关于细胞表面受体与信号转导课件

合集下载

细胞信号转导PPT课件

细胞信号转导PPT课件

21
11/24/2019
22
一般将细胞外信号分子称为“第一信使”,第一信使与受 体作用后在细胞内产生的信号分子称为第二信使。
胞外物质(第一信使)不能进入细胞,它作用于细胞表面 受体导致胞内产生第二信使,从而激发一系列生化反应, 最后产生一定的生理效应,第二信使的降解使其信号作用 终止。
11/24/2019
11/24/2019
11
亲脂性信号分子:主要是甾类激素和甲状腺素,它们可以穿过细胞膜 进入细胞,与细胞质或细胞核中的受体结合,调节基因表达。
亲水性信号分子:包括神经递质、生长因子和大多数激素,它们不能 穿过细胞质膜,只能通过与靶细胞膜表面受体结合,再经过信号转导 机制,在细胞内产生第二信使或激活蛋白激酶或磷酸蛋白酶的活性, 引起细胞的应答反应。
气体性信号分子(NO) :是迄今为止发现的第一个气体信号分子,它 能直接进入细胞直接激活效应酶,是近年来出现的“明星分子”。
11/24/2019
12
11/24/2019
13
受体是一种能够识别和选择性结合某种配体(信号分子) 的大分子。当与配体结合后,通过信号转导作用将胞外信 号转换为胞内物理或化学的信号,以启动一系过程,最终 表现出生物学效应。
11/24/2019
18
此类受体是细胞表面受体中最大家族,普遍存在于各类 真核细胞表面。其信号的传递需要依赖于G蛋白的活性。
11/24/2019
19
此类受体包括两种类型:一是受体胞内结构域具有潜在酶 活力,另一类是受体本身不具酶活性,通过其胞内区与酶 相联系。
11/24/2019
20
11/24/2019
山东师范大学生命科学学院
11/24/2019

细胞的生物电现象课件

细胞的生物电现象课件

一、静息电位(resting potential) 细胞未受刺激时存在于细胞膜内外两侧的电位差。
极化:静息电位存在时膜两侧所保持的内负外正状态 称为膜的极化。 超极化:当静息时膜内外电位差的数值向膜内负值加 大的方向变化时,RP由 -70→-90mV ,称为膜的超极化。 去极化(除极化):与超极化相反,膜内电位向负值 减少的方向变化,RP由 -70→-50mV 。 复极化:细胞先发生去极化,然后再向正常安静时膜 内所处的负值恢复,则称为复极化。 动作电位 : 可兴奋细胞兴奋时细胞内产生的可扩布的 电位变化过程。 “全或无”现象:在同一细胞上动作电位大小不随刺 激强度和传导距离而改变的现象。
PDE
ATP
cAM P
PKA
5’-AMP 蛋白激酶A
7. IP3-Ca2+ /DG-PKC pathway
Ligan d
recepto r
Gq PLC
PIP2
IP3
DG
PK
C
四、酶耦联受体介导的信号转导
1. 具有酪氨酸激酶的受体
• 特点: 酶与受体是同一膜蛋白 这类受体一般只有一个α-螺旋,膜外 侧肽链有与配体结合位点, 膜内侧肽链有 蛋白激酶的活性。
配体
受体
信号转导过程
ANP心房钠尿肽
GC
GTP
cGMP
PKG
五、离子通道介导的信号转导
信号转导过程
信号
胞膜上的通道蛋白
通道打开或关闭
离子跨膜流动
膜电位变化(去极化、超极化)
细胞功能改变
离子
1. 化学信号—化学门控离子通道
神经肌肉接头 乙酰胆硷 神经突触谷氨酸,门冬氨酸,甘氨酸
运动神经末梢

