文】如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB 的面积分别为S,S1,S2.若S=3,则S1+S2的值为()A.24 B.12 C.6 D.3【答案】B【解析】试题分析:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=12.故选:B.考点:平行四边形的性质;相似三角形的判定与性质.【题文】如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落在点C1处;作∠BPC1的平分线交AB于点E.设BP=x,BE=y,那么y关于x 的函数图象大致应为A. B. C. D.【答案】C【解析】试题分析:由翻折的性质得,∠CPD=∠C′PD,∵PE平分∠BPC1,∴∠BPE=∠C′PE,∴∠BPE+∠CPD=90°,∵∠C=90°,∴∠CPD+∠PDC=90°,∴∠BPE=∠PDC,又∵∠B=∠C=90°,∴△PCD∽△EBP,∴,即,∴y=x(5﹣x)=﹣(x﹣)2+,∴函数图象为C选项图象.故选:C.考点:动点问题的函数图象、翻折变换的性质、相似三角形的判定与性质【题文】小华通过学习函数发现:若二次函数y=ax2+bx+c(a≠0)的图象经过点(x1,y1),(x2,y2) (x1 <x2),若y1y2<0,则方程ax2+bx+c=0(a≠0)的一个根x0的取值范围是x1<x0<x2,请你类比此方法推断方程x3+x-1=0的实数根x0所在范围为A. B. C. D.【答案】C【解析】根据题意得,方程x3+x-1=0可化为,方程x3+x-1=0的实数根可以看作是函数y=x2+1与y=的图象交点的横坐标,这两个函数的交点在第一象限.如图所示:当x=1时,y=x2+1=2,y==1,此时抛物线的图象在反比例函数的上方;当x=时,y=x2+1=,y==2,此时反比例函数的图象在抛物线的上方,所以方程x3+x-1=0的根x0所在范围是<x0<1.故选C. 点睛:首先根据题目信息,把x3+x-1=0移项或两边都除以x整理,然后把方程的解看成是两个函数y=x2+1与y=的图象的交点的横坐标;然后再结合图象得到方程的解的取值范围.【题文】如图,△ABC和△DEF的各顶点分别在双曲线,,在第一象限的图象上,若∠C=∠F=90°,AC∥DF∥x轴,BC∥EF∥y轴,则S△ABC-S△DEF=()A. B. C. D.【答案】A【解析】设点A的坐标为(a,),点D的坐标为(b,),因AC∥DF∥x轴,可得点C的纵坐标为,点F的纵坐标为,分别代入,,可得点C的横坐标为2a ,点F的横坐标为,可得AC=2a-a=a,DF= -b= ,把点C的横坐标为2a ,点F的横坐标为,分别代入,可得点B的纵坐标为,点E的纵坐标为,所以BC=,EF=,S△ABC-S△DEF= =,故选A.点睛:本题主要考查了反比例函数图象上点的特征,设出反比例函数上的点的坐标,利用反比例函数图象上点的特征求得其它点的坐标是解决本题的关键.【题文】2×(-3)=___________________.【答案】-6【解析】试题解析:2×(-3)=-6.【题文】不等式>0的解集为 ___________________.【答案】x<-2【解析】移项得,,系数化为1得,x<-2.【题文】分解因式:= ___________________.【答案】(2m-3n)2【解析】直接运用完全平方公式分解因式即可,即原式=(2m-3n)2.【题文】如图所示,四边形ABCD的四个顶点A、B、C、D的坐标分别为(-1,1)、(-1,-3)、(5,3)、(1,3),则其对称轴的函数表达式为___________________.【答案】y=-x+2【解析】观察可得,四边形ABCD的对称轴是线段AD、BC的垂直平分线,对称轴与线段AD、BC的交点坐标是(0,2)、(2,0),设对称轴的解析式为y=kx+b,代入可得,解得b=2,k=-1,所以对称轴的函数表达式为y=-x+2.【题文】手机上常见的wifi标志如图所示,它由若干条圆心相同的圆弧组成,其圆心角为90°,最小的扇形半径为1.若每两个相邻圆弧的半径之差为1,由里往外的阴影部分的面积依次记为S1、S2、S3……,则S1+S2+S3+……+S20= ___________________.【答案】195π【解析】根据扇形的面积公式可得,,,,,,,,……所以S1+S2+S3+……+S20= (1+5+9+13+17+……+77)=×780=195π.【题文】如图,在△ABC中,∠BAC=90°,射线AM平分∠BAC,AB=8,cos∠ACB=,点P为射线AM上一点,且PB=PC,则四边形ABPC的面积为___________________.