第三届全国大学生数学竞赛决赛试题(非数学类)+部分标准答案

合集下载

第三届全国大学生数学竞赛决赛试卷模版

第三届全国大学生数学竞赛决赛试卷模版

使用说明为了更好地方便您的理解和使用,发挥本文档的价值,请在使用本模版之前仔细阅读以下说明:本模版为根据一般情况制定或编写的常规模版;使用过程中请根据结合您的客观实际情况作出必要的修改和完善;本文档为word格式,您可以放心修改使用。

希望本文档能够对您有所帮助!!!感谢使用第三届全国大学生数学竞赛决赛试卷(非数学类,2012)本试卷共2页,共6题。

全卷满分100分。

考试用时150分钟。

一、(本大题共5小题,每小题6分,共30分)计算下列各题(要求写出重要步骤).(1)解:(2)解:(令)(3)设函数有二阶连续偏导数, 满足且,是由方程所确定的函数.求解:依题意有,是函数,、是自变量。

将方程两边同时对求导,,则,于是(4)求不定积分解:(5)求曲面和所围立体的表面积解:联立,,解得两曲面的交线所在的平面为,它将表面分为与两部分,它们在平面上的投影为,在上在上则二、(本题13分)讨论的敛散性,其中是一个实常数.解:记①若,;则发散②若,则,而;所以发散。

③若,即,考级数敛散性即可当时,对任何,我们有这样,存在,使得.从而可知,当,时,所讨论的积分收敛,否则发散。

三、(本题13分)设在上无穷次可微,并且满足:存在,使得,,,且,求证:在上,证明:因为在上无穷次可微,且,所以(*)由,,得,于是由罗尔定理,对于自然数在上,存在,使得,且这里在上,对应用罗尔定理,存在,使得,且于是类似的,对于任意的,有有(*)四、(本题共16分,第1小题6分,第2小题10分)设D为椭圆形,面密为ρ的均质薄板;l为通过椭圆焦点(其中)垂直于薄板的旋转轴.1.求薄板D绕l旋转的转动惯量J;2.对于固定的转动惯量,讨论椭圆薄板的面积是否有最大值和最小值.解:1.2.设J固定,是确定的隐函数,则,对关于求导,五、(本题12分)设连续可微函数由方程(其中有连续的偏导数)唯一确定,L为正向单位圆周. 试求:解:由格林公式又:连续可微函数由方程两边同时对求偏导数:两边同时对求偏导数:代入上式:六、(本题共16分,第1小题6分,第2小题10分) (1)求解微分方程(2)如为上述方程的解,证明。

2011-2012年第3届全国大学生数学竞赛各赛区预赛及决赛试题和答案(非数学类&数学类)

2011-2012年第3届全国大学生数学竞赛各赛区预赛及决赛试题和答案(非数学类&数学类)
(其中 G 为引力常数). h2 x 2
…………………5 分
这个引力在水平方向的分量为 dFx

Gm xdx . 从而 ( h 2 x 2 )3 2
Fx
Gmxdx Gm 2 2 3/ 2 (h x ) 2 a

d (x2 ) Gm (h 2 x 2 ) 1 / 2 2 2 3/ 2 a (h x ) a
2 2 2
I f ( ax by cz ) dS . 求证: I 2 f ( a 2 b 2 c 2 u )du

1
1
解:由 的面积为 4 可见:当 a, b, c 都为零时,等式成立. 当它们不全为零时, 可知:原点到平面 ax by cz d 0 的距离是
…………………2 分
|d | a2 b2 c2
设平面 Pu : u
.
…………………………5 分
ax by cz a2 b2 c2
n
2. 如果存在正整数 p,使得 lim( an p an ) ,则 lim
an . n n p
证明:1. 由 lim an a , M 0 使得 | an | M ,且 0, N1 ,当 n > N1 时,
n
2 N ( M | a |) 因为 N 2 N1 ,当 n > N2 时, 1 . n 2
解:令 S ( x )
x

x
2n 1 2 n 2 ,则其的定义区间为 ( 2, 2) . x ( 2, 2) , x 2n n 1

2n 1 2 n 2 x 2 n 1 x x 2 S ( t ) dt t dt n n 2 2 2 n 1 2 n 1 n 1 0 0

历届大学生高等数学竞赛真题及答案非数学类14页

历届大学生高等数学竞赛真题及答案非数学类14页

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x y x x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,令u t -=1,则21t u -=2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面 2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

