重力坝抗滑稳定及应力计算
重力坝抗滑稳定及应力计算doc资料
项目名称:几内亚凯勒塔(KALETA)水电站工程项目阶段:复核阶段计算书名称:重力坝抗滑稳定及应力计算审查:校核:计算:黄河勘测规划设计有限公司Yellow River Engineering Consulting Co. ,Ltd.二〇一二年四月目录1.计算说明 (1)1.1 目的与要求 (1)1.2 基本数据 (1)2.计算参数和研究方法 (1)2.1 荷载组合 (1)2.2 计算参数及控制标准 (2)2.3 计算理论和方法 (3)3.计算过程 (4)3.1 荷载计算 (4)3.1.1 自重 (4)3.1.2 水压力 (4)3.1.3 扬压力 (8)3.1.4 地震荷载 (10)3.2 安全系数及应力计算 (13)4.结果汇总 (17)1.计算说明1.1 目的与要求下列计算是有关挡水坝段、溢流坝段、进水口、底孔坝段抗滑稳定性和基底应力计算。
1.2 基本数据正常蓄水位:110m;设计洪水位:112.94m;校核洪水位:113.30m;大坝设计洪水标准为100年一遇,校核洪水标准为1000年一遇;坝址区地震动峰值加速度为0.15g(g=9.81m/s²),地震动反应周期为0.25s,相应的地震基本烈度为7度,本工程抗震设计烈度为7度。
计算选取的挡水坝段坝顶高程114.00m,坝基底高程92.00m,坝高22m,坝顶宽5m。
上游坝面竖直,下游坝坡在107.33m高程以上竖直,在107.33m 高程以下坡度为1:0.75。
计算选取的溢流坝段堰顶高程110.00m,坝基底高程96.00m,坝高14m,上游坝面竖直,下游坝坡在108.59m高程以上为Creager剖面,在108.59m高程以下坡度为1:0.85。
正常蓄水位时,溢流坝段下游无水;设计洪水位112.94m 时,下游水位104.80m;校核洪水位113.30m时,下游水位105.42m。
进水口坝段顶高程114.00m,坝基底高程87.80m,坝高26.2m,顶宽13.06m,上游坝坡为1:0.25,下游坝坡在107.33m高程以上竖直,在107.33m 高程以下坡度为1:0.75。
浆砌石重力坝稳定计算
基本数据:初拟断面:上游坡比n 0.2上起坡高程H 69.3下游坡比m0.7下起坡高程H 74.157上游水深H 上77.2下游水深H 下54.3淤沙高程H 沙60.4坝底高程H 底49.3坝顶高程H 顶砌石容重r d2.2G 1330G 2475.7602G 388389.20512.531.6404.扬压力:5.36.8削减系数α1坝底宽B 26.3999W φ1131.9995W φ267.32566W φ313.74W φ45.浪压力:L 6.42h 1.3ho 0.425.92-20.48 5.443.14H/L 13.69538432.16-389.20542.955 1.3γ干 1.3γ浮0.65内摩擦角φ18水平压力:21.13739垂直压力:8.00865403.2824678.0262-1739.7M G12210.984M G2-761.224M G3926.9289M P220.83333M W1353.9184M W2474.6647M W3-105.291M W φ1M W φ2-8.97788M W φ3-101.675M W φ4-1008.58M R-627.264484.0107M PH-78.2083M PV99.78738基础摩擦系数f 0.65K 1.092825>1.05满足要求偏心距e 2.565831<B/6 4.399983σ`y10.70603>0满足要求σ``y52.17849<[σ](略)(∑W 未计入扬压力)计算工况:校核洪水情况下四、坝体强度计算:(取危险2~3个截面计算)各力对基础中心产生的力矩M :力矩总和∑M :三、稳定计算:1.抗滑稳定计算:2.基础强度计算上游边缘正应力:a=2hsech (3.14H/L )1)坝前水深H >浪高L 引用坝高计算中的数据:作用铅直面的合力+、-、Re 2)(3~5)h <坝前水深H <浪高L 水平力总和∑P :垂直力总和∑W :基础排水管距上游面L一、荷载计算及其组合:1.坝体自重:2水平水压力.:上游水平水压力P 1:下游垂直水压力W 3:3.垂直水压力.:上游垂直水压力W 1、W 2:下游水平水压力P 2:二、计算各种力的合力:6.泥沙压力:7.地震力:通常重庆地区不考虑。
重力坝的稳定及应力分析
2. 公式:
K'
f ' ( W U ) c ' A
P
3.抗剪断参数的选定
对于大型工程,在设计阶段, f ′,c′应由野外及室内试验 成果决定。在规划阶段,可以参考规范给定的数值选用:
4.安全系数[K′] 设计规范规定: 不分等级,基本荷载组合:采用3.0; 特殊荷载组合:(1)采用2.5;(2)采 用不小于2.3。
地基的接触面、坝体折坡处或坝体断面
削弱的部位(如廊道、泄水管道等部 位)。
1) 基本假定
i.
坝体混凝土为均质、连续、各向同性 的弹性材料; 不考虑两侧坝体的影响,各坝段独立 工作; 假定坝体水平截面上的正应力σy按直 线分布,不考虑廊道等对坝体应力的 影响。
ii.
iii.
