九年级数学下册.切线的判定(B)
九年级数学切线长定理
例2 已知:如图, △ABC的内切圆⊙O与 BC 、CA、 AB 分别相交于点D 、 E 、 F ,且AB=9厘米,BC =14厘米,CA = 13厘米,求AF、BD、CE的长。
A E F B D O C
小结:
(1)切线长定理。 (2)连接圆心和切点是我 们解决切线长定理相关问题 时常用的辅助线。
切线长定理的拓展
A
D
O
H
C
P
B
(1)写出图中所有的垂直关系 (2)图中有哪些线段相等(除半径 外)、弧相等?
o.
.
o.
三角形外接圆
C
三角形内切圆
C
. o
A B B
. o
A
外切圆圆心:三角形三边 垂直平分线的交点。
外切圆的半径:交点到三 角形任意一个定点的距离。
内切圆圆心:三角形三个 内角平分线的交点。 内切圆的半径:交点到三 角形任意一边的垂直距离。
白荌苒居然急了起来“好思思,你快帮帮我吧,我可不想在大学的时候让他被别人抢了先去! ”
钟思敛起了佯装的正经冲她笑了笑“知道了、知道了,我能拿你这小女子有什么办法呢! ”
再回头想想,上学的时候也不是没有人跟她示好过,但都是被她一本正经的以学业为重的理由给婉拒了。
她难免会跟白荌苒诉苦“你说说、我老爹跟老娘都是怎么想的,真是想一出来一出,上学的时候总是期盼着我年年拿第一,要考一流的大学、 要做上乘的工作,这些我都做到了以后又开始给我出新的难题,简直都不让人消停了。”
; / 聚星娱乐
bgk162utb
钟思当时不免笑着揶揄她“小白白,没想到你居然也会有发奋图强的这一天啊,居然还是为了一个男生! ”
白荌苒赶紧捂紧她的嘴急的直瞪她“你小点声,被你爸妈听到我就完了! ”
沪科版九年级数学下册切线的判定定理
1.下列说法正确的是( B )
A.与圆有公共点的直线是圆的切线 B.到圆心的距离等于圆的半径的直线是圆的切线 C.垂直于圆的半径的直线是圆的切线 D.过圆的半径的外端的直线是圆的切线
2.如图,已知⊙O的直径AB与弦AC的夹角为31°, 过C点的切线CP与AB的延长线交于点P,则∠P等 于( C ) A.24° B.25° C.28° D.30°
第2课时 切线的判定定理
沪科版 九年级下册
回顾直线与圆相切:
判断直线和圆相切 有哪两种办法?
切线
. .O
切点
直线与圆 相切
1. 定义法: 和圆有且只有一个公共 点的直线是圆的切线.
2. 数量法(d=r ): 圆心到直线的距离等于 半径的直线是圆的切线.
切线具有什么性质?
1.切线和圆只有一个 公共点.
3.如图,AB与⊙O切于点C,OA=OB,若⊙O的半 径为8cm,AB=10cm,则OA的长为 89 cm.
4.如图,AB是⊙O的直径,∠B=∠CAD. 求证:AC是⊙O的切线. 证明:∵AB是⊙O的直径, ∴∠BDA=90°. ∴∠B+∠BAD=90°. 又∵∠B=∠CAD. ∴∠CAD+∠BAD=∠BAC=90°. ∵AC过点A,∴AC是⊙O的切线.
判断:
1. 过半径的外端点的直线是圆的切线( × ) 2. 与半径垂直的直线是圆的切线( × ) 3. 过半径的端点与半径垂直的直线是圆的切线( × )
O
l
r
O r
l
O l
r
A
A
A
利用判定定理时,要注意直线须具备以下两个条件,缺一不
可: (1)直线经过半径的外端点;(2)直线与这条半径垂直.
例3 已知:如图,∠ABC=45°,AB是⊙O的直径, AB=AC.求证:AC是⊙O的切线.
九年级数学(BS)下3.6 第2课时 切线的判定及三角形的内切圆
内心:三角形 内切圆的圆心
B
合作探究 例3 △ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=13cm, BC=14cm,CA=9cm,求AF、BD、CE的长.
想一想:图中你能找出哪些相等的线段?理 由是什么? 解: 设AF=xcm,则AE=xcm. ∴CE=CD=AC-AE=9-x(cm), BF=BD=AB-AF=13-x(cm). 由 BD+CD=BC,可得 (13-x)+(9-x)=14, 解得 x=4. ∴ AF=4(cm),BD=9(cm),CE=5(cm). E O A F
C
N
O
M
B
D
⊙O就是所求的圆.
概念学习
1.与三角形各边都相切的圆叫做三角形的内切圆. 2.三角形内切圆的圆心叫做三角形的内心.
3.三角形的内心到三角形的三边的距离相等. 4.三角形的内心就是三角形的三个内角角平分线的交点. D A
F
O ┐ E
B
C
⊙O是△ABC的内切圆,点 O是△ABC的内心,△ABC 是⊙O的外切三角形.
l
2.数量关系法:圆心到这条直线的距离
等于半径(即d=r)时,直线与圆相切;
d
r
l
O
3.判定定理:经过半径的外端且垂直于 这条半径的直线是圆的切线.
A
l
典例精析
例1 已知:直线AB经过⊙O上的点C,并且OA=OB, CA=CB.求证:直线AB是⊙O的切线. 分析:由于AB过⊙O上的点C,所以连接OC, 只要证明AB⊥OC即可. 证明:连接OC(如图). ∵ OA=OB,CA=CB, ∴ OC是等腰三角形OAB底边AB上的中线. ∴ AB⊥OC. ∵ OC是⊙O的半径, ∴ AB是⊙O的切线.
沪科版数学九年级下册 切线的性质和判定
C
例4 已知:直线 AB 经过☉O 上的点 C,并且 OA = OB,
CA = CB. 求证:直线 AB 是☉O 的切线.
提示:由于 AB 过☉O 上的点 C,所以连接 OC,只要 证明 OC⊥AB 即可.
证明:连接 OC,如图.
∵ OA=OB,CA=CB,
O
∴ 在等腰△OAB 中,OC⊥AB.
