加热器温度控制设计
温度控制电路的设计
![温度控制电路的设计](https://img.taocdn.com/s3/m/5fe03345bb1aa8114431b90d6c85ec3a87c28b2f.png)
温度控制电路的设计首先,我们需要了解温度控制电路的原理。
温度控制电路主要由三个部分组成:温度传感器、比较器和控制器。
温度传感器负责将温度信号转换成电信号,并输入到比较器中。
比较器将温度信号与给定的温度值进行比较,输出一个开关信号。
控制器接收开关信号,并控制相应的装置(例如加热器或降温器)进行工作,以维持温度在给定范围内。
接下来,我们将通过一个实例来介绍温度控制电路的设计。
假设我们需要设计一个温度控制电路,用于控制一个电炉的加热温度。
我们要求电炉的温度在40摄氏度到60摄氏度之间,当温度达到60摄氏度时,电炉停止加热;当温度降到40摄氏度时,电炉开始加热。
首先,选择一个合适的温度传感器。
常见的温度传感器有热敏电阻、热电偶和半导体温度传感器等。
在这个例子中,我们选择热敏电阻作为温度传感器。
热敏电阻的电阻值随温度的变化而变化,一般情况下都是随温度上升而电阻值下降。
接下来,我们需要选择一个合适的比较器。
比较器的作用是将温度传感器的电信号与设定的温度进行比较,并输出开关信号。
在这个例子中,我们可以选择一个常用的运算放大器作为比较器。
运算放大器具有高增益和差分输入的特性,适合进行信号的比较和放大。
接下来,我们需要选择一个合适的控制器。
控制器的作用是接收比较器的开关信号,并控制电炉的加热。
在这个例子中,我们可以选择一个单片机作为控制器。
单片机具有高集成度和灵活性的特点,可以实现复杂的控制算法。
接下来,我们需要设计电路连接和电路调试。
首先,将热敏电阻连接到比较器的输入端。
然后,将比较器的输出端连接到单片机的输入端。
最后,将单片机的输出端连接到电炉的加热控制端。
在电路调试中,我们可以通过改变比较器的阈值和调整控制算法来使温度控制更加精确和稳定。
综上所述,温度控制电路设计的关键是选择合适的传感器、比较器和控制器,并进行合理的电路连接和调试。
通过合理的设计和调试,可以实现精确和稳定的温度控制。
温度控制电路在实际应用中有广泛的应用,对于提高设备工作效率和安全性具有重要意义。
基于单片机的电阻炉温度控制系统设计
![基于单片机的电阻炉温度控制系统设计](https://img.taocdn.com/s3/m/656e67c4bdeb19e8b8f67c1cfad6195f312be8aa.png)
基于单片机的电阻炉温度控制系统设计一、引言电阻炉是一种广泛应用于工业生产中的加热设备,其温度控制的准确性对于工艺过程的稳定和产品质量的保证至关重要。
本文将基于单片机设计一个电阻炉温度控制系统,通过采集温度传感器的信号,用单片机控制加热器的工作状态,实现对电阻炉温度的精确控制。
二、系统结构设计本系统由四个模块组成:温度采集模块、温度控制模块、显示模块和控制模块。
1.温度采集模块:使用一个高精度的温度传感器,如PT100,将电阻炉内部的温度转化为电压信号。
该信号经过模拟转数字转换器(ADC)转换为数字信号,传输给单片机。
2.温度控制模块:根据温度采集模块传输的信号,单片机通过PID算法计算出控制值,并输出PWM信号控制加热器的工作状态。
PID算法可根据实际情况进行参数调整,以达到系统稳定的控制效果。
3.显示模块:采用数码管或液晶显示器显示当前电阻炉的温度值,方便操作员实时监测电阻炉的运行状态。
4.控制模块:可以通过按钮或者触摸屏等方式进行设定和调整控制参数,例如设定温度范围、PID参数调节等。
三、系统工作原理1.系统初始化:单片机启动后,进行相应的外设初始化和参数设定,包括温度采集模块的配置、PID参数的设定、显示模块的显示等。
2.温度采集与转换:通过温度传感器采集电阻炉内部的温度信号,将其转化为模拟电压信号。
利用ADC将模拟信号转换为数字信号,并传输给单片机进行处理。
3.PID算法计算:单片机根据采集到的温度值,通过PID算法计算出控制值。
PID控制算法通常包括比例系数(P)、积分系数(I)和微分系数(D)三个参数的调整,根据实际情况进行调节以达到控制精度和稳定性要求。
4.PWM输出控制:根据PID算法计算得到的控制值,单片机输出对应的PWM信号。
该信号通过驱动电路控制加热器的工作状态,调整和维持电阻炉的温度。
5.温度显示:单片机将当前的温度值通过显示模块进行显示,使操作员能够实时监测到电阻炉的温度。
温度控制器设计
![温度控制器设计](https://img.taocdn.com/s3/m/746b87e1ac51f01dc281e53a580216fc700a5314.png)
帮不帮温度控制器设计一、设计任务设计一个可以驱动1kW加热负载的水温控制器,具体要求如下:1、能够测量温度,温度用数字显示。
2、测量温度范围0〜100℃,测量精度为0.5℃。
3、能够设置水温控制温度,设定范围40〜90℃,且连续可调。
设置温度用数字显示。
4、水温控制精度W±2℃。
5、当超过设定的温度20℃时,产生声、光报警。
二、设计方案分析根据设计要求,该温度控制器是既可以测量温度也可以控制温度,其组成框图如图1所示。
图1温度控制器原理框图因为要求对温度进行测量显示,所以首先采用温度传感器,将温度变化转换成相应的电信号,并通过放大、滤波后送A/D转换器变成数字信号,然后进行译码显示。
若要求温度被控制在设定值附近,则要求将实际测量温度的信号与温度的设定僮基准电压)进行比较,根据比较结果(输出状态)来驱动执行机构,实现自动地控制、调节系统的温度。
测量的温度可以与另一个设定的温度上限比较器相比较,当温度超过上限温度值时,比较器产生报警信号输出。
1、温度检测及信号处理温度检测是温控系统的最关键部分,它只接影响整个系统的测量、控制精度。
目前检测温度的传感器很多,其测量范围、应用场合等也不尽相同。