【答案】49【解析】已知PB=PC,∠BAP=∠CAP,即可得A、B、P、C四点共圆,因∠BAC=90°可得BC是直径,所以∠BPC=90°,在△ABC中,∠BAC=90°,AB=8,cos∠ACB=,可求得BC=10,AB=8,在Rt△BPC中,由勾股定理求得BM=MC=5,所以四边形ABPC的面积= =49.点睛:本题主要考查了四点共圆的判定、圆周角定理及勾股定理,解决本题的关键是判定A、B、P、C四点共圆.【题文】(1)解方程:x2+x-1=0(2)抛物线y=-x2+bx+c经过点(1,0),(-3,0),求b、c的值.【答案】(1),(2)b=-2,c=3【解析】试题分析:(1)用公式法解方程即可;(2)把点(1,0),(-3,0)代入y=-x2+bx+c得方程组,解方程组即可求得b、c的值.试题解析:(1)∴,(2)方法1由已知可得y=-x2+bx+c=-(x-1)(x+3)=-x2-2x+3,∴b=-2,c=3.方法2把点(1,0),(-3,0)代入y=-x2+bx+c得,①-②得:4b=-8,b=-2,把b=-2代入①得-1-2+c=0,c=3,∴【题文】(1)如图1,在圆内接正六边形ABCDEF中,半径OC=4.求正六边形的边长.(2)如图2,在△ABC中,AB=13,BC=10,BC边上的中线AD=12.求证:AB=AC.【答案】(1)4(2)证明见解析【解析】试题分析:(1)连接OD,易证△OCD是等边三角形,即可得CD=OC=4,即正六边形的边长为4;(2)已知AD是△ABC的中线,可得BD=CD==5,由勾股定理的逆定理可得AD⊥BC,再由勾股定理求得AC=13,即可得AB=AC.试题解析:(1)连接OD,∵六边形ABCDEF是⊙O的内接正六边形,∴∠O=,又∵OC=OD,∴△OCD是等边三角形,∴CD=OC=4,即正六边形的边长为4.(2)∵AD是△ABC的中线,∴BD=CD= =5,∵AB=13,AD=12,∴BD2+AD2=52+122=169=132=AB2,∴AD⊥BC,∴AC2= CD2+AD2=52+122=169,∴AC=13,∴AB=AC.【题文】在植树节到来之际,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.【答案】(1)购进A种树苗10棵,B种树苗7棵;(2)费用最省方案为:购进A种树苗9棵,B种树苗8棵. 这时所需费用为1200元.【解析】试题分析:(1)假设购进A种树苗x棵,则购进B种树苗(17-x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求解即可;(2)结合(1)的解和购买B种树苗的数量少于A 种树苗的数量,可找出方案.试题解析:(1)设购进A种树苗x 棵,则购进B种树苗(17-x)棵,根据题意得:80x+60(17-x )=1220,80x+1020-60x=1220,x =10,∴ 17-x =7.(2)17-x&lt; x,解得x &gt;,购进A、B两种树苗所需费用为80x+60(17-x)=20 x +1020,则费用最省需x取最小整数9,此时17-x =8,这时所需费用为20×9+1020=1200(元).答:(1)购进A种树苗10棵,B种树苗7棵;(2)费用最省方案为:购进A种树苗9棵,B种树苗8棵. 这时所需费用为1200元.【题文】某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:(1)本次调查人数共人,使用过共享单车的有人;(2)请将条形统计图补充完整;(3)如果这个小区大约有3000名居民,请估算出每天的骑行路程在2~4千米的有多少人?【答案】(1)200,90(2)图形见解析(3)750人【解析】试题分析:(1)用对于共享单车不了解的人数20除以对于共享单车不了解的人数所占得百分比即可得本次调查人数;用总人数乘以使用过共享单车人数所占的百分比即可得使用过共享单车的人数;(2)用使用过共享单车的总人数减去0~2,4~6,6~8的人数,即可得2~4的人数,再图上画出即可;(3)用3000乘以骑行路程在2~4千米的人数所占的百分比即可得每天的骑行路程在2~4千米的人数.试题解析:(1)20÷10%=200,200×(1-45%-10%)=90 ;(2)90-25-10-5=50,补全条形统计图(3)=750(人)答: 每天的骑行路程在2~4千米的大约750人【题文】如图,一次函数y=kx+b的图象与反比例函数y= (x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB丄x轴于点B,点A与点B关于y轴对称.