∵ OC 是⊙O 的半径,
数量关系法
d = r,则相切
判定定理
经过半径外端点并 且垂直于这条半径 的直线是圆的切线
证切线时常用辅 助线添加方法: ①有公共点,连 圆心,证垂直; ②无公共点,作 垂直,证半径
O
AN
B M
典例精析 例1 如图,点 O 是∠BAC 的边 AC 上的一点,⊙O 与边
AB 相切于点 D,与线段 AO 相交于点 E,若点 P 是⊙O
上一点,且∠EPD=35°,则∠BAC 的度数为 ( A ) A.20° B.35° C.55° D.70°
解析:连接 OD,如图. ∵⊙O 与边 AB 相切于点 D, ∴ OD⊥AD. ∴∠ADO=90°. ∵∠EPD=35°,∴∠EOD=2∠EPD=70°. ∴∠BAC=90°-∠EOD=20°.
F
又∵ ∠CAE =∠B, ∴ ∠D = ∠CAE.
A
OD
∴ ∠CAE + ∠DAC = 90°,即 AD⊥EF.
B
∴ EF 是 ☉O 的切线.
E
C 图2
切线的 性质
切线的 判定
性质定理
圆的切线垂 直于经过切
有 1 个公共点 点的半径
d=r
有切线时常用辅助 线添加方法: 见切线,连切点, 得垂直
定义法 1 个公共点,则相切
(完整版)浙教版九年级数学下册第二章
2.1【知识梳理1:切线的判定】1. 切线的判定定理:经过半径的外端并且垂直这条半径的直线是圆的切线2. 切线判定的三种方法:(1)和圆只有一个公共点的直线(2)圆心到直线的距离等于圆的半径的直线(3)切线判定定理例题讲解例1 下列说法中,不正确的是()A.与圆只有一个交点的直线是圆的切线B.经过半径的外端,且垂直于这条半径的直线是圆的切线C.与圆心的距离等于这个圆的半径的直线是圆的切线D.垂直于半径的直线是圆的切线例2 如图,AB是⊙O的直径,下列条件中,不能判定直线AT是⊙O的切线的是()A. AB=4,AT=3,BT=5B. ∠B=45°,AB=ATC. ∠B=55°,∠TAC=55°D. ∠ATC=∠B第2题 第3题例3 如图,已知AB是⊙O的弦,半径OC经过AB的中点D,CE∥AB,点F在⊙O上,eA. ∠F =∠AOCB. AB ⊥BFC. CE 是⊙O 的切线D. =12AC ︵ BC ︵例4如图,已知AB 是⊙O 的直径,CD 是⊙O 的弦,AB 与CD 交于点E ,CE =DE ,过点B 作BF ∥CD ,交AC 的延长线于点F ,求证:BF 是⊙O 的切线.【变式训练】1. 如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则点B 与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)(第1题) (第2题)2. 如图,已知∠ABC =90°,O 为射线BC 上一点.以点O 为圆心,BO 长为半径作⊙O .当12射线BA 绕点B 按顺时针方向旋转______________(不超过360°)时与⊙O 相切.3. 如图,四边形ABCD 是平行四边形,以对角线BD 为直径作⊙O ,分别与BC ,AD 交于点E ,F .(1)求证:四边形BEDF 为矩形.(2)若BD 2=BE ·BC ,试判断直线CD 与⊙O 的位置关系,并说明理由.4. 如图,在△AOB中,∠AOB=90°,OD⊥AB于点D.以点O为圆心,OD长为半径的圆交OA于点E,在BA上截取BC=OB,连结CE.求证:CE是⊙O的切线.5. 如图,⊙O的直径为AB,点C在圆周上(不与点A,B重合),AD⊥C D.(1)若BC=3,AB=5,求AC的长.(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.【知识梳理2:切线的性质】1. 切线的性质:经过切点的半径垂直于切线2. 只要知道以下其中两个性质就可以推出第三个:①过圆心;②过切点;③垂直于切线例题讲解例1 如图,AB是⊙O的直径,C是AB延长线上的一点,且BC=OB,CD切⊙O于点D.则∠A=()Ath A. 15° B. 30° C. 60° D. 75°第1题第2题例2 如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D.若OD =2,tan ∠OAB =,则AB 的长是()12A. 4B. 2C. 8D. 433例3 如图,AB 为⊙O 的直径,PQ 切⊙O 于点T,连结AT ,AC ⊥PQ 于点C ,交⊙O 于点D.(1)求证:AT 平分∠BA C.(2)若AO =2,AT =2 ,求AC 的长.3例4如图,在△ABC 中,∠C =90°,AC +BC =8,O 是斜边AB 上一点,以点O 为圆心的⊙O 分别与AC ,BC 相切于点D ,E .(1)当AC =2时,求⊙O 的半径.(2)设AC =x ,⊙O 的半径为y ,求y 关于x 的函数表达式.thd【变式训练】1. 如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连结A C.若∠A=30°,PC=3,则BP的长为_________.第1题第2题2. 如图,半圆O与等腰直角三角形ABC的两腰CA,CB分别切于D,E两点,直径FG 在AB上.若BG=-1,则△ABC的周长为__________23. 如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为()A. B. C. D. 21339243135第3题 第4题4. 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4 .若动点D在线段AC上(不与3点A,C重合)运动,过点D作DE⊥AC交AB边于点E.(1)当点D运动到线段AC的中点时,DE=___________.(2)若点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=__________时,⊙C与直线AB相切.5. 如图,AB是⊙O的直径,AD是⊙O的弦,F是DA延长线上的一点,AC平分∠FAB 交⊙O于点C,过点C作CE⊥DF,垂足为E.(1)求证:CE是⊙O的切线.(2)若AE=1,CE=2,求⊙O的半径.6. 如图,AB为⊙O的直径,OC⊥AB,弦CD与OB交于点F,过点D,A分别作⊙O的切线交于点G,并与AB的延长线交于点E.(1)求证:∠1=∠2.(2)若OF∶OB=1∶3,⊙O的半径为3,求AG的长.