例如热电偶温度传感器目前在工业生产和科学研究中已得到了广泛的应用,它是将温度信号转化成电动势。
目前热电偶温度传感器已形成系列化和标准化,主要优点是:它属于自发电型传感器,测量温度时可以不需要外加电源;结构简单,使用方便,热电偶的电极不受大小和形状的限制;测量温度范围广,高温热电偶测温高达1800 c以上,低温热电偶可测-260℃以下,目前主要用在高温测量工业生产现场中。
热电阻温度传感器是利用电阻值随温度升高而增大这一特性来测量温度的,目前应用较为广泛的热材料是铜和铂。
在铜电阻和伯电阻中,伯电阻性能最好,非常适合测量-200〜+960℃范围内的温度。
国内统一设计的工业用伯电阻常用的分度号有Pt25、Pt100 等,Pt100即表示该电阻的阻值在0c时为100Q。
热水器温度控制系统课程设计
![热水器温度控制系统课程设计](https://img.taocdn.com/s3/m/21b5ad3553ea551810a6f524ccbff121dd36c5b6.png)
热水器温度控制系统课程设计1. 概述热水器温度控制系统是一种用于控制热水器的温度并确保热水器在安全范围内运行的系统。
该系统通过传感器监测热水器的温度,并根据设定的温度范围通过控制回路调节加热器的工作状态来实现温控。
本课程设计旨在通过理论学习和实践操作,帮助学生了解并掌握热水器温度控制系统的工作原理、电路设计、程序编写以及系统调试等知识和技能。
2. 课程设计内容2.1 系统结构设计首先,需要对热水器温度控制系统的结构进行设计和规划。
系统应包括以下组成部分:•温度传感器:负责感知热水器的温度,并将温度信息传递给控制器。
•控制器:根据温度传感器提供的信息,通过控制回路控制加热器的工作状态,以达到设定的温度范围。
•加热器:负责将电能转换为热能,实现热水器的加热功能。
•显示器:用于显示热水器的当前温度以及设定的温度范围。
•按钮和开关:用于设置温度范围和控制加热器的开关状态。
2.2 电路设计与连接热水器温度控制系统的电路设计是实现系统功能的重要环节。
学生需要根据给定的要求和元器件进行电路设计,并通过连接线将各个元器件进行连接。
电路设计的关键是理解温度传感器、控制器、加热器和显示器之间的电路连接方式,并正确连接相应的引脚。
2.3 程序编写为了实现热水器温度控制系统的自动化控制,学生需要编写相应的程序。
程序的编写可以采用常见的嵌入式系统开发语言,如C语言。
编写程序时,学生需要根据系统的要求,编写传感器数据采集、控制算法以及与控制器的通信等功能。
2.4 系统调试与功能测试完成系统的硬件连接和程序编写后,学生需要进行系统的调试以确保系统能够正确运行,并进行功能测试以验证系统的性能。
调试过程包括检查电路连接是否正确、检查程序逻辑是否正确、检查温度传感器和控制器之间的通信是否正常等。
功能测试的目的是验证系统是否能够按照设定的温度范围正确控制热水器的温度,并能够在温度超出设定范围时发出警报或采取其他保护措施。
3. 实验项目安排针对热水器温度控制系统的课程设计,我们安排以下实验项目:1.了解热水器温度控制系统的结构和工作原理。
加热炉温度控制系统设计
![加热炉温度控制系统设计](https://img.taocdn.com/s3/m/311f644b78563c1ec5da50e2524de518964bd3b7.png)
加热炉温度控制系统设计一、引言加热炉是一种常见的工业设备,用于将物体加热至一定温度。
在许多工业过程中,加热炉的温度控制至关重要,它直接影响到产品的质量和生产效率。
因此,设计一个稳定可靠的温度控制系统对于提高工业生产的效益十分重要。
本文将介绍一个基于控制理论的加热炉温度控制系统的设计。
二、控制系统设计原理1.温度传感器:温度传感器是测量加热炉内部温度的重要组成部分。
常用的温度传感器包括热电偶和热敏电阻。
传感器将温度信号转换为电信号,并将其发送给控制器。
2.控制器:控制器接收温度传感器发送的信号,并与设定值进行比较。
根据比较结果,控制器将控制信号发送给加热器以调整加热功率。
控制器通常使用PID控制算法,它根据偏差、积分和微分项来计算控制信号。
3.加热器:加热器是加热炉温度控制系统中的执行器。
根据控制信号,加热器可以调整加热功率,从而控制加热炉的温度。
三、温度传感器选择温度传感器的选择对于温度控制系统的性能至关重要。
常见的温度传感器有热电偶和热敏电阻。
在选择传感器时需要考虑以下因素:1.测量范围:根据加热炉的工作温度范围选择合适的传感器。
不同的传感器有不同的工作温度范围。
2.精度:传感器的精度对于控制系统的准确性非常重要。
一般来说,热电偶的精度比热敏电阻高。
3.响应时间:加热炉温度的变化通常需要快速响应。
因此,传感器的响应时间也是一个重要的考虑因素。
四、控制器设计1.控制算法选择:常见的控制算法有比例控制、积分控制和微分控制。
PID控制算法结合了这三种控制算法,被广泛应用于温度控制系统。
2. 参数调节:根据具体的应用场景和系统性能要求,需要对PID控制器进行参数调节。
常见的调节方法有Ziegler-Nichols方法和临时增减法。
3.控制信号输出:控制信号输出给加热器,影响加热功率。
一般来说,控制信号越大,加热功率越高,温度升高的速度越快。
五、系统测试和优化完成控制系统的设计后,需要进行系统测试和优化。
电阻炉温度控制系统的设计
![电阻炉温度控制系统的设计](https://img.taocdn.com/s3/m/f5482b22b6360b4c2e3f5727a5e9856a561226aa.png)
电阻炉温度控制系统的设计在许多工业生产过程中,电阻炉被广泛应用于各种材料的加热和熔炼。
为了确保产品质量和工艺稳定性,电阻炉温度控制系统应满足以下需求:控制精度高:温度波动范围应在±1℃以内,以确保工艺稳定性和产品的一致性。