全国大学生数学竞赛试题解答及评分标准(非数学类)

全国大学生数学竞赛试题解答及评分标准(非数学类)

全国大学生竞赛历年试题名师精讲(非数学类)(2009——2013)第五届全国大学生数学竞赛预赛试卷(非数学类)一、 解答下列各题(每小题6分共24分,要求写出重要步骤)1.求极限(lim 1sin nn →∞+.解因为()sin sin 2n π==……(2分);原式lim 1exp lim ln 1nn n n →∞→∞⎡⎤⎛⎫⎛⎫=+=+⎢⎥ ⎢⎥⎝⎝⎣⎦=2.证明广义积分0sin xdx x ⎰不是绝对收敛的解 记()1sin n n nx a dx xππ+=⎰,只要证明0n n a ∞=∑发散即可。

……………………(2分)因为()()()()10112sin sin 111n n n a x dx xdx n n n ππππππ+≥==+++⎰⎰。

…………(2分) 而()021n n π∞=+∑发散,故由比较判别法0n n a ∞=∑发散。

……………………………………(2分)3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值。

解 方程两边对x 求导,得22236360x xy x y y y ''++-= ………………(1分)故()2222x x y y y x +'=-,令0y '=,得()200x x y x +=⇒=或2x y =-………(2分) 将2x y =-代入所给方程得2,1x y =-=,将0x =代入所给方程得0,1x y ==-,…………………………………(2分)又()()()()()2222222222422x xy y y x x x y yy x y y x ''++--+-''=-()()()0,1,02,1,0200220010,1020x y y x y y y y ''====-==+---''''==-<=>-,故()01y=-为极大值,()21y-=为极小值。

前三届全国大学生高等数学竞赛真题及答案(大纲)非数学类

前三届全国大学生高等数学竞赛真题及答案(大纲)非数学类

中国大学生数学竞赛竞赛大纲为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。

一、竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。

“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。

二、竞赛的内容“中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。

中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一、函数、极限、连续1.函数的概念及表示法、简单应用问题的函数关系的建立.2.函数的性质:有界性、单调性、周期性和奇偶性.3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4.数列极限与函数极限的定义及其性质、函数的左极限与右极限.5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.7.函数的连续性(含左连续与右连续)、函数间断点的类型.8.连续函数的性质和初等函数的连续性.9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).二、一元函数微分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数.5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6. 洛必达(L’Hospital)法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8. 函数最大值和最小值及其简单应用.9. 弧微分、曲率、曲率半径.三、一元函数积分学1.原函数和不定积分的概念.2.不定积分的基本性质、基本积分公式.3.定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz )公式. 4. 不定积分和定积分的换元积分法与分部积分法. 5. 有理函数、三角函数的有理式和简单无理函数的积分. 6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值. 四.常微分方程1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli )方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:),()n (x f y =),,(y x f y '='' ),(y y f y '=''.4. 线性微分方程解的性质及解的结构定理.5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积 7. 欧拉(Euler )方程. 8. 微分方程的简单应用 五、向量代数和空间解析几何1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2. 两向量垂直、平行的条件、两向量的夹角.3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦.4. 曲面方程和空间曲线方程的概念、平面方程、直线方程.5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.7. 空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程. 六、多元函数微分学1. 多元函数的概念、二元函数的几何意义.2. 二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.3. 多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4. 多元复合函数、隐函数的求导法.5. 二阶偏导数、方向导数和梯度.6. 空间曲线的切线和法平面、曲面的切平面和法线.7. 二元函数的二阶泰勒公式.8. 多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学1. 二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2.两类曲线积分的概念、性质及计算、两类曲线积分的关系.3.格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4.两类曲面积分的概念、性质及计算、两类曲面积分的关系.5.高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.6.重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)八、无穷级数1.常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2.几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.3.任意项级数的绝对收敛与条件收敛.4.函数项级数的收敛域与和函数的概念.5.幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.7.初等函数的幂级数展开式.8.函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

