风口布置设计计算表

合集下载

空调风口风速设计规范取值汇总

空调风口风速设计规范取值汇总

空调风口风速设计规范取值汇总汇总如下:1、排烟口的风速<10m/s (老建规946.6 )2(1)、空调送风口的出口风速,消声要求较高时,宜采用2-5m/s ,喷口送风可采用4-10m/s 。

(采暖 6.5.9)2(2)、空调侧送和散流器平送的出口风速2-5m/s。

孔板下送风的出口风速3-5 m/s。

条缝型风口下送(多用于纺织厂),当空气调节区层高为4-6m人员活动区风速不大于0.5m/s时,出口风速宜为2-4m/s。

(采暖条文6.5.9&民用条文7.4.11 &技措5.4.6.2【孔板】)3、空调回风口的吸风速度:(采暖 6.5.11 &民用7.4.13)利用走廊回风时,回风口安装在门或墙下部的回风口面风速1-1.5m/s (采暖条文 6.5.11 )4、自然通风系统的进排风口的空气流速(m/s ):(民用表6.6.4-1 )7、厨房排风系统的风管风速不宜小于8m/s,且不宜大于10m/s ;排风罩接风管的喉部风速应取4-5m/s。

(技措4210.2 )8、洗衣房机械排风系统洗衣机、烫平机、干洗机、压烫机、人体吹机等散热两大或有异味散出的设备上部,应设置排气罩,其罩面风速应>0.5m/s。

(技措4.5.1.3.1 )9、实验室通风柜操作口处风速:(技措表 4.5.7 )10、暗室通风宜采用机械排风、自然进风的通风方式,排风量宜取次/h换气。

排风口宜设在水池附近,进风口应采用遮光百叶窗,通过百叶窗的风速应v 2m/s。

(技措 4.5.8 )11、机械加压送风口不宜大于7m/s ;排烟口不宜大于10m/s ;机械补风口不宜大于10m/s,公共聚集场所不宜大于5m/s ;自然补风口不宜大于3m/s。

(技措 4.8.5.3 )12、人员长期停留的区域采用置换通风方式时,人脚踝处风速不宜超过0.2m/s < (技措5.4.10.2 )13、各类送风口的出口风速:(技措表5.4.11-1 )、风口选用总说明:(10K121 )1、风口布置需要综合考虑室内气流组织、噪声、建筑装修美观要求、安装维修以及经济性等方面因素。

风管风速表

风管风速表

镀锌板风管摩擦阻力表室风管风速选择表1、低速风管系统的推荐和最大流速m/s2、低速风管系统的最大允许速m/s注:民用住宅≤35dB(A),商务办公≤45dB(A)。

四、室风口风速选择表1、送风口风速m/s2、以噪音标准控制的允许送风流速4、送风口之最大允许流速m/s5、回风口风速6、回风格栅的推荐流速m/s百叶窗的推荐流速m/s8、逗留区流速与人体感觉的关系9、顶棚散流器送风量10、侧送风口送风量五、通风系统设计1、送风口布置间距回风口应根据具体情况布置一般原则:(1)人不经常停留的地方; (2)房间的边和角; (3)有利于气流的组织。

2、标准型号风盘所接散流器的尺寸表-办公室注:办公室推荐送风口流速:2.5-4.0m/s风机盘管接风管的风速:通常为1.5—2.0m/s之间,不能大于2.5m/s,否则会将冷凝水带出来。

3、散流器布置散流器平送时,宜按对称布置或者梅花型布置,散流器中心与侧墙的距离不宜小于1000mm;圆形或方形散流器布置时,其相应送风围(面积)的长宽比不宜大于1:1.5,送风水平射程与垂直射程(平顶至工作区上边界的距离)的比值,宜保持在0.5~1.5之间。

实际上这要看装饰要求而定,如250*250的散流器,间距一般在3.5米左右,320*320在4.2米左右。

4、空调房间允许最大送风温差℃舒适性空调的送风温差送风高度H小于等于5m,送风温差小于等于10度;送风高度H大于5m,送风温差小于等于15度。

为防止出风口结露,应使送风干球温度高于室空气的露点温度2-3度。

5、工艺性空气调节空调房间允许最大送风温差.注:生活区或工作区处于下送气流的扩散区时,送风温差应通过计算确定。

民用建筑最小新风量《空调通风工程系统运行管理规》(征求意见稿):空调通风系统运行期间,新风量宜满足下表的规定值,或者满足空气调节房间二氧化碳浓度小于0.1%。

民用建筑主要房间人员所需新风量〔m3/(h·P)〕《采暖通风与空气调节设计规》(报批稿)第3.1.9条:(强制性条文)建筑物室人员所需最小新风量,应符合以下规定:①民用建筑人员所需最小新风量按现行有关卫生标准确定;②工业建筑应保证每人少于30 m3/h的新风量。

常用风口设计风速

常用风口设计风速

简介:1、排烟口的风速≤10m/s(老建规9.4.6.6)2((1)、空调送风口的出口风速,消声要求较高时,宜采用2-5m/s,喷口送风可采用4-10m/s。

(采暖6.5.9)2(2)、空调侧送和散流器平送的出口风速2-5 m/s。

4、地面固定斜百叶风口安装于地面,适用于下送风。

5、侧送百叶送风口的最大风速(m/s)见下表:使用场所风速使用场所风速图书馆、播音室 2.5 一般办公室 6.0住宅、公寓、旅馆 3.8 个人办公室 4.0剧场、会堂 3.8 商店7.5电影院 6.0 医院病房 4.06、对于舒适性空调,当采用双层百叶风口侧送时,应选用横向可调节叶片在外、竖向固定叶片在内的风口。

暖通南社整理。

7、对于工艺性空调,当采用贴服侧送时,应采用水平与垂直方向均可调节的双层百叶风口,并配对开多叶调节阀。

三、散流器选用说明:(10K121)1、自力式温控变流行散流器适用于高大空间顶部嵩俸。

自力式温控变流行散流器是将热动元件安装在圆形或方形散流器内,通过感受空调系统送风温度的高低来调节叶片角度,改变送风气流的流型。

夏季送风温度小于等于17℃时,调节叶片角度为水平送风;冬季送风温度大于等于27℃时,调节叶片角度为垂直送风。

2、地面散流器适合安装在夹层地板内,用于高舒适标准的工作环境及计算机房等局部热源较多的场合。

3、圆形或方形散流器相应送风面积的长宽比不宜大于1:1.5.4、散流器宜对称布置或梅花形布置,散流器中心线与侧墙距离不宜小于1.0m。

5、地面散流器不应直接安装在作为下,安装位置距离座位不宜小于400mm。

6、并非所有地面散流器均需设集尘斗,且集尘斗安装与否并不影响地面散流器的气流流型。

7、散流器的颈部最大允许风速(m/s)如下:使用场所允许噪声dB(A)室内净高度(m)3 4 5 6广播室32 3.9 4.15 4.25 4.35 住宅、剧场33-39 4.35 4.65 4.85 5.00 公寓、客房、个人办公室40-46 5.15 5.40 5.75 5.85 餐厅、商店47-53 6.15 6.65 7.00 7.15 电影院、一般办公室54-60 6.50 6.80 7.10 7.50四、喷口选用说明:(10K121)1、球形喷口多设计为可调节型,其送风方向可现场手动调节,也可通过执行器自动调节,喷口可在上下±30°范围内调节,以改变送风气流方向。