2) 边缘应力的计算
一般情况下,坝体的最大应力和 最小应力都出现在坝面,所以应该 首先校核坝体边缘应力是否满足强
坝 踵 坝 踵 坝 趾Fra bibliotek硬 库 满
软
Ec—— Er——
基坝 岩体
2、地基变形弹模对坝体 应力的影响 3、坝体异弹模对坝体应 力的影响 4、纵缝对坝体应力的影 响 5、分期施工对坝体应力 的影响(见下图) 6、坝踵断裂对坝体应力 的影响
坝体主应力分布示意图
影响坝体应力的主要因素有:
1)
地基变形对坝体应力的影响;
2 2
2u Pu
2 d Pd
3)内部应力的计算
1 、坝内水平截面上的正应力 σy 假 定和σy在水平截面上直线分布。 2、坝体内剪应力τ。 3、坝内水平正应力σx。 4、坝内主应力σ1和σ2。 5、考虑扬压力时的计算方法。
考虑扬压力作用时的应力计算
重力坝稳定和应力计算
坝体强度承载能力极限状态计算及坝体稳定承载能力极限状态计算(一)、基本资料坝顶高程:1107.0 m校核洪水位(P = 0.5 %)上游:1105.67 m下游:1095.18 m 正常蓄水位上游:1105.5 m下游:1094.89 m死水位:1100.0 m混凝土容重:24 KN/m3坝前淤沙高程:1098.3 m泥沙浮容重:5 KN/m3混凝土与基岩间抗剪断参数值:f `= 0.5c `= 0.2 Mpa坝基基岩承载力:[f]= 400 Kpa坝基垫层混凝土:C15坝体混凝土:C1050年一遇最大风速:v 0 = 19.44 m/s多年平均最大风速为:v 0 `= 12.9 m/s吹程D = 1000 m(二)、坝体断面1、非溢流坝段标准剖面(1)荷载作用的标准值计算(以单宽计算)A 、正常蓄水位情况(上游水位1105.5m ,下游水位1094.89m ) ① 竖向力(自重)W 1 = 24×5×17 = 2040 KN W 2 = 24×10.75×8.6 /2 = 1109.4 KNW 3 = 9.81×(1094.5-1090)2×0.8 /2 = 79.46 KN ∑W = 3228.86 KNW 1作用点至O 点的力臂为: (13.6-5) /2 = 4.3 m W 2作用点至O 点的力臂为:m 067.16.83226.13=⨯- W 3作用点至O 点的力臂为:m 6.58.0)10905.1094(3126.13=⨯-⨯-竖向力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OW1 = 2040×4.3 = 8772 KN·mM OW2 = -1109.4×1.067 = -1183.7 KN·mM OW3 = -79.46×5.6 = -445 KN·m∑M OW = 7143.3 KN·m②静水压力(水平力)P1 = γH12 /2 = 9.81×(1105.5-1090)2 /2= -1178.4 KNP2 =γH22 /2 =9.81×(1094.89-1090)2 /2 = 117.3KN∑P = -1061.1 KNP1作用点至O点的力臂为:(1105.5-1090)/3 = 5.167mP2作用点至O点的力臂为:(1094.89-1090)/3 = 1.63m静水压力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OP1 = 1178.4×5.167 = -6089 KN·mM OP2 = 117.3×1.63 = 191.2 KN·m∑M OP = -5897.8 KN·m③扬压力扬压力示意图请见下页附图:H1 = 1105.5-1090 = 15.5 mH2 = 1094.89-1090 = 4.89 m(H1 -H1) = 15.5-4.89 = 10.61 m计算扬压力如下:U1 = 9.81×13.6×4.89 = 652.4 KNU2 = 9.81 ×13.6×10.61 /2 = 707.8 KN∑U = 1360.2 KNU1作用点至O点的力臂为:0 mU2作用点至O点的力臂为:13.6 / 2-13.6 / 3 = 2.267m 竖向力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OU1 = 0 KN·mM OU2 = -707.8×2.267 = -1604.6 KN·m∑M OU = -1604.6 KN·m④浪压力(直墙式)浪压力计算简图如下:由确定坝顶超高计算时已知如下数据:单位:m使波浪破碎的临界水深计算如下:%1%122ln 4h L h L L H m m m cr πππ-+=将数据代入上式中得到: 013.183.02644.783.02644.7ln 4644.7=-+=πππcr H 由判定条件可知,本计算符合⑴H ≥H cr 和H ≥L m /2,单位长度上的浪压力标准值按下式计算:)(41%1Z m W Wkh h L P +=γ 式中:γw ──水的重度 = 9.81 KN/m 3其余计算参数已有计算结果。
重力坝应力与稳定计算
10
9
校核洪水位
8
设计洪水位
7
正常水位
6
5 前填土 4
反弧段
后填土
3
2
1
0 -2 -1 0 1 2 3 4 5 6 7 8
-2 -1 0 1 2 3 4 5 6 7 8
0.000
0.000 0.900 0.330
0.100
0.006 1.000 0.401
0.200
0.020 1.100 0.478
淤沙压力(Kpa)
坝前土压力(Kpa)
37.39
37.39
37.39
37.39
坝后土压力(Kpa) -29.86 -29.86
-29.86 -29.86
浪压力(Kpa)
冰压力(Kpa)
反弧段离心分力
(Kpa)
地震荷载(Kpa)
2、 ∑W
垂直重力
坝自重
坝上水重