响应时间快:系统应能迅速跟踪设定温度,减小加热过程的时间误差,提高生产效率。
安全可靠:系统应具备过载保护、短路保护、过热保护等安全措施,确保设备和人身安全。
可扩展性:系统应便于扩展和升级,以适应不同工艺需求和技术发展。
电阻炉温度控制系统的电路设计是整个系统的核心部分。
加热器功率控制、温度传感器选择和电路保护等关键环节直接关系到系统的性能和稳定性。
以下是电路设计的重点:加热器功率控制:一般采用PID控制器来实现加热器功率的调节。
PID 控制器可以根据温度误差来自动调节加热器的功率,减小温度波动。
温度传感器选择:常用的温度传感器有热电偶和红外测温仪。
选择合适的传感器对提高系统的测量精度至关重要。
电路保护:为防止系统故障对设备和人身造成伤害,电路应设计多种保护措施。
例如,加热器应配备熔断器、过载保护器和短路保护器等。
电阻炉温度控制系统的软件设计是实现整个系统智能化的关键。
软件应包括输入输出端口设置、算法实现等关键模块。
以下是软件设计的要点:输入输出端口设置:软件应设置必要的输入输出端口,以便于用户对系统进行控制和监视。
例如,软件应支持通过界面设置加热器的启动/停止、温度设定值等。
算法实现:系统软件应实现高效的温度控制算法,如PID控制算法,以实现精确的温度控制。
算法应具有自适应性,能够根据环境条件和材料属性等变化进行自我调整,提高控制效果。
在完成电阻炉温度控制系统的设计和调试后,需要对系统进行严格的测试与结果验证,以确保系统的性能和稳定性达到预期要求。
测试应包括以下步骤:测试环境搭建:搭建测试平台,选择合适的电阻炉、温度传感器、控制系统等设备进行联调测试。
空载测试:在无负载的情况下,测试系统的加热速度、稳定性和精度等指标。
计算机课程设计报告--基于数字PID的电加热炉温度控制系统设计
![计算机课程设计报告--基于数字PID的电加热炉温度控制系统设计](https://img.taocdn.com/s3/m/c518f3c7f524ccbff1218467.png)
计算机控制技术课程设计任务书题目:基于数字 PID 的电加热炉温度控制系统设计设计内容电阻加热炉用于合金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时问内将炉内温度稳定到给定的温度值。
在木控制对象电阻加热炉功率为 8Kw ,由 220V 交流电源供电,采用双向可控硅进行控制。
本设计针对一个温区进行温度控制,要求控制温度范困 50-350 ℃ ,保温阶段温度控制精度为土 l ℃ .选择和合适的传感器,计算机输出信号经转换后通过双向可控硅控制器控制加热电阻两端的电压。
其对象温控数学模型为:1)(+=-s T e K s G d sd τ 其中:时间常数T d = 350 秒放大系数 K d = 50滞后时间T d = 10 秒控制算法选用PID 控制。
设计步骤一、总体方案设计二、控制系统的建模和数字控制器设计三、硬件的设计和实现1、选择计算机机型(采用51内核的单片机);2、 设计支持计算机工作的外围电路( EPROM , RAM 、I/O 端口 、键盘、显示接口电路等)3、设计输入信号接口电路;4、设计D/A 转换和电流驱动接口电路;5、其它相关电路的设计或方案(电源、通信等)四、软件设计1、分配系统资源,编写系统初始化和主程序模块框图;2编写A/D 转换和温度检测子程序枢图;3、编写控制程序和 D/A 转换控制子程序模块粗图;4、其它程序模块(显示与键盘等处理程序)枢图。
五、编写课程设计说明书,绘制完整的系统电路图( A3 幅面)。
课程设计说明书要求1 .课程设计说明书应书写认真.字迹工稚,论文格式参考国家正式出版的书籍和论文编排。
2 .论理正确、逻辑性强、文理通顾、层次分明、表达确切,并提出自己的见解和观点。
3 .课程设计说明书应有目录、摘要、序言、主干内容(按章节编写)、主要结论和参考书,附录应有系统方枢图和电路原理图。
4 .课程设计说明书应包括按上述设计步骤进行设计的分析和思考内容和引用的相关知识.摘要单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。
步进式加热炉温度控制系统的设计与应用
![步进式加热炉温度控制系统的设计与应用](https://img.taocdn.com/s3/m/140cd6d1a58da0116c17492b.png)
步进式加热炉温度控制系统的设计与应用摘要随着世界能源危机的日益加深和现代化工业生产对钢材需求量的日益增加,在钢铁产业中如何节能成了人们越来越关注的问题。
在轧钢生产线上,步进式加热炉是最重要设备之一,传统加热炉燃烧过程中不仅能耗高,而且温度控制精度差。
本文针对加热炉普遍存在的问题,给出了系统的解决方案。
关键词步进式加热炉;温度控制;设计;应用中图分类号tf7 文献标识码a 文章编号 1674-6708(2011)47-0110-02目前,钢铁已被广泛应用于机械、航空航天、国防等各个领域,它是每个国家国民经济的基础原料,在国民经济发展中占有相当重要的地位。
另外,随着世界能源的日益消耗,人们对节能的日益关注,而加热炉的耗能占钢铁工业耗能的近1/4,是钢铁产业的耗能大户[1]。
自70年代以来,各个钢铁企业为了节省能耗,都不断致力于加热炉的节能控制的研究,以便在保证钢铁质量的同时,降低能耗,提高加热炉的效率。
传统的加热炉都是采用pid系统根据炉温偏差及煤气、空气实际流量来控制,但是由于煤气热值突然改变时,炉温变化比较慢,再加上步进式加热炉非线性、、大惯性、强耦合、大滞后等特点,采用pid控制方式效果就会较差。
因此为了使加热炉燃烧过程普遍存在的温度控制精度差、钢坯温度波动严重、能耗高等问题得到有效解决,我们需要针对步进式加热炉设计新的温度控制系统,以提高能源的利用率。