信号转导教学课件ppt

信号转导教学课件ppt

G蛋白偶联受体信号转导的通路
01
GPCR与配体结合后,引起G蛋白的活化,释放出GDP并替换为GTP,进而引起 下游效应分子的激活。
02
G蛋白可激活多种效应分子,如AC、PLC等,进而产生第二信使分子,如cAMP 和DAG,进一步调节细胞的生物学效应。
03
GPCR信号转导通路还包括抑制性通路和非抑制性通路,抑制性通路通过降低细 胞内cAMP水平来抑制细胞活动,而非抑制性通路则通过激活PLC并产生DAG和 IP3来促进细胞活动。
分类
根据结构和功能,细胞因子可分为白细胞介素(IL)、干扰素 (IFN)、肿瘤坏死因子(TNF)、集落刺激因子(CSF)等。
细胞因子受体的结构与功能
结构
细胞因子受体是一类跨膜蛋白,由胞内区和胞外区组成,胞内区具有酪氨酸 激酶活性。
功能
细胞因子受体通过与相应配体结合,传递信号至细胞内,触发一系列生物学 反应,如增殖、分化、凋亡等。
磷酸化
激活的受体通过磷酸化修饰,进一 步激活下游信号分子。
酶联型受体信号转导的通路
MAPK通路
酶联型受体激活后,通过MAPK通路传递信号,引发细胞反应。
JAK-STAT通路
酶联型受体激活后,通过JAK-STAT通路传递信号,调节细胞增殖和分化。
04
细胞因子信号转导
细胞因子的定义与分类
定义
细胞因子是由免疫细胞和非免疫细胞产生的一类小分子可溶 性蛋白,具有调节免疫应答和炎症反应等多种生物学功能。
信号转导与药物研发
了解信号转导的机制有助于开发新的药物,针对异常的信号转导过程进行干预和 治疗。
06
信号转导研究方法
基因敲除与敲入技术
基因敲除技术
利用同源重组或转座子等技术,将特定基因从染色质中剔除 ,以研究基因功能。

《细胞信号转导》课件

《细胞信号转导》课件
03 肿瘤细胞信号转导与血管生成
肿瘤细胞通过信号转导通路调节血管生成,为肿 瘤提供营养和氧气,促进肿瘤生长和扩散。
信号转导异常与代谢性疾病
01
胰岛素信号转导与 糖尿病
胰岛素信号转导通路的异常可导 致胰岛素抵抗和糖尿病的发生, 影响糖代谢和脂肪代谢。
02
瘦素信号转导与肥 胖
瘦素信号转导通路的异常可导致 肥胖的发生,影响能量代谢和脂 肪分布。
03
炎症信号转导与非 酒精性脂肪肝
炎症信号转导通路的异常可导致 非酒精性脂肪肝的发生,影响脂 肪代谢和炎症反应。
信号转导异常与神经退行性疾病
Tau蛋白磷酸化与神经退行性疾病
Tau蛋白的异常磷酸化是神经退行性疾病如阿尔茨海默病和帕金森病的重要特征,影响神 经元突起生长和神经元网络连接。
α-synuclein异常磷酸化与帕金森病
信号转导蛋白
01
信号转导蛋白是一类在细胞内传递信息的蛋白质,包括G蛋白、 酶和离子通道等。
02
G蛋白是一类位于细胞膜上的三聚体GTP结合蛋白,能够偶联受
体和效应器,起到传递信号的作用。
酶是另一类重要的信号转导蛋白,能够催化细胞内的生化反应
03
,如磷酸化、去磷酸化等,从而调节细胞的生理功能。
效应蛋白
基因敲入技术
通过将特定基因的突变版本引入细胞 或生物体中,以研究基因突变对细胞 信号转导的影响。
蛋白质组学技术
01
蛋白质印迹
通过抗体检测细胞中特定蛋白质的表达和修饰情 况,了解蛋白质在信号转导中的作用。
02
蛋白质相互作用研究
利用蛋白质组学技术,如酵母双杂交、蛋白质芯 片等,研究蛋白质之间的相互作用和复合物的形
细胞信号转导是生物体感受、传递、放大和响应 外界刺激信息的重要过程,是生物体内一切生命 活动不可缺少的环节。