反弧段离心分力
扬压力
α
3 抗滑验算
4
抗剪断强度抗滑 安全系数(K')
-8.84 -3.86
0.00 221.67
-0.37 -0.73 -1.31 -0.13 -493.86
8.16 245.22
8.16 245.22
0.00 221.67
-0.37 -0.73 -1.31 -0.13 -497.73
7.23 246.14
7.23 246.14
式中:X----计算 点到中轴的距 离; J----计算截面的 惯心距
2.02
2.52 2.5
0.7
2110.33
2110.32 2110.3
2108.5
坝前土高
autobank计算重力坝抗滑稳定计算
autobank计算重力坝抗滑稳定计算【原创实用版】目录1.重力坝抗滑稳定分析的背景和意义2.重力坝抗滑稳定分析的方法3.抗滑稳定计算公式4.提高重力坝抗滑稳定性的措施5.结论正文一、重力坝抗滑稳定分析的背景和意义随着水利工程的广泛应用,重力坝作为一种常见的大坝类型,其抗滑稳定性分析变得越来越重要。
重力坝的抗滑稳定是指在各种荷载作用下,坝体能够保持稳定,不发生滑动现象。
对于重力坝来说,抗滑稳定性是其设计和施工中最为关键的问题之一。
因此,研究重力坝抗滑稳定分析的方法和计算公式具有重要的现实意义和应用价值。
二、重力坝抗滑稳定分析的方法重力坝抗滑稳定分析的方法主要包括以下几种:1.定性分析法:通过对边坡的尺寸、坡形、地质结构、所处的地质环境、形成的地质历史、变形破坏形迹等方面的研究,判断边坡的稳定性。
2.极限平衡分析法:把可能滑动的岩、土体假定为刚体,通过分析可能滑动面,并把滑动面上的应力简化为均匀分布,进而计算抗滑稳定性。
3.抗剪断公式计算:当整个可能滑动面基本上都由软弱结构面构成时,采用抗剪断公式计算。
4.抗剪强度公式计算:可能滑动面仅一部分通过软弱结构面,其余部分切穿岩体或混凝土,有条件提供一定抗滑力的抗力体时,应采用抗剪强度公式计算。
三、抗滑稳定计算公式重力坝抗滑稳定计算公式主要包括以下两种:1.抗剪断公式:Fs = 0.8γH^2tan^2(α/2)其中,Fs 为抗剪断强度,γ为滑动面上的土体重度,H 为滑动面的深度,α为滑动面的倾角。
2.抗剪强度公式:Fs = 0.4γH^2tan^2(α/2) + 0.6σcH^2其中,Fs 为抗剪强度,γ为滑动面上的土体重度,H 为滑动面的深度,α为滑动面的倾角,σc 为混凝土的抗压强度。
四、提高重力坝抗滑稳定性的措施为了提高重力坝的抗滑稳定性,可以采取以下措施:1.选用优质的坝基岩石,要求微风化、新鲜,产状以倾向上游为佳。
2.对坝基进行处理,如固结灌浆,以提高承载力和应变能力。
水库混凝土重力坝方案设计及抗滑稳定与应力计算
水库混凝土重力坝方案设计及抗滑稳定与应力计算作者:张宇峰来源:《科技创新与应用》2016年第22期摘要:陕西某V等小(1)型多功能水库,其大坝枢纽方案为混凝土重力坝+开敞式溢洪道+取水兼放空管。
大坝坝顶高程789.00m,最大坝高54m,坝顶坝宽5.0m,筑坝材料为C15四级配常态混凝土。
在工程设计阶段,对大坝枢纽布置、结构体型、大坝抗滑稳定和大坝应力等进行了详细分析计算,结果表明设计方案合理,大坝安全稳定性较高,各项技术指标均满足《混凝土重力坝设计规范》(SL319-2005)、《混凝土重力坝设计规范》(NB/T 35026-2014)等规范指标要求。
关键词:水库;枢纽布置;重力坝;抗滑稳定;应力计算1 工程概况陕西某水库以城市供水为主,兼顾灌溉、养殖和下游防洪等功能。
坝址集水面积3.67km2,坝址断面处多年平均径流量为176万m3,多年平均流量0.325m3/s。
水库校核洪水位(P=0.5%)768.50m,总库容323.80万m3,正常蓄水位766.00m,相应库容305.80万m3,死水位746.50m,相应库容88.60万m3,兴利库容276.80万m3,年供水总量637.8万m3。
根据《水电枢纽工程等级划分及设计安全标准》(DL5180-2003),该水库总库容323.80万m3,属于100万m3~1000万m3范畴,其工程等别为V等,为小(1)型水利工程,防洪级别一般[1]。
2 工程区主要水文地质概况水库大坝,其推荐坝址坝轴线长约825m,河流流向自东向西,两岸高山,坝址区河谷呈基本对称“V”字型谷,属于典型河谷型水库。
大坝坝基河床高程738.20~750.50m,设计正常高水位766.00m时,谷口宽约100m,宽高比5.2。
河床及两岸覆盖层不均匀,约1.5~8.3m,强风化深14~18m,弱风化深17~21m。
工程区地下水横向补给河水,水质较好。
3 混凝土重力坝方案设计在对工程区岩性、坝址坝线分析、施工料场、施工便捷性等进行技术、经济等方面的综合经济性对比分析后,最终推荐采用碾压混凝土重力坝。
重力坝抗滑稳定及应力计算
项目名称:几内亚凯勒塔(KALETA)水电站工程项目阶段:复核阶段计算书名称:重力坝抗滑稳定及应力计算审查:校核:计算:黄河勘测规划设计有限公司Yellow River Engineering Consulting Co. ,Ltd.二〇一二年四月目录1.计算说明 (1)1.1 目的与要求 (1)1.2 基本数据 (1)2.计算参数和研究方法 (2)2.1 荷载组合 (2)2.2 计算参数及控制标准 (2)2.3 计算理论和方法 (3)3.计算过程 (5)3.1 荷载计算 (5)3.1.1 自重 (5)3.1.2 水压力 (6)3.1.3 扬压力 (10)3.1.4 地震荷载 (14)3.2 安全系数及应力计算 (17)4.结果汇总 (22)1.计算说明1.1 目的与要求下列计算是有关挡水坝段、溢流坝段、进水口、底孔坝段抗滑稳定性和基底应力计算。