1 步进式加热炉的结构目前国内钢铁企业大多采用步进式加热炉,它的主要作用是通过结构上独立的上下运动和前后运动的移动粱和固定粱的反复上升、前进、下降的过程将钢坯一块一块加热后托出放置在炉子出料侧的辊道上,然后用辊道送往轧机进行轧制。
步进式加热炉自装料端至出料端可以分为预热、加热和均热三段。
为了提高炉内的传热效果,在加热段和均热段之间设有压下炉顶,在加热段、均热段的侧面炉墙的下部还有烧嘴,这样可以实现全部辐射。
坯料进入到加热炉后,首先要经过预热段进行缓慢的升温,然后再进入加热段进行加热使钢坯的平均温度达到轧制温度,最后进入到均热段进行均热,使钢坯内外温度趋于一致。
电加热器温度的数字PID控制
![电加热器温度的数字PID控制](https://img.taocdn.com/s3/m/ac4fcfb36bec0975f465e231.png)
2013 届本科毕业设计(论文)电加热器温度的数字PID控制The digital PID control of electric heater学院:工学院专业班级:电子信息工程0902班姓名:王阿东学号: 0901********指导教师:赵世强副教授完成时间: 2013年4月10日二〇一三年四月论文题目:电加热器温度的数字PID控制专业:电子信息工程学生:王阿东签名:指导教师:赵世强签名:摘要温度是重要的物理量,温度的测量和控制,在工业生产和科研工作中都非常重要。
本文介绍了一种以STC89C52单片机为检测控制中心的数字式水温自动控制系统。
温度测量部分采用单总线集成温度传感器DS18B20,使系统简单可靠,且易于操作。
温度设置部分采用四个独立按键组成,显示部分采用四位共阴数码管显示,使系统变得简便而高效。
温度控制采用PID数字控制算法,通过计算偏差值来控制光耦合和可控硅的通断,从而控制加热器的加热程度。
实际调试表明,采用PID算法能使温度稳定在设定值附近。
关键词:PID算法;单片机;温度控制;光耦合;可控硅Title: The digital PID control of electric heaterMajor:Electronic information engineeringName:Wang Adong Signature: Supervisor:Zhao Shiqiang Signature:ABSTRACTTemperature is an important physical quantities,The Temperature's measurement and control are very important In industrial production and scientific research work.This article introduces a automatic digital water's temperature control system using the STC89C52 microcontroller as the detect and control center.The temperature measurement part uses the one bus integrated temperature sensorDS18B20 ,which making the system more Simple and reliable,And easy tooperate.Temperature setting part is made up of four separate buttons,and Displaypart adopts four Led Display to display, which made the system easy and efficient.The Temperature is controled by the PID Digital control algorithm.The heater uses the common fast heater which the Ordinary families commonly used.Key words: PID algorithm;MCU;Temperature control;Optocoupler;Silicon controlled目录前言 (1)1硬件系统设计 (2)1.1系统总体框图 (2)1.2单片机系统 (3)1.2.1 单片STC89C52 (3)1.3数字温度传感器DS18B20 (5)1.3.1单线数字温度计DSl8B20 介绍 (4)1.3.2 DSl8B20 工作过程及时序 (5)1.3.3 DS18B20连接图 (5)1.4温度显示部分 (7)1.5 温度设定部分 (7)1.6 光耦器件 (8)1.6.1光电耦合器件简介 (7)1.6.2 光电隔离技术的应用 (7)1.6.3 光耦器件MOC3040 (8)1.7可控硅 (10)1.7.1可控硅简介 (8)2 PID算法 (13)2.1 PID算法简介 (13)2.2 PID算法的程序设计 (15)2.3 PID算法参数整定方法 (16)3软件设计 (19)3.1PID控制流程 (19)3.2系统软件设计总流程图 (20)4结语 (21)参考文献 (23)致谢 (20)附录 (25)西安外事学院本科毕业设计(论文)前言温度控制已成为工业生产、科研领域中很重要的一个环节, 能否成功地将温度控制在需要的范围内关系到整个工作的成败。
大功率电加热器电源与温度控制系统的设计
![大功率电加热器电源与温度控制系统的设计](https://img.taocdn.com/s3/m/b8be053e773231126edb6f1aff00bed5b9f373f7.png)
工作原理电加热器的安全运行和使用寿命与电加热器运行温度的高低有着直接的关系,因此对加热器运行温度的控制和实时监控十分重要。