(1)求一次函数、反比例函数的解析式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形,如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.【答案】(1)y=x+1. (2)点C为线段AP的中点.(3)存在点D,使四边形BCPD为菱形,点D(8,1)即为所求.【解析】试题分析:(1)由点A与点B关于y轴对称,可得AO=BO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AO=BO,PB∥CO,即可证得结论;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1), BP⊥CD,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标.试题解析:(1)∵点A与点B关于y轴对称,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=得m=8,∴反比例函数的解析式:y=把A(-4,0),P(4,2)代入y=kx+b得:,解得:,所以一次函数的解析式:y=x+1.(2)∵点A与点B关于y轴对称,∴OA=OB∵PB丄x轴于点B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴点C为线段AP的中点.(3)存在点D,使四边形BCPD为菱形∵点C为线段AP的中点,∴BC= ,∴BC和PC是菱形的两条边由y=x+1,可得点C(0,1),过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,∴点D(8,1), BP⊥CD∴PE=BE=1,∴CE=DE=4,∴PB与CD互相垂直平分,∴四边形BCPD为菱形.∴点D(8,1)即为所求.【题文】如图,抛物线与y轴交于点A(0,-),与x轴交于B、C两点,其对称轴与x轴交于点D,直线l∥AB且过点D.(1)求AB所在直线的函数表达式;(2)请你判断△ABD的形状并证明你的结论;(3)点E在线段AD上运动且与点A、D不重合,点F在直线l上运动,且∠BEF=60°,连接BF,求出△BEF 面积的最小值.【答案】(1)(2)△ABD是等边三角形,(3)【解析】试题分析:(1)先求得抛物线的解析式,再求得点B、C的坐标,再由待定系数法求出直线AB的解析式;(2)△ABD是等边三角形,根据已知条件易证△BOA≌△DOA,可得BA=DA,根据锐角三角函数可求得∠ABO=60°,即可判定△ABD是等边三角形;(3)过点E作EG∥x轴,交AB于点G,易证△AEG是等边三角形,可得AE=AG,再证△BEG≌△EFD,可得BE=EF,易得△BEF是等边三角形,当BE⊥AD时,BE的长度最小,则△BEF的面积取最小值,求得△BEF面积的最小值即可.试题解析:(1)将点A(0,-)代入抛物线解析式中,得c=-,当y=0时,化简得x2-2x-3=0(x+1)(x-3)=0x 1=-1, x 2=3点B (-1,0),点C(3,0)设直线AB的表达式为y=kx+b,图象经过点A(0,-),点B (-1,0),代入得,解得直线AB的表达式为(2)△ABD是等边三角形,点B(-1,0), 点D(1,0)OB=OD=1,∵OA是公共边,∠BOA=∠DOA=90°,∴△BOA≌△DOA,∴BA=DA,tan∠ABO=,∴∠ABO=60°,△ABD是等边三角形(3)过点E作EG∥x轴,交AB于点G,∵△ABD是等边三角形∴∠BAD=∠ABD=∠ADB=60°∴∠AEG=∠AGE=60°∴△AEG是等边三角形,∴AE=AG∴DE=BG∵AB∥l∴∠EDF=∠BGE=120°∴∠GBE+∠GEB=60°,∠DEF+∠GEB=60°,∴∠GBE=∠DEF∴△BEG≌△EFD∴BE=EF又∵∠BEF=60°∴△BEF是等边三角形∴S△BEF=当BE⊥AD时,BE的长度最小,则△BEF的面积取最小值,此时,BE=ABsin60°=,△BEF面积的最小值==点睛:本题考查了二次函数综合题型,主要利用了抛物线与坐标轴的交点的求解,待定系数法求一次函数解析式,全等三角形的判定及性质,等边三角形的判定及性质,题目难度较大,学生解决有一定的困难,要注意数形结合思想和数学建模思想点的运用.【题文】如图,正方形ABCD中,对角线AC、BD交于点O,将BD绕点B逆时针旋转30°到BE所在的位置,BE与AD交于点F,分别连接DE、CE.(1)求证:DE=DF;(2)求证:AE∥BD;(3)求tan∠ACE的值.