【综合例题讲解】例1如图,公路MN 与公路PQ 在点P 处交会,且QPN =30°,在点A 处有一所中学,AP =160 m.假设拖拉机行驶时,周围100 m 以内会受噪音影响,那么拖拉机在公路交会处沿PN 方向行驶时,学校是否会受噪音影响?如果不受影响,请说明理由;如果受影响,且已知拖拉机的速度为18 km/h ,则学校受影响的时间为多少秒?例2如图,在平面直角坐标系中,原点为O ,点A 的坐标为(4,0),点B 的坐标为(-1,0),以AB 的中点P 为圆心,AB 长为直径作⊙P 交y 轴正半轴于点C.(1)求经过A ,B ,C 三点的抛物线所对应的函数表达式.(2)设M 为(1)中抛物线的顶点,求直线MC 对应的函数表达式.(3)试说明直线MC 与⊙P 的位置关系,并证明你的结论.【变式训练】1. 如图①,以△ABC 的边AB 为直径的⊙O 交边BC 于点E ,过点E 作⊙O 的切线交AC 于点D ,且ED ⊥AC.(1)试判断△ABC 的形状,并说明理由.(2)如图②,若线段AB ,DE 的延长线交于点F ,∠C =75°,CD =2-,求⊙O 的半径3和BF 的长.2.如图,射线QN 与等边三角形ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM =MB =2cm ,QM =4cm.动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t (s),以点P 为圆心,cm 为半径的圆与△ABC 的边相切(切点在边上),3请求出t 可取的一切值2.2知识要点:切线长定理】1. 切线长定理:过圆外一点所作的圆的两条切线长相等2. 注意切线和切线长两个不同的概念【例题讲解】例1如图,从⊙O 外一点P 引⊙O 的两条切线PA ,PB ,切点分别为A ,B.如果∠APB =60°,PA =8,那么弦AB 的长是()A. 4B. 8C. 4D. 833例1图 变式1图【变式训练】1. 如图,PA ,PB ,CD 分别与⊙O 相切于点A ,B ,E ,若PA =7,则△PCD 的周长为_________2. 如图,PA ,PB 分别切⊙O 于点A ,B ,CD 切⊙O 于点E ,分别交PA ,PB 于点C ,D.若⊙O 的半径为r ,△PCD 的周长为3r ,连结OA ,OP ,则的值是_________OAPA变式2图变式3图3.如图,⊙O 与△ABC 中AB ,AC 的延长线及BC 边相切,且∠ACB =90°,∠A ,∠B ,∠C 所对的边长依次为3,4,5,则⊙O 的半径是___________.例2如图,PA ,PB 分别切⊙O 于点A ,B ,连结OP 与⊙O 交于点C ,连结AC ,B C.求证:AC =B C.【变式训练】1. 如图,在△ABC 中,∠ACB =90°,以AC 为直径的⊙O 交AB 于点D ,过点D 作⊙O 的切线交BC 于点E ,EF ⊥AB ,垂足为F .(1)求证:DE =B C.12(2)若AC =6,BC =8,求S △ACD ∶S △EDF 的值.2. 如图,O 是△ABC 内一点,⊙O 与BC 相交于F ,G 两点,且与AB ,AC 分别相切于点D ,E ,DE ∥BC ,连结DF ,EG .(1)求证:AB =A C.(2)若AB =10,BC =12,求当四边形DFGE 是矩形时⊙O 的半径.3. 如图,已知正方形ABCD 的边长为2,M 是BC 的中点,P 是线段MC 上的一个动点(不与点M ,C 重合),以AB 为直径作⊙O ,过点P 作⊙O 的切线交AD 于点F ,切点为E .求四边形CDFP 的周长.【综合例题讲解】1. 如图,已知AB 是⊙O 的直径,CD 与⊙O 相切于点C ,BE ∥CO .(1)求证:BC 是∠ABE 的平分线;(2)若DC =8,⊙O 的半径OA =6,求CE 的长.2. 如图,AB 为⊙O 的直径,直线CD 切⊙O 于点D ,AM ⊥CD 于点M ,BN ⊥CD 于点N .(1)求证:∠ADC =∠ABD ;(2)求证:AD 2=AM ·AB ;(3)若AM =,sin ∠ABD =,求线段BN 的长.185352.3【知识要点:三角形的内切圆】1. 三角形内、外心的区别名称确定方法图形性质外心三角形_____________的交点内心三角形_____________的交点2. 注意“接”与“切”,“内”与“外”的区别,任意一个三角形都有________的内切圆和外接圆,但圆有__________个外切三角形和内接三角形.解题小技巧:(1)已知△ABC 的面积为S ,内切圆半径为r ,三边长为a ,b ,c ,则有: S=(a+b+c )12r (2)已知Rt △ABC 两直角边为a ,b ,斜边为c ,则该直角三角形的内切圆半径:r=(a+b+c )12例题讲解例1给出下列说法:①任意一个三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形; ③任意一个三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,并且只有一个外切三角形. 其中正确的有( )A .1个B .2个C .3个D .4个【变式训练】1. 下列说法中,不正确的是( )A .三角形的内心是三角形三条内角平分线的交点B .锐角三角形、直角三角形、钝角三角形的内心都在三角形内部C .垂直于半径的直线是圆的切线D .三角形的内心到三角形的三边的距离相等例2如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.B.C.D. 16π6π8π5例2图变式1图【变式训练】1. 如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,⊙O 为△ABC 的内切圆,D 是斜边AB 的中点,则tan ∠ODA =()A.B.C. D. 233323例3如图,在平面直角坐标系中,有一正方形AOB C.反比例函数y =的图象经过正方形kx AOBC 对角线的交点,半径为4-2的圆内切于△ABC ,求k 的值.2【变式训练】1. 如图,⊙O 是以∠ACB 为直角的△ABC 的内切圆,切点分别是D ,E ,F .(1)填空:当_____________时,EF ∥AB (填上符合题目要求的一个条件即可).(2)当EF ∥AB 时,设⊙O 的半径r =1,DE ,AC 的延长线交于点G ,求GF 的长.2. 