本系统由温度传感器对加热元件、加热板以及蓄热块上的温度进行采样,所测温度信号经放大和A/D转换后送PLC,利用软件进行数据处理,处理后的数据实时显示,并驱动三相晶闸管调压器以调节加热器温度。
电加热器电源及温控系统技术路线见图1。
1.3技术性能1.3.1电源功能(1)长时运行工作制,电源系统能在各种试验状态下,把负载加热到要求的温度值,并进行恒温控制,同时电源系统供电主回路方案合理,可靠性高,可操作性、可维护性强,操作上的透明度高,安全性要高。
(2)电源系统能给加热器提供一个平滑的连续动态可调的输出电参数,实现带载动态调温功能,避免对加热器造成电动力冲击与温度过冲,实现温度平稳控制。
(3)电源系统具有输出参数控制模式调节功能,能根据实际工况进行最佳运行控制。
即工况良好时,当温度未达到其设定值时,电源应以高功率输出,工况不好时,比如天气潮湿、绝缘值低或长时间未做试验时,能够选择先低电压低功率加热,然后慢慢提高电参数,达到保护加热器与安全运行的目的。
(4)当负载温度达到预设温度时,电源应调节功率输出以维持电热元件恒定在设定温度,同时,在恒温过程中,电热元件避免不断受到交变力的作用,充分保证高温条件下负载的安全运行与使用寿命。
1.3.2电力电子装置(调功器)技术参数电力电子装置采用调压控制模式,试验中根据温度控制要求,调节控制值,达到控制脉冲的调制,从而实现输出电压调节,加热器电功率与负载温度可控的目的。
(1)额定输出功率:第1〜12组,每组功率288kW,12组单独运行, 电阻性负载;(2)调压范围:主回路输入电压的0〜98%;(3)工作制式:具备软启动、软停车功能,避免过大的电流冲击。
1.3.3系统保护功能(1)电源系统主回路具备一次侧雷击过电压保护,浪涌过电压保护,电源侧操作过电压保护,电源侧过电流保护,负载侧过电流保护,电力电子器件关断过电压保护,电力电子器件过热保护以及系统漏电保护。
太阳能热水器温度控制系统-毕业设计
![太阳能热水器温度控制系统-毕业设计](https://img.taocdn.com/s3/m/06e0ca5c54270722192e453610661ed9ac515561.png)
,a click to unlimited possibilities
汇报人:
目录
01 添 加 目 录 项 标 题
02 系 统 概 述
03 硬 件 设ห้องสมุดไป่ตู้计
04 软 件 设 计
05 系 统 测 试 与 优 化
06 结 论 与 展 望
Part One
单击添加章节标题
研究太阳能热水器 的温度控制与物联 网技术的结合
THANKS
汇报人:
测试环境:室内温度、光照 强度、水箱容量等
测试结果:系统稳定性、准 确性、响应速度等
优化方案:根据测试结果, 调整系统参数,提高系统性
能
优化方案与实施
优化目标:提高太阳能热水器的温度控制精度和稳定性 优化方案:采用PID控制算法,实现温度闭环控制 实施步骤:搭建测试平台,进行参数调整和优化 优化效果:提高温度控制精度,降低温度波动,提高系统稳定性
Part Five
系统测试与优化
测试环境与设备
测试环境:室内、室外、晴天、 阴天、雨天等不同环境
测试设备:温度传感器、控制 器、太阳能热水器、数据采集 器等
测试方法:模拟实际使用环境, 进行长时间连续测试
测试指标:温度控制精度、响 应时间、稳定性、安全性等
测试过程与结果
测试方法:模拟实际使用环 境,记录温度变化、系统响 应时间等
添加标题
添加标题
添加标题
添加标题
自动开关机:根据设定时间自动开 关热水器
远程控制:可以通过手机APP远程 控制热水器的运行状态
系统组成
太阳能集热器:收 集太阳能并将其转 化为热能
储水箱:储存热水, 保持水温稳定
基于PLC的锅炉加热温度控制系统设计
![基于PLC的锅炉加热温度控制系统设计](https://img.taocdn.com/s3/m/e1a8d7b5bb0d4a7302768e9951e79b89680268d8.png)
基于PLC的锅炉加热温度控制系统设计锅炉加热温度控制系统设计是一个非常重要的工程项目,特别是在工业生产中。
PLC(可编程逻辑控制器)是一种高级自动化控制设备,可以实现对锅炉加热温度的精确控制。
本文将介绍一个基于PLC的锅炉加热温度控制系统的设计。
【系统概述】该系统的基本目标是稳定地控制锅炉的加热温度,保证锅炉在正常工作范围内运行,并尽可能地提高热效率。
具体来说,系统需要实现以下功能:1.实时监测锅炉温度。
2.控制锅炉加热功率。
3.响应温度变化,并自动调整加热功率。
4.报警和故障保护功能。
【系统设计】1.硬件设计:硬件部分包括传感器、执行机构和PLC。
传感器用于实时监测锅炉温度,常用的温度传感器有热电偶和敏感电阻。
执行机构用于控制加热功率,可采用电磁阀或电加热器。
PLC负责处理数据和控制信号,可以选择常用的西门子、施耐德等PLC。
2.软件设计:软件部分主要包括PLC编程和人机界面设计。
PLC编程可以使用基于LD(梯形图)或SFC(时序功能图)的编程语言,根据具体控制要求,设计合适的控制算法和逻辑。
人机界面设计可以使用HMI(人机界面)或SCADA(监控与数据采集系统),实时显示锅炉温度、加热功率和系统状态,并提供控制和设定温度的功能。
3.控制策略设计:控制策略需要根据具体情况进行设计,一般分为开环控制和闭环控制两种。
开环控制是根据经验或数学模型预先设定温度和加热功率曲线,直接输出控制信号。
闭环控制则根据实时监测的温度反馈信息,通过控制算法动态调整加热功率,使实际温度尽可能接近设定温度。
4.报警和故障保护设计:系统需要具备报警和故障保护功能,当温度超出设定范围或系统出现故障时,及时发出警报并采取相应的措施,以保护锅炉和工艺安全。
【实施与测试】在实施前,需要进行系统调试,确保PLC编程和硬件连接正常。
在实际运行中,需要对系统进行定期检测和维护,以保证系统的稳定性和可靠性。
总结起来,基于PLC的锅炉加热温度控制系统的设计是一个复杂的工程,需要综合考虑硬件和软件的因素。