【答案】(1)证明见解析(2)证明见解析(3)【解析】试题分析:(1)根据旋转的性质和等腰三角形的性质易得∠BDE=∠BED=75°,根据正方形的性质可得∠ADB=45°,所以∠EDF=30°,在△DEF中,根据三角形的内角和定理可得∠DFE=75°,所以∠DFE=∠DEF,即可得DE=DF;(2)过点E作EG⊥BD于点G,易证四边形AOGE是矩形,即可得结论;(3)设EG=x,则BE=BD=AC=2EG=2x, Rt△BEG中,由勾股定理可得BG= ,即可得OG=()x,再由AE=OG即可得结论.试题解析:(1)∵BD绕点B逆时针旋转30°至BE,∴∠DBE=30°,BD=BE,∴∠BDE=∠BED==75°在正方形ABCD中,BD是对角线,∴∠ADB=45°,∴∠EDF=75°-45°=30°,在△DEF中,∠DFE=180°-∠EDF-∠FED =180°-30°-75°=75°∴∠DFE=∠DEF∴DE=DF(2)证明:过点E作EG⊥BD于点G,∵∠DBE=30°∴EG=在正方形ABCD中,AC、BD是对角线,∴AC=BD,OA= ,AC⊥BD ∴EG=OA且EG∥OA∴四边形AOGE是平行四边形,∴四边形AOGE是矩形∴AE∥BD(3)设EG=x,则BE=BD=AC=2EG=2x,Rt△BEG中,BG= ,∴OG=BG-BO=()x,在矩形AOGE中,∠EAO=90°AE=OG=()x∴tan∠ACE=点睛:本题主要考查了旋转的性质、等腰三角形的性质、正方形的性质。

2018年济南市市中九年级第一次模拟考试数学试题(word 无答案)

2018年济南市市中九年级第一次模拟考试数学试题(word 无答案)

2018年济南市市中区第一次模拟考试数学试题全卷满分150分一、选择题(本大题共12小题,每小题4分,共48分) 1.4的平方根是( )A .2B .-2C .±2D .4 2.如下图所示的一个几何体,它的主视图是( )3.2017年按照济南市政府“拆未拆临,建绿透绿”决策部署,济南市各个部门通力合作,年内共拆除违法建设约32900000平方米,拆违拆临工作取得重大历史性突破,数字32900000用科学记数法表示为( )A .329×105B .3.29×105C .3.29×108D .3.29×1074.下列各式计算正确的是( )A . a 2·a 3=a 6B .(a 2)3=a 6C .a 2+a 2=a 3D .a 6÷a 2=a 35.下列所示的图形既是轴对称图形又是中心对称图形的是( )6.如果一组数据2,4,x ,3,5的众数是4,那么该组数据的平均数是( ) A .5.2 B .4.6 C .4 D .3.67.如果一元二次方程x 2-2x +p =0总有实数根,那么p应满足的条件是( ) A .p ≤1 B .p <1 C .p =1 D .p >18.化简ba abb a ab a -÷-+2的结果是( ) A .a 2B .a 2a -bC .a -b bD .a +b b9.如图是一副三角尺ABC 和DEF 拼成的图案,若将三角尺DEF 绕点M 按照顺时针方向旋转,则边DE 与边AB 第一次平行时,旋转角的度数是( ) A .45° B .75° C .30° D .60°10.如图所示,圆形铁片与直角三角尺,直尺紧靠在一起放在桌面上,已知铁片的圆心为O ,三角尺的直角顶点C 落在直尺的10cm 处,铁片与直尺的唯一公共点A 落在直尺的14cm(E )处,铁片与三角尺的唯一公共点B ,下列说法错误的是( ) A .圆形铁片的半径是4cm B .四边形AOBC 为正方形C .弧AB 的长度为4πcmD .扇形OAB 的面积是4πcm 211.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AC =6,BD =8.动点E 从点B 出发,沿着B -A -D 在菱形ABCD 边上运动,运动到点D 停止.点F 是点E 关于BD 的对称点,EF 交BD 于点P ,若BP =x ,△OEF 的面积为y ,则y 与x 之间的函数图象大致为( )A B C D12.二次函数y =ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论:①4ac -b 2<0;②4a +c <2b ;③3b +2c <0;④m (am +b )+b <a (m ≠-1),其中正确结论的个数是( ) A .4个 B .3个 C .2个 D .1个二、填空题(本大题共6小题,每小题4分,共24分)13.分解因式:x 3-2x 2y +xy 2=______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
B
P
C D
2018年学业水平阶段性调研测试(2018.06)
数 学 试 题
本试题分试卷和答题卡两部分.第Ⅰ卷共2页,满分为48分;第Ⅱ卷共4页,满分为102分.本试题共6页,满分为150分.考试时间为120分钟.