前三届全国大学生高等数学竞赛真题及答案(大纲)非数学类,DOC

前三届全国大学生高等数学竞赛真题及答案(大纲)非数学类,DOC

中国大学生数学竞赛竞赛大纲为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。

一、竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。

“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。

123.4567891.2.3.4.5.6.7.)、函数图形的描绘.8.函数最大值和最小值及其简单应用.9.弧微分、曲率、曲率半径.三、一元函数积分学1.原函数和不定积分的概念.2.不定积分的基本性质、基本积分公式.3.定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.4.不定积分和定积分的换元积分法与分部积分法.5. 有理函数、三角函数的有理式和简单无理函数的积分.6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值. 四.常微分方程1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli )方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:),()n (x f y =),,(y x f y '=''),(y y f y '=''.4.5. 6. 7. 8. 1. 2. 3. 4. 5. 6. 7. 1. 2. 3. 4. 5. 6. 7. 二元函数的二阶泰勒公式.8. 多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用. 七、多元函数积分学1. 二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2. 两类曲线积分的概念、性质及计算、两类曲线积分的关系.3. 格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4. 两类曲面积分的概念、性质及计算、两类曲面积分的关系.5. 高斯(Gauss )公式、斯托克斯(Stokes )公式、散度和旋度的概念及计算.6. 重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等) 八、无穷级数1. 常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2. 几何级数与p 级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz )判别法.3. 任意项级数的绝对收敛与条件收敛.4. 函数项级数的收敛域与和函数的概念.5. 幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6. 幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数7. 8. [-l ,l]1解:令2.设(f 0解:令⎰=2d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

第三届大学生数学竞赛初赛非数学类试题解答

第三届大学生数学竞赛初赛非数学类试题解答

第三届大学生数学竞赛初赛试题解答(2011.10)一、 计算题(每小题6分,共4个小题)1、220(1)(1ln(1))lim →+--+xx x e x x解答:因为22ln(1)22(1)(1ln(1))(1ln(1)),++--+--+=x xxx e x ee x xx220ln(1)lim →+=x e x e x22ln(1)ln(1)22220002222002202ln(1)21limlim lim 11ln(1)(1)2lim 2lim 2(1)(1ln(1))lim 0x x xxx x x x x xx x ee e xe e x x xx x x e e e x xx e x x++-→→→→→→+---==-+-+===-+--+=所以2、设2cos cos cos ,lim 222n n n n a a θθθ→∞=⋅⋅⋅⋅求解答:若0,lim 1n n a θ→∞==则22211222201cos cos cos cos cos cos sin 2222222sin 211cos cos cos sin 22222sin 211cos cos cos sin 22222sin 2sin 2sin 2n n n n n n n n n n n n nk a θθθθθθθθθθθθθθθθθθθθθ----≠>=⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅=,则当n 充分大,使得2时,这时,sin sin lim lim2sin2n n n n na θθθθ→∞→∞==3、求sgn(1),{(,)02,02}Dxy dxdy D x y x y -=≤≤≤≤⎰⎰其中解答:11{(,)0,02}2D x y x y =≤≤≤≤设2311{(,)2,0}211{(,)2,2}2D x y x y x D x y x y x=≤≤≤≤=≤≤≤≤123212112ln 2,32ln 2D D D dxdxdy dxdy x ⋃=+=+=-⎰⎰⎰⎰⎰ 312sgn(1)24ln 2DD D D xy dxdy dxdy dxdy ⋃-=-=-⎰⎰⎰⎰⎰⎰4、求幂级数22111212122n n n n n n n x ∞∞--==--∑∑的和函数,并求级数的和。

历届全国大学生高等数学竞赛真题及答案非数学类

历届全国大学生高等数学竞赛真题及答案非数学类

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

第三届全国大学生数学竞赛决赛解答

第三届全国大学生数学竞赛决赛解答

第三届全国大学生数学竞赛决赛试卷 (非数学类,2012)时间150分钟,满分100分一、(本大题共5小题,每小题6分,共30分)计算下列各题(要求写出重要步骤)(1)xx xx x x 222220sin cos sin lim -→ 解:422222330222220)](21[)](6[lim sin cos sin lim x x o x x x o x x x x x x x x x +--+-=-→→ 32)(32l i m 4440=+=→x x o x x (2)]1)1tan 2[(lim 613x e xx x x x +--++∞→解:原式]1)2[(lim 613x e xx x x +-+=+∞→366332203620)](21[)](621)[211(lim 1)211(lim tt o t e t o t t t t t te t t t t t ++-+++++=+-+=++→→ +∞=。

或+∞=+-++=+-+=++→→36520362013)211(lim 1)211(lim tt t e t t t t e t t t tt (3)设函数),(y x f 有二阶连续偏导数,满足0222=+-xx y xy y x yy x f f f f f f f ,且0≠y f ,),(z x y y =是由方程),(y x f z =所确定的函数,求22xy∂∂。