暖通空调CAD标准

暖通空调CAD标准
例1:系统图中水泵的前后接口和设备连接
从左到右依次为截止阀、放水阀、止回阀、软接头、压力表、 水泵、压力表、软接头、Y型过滤器、截止阀图块 (带法兰)
例2:平面图中H型风管的布置
实际绘制时只需要绘制虚线中图形,H形风管及风口由两次镜像来生成。
1.收集整理建筑图; 2.删除建筑图中对门窗的小标注与类型标注等,主要留下
两种方式: 按线型分:粗线图层、中粗线图层、细线图层; 按功能特性:管网图层、管网设备图层、辅助图图层、
标注图层等,设置方法同前。
1.如果为dwg图形可直接使用。如果为地形图图纸,采用 扫描仪扫描地形图。
2.扫描图像使用步骤,使用专业扫描软件或扫描仪配套 软件,分片扫描地形图图纸,扫描设置为灰度模式, 扫描分辨率为100像素/厘米,此分辨率是为了方便在 图纸中方便比例换算。
1. 风口布置效果
2.依据风口,切换到“辅助图层”按设计绘制风管中心线,本 系统采用同程设计,可平衡气流阻力,利于系统运行调整;
3.按设计产品样本尺寸,切换到“设备图层”,绘制主要 设备构件如:空调机组、风机盘管等外轮廓;
按设计尺寸依据,切换到“风管图层”,依据风管中心线,分段按 尺寸完成风管的绘制;(注意由于采用H型布置,可先绘制完成一 个H型图中放大部分,再使用块、复制、镜像等完整其余的部分)
4.连接设备和构件与风管; 5.完成细部风管;
按尺寸完成后的空调风管
6.核对图纸比例;切换到“标注图层”,按出图比例设置 所有标注文字大小,风管、设备定位尺寸标注方式。
标注文字一般为3.5(图中标注密集时可使用2.5号字),标注样 式中的文字高度为3.5×出图比例。主要使用DIM标注模式命令。
建筑柱网及主要的外部尺寸及房间名称标高等,柱子改 为空心柱, 3.删除不必要的图层;

暖通规范中关于各类常见风管风速、风口风速、水管流速的规定

暖通规范中关于各类常见风管风速、风口风速、水管流速的规定

暖通规范中关于各类常见风速的规定一、各类风口风速规定1、采暖风口1.1、采用热风采暖系统时,应遵守下列规定:送风口的送风速度V(m/s),应根据送风口的高度、型式及布置经过计算确定,当送风口位于房间上部时,送风速度宜取:V= 5~15m/s;当送风口位于离地不高处时,送风速度宜取:V =0.3m/s~0.7m/s;回风口的回风速度,宜取:V=0.3m/s。

来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)2.8.71.2、热风幕的送风速度:公共建筑的外门,风速不宜大于6 m/s,高大外门不应大于25m/s。

来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)2.8.152、送排回风口2.1、进风、排风口风速(m/s)注:风口风速应按实际有效面积计算,一般百叶风口的遮挡率取50%。

来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)4.1.4.82.2、自然通风系统的进排风口风速宜按下表采用:来源GB50736-2012《民用建筑供暖通风与空气调节设计规范》6.6.42.3、机械通风的进排风口风速宜按下表采用:来源:GB50736-2012《民用建筑供暖通风与空气调节设计规范》6.6.52.4、厨房排风系统的风管风速不宜小于8m/s,且不宜大于10m/s;排风罩接风管的喉部风速应取4~5m/s。

来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)4.2.102.5、侧送和散流器平送的出口风速采用2m/s~5m/s。

孔板下送风的出口风速,从理论上讲可以采用较高的数值。

因为在一定条件下,出口风速较高时,要求稳压层内的静压也较高,这会使送风较均匀;同时,由于送风速度衰减快,对人员活动区的风速影响较小。

但当稳压层内的静压过高时,会使漏风量增加,并产生一定的噪声。

一般采用3m/s"'_'5m/s 为宜。

风口风速表完整

风口风速表完整

风口风速表(可以直接使用,可编辑实用优秀文档,欢迎下载)空调系统低速风管内的空气流速 卫生间根据资料[Ⅱ]表7-4,风管内的风速如下,风管长宽比不宜大于4,最大不超过10。

回风口风速如下:机械排风,进排风风口风速 厨房排风,排风罩最小排风量:L=1000*P*H (P 罩子轴变长,墙侧不计;H 罩口距灶面距离;灶口断面吸风速度≥0.5m/s )汽车库换气次数 加压送风系统:柴油发电机房通风量,宜单独设置机械排风系统洗衣房通风量无尘室工程的换气次数及风速规定(图表对照)根据我国《洁净厂房设计规范》(GB 50073-2001)规定不同级别的非单向流无尘室工程、洁净室工程、无菌室工程等送风量的计算所需的换气次数以及无尘室工程的气流速度/换气次数,一直是无尘室工程设计中受到关注的问题,随着无尘室污染源的控制效果增加及末端过滤器效率的提高等,对有关规范、导则等提出的推荐或参考值是否偏于保守,已有不少讨论;FFU在应用中人们担心的噪音、损坏维修等问题已在实践中得到解决,随着FFU的不断改进,对是否采用FFU回风系统也是个热点:悬浮分子污染(AMC)的控制在微电子及IC工业中已日益提到日程上来,受到关注。

以下对这些问题的情况分别作归纳和分析。

关于无尘室工程的气流速度1、有关推荐或参考值的应用无尘室内一定洁净度下气流速度的确定,随无尘室用途等具体情况而异,它不仅受室内发尘量及过滤器效率还受其他因素影响,就工业无尘室工程而言,影响洁净度及选择气流速度的因素主要是:(1)无尘室内污染源:建筑物组件、人员数量及操作活动、工艺设备、工艺材料及工艺加工本身等都是尘粒释放源,根据具体情况而异,变化很大;(2)无尘室内气流流型及分布:单向流要求均匀、平等的流线,但会受到工艺设备布置和位置变动及人员活动情况等的干扰形成局部涡流;而非单向流要求充混合,避免死角及温度分层;(3)自净时间(恢复时间)的控制要求:无尘室中事故释放或带入污染物或空气气流的中断或正常操作时的间歇性对流气流或人及设备的移动等都会造成洁净度的恶化,恢复到原来洁净度的自净时间决定于气流速度;对自净时间的控制要求取决于此时间框架内(恶化的洁净度下),对产品生产的质量及成品率影响的承受能力;(4)末级过滤器的效率:在一定的室内发尘量下,可采用较高效率的过滤器以降低气流速度;为节能应考虑采用较高效率的过滤器,并降低气流速度,或采用较低效率的过滤器并采用较高的气流速度,以求流量与阻力的乘积最小;(5)经济性考虑:过大的气流速度造成投资及运行费用的增加,合适的气流速度为以上诸因素合理的综合,过大往往不必要,亦不一定有效果;(6)对洁净度要求低的无尘室工程,有时换气次数决定于室内排热的要求。