如图,在△ABC 中,AC =BC ,I 为△ABC 的内心,O 为BC 上一点,过B ,I 两点的⊙O 交BC 于点D ,tan ∠CBI =,AB =6.13(1)求线段BD 的长.(2)求线段BC 的长.【链接中考】1. △ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是()A .120°B .125°C .135°D .150°2. 一个钢管放在V 形架内, O 为钢管的圆心.如果钢管的半径为25 cm ,∠MPN = 60︒,则OP =________.3. 如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙Ocm ,且经过点B 、C ,那么线段AO = cm.4. . 如图,在Rt △ABC 中,∠C=90°,AC=12,BC=16,点O 为△ABC 的内心,M 为斜边AB 的中点,求OM 的长【综合例题讲解】例1如图,在△ABC 中,AC =BC ,∠CAB =α(定值),⊙O 的圆心O 在AB 上,并分别与AC ,BC 相切于点P ,Q .(1)求∠POQ 的度数(用含α的代数式表示).(2)设D 是CA 延长线上的一个动点,DE 与⊙O 相切于点M ,点E 在CB 的延长线上,试判断∠DOE 的度数是否保持不变,并说明理由.(3)在(2)的条件下,如果AB =m(m 为已知数),cos α=,设AD =x ,DE =y ,求y35关于x 的函数表达式(并指出自变量x 的取值范围).例2 在Rt △ABC ,∠ACB=90°,AC=4,BC=3,CD ⊥AB 于点D ,以D 为坐标原点,CD 所在直线为y 轴建立如图所示的平面直角坐标系. (1)求A ,B ,C 三点的坐标;(2)若⊙O 1、⊙O 2分别为△ACD ,△BCD 的内切圆,求直线O 1O 2的函数表达式【课后作业】1. 如图,AB 是⊙O 的直径,CO ⊥AB ,CD 切⊙O 于D ,AD 交CO 于E.求证:CD =CE.2. 如图,⊙D 的半径为3,A 是⊙D 外一点,且AD =5,AB ,AC 分别与⊙D 相切于B ,C 两点,G 是上任意一点,过点G 作⊙D 的切线,交AB 于点E ,交AC 于点F .BC︵ (1)求△AEF 的周长.(2)当G 为线段AD 与⊙D 的交点时,连结CD ,求五边形DBEFC 的面积.3.如图,直线l 与⊙O 相交于A ,B 两点,且与半径OC 垂直,垂足为H ,已知AB =16cm ,cos ∠OBH =.45(1)求⊙O 的半径;(2)如果要将直线l 向下平移到与⊙O 相离的位置,平移的距离应满足什么条件?4. 如图①,在四边形ABCD 中,∠D =∠C =90°,AB =4,BC =6,AD =8.点P ,Q 同时从A 点出发,分别做匀速运动,其中点P 沿AB ,BC 向终点C 运动,速度为每秒2个单位,点Q 沿AD 向终点D 运动,速度为每秒1个单位.当这两点中有一点到达终点时,另一点也停止运动.设这两点运动了t 秒.(1)动点P 与Q 哪一点先到达终点?此时t 为何值?(直接写出结果)(2)当0<t <2时,求证:以PQ 为直径的圆与AD 相切(如图②).(3)以PQ 为直径的圆能否与CD 相切?若能,求出t 的值或取值范围;若不能,请说明理由.。
最新华东师大初中数学九年级下册切线长定理—知识讲解(提高)
切线长定理—知识讲解(提高)【学习目标】1.了解切线长定义;理解切线的判定和性质;理解三角形的内切圆及内心的定义;2.掌握切线长定理;利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线的判定定理和性质定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定方法:(1)定义:直线和圆有唯一公共点时,这条直线就是圆的切线;(2)定理:和圆心的距离等于半径的直线是圆的切线;(3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可).2.切线的性质定理:圆的切线垂直于过切点的半径.要点诠释:切线的性质:(1)切线和圆只有一个公共点;(2)切线和圆心的距离等于圆的半径;(3)切线垂直于过切点的半径;(4)经过圆心垂直于切线的直线必过切点;(5)经过切点垂直于切线的直线必过圆心.要点二、切线长定理1.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段.2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释:切线长定理包含两个结论:线段相等和角相等.3.圆外切四边形的性质:圆外切四边形的两组对边之和相等.要点三、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).【典型例题】类型一、切线长定理1.如图,等腰三角形ABC中,6AC BC==,8AB=.以BC为直径作⊙O交AB于点D,交AC于点G,DF AC⊥,垂足为F,交CB的延长线于点E.求证:直线EF是⊙O的切线.【答案与解析】如图,连结OD、CD,则90BDC∠=︒.∴CD AB⊥.∵ AC BC=,∴AD BD=.∴D是AB的中点.∵O是BC的中点,∴DO AC∥.∵EF AC⊥于F.∴EF DO⊥.∴EF是⊙O的切线.【总结升华】连半径,证垂直.举一反三:【变式】已知:如图,在梯形 ABCD中,AB∥DC,∠B=90°,AD=AB+DC,AD是⊙O的直径.求证:BC和⊙O相切.【答案】作OE⊥BC,垂足为E,∵ AB∥DC,∠B=90°,∴ OE∥AB∥DC,∵ OA=OD,∴ EB=EC,∴ BC是⊙O的切线.2.已知:如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,求证:DC是⊙O的切线.【答案与解析】连接OD.∵ OA=OD,∴∠1=∠2.∵ AD∥OC,∴∠1=∠3,∠2=∠4.因此∠3=∠4.又∵ OB=OD,OC=OC,∴△OBC≌△ODC.∴∠OBC=∠ODC.∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°,∴ DC是⊙O的切线.【总结升华】因为AB是直径,BC切⊙O于B,所以BC⊥AB.要证明DC是⊙O的切线,而DC和⊙O 有公共点D,所以可连接OD,只要证明DC⊥OD.