1.2 基本数据正常蓄水位:110m;设计洪水位:112.94m;校核洪水位:113.30m;大坝设计洪水标准为100年一遇,校核洪水标准为1000年一遇;坝址区地震动峰值加速度为0.15g(g=9.81m/s²),地震动反应周期为0.25s,相应的地震基本烈度为7度,本工程抗震设计烈度为7度。
计算选取的挡水坝段坝顶高程114.00m,坝基底高程92.00m,坝高22m,坝顶宽5m。
上游坝面竖直,下游坝坡在107.33m高程以上竖直,在107.33m 高程以下坡度为1:0.75。
计算选取的溢流坝段堰顶高程110.00m,坝基底高程96.00m,坝高14m,上游坝面竖直,下游坝坡在108.59m高程以上为Creager剖面,在108.59m 高程以下坡度为1:0.85。
正常蓄水位时,溢流坝段下游无水;设计洪水位112.94m时,下游水位104.80m;校核洪水位113.30m时,下游水位105.42m。
进水口坝段顶高程114.00m,坝基底高程87.80m,坝高26.2m,顶宽13.06m,上游坝坡为1:0.25,下游坝坡在107.33m高程以上竖直,在107.33m 高程以下坡度为1:0.75。
某工程重力坝抗滑稳定计算书及计算步骤教学教材
某工程重力坝抗滑稳定计算书及计算步骤技施设计浆砌石重力坝抗滑稳定计算书2004年12月说 明1.计算目的与要求对拟定的体型进行抗滑稳定计算,求出拟定体型在各种设计工况下的抗滑稳定安全系数。
同时对坝基面的应力进行计算,以论证是否满足规定的正常使用极限状态与承载能力极限状态要求。
2.计算基本依据1. 建筑体型结构尺寸见附图1;2. 主要地质参数见资料单;3. 材料容重: 浆砌块石:取3/0.23m kN s =γ;水:取3/8.9m kN w =γ; 土的饱和溶重3/12m kN =γ3.计算方法及计算公式 1. 基本假定 1) 坝体为均质、连续、各向同性的弹性材料; 2) 取单宽1米计算,不考虑坝体之间的内部应力。
3)本工程规模小,只计算坝体的抗滑稳定,不对坝体剖面进行浅层与深层抗滑稳定分析以及坝基面应力分析。
2. 地基应力计算按偏心受压公式计算应力:σmax=W M AG ∑∑+ σmin =WMAG∑∑-式中 ∑G —坝体本身的重力,kN ;A ——坝基的受力面积,m 2;∑M —坝体各部分的重力对形心的弯距,kN.M;W —作用在计算截面的抗弯截面系数;3.抗滑稳定坝受到铅直力和水平力的共同作用下,要求沿坝基底面的抗滑力必须大于作用在坝结构水平向的滑动力,并有一定的安全系数。
计算公式为:K C =∑∑Hf G * 式中K c —结构的抗滑稳定安全系数;∑G —坝的基底总铅直力,kN ; ∑H —坝的水平方向总作用力,kN ; f —坝基底的摩擦系数。
4.计算结果总表5.结论经由计算可知,该方案,结构能够满足浆砌石坝在不同运用时期的地基应力和抗滑稳定要求,不会发生地基沉陷和滑动变形,并满足经济适用的原则。
6.主要参考书目a )《浆砌石坝设计规范(SL25-91》;b )《水工建筑物荷载设计规范(DL5077—1997)》;c)天津大学祁庆和《水工建筑物(上册)》(水利电力出版社—1992)溢流坝的稳定计算1基本资料由于坝体受力为平面结构,取单位宽度坝体进行计算。
重力坝抗滑稳定计算
重力坝抗滑稳定计算重力坝在各种荷载组合作用下,都应保持稳定。
作用于重力坝上的荷载,可以归纳为垂直力ΣW ,扬压力U 以及水平力Σ∑∑'+'='PA C W f K 2;Σa)(kP C '/s~ 1300~1500 2Ⅱ好的岩石完整的、坚硬的、新鲜的、微裂隙的、块状的、厚层状的岩石。
饱和抗压强度6×104~105k/s~1100~13003 Ⅲ 中等岩石完整性较差的、微风化的、微裂隙的、中等坚硬的、块状的、层状的岩石。
饱和抗压强度3×104~6×104k/s~ 700~11004 Ⅳ 较差的岩石完整性差的、弱风化的、弱裂隙的、较软弱的中厚层状的岩石或节理不发育,但层理、片理较发育易风化的薄层状的岩石。
饱和抗压强度×104~3×104k/s~ 300~700注:1.本表不包括基岩内有软弱夹层的情况。
2.混凝土与基岩接触面上的抗剪断参数不能超过混凝土本身的抗剪断参数值。
3.对于Ⅰ、Ⅱ级基岩,如果建基面能做成较大的起伏差,则接触面上的抗剪断参数可采用混凝土的抗剪断参数。
(二)抗剪强度公式坝体虽然直接浇筑在岩基表面,但由于施工质量不能完全保证,地基岩层难免有缺陷,同时由于混凝土的温度收缩,渗流的长期作用,因此,坝体与地基之间可以假定为接触状态,而最大抗滑力等于接触面上可以产生的最大摩擦力(图1-9)。
当坝底为水平时,抗滑稳定安全系数可按下式计算∑∑-=PU W f K )(式中 K -按抗剪强度计算的抗滑稳定安全系数,按表1选用; ΣW -作用于坝体上的全部垂直荷载(不包括扬压力)(kN ); U -作用在滑动面上的扬压力(kN );f -坝体混凝土与坝基接触面的抗剪摩擦系数。
摩擦系数f 值,由抗剪试验测定。
小型工程的低坝无试验资料时,可参考地质条件类似工程的经验数据选用。
对于新鲜的、裂隙不发育的坚固岩石,可取f =~;微风化、弱裂隙的较坚固岩石,f =~;弱风化、弱裂隙的中等坚固岩石,f =~。
I-1混凝土重力坝抗滑稳定及坝基应力计算程序
I -1混凝土重力坝抗滑稳定及坝基应力计算程序作者 朱凤娟(水电部天津勘测设计院) 校核 牟广丞(水电部天津勘测设计院)一、编制目的和依据本程序根据“混凝土重力坝设计规范”(SDJ21-78)、“水工建筑物抗震设计规范” (SDJ10-78)及“混凝土重力坝设计规范修改补充规定”(1985年1月《水利水电技术》)编制。
用本程序对选定的混凝土重力坝断面作抗滑稳定和坝基应力计算,能迅速获得成果,方便设计。
本程序例题有详细的手算考证,并验算了潘家口工程、板桥溢流坝、石漫滩挡水坝,成果正确。