电加热炉温度控制系统设计
![电加热炉温度控制系统设计](https://img.taocdn.com/s3/m/ecb655808ad63186bceb19e8b8f67c1cfad6eee8.png)
电加热炉温度控制系统设计电加热炉是一种广泛应用于工业生产中的设备,用于加热各种材料或工件。
电加热炉的温度控制是保证炉内温度稳定和精确的关键,对于生产质量和设备寿命有重要影响。
本文将介绍电加热炉温度控制系统的设计。
首先,电加热炉温度控制系统的设计需要考虑以下几个方面:1.温度传感器:选择合适的温度传感器用于测量炉内温度,如热电偶或热电阻。
传感器需要能够对温度进行准确测量,并具有较高的可靠性和耐高温性能。
2.控制算法:根据温度传感器的反馈信号,控制算法计算控制信号以调节炉内加热功率。
最常用的控制算法是PID控制算法,它根据温度偏差、偏差变化率和偏差累积进行控制信号计算,以实现温度的稳定控制。
3.控制器:选择合适的控制器用于执行控制算法并输出控制信号。
控制器需要具有快速的计算能力和稳定的控制性能。
常见的控制器类型包括单片机、PLC和工业控制计算机。
4.加热装置:选择合适的加热装置用于向电加热炉提供能量。
常见的加热装置包括电阻丝、电加热器和感应加热器。
加热装置需要能够根据控制信号调节加热功率,并具有可靠的性能。
5.温度控制系统的安全保护:设计温度控制系统需要考虑安全保护措施,以防止温度过高造成设备事故和人身伤害。
常见的安全保护措施包括过温保护、短路保护和漏电保护等。
在电加热炉温度控制系统的设计过程中,需要进行系统建模和参数调节。
系统建模是将电加热炉、加热装置和温度传感器等组成部分抽象为数学模型,以进行控制算法的设计和仿真验证。
参数调节是根据实际工艺要求对控制算法参数进行调整,以达到良好的控制性能。
最后,电加热炉温度控制系统的设计需要考虑实际应用情况和要求。
不同的工艺要求和生产环境可能需要不同的控制精度和性能需求,因此需要根据实际情况进行设计定制。
在总结上述内容后,设计电加热炉温度控制系统需要考虑温度传感器、控制算法、控制器、加热装置和安全保护等方面。
系统建模和参数调节是设计过程中的关键步骤。
根据实际应用情况和要求进行设计定制,以实现温度的稳定和精确控制。
过程控制课程设计加热炉出口温度控制系统的设计
![过程控制课程设计加热炉出口温度控制系统的设计](https://img.taocdn.com/s3/m/4cbfe76f182e453610661ed9ad51f01dc28157b4.png)
通过合理的控制策略和算法设计,成功实现了对加热炉出口温度的精确控制,提高了生产过程的稳定性和产品质量。
实现了加热炉出口温度的稳定控制
通过参数整定和算法优化,提高了控制系统的响应速度和稳定性,减少了温度波动和误差,提高了生产效率。
优化了控制性能
尽管已经实现了对加热炉出口温度的稳定控制,但在某些极端情况下,控制精度仍可能受到一定影响,需要进一步优化控制算法以提高控制精度。
利用热电效应测量温度,具有测量范围广、精度高、稳定性好等特点。适用于高温环境,可将温度变化转换为电信号输出。
热电阻传感器
基于电阻随温度变化的原理,具有测量精度高、稳定性好、响应速度快等优点。适用于中低温测量,输出信号为电阻值变化。
红外温度传感器
通过测量目标物体辐射的红外能量来推算温度,具有非接触式测量、响应速度快、适用于远距离测量等特点。但受环境因素影响较大,测量精度相对较低。
控制器根据设定的控制算法对温度信号进行处理,计算出控制量,并输出相应的控制信号。
采用比例、积分、微分控制算法,对加热炉出口温度进行精确控制,具有响应快、精度高的特点。
PID控制
结合人工智能、神经网络等先进技术,对加热炉出口温度进行智能预测和控制,提高系统的自适应能力和智能化水平。
智能控制
利用模糊数学理论对加热炉出口温度进行模糊推理和控制,适用于难以建立精确数学模型的复杂系统。
仿真模型搭建
在仿真平台上,根据系统模型搭建仿真模型,包括各组成部分的模型、控制算法的实现等。
仿真参数设置
设置仿真参数,如仿真时间、步长、初始条件等,以确保仿真的准确性和有效性。
仿真平台选择
选择合适的仿真平台,如MATLAB/Simulink、LabVIEW等,用于实现系统仿真。
课程设计基于PLC的电加热炉温度控制系统设计
![课程设计基于PLC的电加热炉温度控制系统设计](https://img.taocdn.com/s3/m/08e5f5024693daef5ff73d45.png)
第一章绪论1.1选题背景及意义加热炉是利用电能来产生蒸汽或热水的装置。
因为其效率高、无污染、自动化程度高,稳定性好的优点,冶金、机械、化工等各类工业生产过程中广泛使用电加热炉对温度进行控制。
而传统的加热炉普遍采用继电器控制。
由于继电器控制系统中,线路庞杂,故障查找和排除都相对困难,而且花费大量时间,影响工业生产。
随着计算机技术的发展,传统继电器控制系统势必被PLC所取代。
二十世纪七十年代后期,伴随着微电子技术和计算机技术的快速发展,也使得PLC 具有了计算机的功能,成为了一种以电子计算机为核心的工业控制装置,在温度控制领域可以让控制系统变得更高效,稳定且维护方便。
在过去的几十年里至今,PID控制已在工业控制中得到了广泛的应用。
在工业自动化的三大支柱(PLC、工业机器人、CAD/CAM)中位居第一。
由于其原理简单、使用方便、适应能力强,在工业过程控制中95%甚至以上的控制回路都采用了PID结构。
虽然后来也出现了很多不同新的算法,但PID仍旧是最普遍的规律。
1.2国内外研究现状及发展趋势一些先进国家在二十世纪七十年代后期到八十年代初期就开始研发电热锅炉,中国到八十年代中期才开始起步,对电加热炉的生产过程进行计算机控制的研究。
直到九十年代中期,不少企业才开始应用计算机控制的连续加热炉,可以说发展缓慢,而且对于国内的温度控制器,总体发展水平仍不高,不少企业还相当落后。