《生物化学》课件 第十一章细胞信号转导 ppt

《生物化学》课件  第十一章细胞信号转导  ppt
2、细胞表面受体:
该受体位于靶细胞膜表面,其配体为水溶性信号分 子和膜结合型信号分子(如生长因子、细胞因子、水溶 性激素分子、粘附分子等)。
目录
目录
一种受体分子转换的信号,可通过 一条或多条信号转导通路进行传递。而 不同类型受体分子转换的信号,也可通 过相同的信号通路进行传递。
不同的信号转导通路之间亦可发生 交叉调控,形成复杂的信号转导网络。
信号转导通路和网络的形成是动态 过程,随着信号的种类和强弱而不断的 变化。
目录
(二)受体与配体相互作的特点
1、高度专一性 2、高度亲和力 3、可饱和性 4、可 逆 性 5、特定的作用模式
目录
三、膜受体介导的信号转导
(一)蛋白激酶A(PKA)通路
该通路以靶细胞内cAMP浓度改变和PKA 激活为主要特征。
1、细胞内信号转导分子异常激活
信号转导分子的结构发生改变,可导 致其激活并维持在活性状态。
2、细胞内信号转导分子异常失活
信号转导分子表达降低或结构改变, 可导致其失活。
目录
(三)信号转导异常可导致疾病的发生 异常的信号转导可使细胞获得异常
功能或者失去正常功能,从而导致疾 病的发生,或影响疾病的过程。许多 疾病的发生和发展都与信号转导异常 有关。
不能正常传递 持续高度激活 受体功能异常 信号转导分子功能异常
目录
(一)受体异常激活和失能
1、受体异常激活
基因突变可导致异常受体的产生, 不依赖外源信号的作用而激活细胞内 的信号通路。
2、受体异常失能
受体分子数量、结构或调节功能 发生异常,导致受体异常失能,不能 正常递信号。
目录Βιβλιοθήκη (二)信号转导分子的异常激活和失活
细胞外信号

第十二章细胞信号转导ppt课件

第十二章细胞信号转导ppt课件
➢ 激素(hormone):内分泌细胞分泌 特点:低浓度、长距离、长时效、全身性
➢ 神经递质:神经突触释放 特点:短距离、短时间
➢ 局部介质:各种细胞 旁分泌(paracrine)或自分泌(autocrine) 的生长因子、细胞因子、NO 特点:短距离、长时效
细胞内信号分子:传导方式
a. 2 b. 5 c. 4 d. 3
9、生长因子是细胞内的(
)。
a. 营养物质
b. 能源物质
c. 结构物质
d. 信息分子
比较题
1、酪氨酸蛋白激酶和丝氨酸/苏氨酸蛋白激 酶
2、磷脂酶C和蛋白激酶C
cAMP作用的靶分子
cAMP-PKA通路调节基因转录
cAMP信号传递模型
钙信号的消除
两种鸟 苷酸环 化酶: mGC、
(3)丝\苏氨酸激酶
通过变构而激活蛋白,催化底物蛋白丝\苏氨酸残 基磷酸化。 包括:蛋白激酶A(protein kinase A, PKA)、PKB、PKC、 PKG、CaMK和丝裂原激的蛋白激酶(mitogenactivated protein kianse, MAPK)、Raf-1等均属此类。
信号转导与信号传导(cell signalling)
➢ 信号转导强调信号的转换, 胞外信号转换为胞内信 号,包括即信号的识别与转换。
➢ 信号传导强调信号的传递,包括信号的产生、分泌 与传递
细胞通讯(cell communication):
细胞与细胞之间的信息交流
细胞通讯的几种方式
1.信号分子 2.细胞接触 或连接 3.细胞外基质
A 与配体有高度亲和力和特异性 B 受体与配体的结合有可逆性 C 受体与配体的结合有一定的数量限度 (饱 和性) D 立体构型决定受体的特异性 E 磷酸化与去磷酸化调节受体的活性