也就是只要证明∠ODC=∠OBC.而这两个角分别是△ODC和△OBC的内角,所以只要证△ODC≌△OBC.这是不难证明的.举一反三:【高清ID号:356967 关联的位置名称(播放点名称):练习题精讲】【变式】已知:∠MAN=30°,O为边AN上一点,以O为圆心、2为半径作⊙O,交AN于D、E两点,设AD=x,⑴如图⑴当x 取何值时,⊙O 与AM 相切;⑵如图⑵当x 为何值时,⊙O 与AM 相交于B 、C 两点,且∠BOC=90°.【答案】(1)设AM 与⊙O 相切于点B ,并连接OB ,则OB ⊥AB ;在△AOB 中,∠A=30°, 则AO=2OB=4, 所以AD=AO-OD , 即AD=2.x=AD=2.(2)过O 点作OG⊥AM 于G∵OB=OC=2,∠BOC=90°,∴BC=,∴OA=∴x=AD= 2类型二、三角形的内切圆3.(2015•西青区二模)已知四边形ABCD 中,AB∥CD,⊙O 为内切圆,E 为切点.(Ⅰ)如图1,求∠AOD 的度数;(Ⅱ)如图1,若AO=8cm ,DO=6cm ,求AD 、OE 的长;(Ⅲ)如图2,若F 是AD 的中点,在(Ⅱ)中条件下,求FO 的长.图(2)【答案与解析】解:(Ⅰ)∵⊙O为四边形ABCD的内切圆,∴AD、AB、CD为⊙O的切线,∴OD平分∠ADC,OA平分∠BAD,即∠ODA=∠ADC,∠OAD=∠BAC,∵AB∥CD,∴∠ADC+∠BAC=180°,∴∠ODA+∠OAD=90°,∴∠AOD=90°;(Ⅱ)在Rt△AOD中,∵AO=8cm,DO=6cm,∴AD==10(cm),∵AD切⊙O于E,∴OE⊥AD,∴OE•AD=OD•OA,∴OE==(cm);(Ⅲ)∵F是AD的中点,∴FO=AD=×10=5(cm).【总结升华】本题考查了三角形的内切圆与内心,也考查了切线长定理.类型三、与相切有关的计算与证明4.(2016•三明)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB 于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.【思路点拨】(1)直线DE与圆O相切,理由如下:连接OD,由OD=OA,利用等边对等角得到一对角相等,等量代换得到∠ODE为直角,即可得证;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,在直角三角形OCE中,利用勾股定理列出关于x的方程,求出方程的得到x的值,即可确定出DE的长.【答案与解析】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.【总结升华】此题考查了直线与圆的位置关系,以及线段垂直平分线定理,熟练掌握直线与圆相切的性质是解本题的关键.。
切 线+++第1课时 圆的切线的判定与性质++课件++2024—2025学年华东师大版数学九年级下册
证明:连接DE,过点D作DF⊥OB于点F. ∵OA切⊙D于点E,∴DE⊥OA. 又∵DF⊥OB,D是∠AOB平分线上一点, ∴DE=DF,∴OB与⊙D相切.
知识点2:切线的性质
3.(长春中考)如图,AB是⊙O的直径,BC是⊙O的切线,若∠BAC=35
°,则∠ACB的度数为
(C )
A.35°
B.45°
(2)解:在Rt△EOF中,设半径为r,即OE=OB=r,则OF=r+1, 4 OE r
∵sin∠AFE=5=OF=r+1, ∴r=4,∴AB=2r=8, 在Rt△ABC中, sin∠ABC=AACB=sin∠AFE=45,AB=8, ∴AC=45×8=352,∴BC= AB2-AC2=254.
的延长线于点 D.若⊙O 的半径为 1,则 BD 的长为
(D )
A.1
B.2
C. 2
D. 3
8.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点 C 的切线互相垂 直,垂足为 D. (1)求证:AC 平分∠DAB;
3 (2)若 AD=8,tan∠CAB=4,求边 AC 及 AB 的长.
如图,△ABC中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作 AC的垂线,垂足为点E. (1)求证:点D是BC的中点; (2)求证:DE是⊙O切线. 【思路分析】(1)根据“三线合一”证明; (2∵AB是直径,∴AD⊥BC, 又∵AB=AC,∴BD=CD, ∴点D是BC的中点. (2)连接OD,∵AO=BO, BD=CD, ∴OD∥AC,又∵DE⊥AC, ∴DE⊥OD,∴DE是⊙O的切线. 【名师支招】切线的判定方法2,3的选择标准是看直线与圆的公共点是 否已知,若已知公共点,则连圆心与公共点,证垂直;若公共点未知, 则过圆心作垂线,证d=r.
教学课件九年级数学下册第28.3切线第2课时
5.如图,直线a,b,c表示三条互相交叉的公路,现要建一个 货物中转站.要求它到三条公路的距离相等,则可供选择的地 址有______处.
【解析】∵三角形内角平分线的交点到三角形三边的距离相等, ∴三角形内角平分线的交点满足条件; 如图,点P是△ABC两条外角平分线的交点, 过点P作PE⊥AB,PD⊥BC,PF⊥AC, ∴PE=PF,PF=PD, ∴PE=PF=PD,
【总结提升】三角形的内心与外心
名称
外心(三角形外接 圆的圆心)
内心(三角形内切 圆的圆心)
确定方法
三角形三边中垂线 的交点
三角形三条内角平 分线的交点
性质
(1)到三个顶点的 距离相等
(2)外心不一定在 三角形内部
(1)到三边的距离 相等
(2)内心在三角形 内部
题组一:切线长定理及其应用 1.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为 A,B.如果∠APB=60°,PA=8,那么弦AB的长是( )
2
∠AOD=∠ABE,根据同位角相等,两直线平行,即可证得 OD∥BE.方法二:由切线长定理和线段垂直平分线的判定与性 质,可得AE⊥OD,又由直径所对的圆周角为直角可得 ∠AEB=90°,进而推出OD∥BE.
(2)由BC和CE是⊙O的两条切线得CE=CB, 根据OB=OE,得出OC在线段BE的垂直平分线上, 得出OC⊥BE,又由OD∥BE, 得出OC⊥OD. 在Rt△OCD中,由勾股定理求出CD的长.
答案:90
4.如图,△ABC的三边分别切⊙O于D,E,F,若∠A=40°,则 ∠DEF=____________.
