神经干动作电位及其传导速度的测定

合集下载

神经干复合动作电位以及其传导速度和兴奋不应期的测定

神经干复合动作电位以及其传导速度和兴奋不应期的测定

神经干复合动作电位以及其传导速度和兴奋不应期的测定一目的要求1. 观察蛙坐骨神经复合动作电位的基本波形,并了解其产生的基本原理2. 学习测定蛙离体神经干上神经冲动传导速度的方法和原理3. 学习测定神经兴奋不应期的基本原理和方法二基本原理神经干在受到有效刺激以后可以产生复合动作电位,标志着神经发生兴奋。

如果在离体神经干的一段施加刺激,从另一端引导传来的神兴奋冲动,可以记录出双相电位,加入在引导的两个电极之间将神经干麻醉或损伤,阻断其兴奋传导能力,这时候记录出的动作电位就成为单相电位。

神经细胞的动作电位是以全或无的方式产生的。

但是,复合动作电位的幅值在一定刺激强度下是随刺激强度的增加而增大的。

如果在远离刺激点的不同距离处分别引导离体神经干动作电位,两引导点之间的距离为m,在两引导点分别引导出的动作电位的时相差为s。

即可按照公式v=m/s来计算出兴奋的传导速度。

蛙类的坐骨神经干属于混合性神经,其中包含有粗细不等的各种纤维,其直径一般为3-29um,其中直径最粗的有髓纤维为A类纤维,传导速度在正常室温下为35-40 m/s。

神经每兴奋一次极其在兴奋以后的回复过程中,其兴奋性都要经历一次周期性的变化,其全过程依次包括绝对不应期、相对不应期、超常期和低常期4个时期。

为了测定坐骨神经在发生一次兴奋以后兴奋性所发生的周期性变化,首先要给神经施加一个条件性刺激引起神经兴奋,然后在前一兴奋及其恢复过程不同时相再施加一个测试性刺激,用于检查神经的兴奋阈值和所引起的动作电位的幅度,以判定神经兴奋性的变化。

三实验材料蛙,常用手术器械,PC机,信号采集处理系统,电子刺激器,神经屏蔽盒,任氏液四实验步骤1反射时和反射弧的测定(1) 制备脊蛙(2) 悬挂支架测定反射时2神经干动作电位的测定(1) 坐骨神经标本的制作(2) 连接poewrlab通道,神经屏蔽盒(3) 打开scope软件设置(4) 刺激记录双相动作电位(5) 损伤神经测定单相动作电位五实验结果与分析(一) 反应时测定(单位:秒)(二) 反射弧分析(三) 神经干动作电位记录图 ?双相电位untitled : Page 24SmVVmsDelay:180ms Ch3Dural:20ms Range:2mv Ampl:6.00vCh2 Range:2vTime Base 200HZ Sample:256Time:1S ?单相电位untitled : Page 25S21mV-1-2210V-1-2msDelay:180ms Ch3Dural:20ms Range:2mvAmpl:6.00v Ch2Range:2vTime Base 200HZSample:256Time:1S神经干是由许多粗细不同的神经纤维组成。

神经干动作电位的引导及其传导速度的测定课件

神经干动作电位的引导及其传导速度的测定课件
结果与讨论
根据实验结果,分析各因素对神经干动作电位引导及其传导速度的 影响程度和机制,探讨其生理意义和实际应用价值。
BIG DATA EMPOWERS TO CREATE A NEW ERA
04
神经干动作电位引导及其传导速度的 应用
神经干动作电位引导的应用
诊断神经疾病
神经干动作电位引导可以用于检测神经系统的异常,如神 经损伤、神经炎等,有助于诊断神经性疾病。
神经干动作电位引导的影响因素
刺激强度
刺激强度的大小直接影响神经干动作电位的产生和幅度。
刺激频率
刺激频率的高低影响神经干动作电位的发放频率和波形。
神经干状态
神经干的状态如兴奋性、传导性等对动作电位的引导有重要影响 。
神经干动作电位传导速度的影响因素
神经纤维直径
01
神经纤维的直径越大,传导速度越快。
神经干传导速度的精确测定
通过采用高精度的电生理技术,本研究成功地实现了对神经干传导速度的精确测定,为 神经科学研究提供了重要的实验依据。
神经干动作电位特征的深入理解
本研究对神经干动作电位的特征进行了深入探讨,揭示了其与神经元动作电位之间的差 异和联系,为神经科学理论的发展做出了贡献。
研究展望
01
神经干动作电位引导 技术的进一步优化
神经干动作电位引导
BIG DATA EMPOWERS TO CREATE A NEW
ERA
神经干动作电位概述
神经干动作电位是神经细胞膜电位变化的一种表现形式,是神经细胞兴奋 时所发生的电位变化。
它是由大量神经细胞膜电位同时发生变化而形成的电位变化,是神经细胞 兴奋传递的基础。
神经干动作电位具有“全或无”的特性,即动作电位的幅度不随刺激强度 的增加而增加,只与刺激强度是否达到阈值有关。

神经干动作电位及其传导速度的测定(虚拟实验)

神经干动作电位及其传导速度的测定(虚拟实验)