植物细胞的信号转导-PPT课件

植物细胞的信号转导-PPT课件
受体具有高度特异性、高亲和力和可逆性等特征。
细胞内受体(intra cellular receptor):存在于亚细胞 组分(如细胞核等)的受体。
细胞表面受体(cell surface receptor):位于细胞质膜上 的受体。
细胞表面受体
➢酶联受体 (enzyme-linked receptor)
细胞的信号转导过程是一个级联放大的过程。
细 胞 信 号 传 导 的 主 要 分 子 途 径
?思考题
1、名词解释: 受体,G蛋白,CaM
2、问答题 植物细胞信号转导的大致途径是怎样的?
双信号系统
ABA引起气孔关闭机理的模 型
在这个模型中, ABA与受 体(R)结合,导致了Ca2+ 的输入或Ca2+从胞内钙库 中的释放,
(1.ABA使胞外Ca2+通过 Ca2+通道进入保卫细胞 ;2.IP3激活液泡和内质网膜 上的Ca2+通道开放,向胞质 释放Ca2+)
从而使细胞质中的Ca2+浓 度升高,促进了质膜上阴离 子与K+Out通道的开放,并 抑制了K+in通道的开放。当 离开细胞的离子比进入细胞 的多时,细胞就会失水,从 而使得气孔关闭。
➢钙调素(CaM)
一种钙受体蛋白,是耐热、酸性的小分子球蛋白,具有148 个氨基酸的单链多肽。其上有四个Ca2+结合位点。
作用方式:
直接与靶酶结合,诱导靶酶的活性构象,而调节靶酶的活性。 与Ca2+结合,形成活化态的Ca2+ CaM复合体,然后再与靶 酶结合将靶酶激活。CaM与Ca2+有很高的亲和力,一个CaM 分子可与4个Ca2+结合。
• 离子通道连接受体(ion-channel-linked receptor)

第五章 细胞信号转导 PPT课件

第五章 细胞信号转导 PPT课件

各种化学通讯方式
细胞信号转导的作用:
①调节代谢:通过对代谢相关酶活性的调节,控 制细胞的物质和能量代谢;
②实现细胞功能:如肌肉的收缩和舒张,腺体分 泌物的释放;
③调节细胞周期:使DNA复制相关的基因表达, 细胞进入分裂和增殖阶段;
④控制细胞分化:使基因有选择性地表达,细胞 不可逆地分化为有特定功能的成熟细胞;
3.突触信号:神经递质(如乙酰胆碱)由突触前膜释放, 经突触间隙扩散到突触后膜,作用于特定的靶细胞。
4.自分泌(autocrine):信号发放细胞和靶细胞为同 类或同一细胞,常见于癌变细胞。如:大肠癌细胞可自 分泌产生胃泌素,介导调节c-myc、c-fos和ras p21等癌 基因表达,从而促进癌细胞的增殖。
三、酶耦联型受体
这类受体本身具有激酶活性,如肽类生长因子 (EGF,PDGF,CSF等)受体;或者是本身没有酶活 性,但可以连接非受体酪氨酸激酶,如细胞因子受 体超家族。 这类受体的共同点是: ①通常为单次跨膜蛋白; ②接受配体后发生二聚化而激活,起动其下游信号 转导。
三、酶耦联型受体
可分为:
一、信号分子:
从溶解性来看又可分为脂溶性和水溶性两类:
脂溶性信号分子:如甾类激素和甲状腺素,可直接 穿膜进入靶细胞,与胞内受体结合形成激素-受体复 合物,调节基因表达。
水溶性信号分子:如神经递质、细胞因子和水溶性 激素,不能穿过靶细胞膜,只能与膜受体结合,经 信号转换机制,通过胞内信使(如cAMP)或激活 膜受体的激酶活性(如受体酪氨酸激酶),引起细 胞的应答反应。
G蛋白耦联型受体
(一)cAMP信号途径
该信号通路根据G蛋白的性质不同又可以分为:Gs调节 模型和Gi调节模型;
1、Gs调节模型:

信号转导通路PPT课件

信号转导通路PPT课件

细胞内信号传递特点
信号的逐级放大
细胞内信号传递过程中,信号分子通过级联反应 逐级放大,使微弱的细胞外信号能够引起强烈的 细胞生理反应。
信号的可调性
细胞内信号传递过程受到多种因素的调节,包括 受体表达水平、信号分子的合成与降解、信号转 导蛋白的活性与定位等,这些调节机制使细胞能 够对外界刺激作出精确而灵活的应答。
免疫细胞信号转导通路的抑制失活
02 如免疫抑制性受体信号转导通路的失活,导致免疫细
胞过度激活和炎症反应。
免疫细胞与靶细胞之间的信号转导异常
03
免疫细胞与靶细胞之间的信号转导异常,导致免疫相
关疾病的发生和发展。
其他常见疾病中信号转导问题
心血管疾病中信号转导异常
如血管内皮细胞信号转导通路的异常,导致动脉粥样硬化和高血 压等疾病的发生。
信号的特异性
细胞内信号传递具有高度的特异性,不同的信号 分子只能激活特定的信号转导途径,引起特定的 细胞生理反应。
信号的整合性
细胞内存在多种信号转导途径,这些途径之间通 过交叉对话和相互调控,实现对细胞生理功能的 整体协调和控制。
02
典型信号转导通路介绍
G蛋白偶联受体介导通路
G蛋白偶联受体(GPCR)是一大类膜蛋白受体的统称 ,介导细胞对多种信号分子的响应。
GPCR与G蛋白结合后,通过激活或抑制下游效应器酶, 将信号传递至细胞内。
常见的GPCR介导的信号转导通路包括cAMP信号通路、 磷脂酰肌醇信号通路等。
酶联受体介导通路
01
酶联受体是一种具有内在酶 活性的受体,其介导的信号 转导通常与受体的酶活性相
关。
02
酶联受体通过催化特定的底 物生成第二信使,从而将信
导通路中的关键基因。

第九章-细胞信号转导(共53张PPT)

第九章-细胞信号转导(共53张PPT)
• NO的作用机制:
(1)激活靶细胞内具有鸟苷酸环化酶(GC)活性的NO受体。
(2)NO与GC活性中心的Fe2+结合,改变酶的构象,增强酶活性,cGMP水平升高 。
(3)cGMP激活依赖cGMP的蛋白激酶G(PKG),抑制肌动-肌球蛋白 复合物信号通路,导致血管平滑肌舒张。
NO在导致血管平滑肌舒张中的作用
G蛋白偶联受体 的结构图
1234 5
67
G蛋白偶联受体介导无数胞外信号的细胞应答:
包括多种对蛋白或肽类激素、局部介质、神经递质和氨基 酸或脂肪酸衍生物等配体识别与结合的受体,以及哺乳类嗅觉、 味觉受体和视觉的光激活受体(视紫红质)。
哺乳类三聚体G蛋白的主要种类及其效应器
二、G蛋白偶联受体所介导的细胞信号通路
第一节 细胞信号转导概述
一、细胞通讯 二、信号分子与受体 三、信号转导系统及其特性
一、细胞通讯
细胞通讯(cell communication):指信号细胞发出的信息(配 体/信号分子)传递到靶细胞并与其受体相互作用,通过细胞信号
转导引起靶细胞产生特异性生物学效应的过程。
(细胞)信号转导(signal transduction):指细胞将外部信
• IRS1:胰素受体底物
(二)细胞内信号蛋白复合物的装配
• 信号蛋白复合物的生物学意义:细胞内信号蛋白复合物 的形成在时空上增强细胞应答反应的速度、效率和反应的 特异性。
• 细胞内信号蛋白复合物的装配可能有3种不同类型。
细胞内信号蛋白复合物装配的3种类型
• A:基于支架蛋白 B:基于受体活化域 C:基于肌醇磷脂
⑤引发细胞代谢、功能或基因表达的改变;
细胞表面受体(cell-surface receptor): 位于细胞质膜上,主要识别和结合亲水性信号分子,包括分泌型信号分子(如多肽类激素、神经递质