【解析】如图,连结OD,OF, ∵△ABC的三边分别切⊙O于点D,E,F. ∴OD⊥AB,OF⊥AC, ∴∠DOF=180°-∠A=180°-40°=140°,
九年级数学圆的切线的知识点
九年级数学圆的切线的知识点数学中的圆是一个常见的几何图形,它有许多有趣的性质,其中之一就是切线。
切线是一个与圆相切于一点且与圆没有其它的交点的直线。
在这篇文章中,我们将探讨九年级数学课程中关于圆的切线的知识点。
1. 切线定义及性质切线是一个特殊的直线,它与圆只有一个交点,且与圆在该点的切线相切。
切线的性质有以下几点:(1) 切线与半径垂直:切线与从切点到圆心的半径垂直相交。
(2) 弦切角相等:切线和过切点的弦所夹的角相等。
(3) 切线长度相等:从圆外的任意一点引切线,得到的切线长度都相等。
2. 切线的判定方法在几何中,判断一条直线是否为圆的切线,有以下两种判定方法:(1) 切线判定法一:若直线与圆只有一个交点,并且该交点到圆心的距离等于圆的半径,则该直线是圆的切线。
(2) 切线判定法二:若直线与圆相交,且与圆的切点处平分被切角,那么该直线也是圆的切线。
3. 切线的性质在解题中的应用切线的性质经常在解题过程中被使用,下面介绍几个常见的应用情况:(1) 切线的长度:我们可以利用切线的性质来求解切线的长度。
根据切线与半径垂直的性质,我们可以使用勾股定理或者勾股定理的变形来求解切线的长度。
(2) 弦的长度:通过切线和弦的切角相等的性质,我们可以利用已知的切线长度和弦的长度来计算未知的切线或者弦的长度。
(3) 切线的方程:切线与圆的关系可以通过方程来表示。
我们可以利用切线判定法一中的条件,得到切线方程的一般形式。
4. 实际生活中的切线应用切线在实际生活中有许多应用,下面介绍几个例子:(1) 轮胎的设计:车辆的轮胎通常是圆形的,轮胎的切线对于保证行驶的稳定性非常重要。
(2) 光学反射:光线在两种介质之间传播时,若入射角等于反射角,则光线与界面的交点所在的直线即为切线。
(3) 经济决策:在经济学中,曲线图表上的切线可以表示某一点的边际效应,帮助决策者做出合理的判断。
总结起来,九年级数学课程中关于圆的切线的知识点包括切线的定义及性质,切线的判定方法,切线性质的应用,以及实际生活中的切线应用。
冀教版九年级下册数学课件29.3切线的性质和判定 (共23张PPT)
如 图 , 直 线 l 到 圆 心 O 的 距 离 OA 等 于 圆 O 的 半 径 , 直 线 l 是 ⊙ O 的 切 线.这时我们来观察直线l与⊙O的位置.
O
发现:(1)直线l经过半径OC的外端点C; (2)直线l垂直于半径0C.这样我们就得到了从
l A
位置上来判定直线是圆的切线的方法——切线的判定定理.
∴∠ODC=90°. ∴DC是⊙O的切线.
例2、如图,在以O为圆心的两个 同心圆中,大圆的弦AB和CD相 等,且AB与小圆相切于点E,
求证:CD与小圆相切
证明:连结OE,过O作OF⊥CD,垂足为F. ∵AB与小圆O切于点点E,∴OE⊥AB. 又∵AB=CD, ∴OF=OE,又OF⊥CD, ∴CD与小圆O相切.
切线的性质和判定
1.直线与圆的三种位置关系
在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系?
O
O
O
图(1)
图(2)
图(3)
2、观察、提出问题、分析发现
图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定 一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从 另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的 切线呢?
求证:AC平分∠DAB.
证明:连结OC. ∴AC平分∠DAB.
例2、求证:如果圆的两条切线互相平行,则 连结两个切点的线段是直径。
已知:AB、CD是⊙O的两条切线,E、F为切 点,且AB∥CD
求证:连结E、F的线段是直径。
证明:连结EO并延长 ∵AB切⊙O于E,∴OE⊥AB, ∵AB∥CD,∴OE⊥CD. ∵CD是⊙O切线,F为切点,∴OE必
(三)切线的判定方法 切线的判定方法有三种: ①直线与圆有唯一公共点; ②直线到圆心的距离等于该圆的半径; ③切线的判定定理.
湘教版九年级下册数学精品教学课件 第2章 圆 第2课时 切线的性质
∴ ∠CAD = ∠CAO. 故 AC 平分∠DAB.
方法总结
利用切线的性质解题时,
常需连接辅助线,一般连接圆
心与切点,构造直角三角形, A
再利用直角三角形的相关性质
解题.
D C
O
B
例2 证明:经过直径两端点的切线互相平行.
已知:如图,AB 是圆 O 的直径,l1,l2 分别是经过
点 A,B 的切线. 求证:l1 // l2. 证明:∵AB 是圆 O 的直径,
在 △OAF 和 △OCF 中, OA = OC,∠3 = ∠2,OF = OF, ∴△OAF ≌ △OCF(SAS). ∴∠OAF = ∠OCF. ∵PC 是 ⊙O 的切线, ∴∠OCF = 90°, ∴∠OAF = 90°, ∴FA ⊥ OA. ∴AF 是 ⊙O 的切线.
(2)若 ⊙O 的半径为 4,AF = 3,求 AC 的长.
合作探究
切线的性质
问题1 如果直线 l 是 ⊙O 的切线,A 为切点,那么切
线 l 和半径 OA 垂直吗?
O
A
l
大家可以先用量角器 量量看.
两者成 90°角,也 就是说切线 l 与半
径 OA 垂直.
推导与验证 反证法证明这个结论
假设 l 与 OA 不垂直
则过点 O 作 OM ⊥ l,垂足为 M
4. 如图,PA 为 ⊙O 的切线,A 为切点.直线 PO 与
⊙O交于 B、C 两点,∠P = 30°,连接 AO、AB、AC.
(1) 求证:△ACB ≌ △APO;
(1) 证明:∵PA 为 ⊙O 的切线,A 为切点, ∴∠OAP = 90°. 又∵∠P = 30°,∴∠AOB = 60°, 又OA = OB,∴△AOB 为等边三角形. ∴AB = AO,∠ABO = 60°.