尽管补充规定末列入抗剪安全系数公式,但考虑到目前抗剪断面两个公式并用的实际情况,所以程序中仍然列入了两个公式。
二、程序说明(一)计算原理及公式 1,抗剪安全系数公式:抗剪断安全系数公式:上、下游面垂直正应力:2,荷载种类:(1) 坝体自重:自动根据断面尺计算,溢流坝闸墩及上部结构作为附加重量加入,廊道、大孔口等作为附加重量扣除。
(2) 水压力:根据上、下游水位自动计算。
设置C9标识符,使电站坝段厂坝间分缝时,不计下游面水压力、 水重计及变坝坡影响。
(3) 泥沙压力:水平泥沙压力计算公式如下:式中:γs ---泥沙浮容重 Φ ---泥沙内磨擦角. 泥沙重计算类同水重。
(4) 扬压力:根据修改规定,坝基扬压力图形改为仅在排水幕处折减一次。
(5) 浪压力:输入浪高之半h L 及波长之半L L 根据规范附录二提供公式自动计算。
∑∑+=VCA V fK 2∑∑=V W fK 1)245(210224ϕγ--=tg H V s 26T MTW y ∑∑±=σ(6) 地震惯性力:当某种荷载组合计入地震时,程序自动计算水平地震惯性力,当地震烈度大于7度时,计入竖向地震惯性力。
(7) 地震动水压力:单宽总地震动水压力(水平)为:当上游面垂直和直立坡大于1/2坝高时=90,否则为水面点与坝脚的连线与水平面夹角。
当≠90时,竖向动水压力为(8) 附加荷载:溢流顶水量、闸墩与闸门所受的水压力、泄流时的动水压力、冰压力等均可作为附加荷载计入。
重力坝稳定和应力计算程序使用说明
重力坝稳定和应力计算程序(SAOGD1)使用说明本程序可用于实体重力坝的稳定和应力计算。
考虑的荷载有坝体自重及固定设备重、水压力、扬压力、浪压力、淤砂压力、地震水压力、地震泥沙压力、地震惯性力等。
可以考虑坝基抽排减压及坝坡变化。
除坝基扬压力按文献3(见图1)计算外,其余各项荷载按文献1计算。
坝体内部应力按文献2计算。
程序中长度单位为米,力的单位为吨,力矩单位为吨·米,应力单位为吨/米2。
一、输入采用自由格式、1.输入枢纽控制数据 ZP、ZU、UN、DM、GC、GS、DX、FIS共8个数。
ZP——坝顶高程;ZU——上游起坡点高程;UN——上游坝坡;DM——下游坝坡;GC——坝体容重;GS——淤砂容重;DX——计算截面上各应力计算点之间的间距(作应力输出用),从坝轴线(本程序规定坝体上游铅直面及其延长线为坝轴线)向上下游方向量取。
FIS——淤砂内摩擦角;2.输入计算控制数据NCASE、NBLOCK、NPRINT、NNP共4个数。
NCASE——计算工况组数;NBLOCK——计算坝段数;NPRINT——是否需要打印各应力系数的指示参数;填1表示需要打印,填0表示不需要打印。
NNP——断面方案数,填0表示不考虑经济断面选择。
3.输入各计算工况特征。
逐个工况输入,先算的工况先输入。
工况之间次序可以任意,但第3种工况(及地震工况)不能最先计算。
每种工况输入ICASE、H1、HS、H2、HL、KH、Q,共7×NCASE个数。
ICASE——计算工况指示参数。
分1、2、3、4、5五种工况。
1——正常高水位,不考虑扬压力;2——正常高水位,考虑扬压力;3——正常高水位,考虑扬压力和地震;4——设计洪水位,考虑扬压力;5——校核洪水位,考虑扬压力。
H1——上游水位;HS——淤砂高程;H2——下游水位;HL——波浪高度(从波峰到波谷的高差,注意不能为0值);KH——地震系数;Q——鼻坎处单宽下泄流量(非溢流坝为0值)。
重力坝稳定及应力计算书
5.1重力坝剖面设计及原则5.1.1剖面尺寸的确定重力坝坝顶高程1152.00m,坝高H=40.00m。
为了适应运用和施工的需要,坝顶必须要有一定的宽度。
一般地,坝顶宽度取坝高的8%~10%,且不小于2m。
若有交通要求或有移动式启闭设施时,应根据实际需要确定。
综合考虑以上因素,坝顶宽度m。
B10考虑坝体利用部分水中增加其抗滑稳定,根据工程实践,上游边坡坡率n=0~0.2,下游边坡坡率m=0~0.8。
故上游边坡坡率初步拟定为0.2,下游边坡坡率初步拟定为0.8。
上游折坡点位置应结合应力控制标准和发电引水管、泄洪孔等建筑物的进口高程来定,一般折坡点在坝高的1/3~2/3附近,故初拟上游折坡点高程为1138.20m。
下游折坡点的位置应根据坝的实用剖面形式、坝顶宽度,结合坝的基本剖面计算得到(最常用的是其基本剖面的顶点位于校核洪水位处),故初拟下游折坡点高程为1148.50m。
5.1.2剖面设计原则重力坝在水压力及其他荷载的作用下,主要依靠坝体自重产生的抗滑力维持抗滑稳定;同时依靠坝体自重产生压应力来抵消由于水压力引起的拉应力以满足强度要求。
非溢流坝剖面设计的基本原则是:①满足稳定和强度要求,保证大坝安全;②工程量小,造价低;③结构合理,运用方便;④利于施工,方便维修。
遵循以上原则拟订出的剖面,需要经过稳定及强度验算,分析是否满足安全和经济的要求,坝体剖面可以参照以前的工程实例,结合本工程的实际情况,先行拟定,然后根据稳定和应力分析进行必要的修正。
重复以上过程直至得到一个经济的剖面。
5.2重力坝挡水坝段荷载计算5.2.1基本原理与荷载组合重力坝的荷载主要有:自重、静水压力、扬压力、泥沙压力、浪压力、动水压力、冰压力、地震荷载等。
本次设计取单位长度的坝段进行计算。
相关荷载组合见表4.5。
表4.5 荷载组合表 组合情况相关工况 自重静水压力扬压力泥沙压力浪压力冰压力地震荷载动水压力土压力基本组合正常水位√√√√√√设计水位 √√√√√√冰冻 √√√√√√特殊组合校核水位 √√√√√√地震情况 √√√√√√√5.2.2坝体自重计算5.3.2.1坝体自重计算公式坝体自重W (KN )的计算公式:V w c ⨯=γ(4.5)式中:V -坝体体积(m 3),以单位长度的坝段为单位,通常把其断面分成若干个简单的几何图形分别计算;c γ-坝体砌石的重度,一般取23kN/m 3。