答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将试卷、答题卡一并交回.本考试不允许使用计算器.
第I 卷(选择题 共48分)
注意事项:
第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四
个选项中,只有一项是符合题目要求的.) 1.在-4,2,-1,3这四个数中,比-2小的数是
A. -4
B. 2
C. -1
D. 3 2
.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是
2题图 A B C D
3. 在今年全国人民代表大会上,李克强总理在政府工作报告中指出:“五年来,我国经济实力跃上新台阶,国内生产总值从540 000亿元增加到827 000
亿元”.数字827 000用科学记数法应表示为 A.
5.4×105 B. 5.4×104 C. 8.27×105 D. 8.27×106 4. 下列运算正确的是
A .x 3·x 2=x 6
B . 1|1
C .x 2+x 2=x 4
D .(3x 2)2=6x 4 5. 下列选项中,表示点P 在点O 十点钟方向正确的是
6. 下列事件是必然事件的是
A. 地球绕着太阳转
B. 抛一枚硬币,正面朝上
C. 明天会下雨
D. 电视上正在播新闻
7. 在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是 A .(4,-3) B .(-4,3) C .(0,-3) D .(0,3)
A B C D E F
P
12题图
10题图 x y
O -1 1
4 11题图 8. 若关于x 的分式方程
1
1
m x --=2的解为非负数,则m 的取值范围是 A .m >-1 B .m ≥-1 C .m >-1且m ≠1 D .m ≥-1且m ≠1 9. 一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角板的斜边上,AC 与DM 、DN 分别交于点E 、F ,把△MDN 绕点D 旋转到一定位置,使得DE =DF ,则∠BDN 的度数是 A. 105° B. 115° C. 120° D. 135°
10. 如图,AB 是半圆O 的直径,点D 是AB 上任意一点(不与点A 、B 重合),作CD ⊥AB 与半圆交于点C ,设AD
=a ,BD =b .则下列选项正确的是 A.
2a b +
B. 2a b +
C. 2a b +
D. 2
a b
+11. 如图,抛物线y =-x 2+mx 的对称轴为直线x =2,若关于x 的一元二次方程-
x 2+mx -t =0在1<x <5的范围内有解,则t 的取值范围是
A .t >-5
B .-5<t <3
C .-5<t ≤4
D .3<t ≤4
12.
如图,在Rt △ABC 中,∠ABC =90°,∠ACB =30°,BC △ADC 与△ABC 关于AC 对称,点E 、F 分别是边DC 、BC 上的任意一点,且DE =CF ,BE 、DF
相交于点P ,则CP 的最小值为
A. 1 C.
3
2
D. 2 第Ⅱ卷(非选择题 共102分)
注意事项:
所有答案必须用0.5毫米的黑色签字笔(不得使用铅笔和圆珠笔)写在答题卡各题目指定区域内(超出方框无效),不能写在试卷上,不能使用涂改液、修正带等.
不按以上要求做答,答案无效.