汽车空调出风口与风道设计规范标准

汽车空调出风口与风道设计规范标准
2.3.2出风量
对不同大小的车而言,由于系统风量大小不同,出风口的有效面积也不一样。
以下是对不同车型的出风口面积要求的参考信息。
大型轿车:出风口总有效面积至少达到160cm2 (最大推荐风量在140l/s左右)
中型轿车:出风口总有效面积至少达到140cm2 (最大推荐风量在125l/s左右)
小型轿车:出风口总有效面积至少达到120cm2 (最大推荐风量在110l/s左右)
出风口由装饰框(见图1-4)、面框(见图1-4)、壳体、风门、拨轮、拨钮、连杆、叶片等部件组成
型式
造型设计人员造型,与产品工程人员一起确定出风口的型式,般地,吹脸出风口有以下两种型式:
桶型出风口
经济而简单。通常有一套可动的叶片和轴,整体可以绕轴转动。下图给出了几个例子。
双叶片型出风口。
比桶型出风口复杂,造型灵活多样,成本也较高。整体固定,有两套不同方向可动的叶片。见下图。
实践和经验加以判断。
2.3.3通风有效面积
出风口开口面积的估算方法:
由于出风口的叶片,连杆机构,拨杆,关闭风门的存在会挡住气流,所以真正有意义的开口面积应该是开口总面积减去被它们遮挡的面积,称之为有效面积。
不同类型的出风口的机构不同,有效面积的计算方法也不同。基于通常经验考虑,两种出风口的有效面积估算公式如下:
f)叶片,拨轮或拨钮,一般会被造型设计师定义成亚光零件
g)如果有关闭风门,当风门关紧时,手感及关闭声音应当明显可感知的。
h)调节拨轮与面板应当有适当的高度差,造型统一,既保持美观又要使得操作便易。
i)调节拨轮应当尽量避免使用纯塑料,尽可能地覆盖上橡胶材料,以获得良好的手感,操作手感应当平顺。拨轮上装饰材料应精细,质感好。
风门骨架:采用PP-TD30。

暖通规范中关于各类常见风管风速、风口风速、水管流速的规定

暖通规范中关于各类常见风管风速、风口风速、水管流速的规定

暖通规范中关于各类常见风速的规定一、各类风口风速规定1、采暖风口1.1、采用热风采暖系统时,应遵守下列规定:送风口的送风速度V(m/s),应根据送风口的高度、型式及布置经过计算确定,当送风口位于房间上部时,送风速度宜取:V= 5~15m/s;当送风口位于离地不高处时,送风速度宜取:V =0.3m/s~0.7m/s;回风口的回风速度,宜取:V=0.3m/s。

来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)2.8.71.2、热风幕的送风速度:公共建筑的外门,风速不宜大于6 m/s,高大外门不应大于25m/s。

来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)2.8.152、送排回风口2.1、进风、排风口风速(m/s)注:风口风速应按实际有效面积计算,一般百叶风口的遮挡率取50%。

来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)4.1.4.82.2、自然通风系统的进排风口风速宜按下表采用:来源GB50736-2012《民用建筑供暖通风与空气调节设计规范》6.6.42.3、机械通风的进排风口风速宜按下表采用:来源:GB50736-2012《民用建筑供暖通风与空气调节设计规范》6.6.52.4、厨房排风系统的风管风速不宜小于8m/s,且不宜大于10m/s;排风罩接风管的喉部风速应取4~5m/s。

来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)4.2.102.5、侧送和散流器平送的出口风速采用2m/s~5m/s。

孔板下送风的出口风速,从理论上讲可以采用较高的数值。

因为在一定条件下,出口风速较高时,要求稳压层内的静压也较高,这会使送风较均匀;同时,由于送风速度衰减快,对人员活动区的风速影响较小。

但当稳压层内的静压过高时,会使漏风量增加,并产生一定的噪声。

一般采用3m/s"'_'5m/s 为宜。

风口风速汇总-新风风口风速

风口风速汇总-新风风口风速

1、排烟口的风速≤10m/s(老建规9.4.6.6)2((1)、空调送风口的出口风速,消声要求较高时,宜采用2-5m/s,喷口送风可采用4-10m/s。

(采暖6.5.9)2(2)、空调侧送和散流器平送的出口风速2-5 m/s。

孔板下送风的出口风速3-5 m/s。

条缝型风口下送(多用于纺织厂),当空气调节区层高为4-6m人员活动区风速不大于0.5m/s时,出口风速宜为2-4m/s。

(采暖条文6.5.9&民用条文7.4.11&技措5.4.6.2【孔板】)3利用走廊回风时,回风口安装在门或墙下部的回风口面风速1-1.5m/s(采暖条文6.5.11)4567速应取4-5m/s。

(技措4.2.10.2)8、洗衣房机械排风系统洗衣机、烫平机、干洗机、压烫机、人体吹机等散热两大或有异味散出的设备上部,应设置排气罩,其罩面风速应≥0.5m/s。

(技措4.5.1.3.1)10、暗室通风宜采用机械排风、自然进风的通风方式,排风量宜取≥5次/h换气。

排风口宜设在水池附近,进风口应采用遮光百叶窗,通过百叶窗的风速应<2m/s。

(技措4.5.8)11、机械加压送风口不宜大于7m/s;排烟口不宜大于10m/s;机械补风口不宜大于10m/s,公共聚集场所不宜大于5m/s;自然补风口不宜大于3m/s。

(技措4.8.5.3)12、人员长期停留的区域采用置换通风方式时,人脚踝处风速不宜超过0.2m/s。

(技措5.4.10.2)一、风口选用总说明:(10K121)1、风口布置需要综合考虑室内气流组织、噪声、建筑装修美观要求、安装维修以及经济性等方面因素。

在选型时,应确定风口风速,计算风口风量、有效面积、设成,特别要注意建筑梁或柱子等对气流的影响。

对一些技术要求特殊的空调区域和风量较大的场合,风口的选择宜辅以计算机模拟(CFD)方法确定。

2、上部送风时,一般房间宜采用百叶风口或条缝风口等侧送,侧送气流宜贴服;有吊顶时,应根据空调区高度与使用场所对气流的要求,分别采用圆形、方形散流器;空间较大的公共建筑或室温允许波动范围大于或等于1.0℃的高大厂房,宜采用喷口或旋流风口送风。

出风口布置设计基本方法(一)

出风口布置设计基本方法(一)

B)将一夹角为11的3D锥体沿着高于手的方向盘 轮缘部分移动并保持相切,这样在IP表面创建一 条线。空调出风口的中心线还要位于这条线的上 侧和外侧。(在侧视图中,锥体中心线与眼椭球 的下侧相切;在水平视图中,锥体的中心位于同 侧眼椭球的中心点上。)
驾驶员侧出风口位置要求的另一种表达方式
3.2.2 副驾驶员侧出风口高度
3.5 出风口叶片的设计 出风口旋转叶片的深度与间距比值 3:1
3.6 前排吹面出风口的关闭风门
4、 后出风口的校核
4.1 定义 4.2 作用
4.3 后排吹面出风口的高度校核
4.4 后排吹面风口的角度调节
把出风口从限制出风到最小的极限位置调 节到使出风吹到A点,调节的角度不应超过 15度。同样地,把出风口调节到使出风吹 到膝盖区域,调节的角度不应超过30度。
3.4.3 校核出风口开口面积是否满足工程要求
出风口开口面积是根据风量和气流决定的 出风口有效开口面积=风量/风速
举例:
为了保持各个出风口风量的均衡性,每个 出风口的面积差异不应超过3cm2.
对不同车型的出风口面积要求的参考值
大型轿车:出风口总有效面积≧160cm2 (最大 风量≧ 500m3/h)
3.4.2 出风口开口有效面积
有效面积定义
三种出风口的有效面积估算公式如下:
桶型出风口:
出风口有效面积=0.45*出风
口外轮廓投射到垂直面上的总面积
双叶片型出风口: 出风口有效面积=0.6*出风
口外轮廓投射到垂直面上的总面积
中央回转型风口: 出风口有效面积=0.8*出风口
外轮廓投射到垂直面上的总面积
3.3.1 出风口对气流方向的控制能力 3.3.2 出风口对气流的纵向调节 当指向脸部时叶片应