与欧美、日本,德国等先进国家相比,其差距较大。
目前我国的产品主要以“点位”控制和常规PID为主,只能处理一些简单的温度控制。
对于一些过程复杂的,时变温度系统的场合往往束手无策。
而相对于一些技术领先的国家,他们生产出了一批能够适应于大惯性、大滞后、过程复杂,参数时变的温度控制系统。
并且普遍采用自适应控制、模糊控制及计算机技术。
近年来,伴随着科学技术的不断快速发展,计算机技术的进步和检测设备及性能的不断提升,人工智能理论的实用化。
因此,高精度、智能化、人性化必然是国内外必然的发展趋势。
基于嵌入式系统的智能多功能加热器设计
![基于嵌入式系统的智能多功能加热器设计](https://img.taocdn.com/s3/m/00f06c2b15791711cc7931b765ce05087732754e.png)
基于嵌入式系统的智能多功能加热器设计简介在现代社会,加热器是常见的家用电器之一。
然而,传统的加热器往往只具备单一的加热功能,无法满足人们日益增长的多样化需求。
为了解决这一问题,并提升加热器的智能化水平,我们设计了一款基于嵌入式系统的智能多功能加热器。
设计原理该加热器的设计原理基于嵌入式系统,通过控制芯片实现加热器的多功能化。
主要的设计思路包括以下几个方面:温度控制通过嵌入式系统实时监测加热器的温度,并根据设定的温度范围进行控制。
当温度低于设定值时,加热器将启动加热模式;当温度高于设定值时,加热器将停止加热。
多功能选择通过嵌入式系统实现多种功能的选择,例如加热模式、定时功能、温度调节等。
用户可以根据自己的需求选择不同的功能,从而满足不同的加热需求。
安全保护加热器在工作过程中存在一定的安全风险,例如过热、短路等问题。
通过嵌入式系统的安全保护功能,可以实时监测加热器的工作状态,并在出现异常情况时及时报警或自动停止工作,确保用户的安全。
设计细节嵌入式系统选择为了实现以上的设计原理,我们选择了一款性能强劲的嵌入式系统。
该系统具备高性能的处理器和丰富的接口,可以满足多功能加热器的需求。
温度控制算法在温度控制方面,我们采用了先进的PID控制算法。
该算法通过不断调整加热功率,实现对温度的精确控制。
通过实时监测温度,计算误差并作出相应动作,可以在短时间内将温度控制在设定范围内。
多功能选择界面为了方便用户选择不同的功能,我们设计了一个简洁明了的多功能选择界面。
通过触摸屏或按钮操作,用户可以方便地选择加热模式、定时功能、温度调节等。
安全保护机制为了确保用户的安全,我们设计了多种安全保护机制。
一旦出现过热、短路等异常情况,加热器将立即停止工作,并通过报警或显示屏提示用户。
此外,加热器还具备漏电保护、防火材料等安全设计,从源头上减少安全风险。
总结基于嵌入式系统的智能多功能加热器设计,通过温度控制、多功能选择和安全保护等方面的设计,实现了加热器的多功能化和智能化。
加热筒温度控制系统
![加热筒温度控制系统](https://img.taocdn.com/s3/m/edb17401844769eae009ed75.png)
控 制 系统 设 计 思 路 : 取 盘 管 测 温 点 处 水 温 为 被 控
2系统 总体设计
网络控制 系统 中与 E T 2 0 0相 连 的 是 加 热 筒 . P C T — I I 型实 验系 统 中加热 筒 可视 为一 个微 型锅 炉 . 采 用 不锈 钢制 造 . 结构 分为 三层 : 加热 层 , 冷却 层和溢 流 层 。 通 过 对 实 验 系统 管 路 开 关 量 的 组 合 . 实 验 装 置 成 为 一 循 环 水 流 回路 : 水 泵 从 储 水 槽 中恒 压 供 水 至 电加 热器 内桶 . 在 内桶 中 由 电热 丝 加 热 . 再 由 内筒 经 盘 管 注入 溢流层 . 最后 由溢流层 放人储水 槽 。 完 成 水 流 物
Ke y wor d s: P I D; F zz u y P I D; P LC4 0 0; Wi n c c
0引言
随着 信 息技 术 的 发 展 . 企 业 对 温 度 的 监 控 越 来 越
趋 向 于 网 络 化 .在 已有 的 P L C S 7 — 4 0 0及 E T 2 0 0实 验
关 键词 : P I D; 模糊 P I D; P L C; Wi n C C
He a t i n g Cy l i n d e r Te mp e r a t u r e Co n t r o l Sy s t e m
BAI Ya n — f e n g
( I n n e r Mo n g o l i a U n i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y , Ba o t o u 0 1 4 0 1 0 , C h i n a )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程控制大作业
1 确定被控对象
我的课题是以加热器为被控对象,设计一个加热器出口水温控制系统。
2 课题的背景和研究意义
温度是工业对象中的主要被控参数之一,在工业企业中如何提高诸如电炉这样的温度控制对象的运行性能一直是现场技术人员努力解决的问题。
温度控制对于大型工业控制、制冷和制热等工程具有广阔的应用前景。
温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。
近几年来快速发展了多种先进的温度控制方式,如:PID控制,模糊控制,神经网络及遗传算法控制等。
这些控制技术大大的提高了控制精度,不但使控制变得简便,而且使产品的质量更好,降低了产品的成本,提高了生产效率。
3 生产过程和工艺流程
当前国内小型加热器一般分为两种类型,电加热式和燃油加热式。