解:yx f f x y-=∂∂ 222)]([)]([y yx yy yx x y x xy xx y f f f f f f f f f f f x y -+--+-=∂∂02322=+--=yxxy xy y x yy x ff f f f f f f(4)求不定积分⎰+-+=dx e xx I x x 1)11(。

解:⎰⎰⎰++++=-+=x x xx xx xde dx e dx e xx I 111)11(C xedx exedx exx xx xx xx +=-+=++++⎰⎰1111(5)求曲面az y x =+22和)0(222>+-=a y x a z 所围立体的表面积。

历届全国大学生高等数学竞赛真题及答案非数学类.docx

历届全国大学生高等数学竞赛真题及答案非数学类.docx

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=10210d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u uv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解:令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

第三届全国大学生数学竞赛非数学决赛参考解答

第三届全国大学生数学竞赛非数学决赛参考解答
ab3 8
π
0
dϕ ∫ b 2t 2 sin 2 ϕ abtdt =
0
1

π
0
(1 − cos 2ϕ )dϕ = ab3
π 8
….. 6 分 3b3 − 15a 2b . 5a 3 − 9ab 2
2. 设 J 固定,b(a) 是 J =
abπρ (5a 2 − 3b 2 ) 确定的隐函数.则 b′( a ) = 4
1.求薄板 D 绕 l 旋转的转动惯量 J; 2.对于固定的转动惯量,讨论椭圆薄板的面积是否有最大值和最小值. 解: 1. J = ∫∫ ((c + x)2 + y 2 ) ρ dxdy = 2 ρ ∫ dϕ ∫ (c 2 + 2act cos ϕ + a 2t 2 cos 2 ϕ + b2t 2 sin 2 ϕ )abtdt
⎛ 18 J ⎞ 4 ⎛ 2π J ⎞ 2 πρ 3 abπρ a=⎜ a b≤J = (5a 2 − 3b 2 ) 可知,当 a → +∞ 时, ⎟ ,S =⎜ ⎟ ;由 2 4 ρπ ρ 5 5 5 ⎝ ⎠ ⎝ ⎠
4
1
1
b = O(a −3 ) ,所以 lim S = 0 .
a →+∞
…..14 分 由 此 可 知 , 椭 圆 的 面 积 不 存 在 最 大 值 和 最 小 值 ; 且
f ( x) = ∑
n =0 ∞
⎛ 1 ⎞ f ⎜ n ⎟ = 0, ⎝2 ⎠
(n = 1,2, ") .
f ( n ) ( 0) n x . n!
(∗) ….. 2 ⎝2 ⎠
⎛ 1 ⎞ (n = 1,2, ") ,得 f (0) = lim f ⎜ n ⎟ = 0 , n →∞ ⎝2 ⎠

历届全国大学生高等数学竞赛真题及答案非数学类.docx

历届全国大学生高等数学竞赛真题及答案非数学类.docx

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=10210d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u uv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解:令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

全国大学生数学竞赛试题解答及评分标准

全国大学生数学竞赛试题解答及评分标准

全国大学生数学竞赛试题解答及评分标准(总34页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除全国大学生竞赛历年试题名师精讲(非数学类)(2009——2013)第五届全国大学生数学竞赛预赛试卷(非数学类)一、 解答下列各题(每小题6分共24分,要求写出重要步骤)1.求极限(lim 1sin nn →∞+.解因为()sin sin 2sin n ππ==……(2分);原式lim 1exp lim ln 1sin nn n n →∞→∞⎡⎤⎛⎫⎛⎫=+=+⎢⎥ ⎢⎥⎝⎝⎣⎦………………………………………………………………………………………(2分);14exp lim exp n n n e →∞⎛⎫⎛⎫=== ⎝⎝……(2分) 2.证明广义积分0sin xdx x +∞⎰不是绝对收敛的解 记()1sin n n nx a dx xππ+=⎰,只要证明0n n a ∞=∑发散即可。

……………………(2分)因为()()()()10112sin sin 111n n n a x dx xdx n n n ππππππ+≥==+++⎰⎰。

…………(2分)而()021n n π∞=+∑发散,故由比较判别法0n n a ∞=∑发散。

……………………………………(2分)3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值。

解 方程两边对x 求导,得22236360x xy x y y y ''++-= ………………(1分)故()2222x x y y y x+'=-,令0y '=,得()200x x y x +=⇒=或2x y =-………(2分)将2x y =-代入所给方程得2,1x y =-=,将0x =代入所给方程得0,1x y ==-,…………………………………(2分)又()()()()()2222222222422x xy y y x x x y yy x y yx''++--+-''=-()()()0,1,02,1,0200220010,1020x y y x y y y y ''====-==+---''''==-<=>-, 故()01y =-为极大值,()21y -=为极小值。