风量风速计算方法

风量风速计算方法

一、室内风管风速选择表1、低速风管系统的推荐和最大的流速m/s2、低速风管系统的最大允许速m/s注:民用住在≤35dB(A),商务办公≤45dB(A)二、室内风口风速选择表1、送风口风速2、以噪音标准控制的允许送风流速m/s3、推荐的送风口流速m/s4、送风口之最大允许流速m/s5、回风口风速6、回风格栅的推荐流速m/s7、百叶窗的推荐流速m/s8、逗留区流速与人体感觉的关系三、通风系统设计1、送风口布置间距回风口应根据具体情况布置一般原则:(1)人不经常停留的地方;(2)房间的边和角;(3)有利于气流的组织2、标准型号风盘所接散流器的尺寸表-办公室注:办公室推荐送风口流速:~ m/s风机盘管接风管的风速:通常为~ m/s,不能大于 m/s,否则会将冷凝水带出来.3、散流器布置散流器平送时,宜按对称布置或者梅花形布置,散流器中心与侧墙的距离不宜小于1000mm;圆形或方形散流器布置时,其相应送风范围(面积)的长宽不宜大于1:,送风水平射程与垂直射程()平顶至工作区上边界的距离)的比值,宜保持在~之间.实际上这要看装饰要求而定,如250×250的散流器,间距一般在米左右,320×320米在米左右.四、风管、风口分类1、风管分类1)按风管材料A、镀锌钢板风管:常用在空调送、回风管道(优点:使用寿命较长,摩擦阻力小,制作快速方便,可工厂预制也可现场临时制作;缺点:受加工设备限制,厚度不宜超过B、普通钢板风管:常用在厨房炉具排油烟以及防油烟风道上(要求2mm上只能采用普通钢板焊接而成,对焊接技术有一定要求)C、无机玻璃钢风管:常用于消防防排烟系统(优点:具有耐腐蚀、使用寿命长,强度较高的优点,造价与钢板风管基本相同;缺点:质量不稳定,某些厂商生产的材料质量比较差,强度和耐火性达不到要求,现场维修较困难)D、硅酸盐板风管:常用排烟管道(优点与无机玻璃钢板相类似,显着特点是防火性能较好;缺点:综合造价较高)E、复合保温板风管:常用有:上海万博(铝箔聚氨酯)、湖南中野(酚醛树脂)、北京百夏(BBS)、铝箔玻璃绵保温风管等F、软风管:常用有铝箔型软管、铝制波纹型半软管、波纤管(在工程上具有施工简单、灵活方便等特点,但其风管阻力比较大,且对施工管理要求比较高)G、其他风管:土建、砖茄、布风管等2)按风管作用分:送风、回风、排风、新风管等3)按风管内风速分:低速、高速风2、风口分类:1)按风口材料分:铝合金风口、铸钢风口、塑料风口、木制风口等2)按风口形状及功能分:A、百叶风口:门铰式百叶风口、单层百叶、双层百叶、防雨百叶等B、散流器:方形散流器、矩形散流器、圆形散流器、圆盘散流器、三面吹型散流器、线槽型散流器等C、旋流风口:具有送出旋转达射流,诱导比大,风俗衰减快等特点D、球型喷口:送风距离大,适合送风距离较大的地方,如各种大厅、展厅及大型装配车间等E、其他风口:球形排风口、栅格形风口、装饰板风口等五、风管、风口设计流程流程一:风系统的划分→流程二:系统风量计算→流程三:确定送风方式→流程四:确定风管布置→流程五:计算风管尺寸→流程六:风口设计选型→流程七:阻力平衡计算机气流组织校核流程一:风系统的划分一个完整的风系统至少应包括:送风段、送风口、回风口、回风段、设备装置根据空调房间的功能、类型、空间等情况进行空调系统划分:分几个系统每个系统在扫描区域………在水系统中的大面积区域,一般设有机房,则个根据机房情况进行系统划分,而对于多联机系统来说,内机风量有限,且型号比较固定,根据已有型号进行合理的系统划分即可流程二:系统风量计算送风量计算的依据:空调房间的送风量G通常按照夏季最大的室内冷负荷,由下公式计算确定:公式: G = 3600Q q/ρ(h n-h s) = 3600Q x/ρc(t n-t s) (m3/h)Q q、Q x —室内总全冷负荷和总显冷负荷(KW)H n —室内空气焓值(KJ/Kg)H s —送风焓值(KJ/Kg)t n —室内温度(℃)t s —送风温度(℃)c —空气定压比热[KJ/(Kg. ℃)] ,可取 KJ/(Kg. ℃)ρ—空气密度(Kg/m3),在标准大气压下,空气稳定20℃时,取 Kg/m3舒适型空调和工艺空调的送风温度差可参考下表选取:注:一般在多联机设计中,一般是根据室内冷负荷确定室内机的选择,因此室内的风系统可查相关产品手册确定,根据空调房间的区域面积确定风口个数,根据送风距离选择中或高静压的机型,从而主管及各支管的风量就已经确定.流程三:确定送风方式根据房间功能及装修要求等情况去顶送风方式:侧送侧回、侧送上回、侧送下回、上送上会、上上送下回流程四:确定风管布置根据房间面积、层高及装修要求等情况确定风管的布置:主管走向、支管布置、送/回风管位置流程五:计算风管尺寸采用嘉定流速计算风管截面积,确定风管尺寸1、公式: S=G/3600V确定主风管及各分支管截面积S —风管截面积(㎡)G —风管内风量(m3/h)V —风管内风速(m/h),一般做设计时候,空调送风主管风速不宜大于6 m/h,支管风速不宜大于3 m/h,具体风速可参照下表:低速风管内的风速m/s高速风管内的风速2、根据风管截面积参照风管常规尺寸表选择合适的风管尺寸:圆形常用规格(mm):Φ100、Φ120、Φ140、Φ160、Φ180、Φ200、Φ220、Φ250、Φ280、Φ320、Φ360、Φ400、Φ450、、Φ500、、Φ560、、Φ630、、Φ700、、Φ800、、Φ900、、Φ1000、、Φ1120、、Φ1250、Φ1400、Φ1600、、Φ1800、、Φ2000矩形常用规格(mm):120×120、160×120、200×120、250×120、160×160、200×160、250×160、320×160、200×200、250×200、320×200、400×200、500×200、250×250、320×250、400×250、500×250、630×250、320×320、400×320、500×320、630×320、800×320、1000×320、400×400、500×400、630×400、800×400、1000×400、1250×400、500×500、630×500、800×500、1000×500、1250×500、1600×500、630×630、800×630、1000×630、1250×630、1600×630、800×800、1000×800、1250×800、1600×800、2000×800、1000×1000、1250×1000、1600×1000、2000×1000、1600×1250、2000×1250流程六:风口设计选型1、根据房间功能及气流组织选择合适的风口类型A、在离吊顶高度为2~4米的顶部送风中选择什么样的风口比较合适:双层百叶、圆形(方形)散流器、单层百叶、旋流风口B、在一般的侧送风的系统中选择什么样的风口比较合适:双层百叶、单层百叶C、在空间比较大的展厅、体育馆、多功能厅、大堂等一般选择什么样的风口比较合适:双层百叶、圆形(方形)散流器、单层百叶、旋流风口、球形喷口各种不同的风口的特点和使用范围◇双层百叶风口:1调节式百叶送风口、2可直接与风机盘管配套使用、3用于集中空调系统的末端,调节叶角度,可得到相应送风距离和扩散角、4前排叶片平行于短边为A型,叶片平行于长边为B型◇单层百叶风口:1可用于回风系统、2调节式百叶风口、3可以配过滤器和多叶对开调节阀叶片平行于短边为A型,叶片平行于长边为B型◇侧壁格栅风口:1可用做回风和新风口、2装在墙壁上比较美观,看不见后面的东西、3作为新风口时,后面加铝板网或过滤网、4不注明时,