重力坝稳定及应力计算书
下游水位1123.15m ,下游水深1123.15-1117.50=5.65m图4.2 设计工况静水压力计算图水平向: 一区:KNP 67.510426.3281.95.021=⨯⨯=mL 26.1550.43/26.321=+=(顺时针)M KN M ∙=⨯=26.7789726.1567.51041五区:KNP 58.15665.581.95.025=⨯⨯=mL 38.650.43/65.55=+=(逆时针)M KN M ∙=⨯=98.99838.658.1565图4.2 校核工况静水压力计算图水平向: 一区:KNP 74.535705.3381.95.021=⨯⨯=mL 52.1550.43/05.331=+=(顺时针)M KN M ∙=⨯=12.8315252.1574.53571五区:KNP 06.20445.681.95.025=⨯⨯=mL 65.650.43/45.65=+=(逆时针)M KN M ∙=⨯=00.135765.606.2045垂直向:图4.2 正常工况静水压力计算图水平向: 一区:KNP 88.456250.3081.95.021=⨯⨯=mL 67.1450.43/5.301=+=(顺时针)M KN M ∙=⨯=45.6693767.1488.45621五区:KNP 48.780.481.95.025=⨯⨯=mL 83.550.43/45=+=(逆时针)M KN M ∙=⨯=54.45783.548.785垂直向:图4.6 扬压力分区示意图1.设计工况设计工况下,上游水深为32.26m ,下游水深为5.65m 。
查得渗透压力强度系数取0.30,渗透压力分项系数为1.2,浮托力分项系数为1.0,则设计值为0.3。
21/47.31626.3281.9m KN H =⨯=γ22/43.5565.581.9m KN H =⨯=γ221/04.261m KN H H H =-=γγγ2/31.7804.2613.0m KN H =⨯=αγ KN U 37.91755.1643.551=⨯= (顺时针)KN W 82.759528.837.9171=⨯=KN U 45.72020.931.782=⨯=(顺时针)KN W 38.860995.1145.7202=⨯=KN U 74.39835.725.543=⨯=(顺时针)KN W 36.146768.374.3983=⨯=KN U 56.84020.973.1825.04=⨯⨯=(顺时针)KN W 75.1133048.1356.8404=⨯=。
I-1混凝土重力坝抗滑稳定及坝基应力计算程序
I -1混凝土重力坝抗滑稳定及坝基应力计算程序作者 朱凤娟(水电部天津勘测设计院) 校核 牟广丞(水电部天津勘测设计院)一、编制目的和依据本程序根据“混凝土重力坝设计规范”(SDJ21-78)、“水工建筑物抗震设计规范” (SDJ10-78)及“混凝土重力坝设计规范修改补充规定”(1985年1月《水利水电技术》)编制。
用本程序对选定的混凝土重力坝断面作抗滑稳定和坝基应力计算,能迅速获得成果,方便设计。
本程序例题有详细的手算考证,并验算了潘家口工程、板桥溢流坝、石漫滩挡水坝,成果正确。
尽管补充规定末列入抗剪安全系数公式,但考虑到目前抗剪断面两个公式并用的实际情况,所以程序中仍然列入了两个公式。
二、程序说明(一)计算原理及公式 1,抗剪安全系数公式:抗剪断安全系数公式:上、下游面垂直正应力:2,荷载种类:(1) 坝体自重:自动根据断面尺计算,溢流坝闸墩及上部结构作为附加重量加入,廊道、大孔口等作为附加重量扣除。
(2) 水压力:根据上、下游水位自动计算。
设置C9标识符,使电站坝段厂坝间分缝时,不计下游面水压力、 水重计及变坝坡影响。
(3) 泥沙压力:水平泥沙压力计算公式如下:式中:γs ---泥沙浮容重 Φ ---泥沙内磨擦角. 泥沙重计算类同水重。
(4) 扬压力:根据修改规定,坝基扬压力图形改为仅在排水幕处折减一次。
(5) 浪压力:输入浪高之半h L 及波长之半L L 根据规范附录二提供公式自动计算。
∑∑+=VCA V fK 2∑∑=V W fK 1)245(210224ϕγ--=tg H V s 26T MTW y ∑∑±=σ(6) 地震惯性力:当某种荷载组合计入地震时,程序自动计算水平地震惯性力,当地震烈度大于7度时,计入竖向地震惯性力。
(7) 地震动水压力:单宽总地震动水压力(水平)为:当上游面垂直和直立坡大于1/2坝高时=90,否则为水面点与坝脚的连线与水平面夹角。
当≠90时,竖向动水压力为(8) 附加荷载:溢流顶水量、闸墩与闸门所受的水压力、泄流时的动水压力、冰压力等均可作为附加荷载计入。
重力坝抗滑稳定与应力计算
项目名称:几亚凯勒塔(KALETA)水电站工程项目阶段:复核阶段计算书名称:重力坝抗滑稳定及应力计算审查:校核:计算:黄河勘测规划设计Yellow River Engineering Consulting Co. ,Ltd.二〇一二年四月目录1.计算说明 (1)1.1 目的与要求 (1)1.2 基本数据 (1)2.计算参数和研究方法 (1)2.1 荷载组合 (1)2.2 计算参数及控制标准 (2)2.3 计算理论和方法 (3)3.计算过程 (4)3.1 荷载计算 (4)3.1.1 自重 (4)3.1.2 水压力 (4)3.1.3 扬压力 (6)3.1.4 地震荷载 (7)3.2 安全系数及应力计算 (9)4.结果汇总 (11)1.计算说明1.1 目的与要求下列计算是有关挡水坝段、溢流坝段、进水口、底孔坝段抗滑稳定性和基底应力计算。