九年级数学下册《切线的性质和判定》教案、教学设计
4.设计不同难度的例题和练习题,由浅入深,让学生逐步掌握切线相关知识,培养逻辑推理能力和数学运算能力。
(三)情感态度与价值观
1.培养学生对几何图形的审美情趣,激发他们对数学学科的兴趣和热爱。
2.培养学生勇于探索、严谨治学的学习态度,让他们在解决问题的过程中体验成功的喜悦。
九年级数学下册《切线的性质和判定》教案、教学设计
一、教学目标
(一)知识与技能
1.理解并掌握切线的定义,能够准确判断一个直线是否为给定圆的切线。
2.掌握切线的性质,如切线与半径垂直、切线段为半径的外切三角形的一条边等。
3.学会使用判定定理判断一个直线是否为圆的切线,如通过圆心到直线的距离等于圆的半径来判断。
4.能够运用切线相关知识解决实际问题,如求圆的切线长度、切线与弦的交点等。
(二)过程与方法
在本章节的教学过程中,学生将通过以下方法培养数学思维与解题能力:
1.通过实际操作和观察,引导学生发现切线的性质,培养观察能力和动手能力。
2.引导学生运用几何画板等教学软件,进行动态演示,激发学生的学习兴趣,提高直观想象能力。
6.开展课堂小结活动,鼓励学生分享自己在学习过程中的收获和困惑,及时反馈教学效果,为后续教学提供参考。
7.教学评价方面,注重过程性评价与终结性评价相结合,关注学生在课堂上的表现、作业完成情况以及解决问题的能力。
8.加强课后辅导,针对学生在学习过程中遇到的问题,提供个性化指导,帮助他们克服难点,提高学习效果。
(2)在平面直角坐标系中,已知圆心为(3,4),半径为5,求过点A(1,1)的切线方程。
3.拓展练习题:
专题08 切线的判定与性质(解析版) -2021-2022学年九年级数学之专攻圆各种类型题
专题08 切线的判定与性质概念规律重在理解1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.OA为⊙O的半径,BC ⊥OA于A。
则BC为⊙O的切线。
注意:在此定理中,“经过半径的外端”和“垂直于这条半径”,两个条件缺一不可,否则就不是圆的切线。
2.判断一条直线是一个圆的切线有三个方法:(1)定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线;(2)数量关系法:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;(3)判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.3.证切线时辅助线的添加方法(1) 有交点,连半径,证垂直;(2) 无交点,作垂直,证半径.4.有切线时常用辅助线添加方法见切点,连半径,得垂直.5.切线的其他重要结论(1)经过圆心且垂直于切线的直线必经过切点;(2)经过切点且垂直于切线的直线必经过圆心.6.切线的性质定理:圆的切线垂直于经过切点的半径.直线l是⊙O 的切线,A是切点,直线l ⊥OA.说明:利用切线的性质解题时,常需连接辅助线,一般连接圆心与切点,构造直角三角形,再利用直角三角形的相关性质解题.典例解析掌握方法【例题1】(2021吉林长春)如图,AB是⊙O的直径,BC是⊙O的切线,若∠BAC=35°,则∠ACB的大小为()A.35°B.45°C.55°D.65°【答案】C【解析】先根据切线的性质得到∠ABC=90°,然后利用互余计算出∠ACB的度数.∵BC是⊙O的切线,AB是⊙O的直径,∴AB⊥BC,∴∠ABC=90°,∴∠ACB=90°﹣∠BAC=90°﹣35°=55°.【例题2】(2021广西玉林)如图,⊙O与等边△ABC的边AC,AB分别交于点D,E,AE是直径,过点D作DF⊥BC于点F.(1)求证:DF是⊙O的切线;(2)连接EF,当EF是⊙O的切线时,求⊙O的半径r与等边△ABC的边长a之间的数量关系.【答案】见解析。
北师大版九年级数学下册切线长定理课件
∠ACB= 65 °或115 °.
P
O
B
五、当堂达标检测
6.△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且
AB=9cm,BC=14cm,CA=13cm,求AF,BD,CE的长.
解:设AF=x,则AE=x
∴CD=CE=AC-AE=13-x,
A
D
P
O
C
E
B
二、自主合作,探究新知
又∵DC、DA是☉O的两条切线,点C、A是切点,
∴DC=DA.同理可得CE=EB.
l△PDE=PD+DE+PE=PD+DC+CE+PE=PA+PB=14.
∵OA=OC,OD=OD,
∴△AOD≌△COD,
∴∠DOC=∠DOA= ∠AOC.
P
同理可得∠COE= ∠COB.
7.如图,在△ABC 中,∠ABC=50º,∠ACB=75º,点O是△ ABC的内心,
求∠BOC的度数.
解:∵点O是△ABC 的内心,
∴∠OBC
∠OCB
= ∠ABC
= ∠ACB
= ×50º=
25º,
= ×75º=37.5º.
在△OBC 中,∠BOC =180º- ∠OBC - ∠OCB
=180º- 25º- 37.5º= 117.5º.
四、课堂小结
切线长
切线长定理
切线长定理
经过圆外一点作圆的切线,这点和切
点之间的线段的长叫作切线长.
过圆外一点画圆的两条切线,它们的
北师大版九年级数学下册第三章圆--第10课 切线的判定 课件
10.如图,AB是⊙O的直径,⊙O过BC的中点D,DE⊥AC. 求证:DE是⊙O的切线.
证明:连接 OD ∵D为BC中点,O为AB中点, ∴OD为△ABC的中位线. ∴OD∥AC. ∵DE⊥AC,∴OD⊥DE. ∴DE为⊙O的切线.
第3关 11.在平面直角坐标系中有5个点:A(1,1),B(-3,-1),
AB⊥OA ∵A_B_是__⊙__O_的__切__线,
⊙O的半径
∴__A_B_⊥__O_A___. ∴___________. ,AB是⊙O的切线
∴___________.
有切线,圆心连 切点,得垂直
证切线,圆心连 准切点,证垂直
作垂直,证半径
1.(例1)如图,OA是⊙O的半径,∠B=20°,∠AOB=70°.求 证:AB是⊙O的切线.
求证:AB是⊙O的切线.
证明:∵OA=OB,AC=CB, ∴OC⊥AB,(等腰三角形三线合一) ∴AB是⊙O的切线.
8.如图,OA为⊙O的半径,OA=1,OB=2,AB= 3 . 求证:AB是⊙O的切线.