叶片平行于长边◇可开式风口:1适用于做回风口、2还可兼做检修口、3此风口不宜做的太大,但B尺寸也不宜≤170mm、4此风口也称铰链式风口◇矩形(方形)散流器:1气流型式为贴附型(平送型)、2适用于底层吊顶送风系统、3按送风距离确定颈部的风速、4中间叶片芯为可拆卸,便于安装,调试、5送风加调节阀,回风可加过滤器、6天花板开洞尺寸为颈尺寸加75mm,即为(A+75)×(B+75)◇三面吹散流器:1气流型式为贴附型(平送型)、2适用于顶棚的靠墙一侧或局部送风、3中间叶片芯为可拆卸,便于安装,调试◇条形直片式散流器:1突了线性设计特点、2用于室内和环形分布的送,回风、3可根据装饰要求做各种造型、4风口后面可配黑色铝板网,可看不见里面,起遮挡作用、5多个风口并接使用,并缝处有插接板◇条缝活叶型风口:1有其独特设计、2可根据装饰要求做各种造型、3每一组槽内存两个可调叶片,可调制气旋方向和大小、4可根据要求做多组,但不宜做的太宽,最多不得超过十组◇自垂百叶式风口:1用于正压的空调房间的启动排气、2用于新风口处和排风口处、3靠风口百叶自然下垂,隔绝室内外空气交换,当室内气压大于室外时,气流将百叶吹开而向外排气室外空气又不能流入室内、4本风口有单向止回作用、5订货时需说明吹出的方向,即A型或B型◇地送风固定百叶风口:1此风口型材刚性好,并斜向送风、2此风口有单向(A)和双向(B)型两种形式、3此风口用于地面送回风,所以不宜做的过大◇遮光百叶风口:1此风口用于暗室通风且遮光、2可用于门上或墙上、3此风口不宜做的过大◇弧形风口:1可用于吊顶安装时的侧弯弧形亦可为侧面安装的内弯随向弧形、2最好根据工地现场弧形板弯制、3弯曲半径不宜做得过小,R>米为宜◇网式回风口:1结构简单、2可用室外和室内自然通风、3中间用瓦楞铝板网做为通风过滤材料◇可拆卸式风口:1此风口后可配过滤网、2可以方便拆装、3可做检查门使用◇风口多叶对开调节阀:1其调节方案是摘下风口的中心叶片在用螺刀调节中心螺杆◇圆形散流器:1用于冷暖送风,常安装在顶棚上、2吹出气流呈贴附(平送)型、3可以供给较大的风量、4可于圆形对开调节阀配套使用◇圆盘式散流器:1用于冷暖送风,常安装在顶棚上、2出口风速大,射程远、3气流特性属于散流下送型、4能以较小的风量供应较大的地面面积、5可与圆形对开调节阀配套使用◇小圆形散流器:1用于冷暖送风安装在顶棚上、2气流特性属于下送型、3此风口造型别致,小巧玲珑、4用于顶棚较低的较小房间送风,其中Φ126. Φ205叶片密度大,其余规格叶片单边间距为25mm◇圆形斜叶片散流器:1适用于在外墙上作新风口、2适用于墙上做回风口、3叶片倾斜24′◇圆环形叶片散流器:1送风距离远、2适用于较高的顶棚、3造型新颖美观◇球形风口:1是一种喷口型送风口,风口流速高、2可以在顶角为35°的圆锥形空间内随意转动调节,按指定方向送风、3适用于高大屋顶高速送风或局部供冷的场合◇球形排气罩:1可安装于室内墙壁的排气罩、2适用于厨房、厕所的排气、3其外观美观◇防水百叶风口:1其叶片设计成特殊形状、2只有防雨溅入内部的功能,一般安装在外墙上做新风口、3风口后面可以加铝板网,以防鸟或虫进入◇可开式单层百叶风口:1回风口可开与送风口单双百叶相对应装饰效果好、2便于安装,清洗过滤网、3适宜宽度120-200之间◇可开式方形散流器:1回风口与送风方型散流器相对应适合于大厅等宽大的客厅房间装饰,使造型风格上得到完美的统一、2便于安装,清洗过滤网、3可加工成方型和矩形两个规格的可开型矩形散流器◇外墙口风:1此风口安装在外墙上,即通风又防雨水流入、2用一种装饰型材粘贴在外框四周、3外框于叶片较一般通风风口型材刚性好,因而可以做成较大尺寸、4风口后面可以装拼接式过滤器◇文丘里式(变风量)喷口:1风口出口段采用特形曲线,使之喷射距离更远、2喷口内一般调节芯可以轴向移动、3可以调节出风而积达到射程,风量的控制,适用于大型厅展,以达到侧向吹出距离远,并扩展其流向下扩展◇带灯箱,静压箱的条缝送风口2、根据风量确定风口尺寸(假定流速法)风口的风速选择卡参考下表流程七:阻力平衡计算机气流组织校核1、计算最不利环路的压力损失并校核各支管阻力平衡1)简单计算最不利环路的压力损失A、摩擦压力损失值:Pm为~mB、P=Pm×L×(1+K)L为风管总长度弯头三通多时,K=3~5弯头三通少时,K=1~22)校核各支管阻力平衡,如分支管比较多时,需在各分支管上装风量调节阀2、室内气流组织校核校核各空调风系统的气流组织是否出现短路校核室内空气循环是否合理,避免空调四区的出现校核新风系统与排风系统是否合理风口的距离是否合理风量风管计算方法风管:风管尺寸=风量/风速风量=房间面积*房间高*换气次数例:风量40000m3/h,风速9m/s,得风管尺寸=40000m3/h除以9m/s除以3600s=㎡=*风管尺寸:1500×800mm,而根据矩形常用规格只有:1600×800 mm风速需要根据噪音要求调整的通风工程以假定流速法为例,其计算步骤和方法如下:1、绘制通风或空调系统轴测图,对各管段进行编号,标注长度和风量段长度一般按两管件间中心线长度计算,不扣除管件(如三通、弯头)本身的长度2、确定合理的空气流速风管内的空气流速对通风、空调系统的经济性有较大的影响.流速高,风管断面小,材料耗用少,建造费用小;但是系统的阻力大,动力消耗增大,运用费用增加.对除尘系统会增加设备和管道的磨损,对空调系统会增加噪声.流速低,阻力小,动力消耗少;但是风管断面大,材料和建造费用大,风管占用的空间也增大.对除尘系统流速过低会使粉尘沉积赌塞管道.因此,必须通过全面的技术经济比较选定合理的流速.根据经验总结,风管内的空气流速可按表6-2-1、表6-2-2及表6-2-3确定.除尘器后风管内的流速可对比表6-2-3中的数值适当减小.表6-2-1 一般通风系统中常用空气流速(m/s)表6-2-2空调系统低速风管内的空气流速3、据各风管的风量和选择的流速,按式(6-2-1)计算各管段的断面尺寸,并计算摩擦阻力和局部阻力.定风管断面尺寸时,应采用规范统一规定的通风管道规格,以利于工业化工制作.风管断面尺寸确定后,应按管内实际流速计算阻力.阻力计算应从最不利环路(即阻力最大的环路)开始.袋式除尘器和静电除尘器后风管内的风量应把漏风量和反吹风量计入.在正常运行条件下,除尘器的漏风率应不大于5%.4、并联管路的阻力平衡调节了保证各种、排风点达到预期的风量,两并联支管的阻力必须保持平衡.对一般的通风系统,两支管的阻力差应不超过15%,除尘系统应不超过10%.若超过上述规定,可采用下述方法调节其阻力平衡.(1)调整支管管径这种方法是通过改变支管管径改变支管的阻力,达到阻力平衡.调整后的管径按下式计算:(6-2-2)式中 D′—调整后的管径mmD —原设计的管径mm△P —原设计的支管阻力Pa△P′—要求达到的支管阻力Pa应当指出,采用本方法时,不宜改变三通的支管直径,可在三通支管上先增设一节渐扩(缩)管,以免引起三通局部阻力的变化(2)增大风量当两支管的阻力相差不大时,例如在20%以内,可不改变支管管径,将阻力小的那段支管的流量适当加大,达到阻力平衡.增大后的风量按下式计算:(6-2-3式中 L′—调整后的支管风量m3/hL —原设计的支管风量m3/h采用本方法会引起后面干管内的流量相应增大,阻力也随之增大;同时风机的风量和风压也会相应增大(3)阀门调节通过改变阀门开度,调节管道阻力,从理论上讲是一种最简单易行的方法.必须指出,对一个多支管的通风空调系统进行实际调试,是一项复杂的技术工作.必须进行反复的调整、测试才能完成,达到预期的流量分配.5、计算系统的总阻力。