《细胞信号传导》PPT课件

《细胞信号传导》PPT课件

精选课件
24
(三)细胞内信号转导分子
相关 分子
概念:细胞外的信号经过受体转换进入细胞内,通 过细胞内的一些小分子物质和蛋白质进行传递。
类型: 小分子化学物质:第二信使
酶 催化产生第二信使的酶 激酶/磷酸酶
G蛋白 调节蛋白
接头蛋白
精选课件
25
1. 小分子化学物质
概念:细胞内可扩散,并能调节信号转导蛋白 活性的小分子或离子,又称为第二信使。 如cAMP、cGMP、Ca2+、DAG、IP3、Cer或花 生四烯酸等。
质膜受体 质膜受体
蛋白质、多肽及氨基 酸衍生物类激素 类固醇类激素、甲状 腺激素
质膜受体 胞内受体
引起细胞内的变化 影响离子通道开闭
引起酶蛋白和功能蛋白 的磷酸 /脱磷酸,改变 细胞的代谢和基因表达 同上
影响转录
精选课件
13
(二)受体(Receptor)
相关 分子
受体:是一类分布于细胞膜、细胞质或细胞核的特 殊蛋白质,能特异性识别并结合相应信号分子,激 活并启动细胞内一系列生化反应,使细胞对信号刺 激产生相应的生物效应。
精选课件
5
细胞信号转导:胞外信号通过与细胞表面的 受体相互作用转变为胞内信号,在细胞内经 信号途径传递引起细胞发生反应的过程。
精选课件
6
跨膜信号转导的一般步骤 特定的细胞释放信息物质
信息物质经扩散或血循环到达靶细胞
与靶细胞的受体特异性结合
受体对信号进行转换并启动细胞内信使系统
靶细胞产生生物学效应
精选课件
14
1.受体的类型
细胞膜受体
离子通道型 G蛋白偶联型 催化型 酶偶联型)离子通道偶联受体
受体本身为离子通

细胞信号转导—信号分子与受体(生物化学课件)

细胞信号转导—信号分子与受体(生物化学课件)

◆ 乙酰胆碱 ◆ 儿茶酚胺
神经递质
1
激素
2
3 局部化学物质
◆细胞因子 ◆生长因子及NO等
(一)信号分子的种类
(2)细胞内信号分子,又称第二信使
细胞受第一信使刺激后产生的,在细胞内 传递的信息分子,称为第二信使。
无机离子Ca2+
脂类衍生物DAG、IP3
(二)信号分子的传递方式
1
内分泌信号的传递
旁分泌信号的传递
信号分子的种类及传递方式
生物化学 B i o c h e m i s t r y
(一)信号分子的种类
1、化学性质
亲水性信号分子 蛋白质和肽类、氨基酸及其衍生物等
亲脂性信号分子 类固醇激素、脂酸衍生物等
气体分子 一氧化氮、一氧化碳等
(一)信号分子的种类
2、根据信号分子发挥作用的部位,分为以下两类
(1)细胞间信号分子,又称第一信使
2
3
自分泌信号的传递
(二)信号分子Biblioteka 传递方式内分泌信号的传递由特殊分化的内分泌腺及内 分泌细胞释放的信号分子即 激素,可通过血液循环到达 远处靶细胞,大多数对靶细 胞的作用时间较长。
旁分泌信号的传递
由细胞所分泌的信号分子。
特点:不进入血液循环,而
是通过扩散作用于附近的靶 细胞,属于近距离传递。
(二)信号分子的传递方式
自分泌信号的传递
细胞自身分泌信号分子至胞外,再反过来作用于自身受体。
对于某一特定的信号分子而言,可以通过某一种方式传递 信号,也可以同时以两种或三种方式传递信号。