证明:∵OA2+AB2=12+( 3 )2=4 OB2=22=4
∴OA2+AB2=OB2 ∴∠A=90° ∴AB为⊙O的切线
第2关 9.如图,AC是⊙O的直径,点D在⊙O上,过点D的直线BD与
AC的延长线交于点B,AE⊥BD,垂足为点E,AD平分∠BAE. 求证:BD是⊙O的切线. 证明:连接 OD ∵OD=OA ,∴∠OAD=∠ODA ∵AD平分∠BAE ,∴∠OAD=∠EAD ∴∠ODA=∠EAD,∴OD∥AE ∵AE⊥BD,∴OD⊥BD ∴BD为⊙O的切线
5.(例3)如图,OA是∠CAD的平分线,AC与⊙O相切于B.求证:
AD与⊙O相切. 证明:过点O作OE⊥AD,垂足为E,连接OB
湘教版九年级数学下册第二章《切线的判定》优质课课件
8.(4 分)如图,△ABC 的一边 AB 是⊙O 的直径, 请添加一个条件,使 BC 是⊙O 的切线,你所添加的条 件是__AB⊥BC__.
9.(8 分)如图所示,AB 是⊙O 的直径,点 D 在 AB 的延长线上,BD=OB,点 C 在⊙O 上,∠CAB= 30°,求证:DC 是⊙O 的切线.
【综合运用】
16.(14 分)(2015·湖州)如图,等腰三角形 ABC 中, AC=BC=10,AB=12.以 BC 为直径作⊙O 交 AB 于 点 D,交 AC 于点 G,DF⊥AC,垂足为 F,交 CB 的 延长线于点 E.
一、选择题(每小题 5 分,共 10 分) 10.已知两个同心圆的半径分别为 3 cm 和 6 cm, 作大圆的弦 AB=6 3 cm,则直线 AB 与小圆的位置关 系是( B ) A.相交 B.相切 C.相离 D.无法确定
11.如图,AB 是⊙O 的直径,BC 交⊙O 于点 D, DE⊥AC 于点 E,要使 DE 是⊙O 的切线,还需补充一 个条件,则补充的条件不正确的是( A )
三、解答题(共 40 分) 14.(12 分)已知:如图,在△ABC 中,BC=AC, 以 BC 为直径的⊙O 与边 AB 相交于点 D,DE⊥AC, 垂足为 E. (1)求证:点 D 是 AB 的中点; (2)判断 DE 与⊙O 的位置关系,并证明你的结论.
解:(1)连接 CD,则∠BDC=90°,即 CD⊥AB, 又 BC=AC,∴AD=BD,即 D 是 AB 中点 (2)DE 与⊙O 相切,证明如下:连接 OD,∵OB=OC,BD =AD,∴OD∥AC,又∵DE⊥AC,∴DE⊥OD,∴ DE 与⊙O 相切
7.(4 分)如图,点 A,B,D 在⊙O 上,∠A=25°, OD 的延长线交直线 BC 于点 C,且∠OCB=40°,直 线 BC 与⊙O 的位置关系是__相切__.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
切线的判定
教学目标:1、理解切线的判定定理,并并能初步运用它解决简单的问题。
2、知道判定切线的常用的三种方法,初步掌握方法的选择。
3、掌握在解决切线的问题中常用的辅助线的作法。
情感态度:通过判定定理的学习,培养学生观察、分析和归纳问题的能力,并激发学生学习数学的兴趣;。
教学重点:切线的判定定理的理解和应用。
教学难点:理解切线判定定理的中的两个条件:一是经过半径的外端;二是直线垂直于这条半径。
教学过程:
一、创设情景,导入新课。
问题:直线和圆有几种位置关系?你是如何来判断这几种位置关系的?
在学生回答后再展示相应的位置关系及判断的方法:
判断的方法:(1)根据直线与圆的交点的个数;
(2)圆心到直线的距离与圆的半径的大小关系。
教师强调:图(2)中的直线与圆相切,我们可以通过上述两种方法来判断它们的位置关系。
但在实际问题中如果我们始终用寻找交点的个数
和圆心到直线的距离来判断很不方便,也难于操作,还有没有其它的
方法呢?(引导学生思考)
二,启发学生,探究新知。
1、待学生思考后,可能没有什么发现。
我们可以让
学生在观察刚才的图(2),提示学生可再任作一条半
径。
如图(4)所示:
教师引导:回顾图(2)中判断直线l与圆相
切的方法:利用圆心O到直线l的距离等于圆
的半径。
2、教师启发:
图(4)
l
A
O
r
(1)你能否把上面的文字叙述的条件改成数学语言呢?
可由学生积极思考,讨论,然后给出参考的答案: 距离OA :改写成OA ⊥l;
等于半径:改写成OA =r;
垂足A 在半径OA 上且为半径的一个端点。
(2)你能尝试在不改变句子意思的条件下把上面的文字叙述的命题改成意思相同的命题吗?
学生改写后交流,然后在集体讨论交流的基础上得出:
经过半径的外端并且垂直于这条半径的直线是圆的切线。
(这就是我们今天要学习的内容:圆的切线的判定,并板书课题)
(3)熟悉定理,分析命题的题设和结论,并能用几何语言表示它们。
如图:题设两条件:①经过半径的外端;②垂直于这条半径。
几何语言的表示:∵直线l ⊥OA ,l 经过半径OA 的外端
∴直线l 为圆O 的切线。
教师强调:上述两个条件缺一不可。
(4)学生思考:为什么不能缺少条件?能否举出反例。
图(6)经过半径的外端但不与半径垂直;图(7)与直线垂直,但没有经过半径的外端,都不是圆的切线。
加强学生的认识,判断圆的切线时,这两个条件缺一不可。
三,互动深化。
1、例1,如图(8),已知△ABC 内接于,⊙O
的直径AE 交BC 于点F ,点B 在BC 的延长线上,且CAP
=∠ABC ;求证:PA 是⊙O 的切线。
分析:依据题目的条件有半径OA 且PA 经过OA
的外端,对照定理只须证pA ⊥OA 就可以了。
证明:连接CE
∵AE 是⊙A 的直径图(8)
图(5)A
(6
)(7)。