二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)
13.分解因式:9m 2-n 2=_________. 14.如图,直线a ∥b ,∠1=125°,则∠2的度数为_________度.
9题图
18题图
b a 17题图
15.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是_________.
16.张老师到本世纪的公元x 2年时恰好x 岁,则张老师今年的年龄可用含x 的代数式来表示,那么这个代数式的值为_________.
17.如图,正方形ABCD E 、F 分别为边AD 、CD 上一点,将正方形分别沿BE 、BF 折叠,点A 的对应点M 恰好落在BF 上,点C 的对应点N 恰好落在BE 上,则图中阴影部分的面积为_________.
18.如图,第(1)个多边形由正三角形“扩展”而来,边数记为a 3,第(2)个多边形由正方形“扩展”而来,边数记为a 4,……,依此类推,由正n 边形“扩展”而来的多边形的边数记为a n (n ≥3).则当a n =90时,n 的值是_________.
三、解答题(
本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤
.)
19.(本小题满分6分)
201
()(20182019)1)2
--+ 20.(本小题满分6分)
解不等式组12322
x x
x
->⎧⎪⎨+<⎪⎩- 21.(本小题满分6分)
如图,△ABC 的三个顶点都在平面直角坐标系的坐标轴上,BC =6,边AB 所在直线的表达式为y =x +2,求sin
23题图
22题图1 推小车
掷飞盘 35% 托球跑
20%
鸭子步
22题图2 A F
22.(本小题满分8分)
某校的春季趣味运动会深受学生喜爱,该校体育教师为了了解该次运动会中四个项目的受欢迎程度,随机抽取了部分学生进行问卷调查,被调查学生须从“托球跑、掷飞盘、推小车、鸭子步”四个项目中选择自己最喜欢的一项.
根据调查结果,体育教师绘制了图1和图2两个统计图(均未完成),请根据图1和图2的信息,解答下列问题.
(1)此次共调查了多少名学生? (2)将条形统计图补充完整.
(3)图2中“鸭子步”所在扇形圆心角为多少度?
(4)若全校有学生1600人,估计该校喜欢“推小车”项目的学生人数.
23.(本小题满分8分)
公园原有一块正方形空地,后来从这块空地上划出部分区域栽种鲜花(阴影部分),原空地一边减少了3m ,另一边减少了2m ,剩余空地面积为56m 2,求原正方形空地的边长.
24.(本小题满分10分)
如图,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 作BE 的平行线与线段ED 的延长线交于点F ,连接AE 、CF .
(1)求证:AF =CE ;
(2)如果AC =EF ,且∠ACB =135°,试判断四边形AFCE 是什么样的四边形,
并证明你的结论.
A
B C D E A B C D E F G 26题图 2 A D
E B C
P F
26题图3
26题图
1 25题图 25. (本小题满分10分)
如图,一次函数y =k 1x +b 的图象与反比例函数y =
2
k x
(x <0)的图象相交于点A (-1,2)、点B (-4,n ).
(1)求此一次函数和反比例函数的表达式; (2)求△AOB 的面积;
(3)在x 轴上存在一点P ,使△P AB
26.(本小题满分12分) 如图1,在△ABC 中,∠C =90°,∠A =30°,D 为AC 边上一点,且CD =2AD =4,过点D 作DE ⊥AB 于点E . (1)求AB 的长;
(2)如图2,将△ADE 绕点A 顺时针旋转60°,延长DE 交AC 于点G ,交AB 于点F ,连接CF .
求证:点F 是AB 的中点.
(3)如图3,在△ADE 绕点A 顺时针旋转的过程中,当DE 的延长线恰好经过点B 时,若点P 为BD 的中点,连接CP 、PF . 求证:∠PCE =∠PEC .
27.(本小题满分12分)
已知直线122y x =-+与x 轴、y 轴分别交于点A 、C ,抛物线212
y x bx c =-++过点A 、C ,且与x 轴交于另一点B ,在第一象限的抛物线上任取一点D ,分别连接CD 、AD ,作DE AC ⊥于点E .
(1)求抛物线的表达式;
(2)求△ACD面积的最大值;
(3)若△CED与△COB相似,求点D的。

相关文档
最新文档