《细胞信号转导》PPT课件

《细胞信号转导》PPT课件
molecularbiology生物化学与分子生物学教研室第一节细胞通讯第二节细胞信号转导的分子机制第三节不同受体介导的细胞信号转导通路第四节细胞信号转导与医学细胞外信号细胞内的多种分子的浓度活性位置变化蛋白激酶与蛋白磷酸酶proteinkinaseproteinphosphatasegtp结合蛋白gtpbindingproteinmolecularswitchsgtpgtpgdpgtpgtpgtpg蛋白的主要类型肾上腺素腺苷酸环化酶atpcamp无活性pka活化pka磷酸化酶b激酶糖原合酶糖原分解增加肾上腺素腺苷酸环化酶atpcampg蛋白一类和gtp或gdp结合位于胞膜胞浆面的外周蛋白具有信号转导功能由三个亚基组成非活化形式活化形式proteinactivationpkacampacplcippkacampac11gtp结合蛋白异源三聚体低分子量g蛋白gtp结合形式为活性形式gdp结合形式为非活性形式2130kda称为ras超家族现有50多种具有gtp酶活性13gapgtpaseactivatingproteingtpase激活蛋白sosguanidineexchangefactor鸟苷酸交换因子gefgtpoffgdpgaprasrassosgap第二节细胞信号转导的分子机制15蛋白复合物proteincomplexesclusters是细胞信号转导分子共同构成的基本工作场所是信号转导过程特异性和精确性的保证是网络性调控的基础signalosomestransducisomessignalcomplexsignalcassettessignalingmodules16转录调控复合物17蛋白相互作用是信号转导复合物形成的基础蛋白相互识别的结构基础蛋白复合物的重要结构蛋白衔接蛋白adapterprotein支架蛋白scaffoldprotein1840proteininteractiondomain19sh2domainsrcsh2srchomologydomainpyeei20sh3domainclassrkxxpxxpclasspxxpxrsrchomologydomain蛋白激酶btkphthsh3sh2催化区衔接蛋白grb2sh3sh2sh3转录因子statdna结合区sh2ta细胞骨架蛋白tensinsh2ptb22phosphotyrosine?sh2?ptbapoptosis?dd?ded?car
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(三) 非催化型单个跨膜受体-细胞因子受体
• 1. 非催化型单一跨膜受体 • 2. 细胞因子受体的结构
细胞因子的来源
• 正常细胞:
– 未活化时,产生很少; – 活化后,产量可提高成百上千倍;如活化的淋巴细胞、
活化的单核/巨噬细胞、NK细胞、成纤维细胞、上皮 细胞、内皮细胞等。
IL-1、IL-6、IL-12、IL-18 和 TNF—主要由巨噬细胞产生的 细胞因子
与配体结合
Extracellular
-NH2
e2
e3
e1 -S-S-
TM1
TM2
TM3
TM4
TM5
TM6
TM7
i1
Cytoplasmic
D R Y
i2
G蛋白作用部位
i3
COOH-
(二) 配体结合结构域: 1.生物胺类配体结合位点:肾上腺素,儿茶酚胺 2. 多肽类激素:胰高血糖素;神经肽类激素
(三) 胞内结构域
作用机理
三、 单个跨膜受体ɑ螺旋受体
(一)蛋白酪氨酸激酶受体
• 蛋白酪氨酸激酶(protein tyrosine kinase,PTK)是一类催化ATP 上γ-磷酸转移到蛋白酪氨酸残基上的激酶,能催化多种底物蛋白 质酪氨酸残基磷酸化,在细胞生长、增殖、分化中具有重要作用。
(一)蛋白酪氨酸激酶受体
共同点:①通常为单次跨膜蛋白; ②接受配体后发生二聚化而激活.
1) 胞外结构域 2)跨膜区域 3)近膜结构域 4)蛋白酪氨酸激酶结构域 5)激酶插入序列 6)羧基末端尾巴
(一)蛋白酪氨酸激酶受体
1.非受体型 以src基因产物为代表
2.膜受体型 根据它们的结构不同,受体型酪氨酸激酶可以分为9种类型, 其中较常见的有4种类型
2.IFN受体家族(II类细胞因子受体家族)