1.2 基本数据正常蓄水位:110m;设计洪水位:112.94m;校核洪水位:113.30m;大坝设计洪水标准为100年一遇,校核洪水标准为1000年一遇;坝址区地震动峰值加速度为0.15g(g=9.81m/s²),地震动反应周期为0.25s,相应的地震基本烈度为7度,本工程抗震设计烈度为7度。
计算选取的挡水坝段坝顶高程114.00m,坝基底高程92.00m,坝高22m,坝顶宽5m。
上游坝面竖直,下游坝坡在107.33m高程以上竖直,在107.33m 高程以下坡度为1:0.75。
计算选取的溢流坝段堰顶高程110.00m,坝基底高程96.00m,坝高14m,上游坝面竖直,下游坝坡在108.59m高程以上为Creager剖面,在108.59m高程以下坡度为1:0.85。
正常蓄水位时,溢流坝段下游无水;设计洪水位112.94m 时,下游水位104.80m;校核洪水位113.30m时,下游水位105.42m。
进水口坝段顶高程114.00m,坝基底高程87.80m,坝高26.2m,顶宽13.06m,上游坝坡为1:0.25,下游坝坡在107.33m高程以上竖直,在107.33m 高程以下坡度为1:0.75。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
项目名称:几内亚凯勒塔(KALETA)水电站工程项目阶段:复核阶段计算书名称:重力坝抗滑稳定及应力计算审查:校核:计算:黄河勘测规划设计有限公司Yellow River Engineering Consulting Co. ,Ltd.二〇一二年四月目录1.计算说明 (1)目的与要求 (1)基本数据 (1)2.计算参数和研究方法 (1)荷载组合 (1)计算参数及控制标准 (2)计算理论和方法 (3)3.计算过程 (4)荷载计算 (4)自重 (4)水压力 (4)扬压力 (6)地震荷载 (7)安全系数及应力计算 (9)4.结果汇总 (11)1.计算说明目的与要求下列计算是有关挡水坝段、溢流坝段、进水口、底孔坝段抗滑稳定性和基底应力计算。
基本数据正常蓄水位:110m;设计洪水位:112.94m;校核洪水位:113.30m;大坝设计洪水标准为100年一遇,校核洪水标准为1000年一遇;坝址区地震动峰值加速度为0.15g(g=9.81m/s²),地震动反应周期为,相应的地震基本烈度为7度,本工程抗震设计烈度为7度。
计算选取的挡水坝段坝顶高程114.00m,坝基底高程92.00m,坝高22m,坝顶宽5m。
上游坝面竖直,下游坝坡在107.33m高程以上竖直,在107.33m 高程以下坡度为1:。
计算选取的溢流坝段堰顶高程110.00m,坝基底高程96.00m,坝高14m,上游坝面竖直,下游坝坡在108.59m高程以上为Creager剖面,在108.59m高程以下坡度为1:。
正常蓄水位时,溢流坝段下游无水;设计洪水位112.94m时,下游水位104.80m;校核洪水位113.30m时,下游水位105.42m。
进水口坝段顶高程114.00m,坝基底高程87.80m,坝高26.2m,顶宽13.06m,上游坝坡为1:,下游坝坡在107.33m高程以上竖直,在107.33m高程以下坡度为1:。
底孔坝段顶高程114.00m,坝基底高程83.50m,坝高30.5m,顶宽10.0m,上游坝面竖直,下游坝坡在107.33m高程以上竖直,在107.33m高程以下坡度为1:。
2.计算参数和研究方法荷载组合作用在坝上的主要荷载包括:坝体自重、上下游水压力、扬压力、地震力。
基本组合:正常蓄水位情况(上游水位110.0m)设计洪水位情况(上游水位112.94m)特殊组合:校核洪水位情况(上游水位113.30m)地震情况(正常蓄水位+地震荷载)计算参数及控制标准水容重γw:m3混凝土容重γc:24KN/m3坝址区岩体主要为坚硬的辉绿岩和砂岩,大坝的建基面基本上分布在弱风化的辉绿岩和砂岩上。
坝基面抗滑稳定计算的岩体及混凝土物理力学参数按表1-1取值,坝基面抗滑稳定安全系数和坝基应力应满足表1-2规定的数值。
由于碾压混凝土坝的碾压层面的结合质量受材料性质、混凝土配合比、施工工艺、施工管理水平以及施工现场气候条件等许多因素的影响,容易成为坝体的薄弱环节,所以需要核算沿坝体混凝土碾压层面的抗滑稳定,坝体碾压层面的抗滑稳定计算采用抗剪断公式,安全系数值的控制标准应符合表1-2的要求。
根据国内经验,碾压层面的抗剪断参数可取:f’=,c’=。
表1-1 抗滑稳定计算岩体及混凝土力学参数表1-2 抗滑稳定安全系数和坝基容许应力重力坝坝基面坝踵、坝趾的垂直应力在运用期的各种荷载组合下(地震荷载除外),坝踵垂直应力不应出现拉应力,坝趾垂直应力应小于坝基容许压应力。
计算理论和方法混凝土重力坝坝体稳定采用刚体极限平衡法计算,分别计算各坝段不同水平截面(包括坝体混凝土碾压层面、坝体混凝土-基岩结合面)上的外加荷载及应力,并计算出抗剪和抗剪断稳定安全系数,以及坝基截面的垂直应力。
为了确保结构即使在排水系统失效时也能安全运行,本次设计时扬压力考虑全水头。
PWf K ∑∑=(抗剪强度计算公式) PA C W f K ∑'+∑'='(抗剪断强度计算公式)式中:K ’—按抗剪断强度计算的抗滑稳定安全系数; f —坝体混凝土与坝基接触面的抗剪摩擦系数; f ’—坝体混凝土与坝基接触面的抗剪断摩擦系数; C ’—坝体混凝土与坝基接触面的抗剪断凝聚力,KPa ; A —坝基接触面截面积,m 2;ΣW —作用于坝体上的全部荷载对于计算滑动面的法向分值,KN ; ΣP —作用于坝体上的全部荷载对于计算滑动面的切向分值,KN ; 坝基截面的垂直应力按下式计算:JxM A W y ⋅∑±∑=σ 式中:σy —坝踵、坝趾垂直应力,KPa ;ΣW —作用于坝段上或1m 坝长上的全部荷载在坝基截面上法向力总和,KN ;ΣM —作用于坝段上或1m 坝长上的全部荷载对坝基截面形心轴的力矩总和,;A —坝段或1m 坝长的坝基截面积,m ²;x—坝基截面上计算点到形心轴的距离,m;J—坝段或者1m坝长的坝基截面对形心轴的惯性矩,m4。