风道设计计算方法与步骤(带例题)

风道设计计算方法与步骤(带例题)

风道设计计算方法与步骤(带例题)一.风道水力计算方法风道的水力计算是在系统和设备布置、风管材料、各送、回风点的位置和风量均已确定的基础上进行的。

风道水力计算方法比较多,如假定流速法、压损平均法、静压复得法等。

对于低速送风系统大多采用假定流速法和压损平均法,而高速送风系统则采用静压复得法。

1.假定流速法假定流速法也称为比摩阻法。

这种方法是以风道内空气流速作为控制因素,先按技术经济要求选定风管的风速,再根据风管的风量确定风管的断面尺寸和阻力。

这是低速送风系统目前最常用的一种计算方法。

2.压损平均法压损平均法也称为当量阻力法。

这种方法以单位管长压力损失相等为前提。

在已知总作用压力的情况下,取最长的环路或压力损失最大的环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差值小于15%。

一般建议的单位长度风管的摩擦压力损失值为0.8~1.5Pa/m。

该方法适用于风机压头已定,以及进行分支管路压损平衡等场合。

3.静压复得法静压复得法的含义是,由于风管分支处风量的出流,使分支前后总风量有所减少,如果分支前后主风道断面变化不大,则风速必然下降。

风速降低,则静压增加,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。

此方法适用于高速空调系统的水力计算。

二.风道水力计算步骤以假定流速法为例:1.确定空调系统风道形式,合理布置风道,并绘制风道系统轴测图,作为水力计算草图。

管段长度一般按两管件中心线长度计算,不扣除管件(如三通、弯头)本身的长度。

3.选定系统最不利环路,一般指最远或局部阻力最多的环路。

4.选择合理的空气流速。

风管内的空气流速可按下表确定。

表8-3空调系统中的空气流速(m/s)5.根据给定风量和选定流速,逐段计算管道断面尺寸,然后根据选定了的风管断面尺寸和风量,计算出风道内实际流速。

高效送风口规格尺寸设计依据(详尽解答)

高效送风口规格尺寸设计依据(详尽解答)

高效送风口规格尺寸设计依据(详尽解答)高效送风口|500风量|1000风量|1500风量|特点:1.GFK系列高效送风口外壳箱体采用宝钢优质冷轧钢板制作,外表面静电喷塑处理或烤漆处理,配有散流板。

2.高效送风口可作为终端高效过滤装置直接安装在洁净室顶棚处,结构紧凑,密封性能可靠,进风方式有侧进风和顶进风,法兰口有方形和圆形两种结构。

3.有时洁净室由于受到土建高度限制或必须采用紧凑型设计时,可选用一体化高效过滤器送风口。

4.可根据用户要求加装调节阀和保温层。

高效送风口|500风量|1000风量|1500风量|高效送风口型号及技术参数:型号顶端风(侧送风)额定风量(m3/h) 高效过滤尺寸mm 外形尺寸mm 吊顶开口尺寸mm 进风管尺寸mm 001 500 320×320×220 370×370×500 380×380 200×200002 700 484×484×150 534×534×500 545×545 320×200003 1000 484×484×220 534×534×500 545×545 320×200004 1000 610×610×150 660×660×500 670×670 320×250005 1200 820×600×150 870×650×500 880×660 320×250006 1500 726×484×220 776×534×500 786×545 400×200007 1500 630×630×220 680×680×500 690×690 320×250008 1500 915×610×150 965×660×500 975×670 500×250009 2000 968×484×220 1080×534×500 1030×545 500×200 0010 2000 1220×610×150 1270×660×500 1280×670 630×250 0011 2200 945×630×220 995×680×500 1005×690 500×250 0012 3000 1260×630×220 1310×680×500 1320×690 630×250高效送风口|500风量|1000风量|1500风量|超薄型高效送风口特点:1.广泛使用于10万级到10级的洁净室内,应用于药厂、生物技术、食品饮料厂、微电子行业、半导体行业、光学实验室。

新风进出风口布置原则

新风进出风口布置原则

新风进出风口布置原则一、前言新风进出风口是建筑物中的一个重要组成部分,它直接影响着室内空气的质量和人们的健康。

在设计和布置新风进出风口时,需要遵循一些基本原则,以确保室内空气的流通和质量。

本文将介绍新风进出风口的布置原则。

二、新风进出风口的分类根据其位置和功能,新风进出风口可以分为以下几类:1. 墙壁式新风进出风口:墙壁式新风进出风口通常位于建筑物外墙上,可以通过墙体与外界相连接。