• 结构特征:两条肽链组成,胞外区Fn3样结构域由200个氨基酸 残基组成,也称D200,并含有4个不连续的半胱氨酸,包括IFN 和IL-10受体
(3)PDGF/MCSF/SCF受体家族:(PDGF-αR)、PDGF-βR、巨噬细 胞集落刺激因子受体(M-CSFR)以及干细胞生长因子受体(SCFR
(4)成纤维细胞生长因子受体(FGFR)家族:FGFR家族成员有FGFR1、 FGFR2、FGFR3以及FGF4
(二)蛋白丝氨酸和苏氨酸激酶受体 receptor serine/threonine kinases
一、离子通道型受体
• 概念:既为受体,又为离子通道,其跨膜信号转导无 需中间步骤。
• 作用机理:
乙酰胆碱受体结构模型
二、G-蛋白偶联型受体
(G Protein-Coupled Receptors, GPCRs)
概念:七次跨膜蛋白, 胞外结构域识别信号分 子(配体),胞内结构 域与G蛋白耦联
(一) 受体结构特征:1.N末端;2跨膜区域;3.C末端
细胞因子受体为跨膜糖蛋白: 膜外区(细胞因子结合区) 跨膜区(富含疏水性氨基酸区) 胞质区(信号转导区)
细胞因子受体
细胞因子发挥广泛多样的生物学功 能是通过与靶细胞膜表面的受体相 结合并将信号传递到细胞内部。因 此,了解细胞因子受体的结构和功 能对于深入研究细胞因子的生物学 功能是必不可少的。
从细胞因子结合其受体开始,到 某些基因转录的启动,要经历复杂 的细胞内分子间的相互作用,这样 的作用过程称为细胞因子的信号转 导;
(1)表皮生长因子受体(EGFR)家族:EGF-R家族成员包括EGF-R (分子量为170kDa,广泛表达于多种组织细胞中)、erbB2/neu 及 erbB-3基因表达产物
(2)胰岛素受体家族:insulin receptor,IR insulin-like growth factor-1 receptor,IGF-1R和insulin related receptor,IRR
细胞因子受体都是跨膜蛋白,由胞 膜外区、跨膜区和胞浆区组成。
1.I型细胞因子受体家族:(造血因子受体家族) 2.Ⅱ型细胞因子受体家族:(干扰素受体家族) 3.Ⅲ型细胞因子受体家族:(肿瘤坏死因子受体家族) 4.趋化性细胞因子受体(CKR)家族:
I类细胞 因子受体
II类细胞 因子受体
C C C C
如:激素、药物、神经递质、毒素等。
脂溶性配体 水溶性配体
3. 受体分类
膜受体的特性
➢特异性 ➢可饱和性 ➢高亲和性 ➢可逆性 ➢组织特异性
膜受体的分布
同一个细胞上有不同的受体 不同的细胞上有相同和不同的受体
膜受体的功能
信号跨膜传递 细胞识别
第二节 膜受体的种类 及其作用方式
膜受体的分子结构
TNF-R
C1 C3 C2 C1 C3 C2 C1 C3 C2 C1 C3 C2
趋化因 子受体
G 蛋白
1.造血细胞因子受体超家族(I类)
• 结构特征:是细胞因子受体中最大的一个家族,多数成员属于多亚单位受 体,其中一种或两种亚单位多肽负责结合细胞因子
• 膜外区序列结构相似于EpoR,即膜外N端含4个高度保守Cys,近膜侧含1个 Trp-Ser-Xaa-Trp-Ser(WSXWS)的基序
关于细胞表面受体 与信号转导
第一节 受体概述
1.受体概念:细胞膜或细胞内的蛋白质,特异性识别并 结合胞外信号分子,进而激活胞内一系列生化反应, 使细胞对外界刺激产生相应的效应。
受体(receptor)
多为糖蛋白 配体结合区域
结构 产生效应的区域
膜受体 分类
胞内受体
配体(ligand)
2.概念:是受体接受的细胞外的信号分子,
在胞内区具有丝氨酸/苏氨 酸蛋白激酶活性,该受体以 异二聚体行使功能。主要使 下游信号蛋白中的丝氨酸或 苏氨酸磷酸化。
1) 胞外结构域 2)跨膜区域 3)近膜结构域 4)蛋白酪氨酸激酶结构域 5)激酶插入序列 6)羧基末端尾巴
配体:转化生长因子-βs (transforming growth factor-βs,TGF-βs。) 家族成员,包括TGF-β1~TGF-β5,
➢ 调节单位 ➢ 催化单位 ➢ 转换单位
单体型受体:一个蛋白分子 复合型受体:两个或多个蛋hannel linked receptor) G-蛋白偶联受体(G-protein linked receptor) 受体酪氨酸激酶(receptor tyrosine kinase)
相关文档
最新文档