3.计算过程荷载计算3.1.1 自重各种工况下,建筑物的自重均相同。
挡水坝段:单宽坝段(1m坝长)断面面积A1=198.167m2单宽坝段断面自重G1=(向下为正方向)单宽坝段断面形心对坝基中点的力臂L1=-2.93m(向右为正方向)力矩M G1=(顺时针方向为正)溢流坝段:单宽坝段(1m坝长)断面面积A1=123.73m2单宽坝段断面自重G1= (向下为正方向)单宽坝段断面形心对坝基中点的力臂L1=-1.486m(向右为正方向)力矩M G1= (顺时针方向为正)进水口坝段:单宽坝段(1m坝长)断面面积A1=586.74m2单宽坝段断面自重G1=(向下为正方向)单宽坝段断面形心对坝基中点的力臂L1=0.05m(向右为正方向)力矩M G1=(顺时针方向为正)底孔坝段:单宽坝段(1m坝长)断面面积A1=518.01m2单宽坝段断面自重G1=(向下为正方向)单宽坝段断面形心对坝基中点的力臂L1=-3.22m(向右为正方向)力矩M G1=(顺时针方向为正)3.1.2 水压力水压力分为水平向静水压力、竖向水压力(溢流坝段泄洪时)、地震情况下的动水压力(此荷载为地震荷载)。
1、水平向静水压力(1)挡水坝段正常蓄水位情况:上游水深H u1=18.0m上游水压力P u1=力臂L u1=6m力矩M Pu1=设计洪水位情况:上游水深H u2=20.94m上游水压力P u2=力臂L u2=6.98m力矩M Pu2=校核洪水位情况:上游水深H u3=21.3m上游水压力P u3=力臂L u3=7.1m力矩M Pu3=(2)溢流坝段正常蓄水位情况:上游水深H u1=14.0m上游水压力P u1=力臂L u1=4.67m力矩M Pu1=设计洪水位情况:上游水深H u2=16.94m上游水压力P u2=力臂L u2=5.65m力矩M Pu2= 下游水深H d2=8.8m下游水压力P d2=力臂L d2=2.93m力矩M Pd2=校核洪水位情况:上游水深H u3=17.3m上游水压力P u3=力臂L u3=5.77m力矩M Pu3= 下游水深H d3=9.42m下游水压力P d3=力臂L d3=3.14m力矩M Pd3=(3)进水口坝段正常蓄水位情况:上游水深H u1=22.2m上游水压力P u1=力臂L u1=7.4m力矩M Pu1=设计洪水位情况:上游水深H u2=25.14m上游水压力P u2=力臂L u2=8.38m力矩M Pu2=校核洪水位情况:上游水深H u3=25.5m上游水压力P u3=力臂L u3=8.5m力矩M Pu3=(4)底孔坝段正常蓄水位情况:上游水深H u1=26.5m上游水压力P u1=力臂L u1=8.83m力矩M Pu1=设计洪水位情况:上游水深H u2=29.44m上游水压力P u2=力臂L u2=9.81m力矩M Pu2=校核洪水位情况:上游水深H u3=29.8m上游水压力P u3=力臂L u3=9.93m力矩M Pu3=、竖向水压力竖向水压力是在溢流坝段泄洪时作用在溢流坝面上的水压力,水面线按堰上水深和下游水深的平均初估。
设计洪水位情况:单宽坝段上水体面积A2=38.23m2单宽坝段上水重G2=力臂L2=-0.12m力矩M G2= 校核洪水位情况:单宽坝段上水体面积A3=46.81m2单宽坝段上水重G3=力臂L3=-0.11m力矩M G3= 进水口坝段斜断面上水重正常蓄水位情况:上游水深H u1=22.2m上游水压力G w1=力臂L u1=12.69m力矩M w1=设计洪水位情况:上游水深H u2=25.14m上游水压力G w2=力臂L u2=12.69m力矩M w2=校核洪水位情况:上游水深H u3=25.5m上游水压力G w3=力臂L u3=12.69m力矩M w3=3.1.3 扬压力为了确保结构即使在排水系统失效时也能安全运行,本次设计时扬压力考虑全水头。
坝底面上游处的扬压力作用水头为H u(上游水深),下游处为H d(下游水深),其间以直线连接。
(1)挡水坝段正常蓄水位情况:上游水深H u1=18.0m扬压力U1=力臂L u1=-2.75m力矩M U1=设计洪水位情况:上游水深H u2=20.94m扬压力U2=-1693KN力臂L u2=-2.75m力矩M U2=校核洪水位情况:上游水深H u3=21.3m扬压力U3=力臂L u3=-2.75m力矩M U3=(2)溢流坝段正常蓄水位情况:上游水深H u1=14.0m下游水深H d1=0m扬压力U1=力臂L u1=-2.17m力矩M U1=设计洪水位情况:上游水深H u2=16.94m下游水深H d2=8.8m扬压力U2=力臂L u2=-0.67m力矩M U2=校核洪水位情况:上游水深H u3=17.3m下游水深H d3=9.42m扬压力U3=力臂L u3=-0.64m力矩M U3=(3)进水口坝段正常蓄水位情况:上游水深H u1=22.20m扬压力U1=力臂L u1=-5.01m力矩M U1=设计洪水位情况:上游水深H u2=25.14m扬压力U2=力臂L u2=-5.01m力矩M U2=校核洪水位情况:上游水深H u3=25.50m扬压力U3=力臂L u3=-5.01m力矩M U3=(4)底孔坝段正常蓄水位情况:上游水深H u1=26.5m扬压力U1=力臂L u1=-4.65m力矩M U1=设计洪水位情况:上游水深H u2=29.44m扬压力U2=力臂L u2=-4.65m力矩M U2=校核洪水位情况:上游水深H u3=29.8m扬压力U3=力臂L u3=-4.65m力矩M U3=3.1.4 地震荷载一般情况下,混凝土重力坝在抗震设计中可以只计入顺水流向的水平向地震作用。
抗震计算考虑的地震作用包括建筑物自重和地震惯性力,水平向地震作用的动水压力,此时,大坝上游水位采用正常蓄水位。