我选用立式盘管燃油式加热器为例,由燃油供给系统、鼓风系统、燃烧器、加热管、控制系统等组成。
它的工艺流程如下:首先盘管加热器的受热面是一组盘管。
给水从加热器的底部进入内盘管,水沿内盘管螺旋上升至加热器上部,随即进外盘管,水沿外盘管螺旋下降至加热器底部。
水在内外盘管中受热,最后从加热器底部排出同时燃油对加热器进行加热,使加热器达到一定温度,这样就可以改变流过加热器盘管的水的温度,来控制出水口水温。
4 分析被控对象特性,建立数学模型
对于被控对象的特性,我选择通过实验方法应用Matlab软件仿真出来并建立其数学模型。
通过得出的实验数据确定被控对象的数学模型:W(s)=
2
e−1.5s。
4.5s+1
5 控制方案
对于加热器出口水温的控制系统,我们可以选用水出口温度为被控参量,燃
料流量为控制变量,来进行分析。
同时该系统也属于温度控制系统,具有滞后
较大、纯滞后时间较长、扰动幅值大、负荷变化频繁、剧烈等特点。
对于动态
特性复杂、存在多种扰动或扰动幅度较大,控制质量要求高的生产过程,用简
单控制系统无法实现良好的性能,也满足不了工艺控制精度要求,而串级控制
系统属于复杂控制系统,主要用于对象容量滞后较大、纯滞后时间较长、扰动
幅值大、负荷变化频繁、剧烈的被控过程,所以这时可以考虑用串级控制系统。
系统的结构示意图如下:
系统的控制方框图如下:
工作原理:如果出现外部干扰,使稳态工况遭到破坏,串级控制系统立即开始控制工作。
根据扰动施加点的位置不同,分3种情况:(1)扰动作用于副回路;(2)扰动作用于主过程;(3)扰动同时作用于副回路和主过程。
在这里主要介绍第二种情况。
假设此时燃料压力f3(t)、燃料热值f4(t)为稳定值,只有水流量f1(t)、水入口温度f2(t)对主回路产生干扰,虽然副变送器不能提前测出,但副回路的闭环负反馈,使对象加热器内温度部分特性的时间常数大为缩短,加快了校正作用,可以及时的改变加热器内的温度,也使扰动对出口水温度影响很小。
本系统实现了加热器内温度的控制的功能,和实现了加热器出口水温控制的功能。
6 被控变量,控制变量的选择
被控主变量为出口水温,被控副变量为加热器内的温度,控制主变量为燃料阀的开度,控制副变量为给水阀的开度。
7 器件的选择
温度传感器采用温度传感器铂电阻Pt1000。
因为铂热电阻的物理化学性能在高温和氧化性介质中很稳定,它能用作工业测温元件,且此元件线性较好。
在0—100摄氏度时,最大非线性偏差小于0.5摄氏度。
温度变送器我选用热电阻温度变送器,热电阻温度变送器可对温度传感器传感器输出的热电阻温度信号Pt100,Pt1000,Cu50进行精确测量,经隔离,变送,传输,转换成标准备的模拟信号输出,且精度高,量程,零点外部连续可调,稳定性能好。
这两个组成检测与变送单元。
控制器我选用的是模拟式控制器DDZ-Ⅲ型仪表,因为模拟式控制器DDZ-Ⅲ型采用高增益、高阻抗线性集成电路组件,由于集成运放均为差分放大器,且输人对称性好,漂移小,并且集成运放有高增益,开环放大倍数很高,因此提高了仪表精度、稳定性和可靠性。
执行器我选用的是气动调节阀,是由气压信号控制的阀门。
因为其结构简单,可靠,维护方便,防火防爆。
对于本系统,当系统刚刚启动,或控制信号中断时,此时无控制信号,应切断进加热器的燃料,要求无燃料给加热器加热,以免加热器温度过高造成事故。
同样当系统有故障时,要求此时加热器内有水,即开大进水阀,免得由于无水
而使得燃料直接给加热器加热,而损坏或损毁加热器。
因此在加热器的控制阀
门时,为保证失控状态下锅炉的安全:给水阀应选气关式,而燃料阀应选气开式。
对于副控制器,当水温上升时,加热器内温度大于设定值为正偏差,控制器输出要随着减小,故为反作用。
对于主控制器,水温和加热器温度都上升时,
因给水阀为气关型,燃料阀为气开型,要使两个变量都下降,两个阀调节方向
一致,故为反作用。
8 控制器设计
控制规律:我所设计的加热器出口水温系统属于连续控制。
主参数是生产工
艺的主要控制指标,工艺上要求比较严格,要求无余差,稳定性好,又因被控
对象有滞后环节,所以,主调节器选用PID调节器。
而控制副参数是为了提高
主参数的控制质量,对副参数的要求一般不严格,允许有静差。
因此,副调节
器一般选P调节即比例控制器就可以了。
控制参数整定:参数的整定我是在不断的实验试凑下完成的,实验试凑法就
是根据控制器各参数对系统性能的影响程度,边观察系统的运行,边修改参数,直到满意为止。
首先将积分系数KI和微分系数KD取零,即取消微分和积分作用,采用纯比例
控制。
将比例系数KP由小到大变化,观察系统的响应,直至速度快,且有一定范
围的超调为止。
如果比例控制系统的静差达不到设计要求,这时可以加入积分作用。
在整定时将积分系数KI由小逐渐增加,积分作用就逐渐增强,观察输出会发现,系统的静差会逐渐减少直至消除。
反复试验几次,直到消除静差的速度满意
为止。
注意这时的超调量会比原来加大,应适当的降低一点比例系数KP。
若使
用比例积分(PI)控制器经反复调整仍达不到设计要求,或不稳定,这时应加入微
分作用,整定时先将微分系数KD从零逐渐增加,观察超调量和稳定性,同时相应地微调比例系数KP、积分系数KI,逐步使凑,直到满意为止。
经过以上步骤的整定,得出比较合适的PID参数,P=2.3,I=3.93,D=1.125 9 系统调试与仿真
10 结果与展望
仿真显示水温可以稳定的控制在设定温度。
展望:加热器原理的核心的是能量转换,最广泛的就是电能转换成热能。
比如电加热器,利用金属在交变磁场中产生涡流而使本身发热吸收。
又如光能能转换成热能;比如太阳能热水器,吸收太阳光辐射热能和太阳光光能(光电效应)转换成热能两者兼有。
生物能是以生物为载体将太阳能以化学能形式贮存的一种能量,它直接或间接地来源于植物的光合作用。
研究新型的能源,并开发出相应的技术进行转换是将来的研究方向,并且探索如何将加热器更加高效的应用和拓展应用的领域也是未来发展的重点。