前三届全国大学生高等数学竞赛真题及答案大纲)非数学类

前三届全国大学生高等数学竞赛真题及答案大纲)非数学类

中国大学生数学竞赛竞赛大纲为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。

一、竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。

“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。

二、竞赛的内容“中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。

中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一、函数、极限、连续1.函数的概念及表示法、简单应用问题的函数关系的建立.2.函数的性质:有界性、单调性、周期性和奇偶性.3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4.数列极限与函数极限的定义及其性质、函数的左极限与右极限.5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.7.函数的连续性(含左连续与右连续)、函数间断点的类型.8.连续函数的性质和初等函数的连续性.9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).二、一元函数微分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数.5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6. 洛必达(L’Hospital)法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8. 函数最大值和最小值及其简单应用.9. 弧微分、曲率、曲率半径. 三、一元函数积分学1. 原函数和不定积分的概念.2. 不定积分的基本性质、基本积分公式.3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.4. 不定积分和定积分的换元积分法与分部积分法.5. 有理函数、三角函数的有理式和简单无理函数的积分.6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值. 四.常微分方程1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:),()n (x f y =),,(y x f y '='' ),(y y f y '=''.4. 线性微分方程解的性质及解的结构定理.5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积7. 欧拉(Euler)方程.8. 微分方程的简单应用五、向量代数和空间解析几何1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2. 两向量垂直、平行的条件、两向量的夹角.3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦.4. 曲面方程和空间曲线方程的概念、平面方程、直线方程.5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.7. 空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程. 六、多元函数微分学1. 多元函数的概念、二元函数的几何意义.2. 二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.3. 多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4. 多元复合函数、隐函数的求导法.5. 二阶偏导数、方向导数和梯度.6. 空间曲线的切线和法平面、曲面的切平面和法线.7. 二元函数的二阶泰勒公式.8. 多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学1. 二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2. 两类曲线积分的概念、性质及计算、两类曲线积分的关系.3. 格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4. 两类曲面积分的概念、性质及计算、两类曲面积分的关系.5. 高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.6. 重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等) 八、无穷级数1. 常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2. 几何级数与p 级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.3. 任意项级数的绝对收敛与条件收敛.4. 函数项级数的收敛域与和函数的概念.5. 幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6. 幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.7. 初等函数的幂级数展开式.8. 函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l ,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三届全国大学生数学竞赛决赛试题(非数学类)+部分答案
————————————————————————————————作者:————————————————————————————————日期:
2
第三届全国大学生数学竞赛决赛试卷
(非数学类,2012)
本试卷共2页,共6题。