2. 屋顶式新风进出风口:屋顶式新风进出风口通常位于建筑物屋顶上,可以通过管道与外界相连接。

3. 地面式新风进出风口:地面式新风进出风口通常位于建筑物地下室或地面上,可以通过管道与外界相连接。

三、布置原则1. 新旧空气分离原则在设计和布置新风进出风口时,应该将新旧空气尽可能分离开来。

这意味着应该在不同的区域中设置新风进出风口,以确保室内空气的流通和质量。

2. 新风进出风口位置原则新风进出风口的位置应该尽可能靠近人们活动的区域。

这可以确保新鲜空气能够快速地到达人们所在的区域,提高室内空气质量。

3. 风速原则在布置新风进出风口时,应该考虑到它们产生的空气流速。

如果空气流速过大,会造成不适和噪音污染。

在设计和布置新风进出风口时,应该尽可能减小其产生的空气流速。

4. 进出口数量原则在设计和布置新风进出风口时,应该考虑到建筑物中人员和设备的数量。

如果人员或设备数量过多,需要增加新风进出口数量以满足室内空气质量要求。

5. 反向流原则在设计和布置新风进出风口时,应该避免产生反向流现象。

反向流会导致室内污染物重新循环到室内空气中,从而影响室内空气质量。

6. 满足标准原则在设计和布置新风进出风口时,应该遵循国家和地方的相关标准和规定。

这可以确保室内空气质量符合要求,并且避免因为不符合标准而产生的法律责任。

四、结论新风进出风口的布置是建筑物中一个非常重要的环节。

在设计和布置新风进出风口时,需要考虑到多个因素,包括位置、数量、流速等。

只有遵循相关原则,才能够确保室内空气质量达到标准,并且保护人们的健康。

散流器送风计算方法

散流器送风计算方法

11.1.2散流器送风计算方形散流器的规格用颈部尺寸W ×H 表示, (见空调工程P378)外沿尺寸A ×B =(W +106)×(H +106),顶棚上预留洞尺寸C ×D =(W +50)×(H +50) 1、散流器送风气流组织设计计算内容(1)送风口的喉部风速Vd 取2~5m/s 最大不超过6m/s (2) 射流速度衰减方程及室内平均风速xox F K Vo Vx += 式中:X-以散流器中心为起点的射流水平距离(射程)mVx-在X 处的最大风速m/s Vo -散流器出口风速m/sXo-自散流器中心算起到射流外观原点的距离, 多层锥面散流器为0.07m F-散流器的有效流通面积m 2按90%K-系数:多层锥面散流器为1.4盘式散流器为1.1若要求射流末端速度为0.5m/s,则射程为散流器中心到风速为0.5m/s 处的距离根据式8-6,则: 射程X =VxF Kvo -Xo= X =Xo FKvo -5.0 式中:X-以散流器中心为起点的射流水平距离(射程)mK-系数:多层锥面散流器为1.4盘式散流器为1.1 Vo -散流器出口风速m/sF-散流器的有效流通面积m 2按90%Xo-自散流器中心算起到射流外观原点的距离, 多层锥面散流器为0.07m Vx-在X 处的最大风速一般为0.5 m/s散流器的喉部风速Vd 一般取2~5m/s 最大不超过6m/s室内平均风速Vm=2122)4/(381.0H L rL +(m/s)式中:L-散流器服务区边长(m) 注: (见空调工程P401)例8-2H-房间净空高(m)r L -射程 r-射流射程与边长L 之比,因此r L 即为射程当送冷风时, 室内平均风速取值增加20%, 送热风时减少20% (3)轴心温差:对于散流器平送,其轴心温差衰减可近似地取Vd Vx to tx ≈∆∆ to VdVxtx ∆≈∆△tx -射流末端温度衰减值℃Vx-在X 处的最大风速一般为0.5 m/s△to -送风温差℃Vd-散流器的喉部风速m/s2、散流器送风气流设计步骤(见空调工程P401)(1)、布置散流器一般按对称布置或梅花形布置,方形散流器的送风面积的长宽比不宜大于1:1.5散流器中心线和墙体距离一般不小于1m(2)、由空调区的总送风量和散流器的个数,就可以计算出单个方形散流器的送风量,假定散流器的颈部风速(如取2~5m/s)计算出所需散流器喉部面积,根据散流器喉部面积,选择散流器规格(3)、校核(1)的射程,根据下式(8-7)校核射流的射程是否满足要求,中心处设置的散流器的射程应为散流器中心到房间或区域边缘距离的75% (4)校核室内平均风速,根据式8-8计算室内平均风速,校核是否满足要求 室内平均风速Vm=2122)4/(381.0H L rL +(m/s)式中:L-散流器服务区边长(m) 注: (见空调工程P401)例8-2H-房间净空高(m)r L -射程 r-射流射程与边长L 之比,因此r L 即为射程(5)校核轴心温差衰减根据式(8-9)计算轴心温差衰减,校核是否满足空调区温度波动范围要求-------已知一层大厅舒适性空调区的尺寸为L=13. 8m,B=13.6m,H=3.5m,总送风量q v =1.389m 3/s,送风温度to=19℃,工作区温度tn=24℃,采用散流器平送,进行气流分布设计解:(1)布置 散流器将空调区进行划分,沿长度方向划分为3等分, 沿宽度方向划分为3等分,则空调区被划分成9个小区域,每个区域为一个散流器的服务区, 散流器的数量n=9个(2)选用方型散流器, 假定散流器的颈部风速Vd 为3m/s,则单个散流器所需的喉部面积为q v/Vd n,计算如下q v/Vd n=4(总送风量)/(3m ×20)=0.067m 2选用喉部尺寸为240mm 的方型散流器,则喉部实际风速为 Vd=36.036.0104⨯⨯m/s=3.068m/s, 散流器实际出口面积约为喉部面积的85%,则散流器的有效流通面积 散流器实际出口风速为Vo=%Vd 85=85.0068.3m/s=3.609m/s (3)计算射程射程X =VxFKvo -Xo=07.05.036.0%85609.34.12-⨯⨯⨯m=3.353m 式中:X-以散流器中心为起点的射流水平距离(射程)mK-系数:多层锥面散流器为1.4盘式散流器为1.1 Vo -散流器出口风速m/sF-散流器的有效流通面积m 2按85%Xo-自散流器中心算起到射流外观原点的距离, 多层锥面散流器为0.07m Vx-在X 处的最大风速散流器的喉部风速Vd 一般取2~5m/s 最大不超过6m/s散流器中心到边缘距离 2.3m,根据要求, 散流器的射程应为散流器中心到房间或区域边缘距离的75%,所需的最小射程为:2.3m ×0.75=1.725m 。

通风排烟风管及风口设计参数

通风排烟风管及风口设计参数

通风排烟设计工具箱,、通风管道流量阻力表1、缩伸软管摩擦阻力表2、镀锌板风管摩擦阻力表(1).软管采用荷兰数据时,上述数据乘以下系数:①150 x2 :①200 X1.8 ;① 250 x1.5 ;① 300 X1.3当 v=2m/s 时,△P=2.4Pa ;当 v=3m/s 时, △P=5.4Pa当 v=4m/s 时,△P=9.6Pa ;当 v=5m/s 时, A P=15Pa当 v=6m/s 时, △ P=21PaV 2(5).其他局部阻力的计算按下式:2g△ P=Z — Y二、室内送回风口尺寸表1、风口风量冷量对应表2、不同送风方式的风量指标和室内平均流速 ASHRAE、室内风管风速选择表1、低速风管系统的推荐和最大流速m/s2、低速风管系统的最大允许速m/s3、通风系统之流速m/s注:民用住宅w 35dB( A),商务办公w 45dB( A)四、室内风口风速选择表1、送风口风速2、以噪音标准控制的允许送风流速m/s3、推荐的送风口流速m/s4、送风口之最大允许流速m/s5、回风口风速6、回风格栅的推荐流速m/s7、百叶窗的推荐流速m/s&逗留区流速与人体感觉的关系9、顶棚散流器送风量10、侧送风口送风量五、通风系统设计1、送风口布置间距一般原则:(1)人不经常停留的地方;(2)房间的边和角;(3)有利于气流的组织。

2、标准型号风盘所接散流器的尺寸表-办公室风盘型号风量方散尺寸FP m3/h mm3.5 350 200*2005 500 200*2006.3 630 250*2508 800 250*25010 1000 300*30012.5 1250 300*30016 1600 350*35020 2500 450*45025 2500 450*450 注:办公室推荐送风口流速:2.5-4.0m/s风机盘管接风管的风速:通常为 1.5 —2.0m/s之间,不能大于2.5m/s,否则会将冷凝水带出来3、散流器布置散流器平送时,宜按对称布置或者梅花型布置,散流器中心与侧墙的距离不宜小于1000mm圆形或方形散流器布置时,其相应送风范围(面积)的长宽比不宜大于 1 : 1.5,送风水平射程与垂直射程(平顶至工作区上边界的距离)的比值,宜保持在0.5〜1.5之间。

