初中数学圆的经典测试题附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学圆的经典测试题附答案

一、选择题

1.如图,弧 AB 等于弧CD ,OE AB ⊥于点E ,OF CD ⊥于点F ,下列结论中错误..的是( )

A .OE=OF

B .AB=CD

C .∠AOB =∠CO

D D .O

E >OF

【答案】D

【解析】

【分析】 根据圆心角、弧、弦的关系可得B 、C 正确,根据垂径定理和勾股定理可得A 正确,D 错误.

【详解】

解:∵AB CD =,

∴AB =CD ,∠AOB =∠COD ,

∵OE AB ⊥,OF CD ⊥,

∴BE =12AB ,DF =12CD , ∴BE =DF ,

又∵OB =OD , ∴由勾股定理可知OE =OF ,

即A 、B 、C 正确,D 错误,

故选:D .

【点睛】

本题考查了圆心角、弧、弦的关系,垂径定理,勾股定理,熟练掌握基本性质定理是解题的关键.

2.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是( )

A .

B .

C .

D .

【答案】B

【解析】

【分析】

根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.

【详解】

∵直径所对的圆周角等于直角,∴从直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B.

故选B.

【点睛】

本题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.

3.在Rt△ABC中,∠ACB=90°.AC=8,BC=3,点D是BC边上动点,连接AD交以CD为直径的圆于点E,则线段BE长度的最小值为( )

A.1 B.3

2

C.3D.

5

2

【答案】A

【解析】

【分析】

根据直径所对的圆周角为直角可知∠CED=90°,则∠AEC=90°,设以AC为直径的圆的圆心为O,若BE最短,则OB最短,根据直角三角形斜边上的中线等于斜边的一半可得

OE=1

2

AC=4,在Rt△OBC中,根据勾股定理可求得OB=5,即可得解.

【详解】

解:连接CE,

∵E点在以CD为直径的圆上,

∴∠CED=90°,

∴∠AEC=180°-∠CED=90°,

∴E点也在以AC为直径的圆上,

设以AC为直径的圆的圆心为O,若BE最短,则OB最短,∵AC=8,

∴OC=1

2

AC=4,

∵BC=3,∠ACB=90°,

∴22

OC BC

∵OE=OC=4,

∴BE=OB-OE=5-4=1.

故选A.

【点睛】

本题考查了直径所对的圆周角为直角,直角三角形的性质和勾股定理.

4.如图,在ABC ∆中,90ABC ∠=︒,6AB =,点P 是AB 边上的一个动点,以BP 为直径的圆交CP 于点Q ,若线段AQ 长度的最小值是3,则ABC ∆的面积为( )

A .18

B .27

C .36

D .54

【答案】B

【解析】

【分析】 如图,取BC 的中点T ,连接AT ,QT .首先证明A ,Q ,T 共线时,△ABC 的面积最大,设QT=TB=x ,利用勾股定理构建方程即可解决问题.

【详解】

解:如图,取BC 的中点T ,连接AT ,QT .

∵PB 是⊙O 的直径,

∴∠PQB=∠CQB=90°,

∴QT=1

2

BC=定值,AT是定值,

∵AQ≥AT-TQ,

∴当A,Q,T共线时,AQ的值最小,设BT=TQ=x,在Rt△ABT中,则有(3+x)2=x2+62,

解得x=9

2

∴BC=2x=9,

∴S△ABC=1

2

•AB•BC=

1

2

×6×9=27,

故选:B.

【点睛】

本题考查了圆周角定理,勾股定理,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,则有中考选择题中的压轴题.

5.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm 处,铁片与三角尺的唯一公共点为B,下列说法错误的是()

A.圆形铁片的半径是4cm B.四边形AOBC为正方形

C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm2

【答案】C

【解析】

【分析】

【详解】

解:由题意得:BC,AC分别是⊙O的切线,B,A为切点,

∴OA⊥CA,OB⊥BC,

又∵∠C=90°,OA=OB,

∴四边形AOBC是正方形,

∴OA=AC=4,故A,B正确;

∴AB的长度为:904

180

π

=2π,故C错误;

S扇形OAB=

2

904

360

π⨯

=4π,故D正确.

故选C.

本题考查切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.

6.下列命题中,是假命题的是( )

A .任意多边形的外角和为360

B .在AB

C 和'''A B C 中,若''AB A B =,''BC B C =,'90C C ∠=∠=,则ABC ≌'''A B C

C .在一个三角形中,任意两边之差小于第三边

D .同弧所对的圆周角和圆心角相等

【答案】D

【解析】

【分析】

根据相关的知识点逐个分析.

【详解】

解:A. 任意多边形的外角和为360,是真命题;

B. 在ABC 和'''A B C 中,若''AB A B =,''BC B C =,'90C C ∠=∠=,则ABC ≌'''A B C ,根据HL ,是真命题;

C. 在一个三角形中,任意两边之差小于第三边,是真命题;

D. 同弧所对的圆周角等于圆心角的一半,本选项是假命题.

故选D .

【点睛】

本题考核知识点:判断命题的真假. 解题关键点:熟记相关性质或定义.

7.如图,△ABC 的外接圆是⊙O ,半径AO=5,sinB=25

,则线段AC 的长为( )

A .1

B .2

C .4

D .5

【答案】C

【解析】

【分析】 首先连接CO 并延长交⊙O 于点D ,连接AD ,由CD 是⊙O 的直径,可得∠CAD=90°,又由⊙O 的半径是5,sinB=25

,即可求得答案.

相关文档
最新文档