全卷满分100分。

考试用时150分钟。

一、(本大题共5小题,每小题6分,共30分)计算下列各题(要求写出重要步骤).
(1)222220sin cos lim sin x x x x x x
→- 22222222224
004200sin cos sin cos lim lim
sin (sin )(sin )(1cos )(1cos )112lim lim 22623
x x x x x x x x x x x x x x x x x x x x x x x →→→→--+-=-+-+=+=-+=g g 解:
(2) 13611lim tan 12x x x x e x x →+∞⎡⎤⎛⎫+--+ ⎪⎢⎥⎝⎭⎣⎦
1236
1
32363
022********
3200336(1tan )111112:lim 1tan 1lim 2(1tan )1(1tan )1
22=lim =lim 2(1tan )+12x t t x x t t t t t t t t t e t x e x
x x x t t t t t e t t t e t t t
t t t e t =→+∞→→→+--+⎡⎤⎛⎫+--+−−−→⎢⎥ ⎪⎝⎭⎣⎦+---+---=+∞⎡⎤+-+⎢⎥
⎣⎦
令解 (3) 设函数(,)f x y 有二阶连续偏导数, 满足2220x yy x y xy y yy f f f f f f f -+=且
0y f ≠,(,)y y x z =是由方程(,)z f x y =所确定的函数. 求22y
x
∂∂
2
22222
3
(,)0=()()()20
x x y
y
y xx yx
x yx yy x y
y x y xx x yx x yx x yy
y
y xx x yx x yy
y y y x z z f x y x f y y
f f x x f y y
f f f f f f f y x x x x f f f f f f f f f f f f f f f f f f f f =∂∂+⇒=-∂∂∂∂+-+∂∂
∂∂=-=-∂∂--+-+=-
=-=解:依题意有,是函数,、是自变量将方程两边同时对求导
(4) 求不定积分1
1(1)x x I x e dx x
+=+-⎰
111221111211111111
(1)=(1)[1(1)]1(1)x x x x x x x x x x x x x
x
x x x x x
x
x
x
I x e dx x e dx e dx
x x x x
e dx e dx e dx xde x
e
dx xe
e
dx xe
C
++++++++
+
+
+
=+-+-=+-=+-=+=+-=+⎰⎰⎰⎰⎰⎰⎰⎰⎰解: (5) 求曲面22x y az +=和222(0)z a x y a =-+>所围立体的表面积
二、(本题13分)讨论22
cos sin x
dx x x x
α+∞+⎰的敛散性,其中α是一个实常数. 得分
三、(本题13分)设()f x 在(,)-∞+∞上无穷次可微,并且满足:存在0M >,使得()()(,),(1,2)k f x M x k ≤∀∈-∞+∞=L ,,且1
(
)0,(1,2)2n
f n ==L 求证:在(,)-∞+∞上,()0f x ≡
()2(0)(0)()(0)(0)2!!
()(1)
!
n n n
x f f f x f f x x x n x
M x M e n '''=+++++≤+++=-L L
L L
四、(本题共16分,第1小题6分,第2小题10分)
设D 为椭圆形22
221(0)x y a b a b
+≤>>,面密度为ρ的均质薄板;l 为通过椭圆焦点
(,0)c -(其中222c a b =-)垂直于薄板的旋转轴.
1. 求薄板D 绕l 旋转的转动惯量J ;
2. 对于固定的转动惯量,讨论椭圆薄板的面积是否有最大值和最小值.
五、(本题12分)设连续可微函数(,)z f x y =由方程(,)0F xz y x yz --=(其中
(,)0F u v =有连续的偏导数)唯一确定, L 为正向单位圆周. 试求:
22
(2)(2)L
I xz yz dy xz yz dx =+-+⎰Ñ 解:由格林公式
22222(2)(2)()(22)(22)22()2()L
D
D D
Q P
I xz yz dy xz yz dx d x y
z z z z z z z xz
y x z yz d z xz y x yz d x x y y x y σσσ∂∂=+-+=-∂∂∂∂∂∂∂∂=+++++=++++∂∂∂∂∂∂⎰⎰⎰⎰⎰⎰⎰Ñ又:连续可微函数(,)z f x y =由方程(,)0F xz y x yz --= 两边同时对x 求偏导数:121221
()(1)0zF F z z z
F z x F y x x x yF xF +∂∂∂++-=⇒=∂∂∂- 两边同时对y 求偏导数:121212
(1)()0F zF z z z F x F z y y y x xF yF +∂∂∂-+--=⇒=∂∂∂- 代入上式:
212122112
222
12121212
2112222
2212121221
212122()
2()2()222D
D D D
D
zF F F zF I z xz y x yz d yF xF xF yF xz F xzF yzF yF xF xzF yzF yz F z d yF xF xF yF xz F yF xF yz F xF yF z yF xF z d z d yF xF yF xF d σ
σ
σσ
σπ++=++++--++++++=++--+---+-=+
=+--=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰
六、(本题共16分,第1小题6分,第2小题10分)
(1)求解微分方程2
(0)1
x
y xy xe y ⎧'-=⎪⎨=⎪⎩
(2)如()y f x =为上述方程的解,证明1
220lim ()12
n n f x dx n x π
→∞
=
+⎰
2
1
220lim 1x n ne
dx n x
→∞+⎰
2
222
2
2
21
1110220001
1
2
1
arctan arctan 2arctan 1arctan arctan 2[0,1]
arctan arctan arctan arctan arctan (1)arctan x x x x x x x ne dx e d nx e nx xe nxdx n x e n n xe dx e n n e dx e n n e
e n e n ξξξξξ
==-+=-∈=-=-=--⎰⎰⎰⎰⎰g 其中2
1
220lim =lim[arctan (1)arctan ][0,1]1=(1)
2
2
2
x n n ne
dx e n e n n x e
e ξξπ
π
π
→∞
→∞
=--∈+--=

其中。

相关文档
最新文档