局部通风设计

局部通风设计
3、局部通风机
风压的确定
Ht=RQaQh/3600+hv=RQaQh/3600+ρ×[Qh÷(S0×60)]2/2
式中:
Ht——局部通风机风压,Pa;
R——风筒通风阻力,N·S2/m8;
Qa——局部通风机的风量,m3/min;
Qh——掘进工作面的需风量,m3/min;
ρ——空气密度,取值1.2kg/m3;
11、井下任何人发现系统内有火情时,迅速报告矿调度所。如有可能,采取有效办法直接灭火。若火情严重,跟班干部迅速组织人员沿避灾路线撤至安全区域,撤离过程注意用湿毛巾捂住鼻口或正确佩戴自救器。
断 电 范 围: T1、T中、T2、T进:掘进工作面内全部非本质安全型电器设备;
复 电 浓 度: T1<0.5%, T中<0.5%, T2<0.5%, T进<0.5%;
其他类型传感器报警点:T温≥26℃,T粉≥100mg/m3,0.25m/s≥T风速≥4m/s,TCO≥24ppm

防尘、隔爆设备
及安装要求
6、严禁使用皮带边管、水管、空心锚杆以及其它可以向煤体内部供风、供氧气的材料作为穿楔。
7、巷道掘进过程中出现冒顶、空帮、高温点等情况时,巷道管理责任单位必须对这些地点进行挂牌管理,标明发生的时间,冒顶高度或空帮深度、隐患处理的方法、管理责任人等,出现高温点时要标注该点煤层暴露时间、温度、CO浓度、处理方法、管理责任人等内容。
根据以上计算,确定局部扇风机的型号为:FBD№5.6/11×2
1#
主备局部通风机参数
型 号
供 风 量(m3/min)
全风压pa
功 率(kw)
FBD№5.6/11×2
320-200
920-4280

暖通空调系统风口设置规范要求

暖通空调系统风口设置规范要求

暖通空调系统风口设置规范要求暖通空调系统在建筑物中起到供暖与通风的作用,其中风口的设计与设置对于空调系统的正常运行和舒适性具有重要影响。

本文将介绍暖通空调系统风口设置的规范要求,包括风口的位置、尺寸和数量等方面,以确保系统的高效运行和室内舒适度。

一、风口位置的设置规范要求1.1 室内风口位置室内风口的设置应符合以下要求:首先,风口应布置在与冷(暖)气流需求最为密切的区域,如居住室、办公室等。

这样可以确保气流能够及时、均匀地覆盖到使用者所在区域。

其次,避免将风口设置在与人体直接接触的位置,以免对人体产生不良影响,如直吹脖子、面部等部位。

最后,应避免将风口设置在易产生冷(暖)空气短路的区域,如墙角、大型家具背后等。

这样可以避免冷(暖)空气的直接流失,提高系统的能效。

1.2 室外风口位置室外风口的设置应符合以下要求:首先,室外风口的位置应远离可能产生感染源的区域,如污水排放口、垃圾存放区等。

这样有利于保持室内空气的质量,减少污染物对室内环境和人体健康的影响。

其次,应避免将风口设置在可能受到外界恶劣气候条件影响的区域,如强风、大雨等。

这样可以减少外界气候对风口和系统的损坏,确保系统的正常运行。

最后,应在标准高度范围内设置风口,方便维护和清洁,同时也有助于保护风口不受到人为破坏。

二、风口尺寸的设置规范要求2.1 室内风口尺寸室内风口的尺寸设计应符合以下要求:首先,根据室内空间的面积和设计需求,合理确定每个区域的风口数量和尺寸。

一般来说,较大的房间需要设置多个风口,以保证气流的均匀分布。

其次,根据系统的送风能力和房间的通风需求,确定风口的通风量。

通风量应能够满足房间内的新风需求,并可根据需要进行调节。

最后,根据风口的尺寸和通风量计算出的风速,确保室内风口的风速在合理范围内。

过高的风速可能会引起不适感,而过低的风速则影响空气的流通效果。

2.2 室外风口尺寸室外风口的尺寸设计应符合以下要求:首先,根据风口的位置和系统的排风能力,确定风口的通风量和尺寸。

通风风口布置设计计算表格

通风风口布置设计计算表格

1夏季室内显热冷负荷 kJ/h 2房间尺寸(M)长49宽32高33拟布置散流器个数几行几列4单个散流器所负担的面积 Fn 5散流器布置间距 m 长 6.8宽 6.8平均间距6.86水平射程 m L 1 3.063L 216平均射程9.5318取送风温差 Δt 08①直接输入总风量 L m3/h ②由显冷负荷计算总风量L m3/h 10换气次数 次/h n=L/房间体积11单个散流器的送风量 L 0 m3/h 12散流器出风速度取值 u 0 (m/s)建议散流器颈部尺寸 D(mm) b*b(mm)圆形D 343方形截面0.0926方形单边b 304实际选择方形散流器颈部尺寸 mm长320宽320有效面积K 0.8实际选择圆形散流器颈部尺寸 mm 直径有效面积K 0.9方形散流器颈部实际风速 Vs m/s 圆形散流器颈部实际风速 Vs m/s 方形 2.82圆形#####x=((KVsA 1/2)/Vx)-x 0工作区平均风速 Vm m/s 方形0.24Vm=0.381x/((L 2/4+H 2)^(1/2))圆形#####修正:送冷风附加20%,则Vm 方形圆形修正:送热风减少20%,则Vm方形圆形舒适性工艺性注:褐、绿、黄三种颜色内容不可修改,绿色格软件自动计算;白色单元格可自行输入;黄色格为为本次校核的计算结果值,见17项说明。

--依据《民用建筑空调设计手册》0.28 3.39#DIV/0!0.07177914131516垂直射程 X'=H-h 注:H-层高 h-工作区高度,通常2m可自定h值风口布置设计计算1960注:1KW=1KJ/S 810.0028000.00②的计算结果需填入①中21注:取值见附表x 0值Vs-散流器出口风速 x 0-平送射流原点与散流器中心的距离,多层锥面散流器取0.07m 注:K-送风常数,多层锥面取1.4,盘式取1.1计算射程 x(散流器中心到风速为0.5m/s 处的距离) m 1.4L=Q/(1.2*1.01*Δt0)1000.000K值工作区风速冬季≦0.2m/s 夏季≦0.3m/s0.2~0.5m/s检验标准:校核工作区风速是否满足要求3注:出口风速取值见附表L-散流器服务区边长(即布置间距),当两方向长度不等时,可取平均值 H-房间净高 m #DIV/0!0.19#DIV/0!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

舒适性空调侧送风口布置计算
★室温允许波动范围大于或等于1度时。

说明:除高大空间的侧送风气流可以看成是自由射流外,大部分房间的侧送风气流都是受限射流--射流的边界受到房间顶棚、墙等限制。

侧送方式的气流流型宜设计为贴附射流,在整个房间截面内形成一个大的回旋气流,也就是使射流有足够的射程能够送到对面墙(对于双侧内送方式,要求能送到房间的一半),整个工作区为回流区,避免射流中途进入工作区。

这样设计流型可使射流有足够的射程,在进入工作区前其风速和温差可以充分衰减,工作区达到较均匀的温度和速度,可以减小区域温差。

在布置风口时,风口应尽量靠近顶棚,使射流贴附顶棚。

侧送风的房间高度不得低于如下高度:H=h+0.07x+s+0.3m
注:褐、绿、黄三种颜色内容不可修改,绿色格软件自动计算;白色单元格可自行输入;黄色格为为本次校核的计算结果值,见17项说明。

--依据《民用建筑空调设计手册》。

相关文档
最新文档