任务8 神经干动作电位及其传导速度的测定(虚拟实验)【任务要求】1、操作“神经干动作电位及其传导速度的测定”模拟实验2、神经干的单、双相复合动作电位的记录3、神经干动作电位的传导速度测定【知识目标】1、加深理解神经冲动形成和传导的原理2、强化刺激与反应、兴奋与抑制、兴奋性与刺激阈的概念与关系【技能目标】1、学习模拟实验教学软件的使用方法2、学会观察神经干的单、双相复合动作电位3、学习神经干动作电位传导速度的测定方法【态度目标】1、培养科学研究的兴趣;2、培养自主学习的能力。

【实施步骤】(一)实验准备1、实验环境:机能实验室2、仪器设备:生物信号采集系统,模拟实验教学软件3、实验人员:阅读实验教程、预习教学软件使用说明;穿工作服。

(二)实施与检查1、打开模拟实验教学软件,进入“神经干动作电位”模拟实验菜单,选择具体实验项目,进入具体实验项目后,根据提示即可进行模拟实验。

2、选择“神经干动作电位的观察” 实验项目,观察神经干的单、双相复合动作电位,分析和判别动作电位的波形,测量其波幅、时程及潜伏期。

3、选择“神经干传导速度的测定” 实验项目,学习测定方法。

4、完成实验,退出模拟实验教学软件。

(三)分析与评价1、实验结果收集、整理,以备分析和讨论使用。

2、环境清洁,关闭电源。

3、心得分享,相互切磋,正确评价。

【注意事项】1、请认真按实验软件指示操作,不进行与本实验无关的操作,及时记录数据并绘制曲线。

2、在使用软件的过程中如有疑问,应及时请教带教老师。

【思考与探索】1、何谓刺激伪迹?有何意义?2、随着刺激强度的逐步增加,神经干动作电位的幅度和波形有何变化?为什么?3、神经干双相动作电位的前后相有何不同?为什么?。

机能实验学 神经干动作电位的引导及其传导速度的测定

机能实验学 神经干动作电位的引导及其传导速度的测定

实验原理
细心观察、认真分析、科学总结
Experiment is father of science
双相动作电位形成的示意图(引导电极间距小于兴奋 区域长度时)
ห้องสมุดไป่ตู้冲动
电R位1RRR- 111坐--- 标,越往上负值越大
R1-
动动 R之 冲动 当1作作后动电作某电电,过位电一位位后R比位时2传未,R电继刻到2传恢位低续RR1到复继越1传R,,静2续多导电R无息下,,1位电波降负兴相位形,向奋等低R波区,1于幅上域波R值升继2形,越,续图负高出平回向现移到波正,基产相R线生1波R处2电位差RR开1R+1RR+1+始11++ 缩小,波形开始向下
神经干动作电位的引导及其传导速度的测定
实验内容
细心观察、认真分析、科学总结
Experiment is father of science
1. 实验目的与原理 2. 实验材料 3. 实验方法 4. 注意事项
实验目的
细心观察、认真分析、科学总结
Experiment is father of science
神经干双相动作电位与单根神经纤维的动作电位是不一样的! 两者既有联系,又有区别。
动作电位的引导
动作电位是神经细胞兴奋的客观标志,当神经纤维或 神经干受到有效刺激时,必然会产生可传导的动作电位, 也称为神经冲动。由于神经干动作电位是许多单根神经 纤维动作电位的复合,所以它的特征不同于单根神经纤 维的动作电位。本实验采用离体细胞外记录法,记录神 经干兴奋时两个记录电极之间的电位变化。
++++++++++++++

神经干动作电位及其传导速度的测定

神经干动作电位及其传导速度的测定
❖ 神经干由许多不同的神经细胞组成,众多神经细胞动作 电位的组合即形成复合动作电位;
❖ 复合动作电位能在神经干表面传导,顺序通过两根引导 电极,被记录到双向复合动作电位。
单细胞的 动作电位
神经干复合动作电位
刺激电极
记录电极
0
动作电位的传导
实验原理-2
• 神经干动作电位的幅度在一定范围内随刺激强度 变化而变化,阈刺激,阈上刺激,最大刺激。
实验目的
❖分离蟾蜍的坐骨神经,细胞外记录坐骨神 经干的单相和双相复合动作电位;
❖观察刺激强度对神经干动作电位的影响 ❖测定动作电位在神经干上的传导速度 ❖观察损伤、药物对神经干动作电位的影响
实验原理-1
❖ 神经细胞(纤维)受到有效刺激(阈刺激,阈上刺激) 后,产生了动作电位,即兴奋,它是“全或无”的;
• 测量动作电位的传导速度。 • 交换神经干两端的方向,观察复合动作电位变化,原理? • 夹伤神经干,或Procaine处理,或高K+处理,观察复合动
1
• 阈强度= ? mv • 最大刺激强度= ? mv • 最大刺激时,双相动作电位:
– 上相的幅度= ? mv – 下相的幅度= ? mv – 动作电位持续时间= ? ms
• 记录数据3 :动作电位传导速度=( r1-r2 )/ (t2 - t1)
观察项目4:单相动作电位波形
• 用镊子将两个记录电极之间的神经夹伤,形成 单相动作电位
• 记录数据4 :最大刺激时,单相动作电位 – 幅度= ? mv – 动作电位持续时间= ? ms
谢 谢!
• 刺激引起组织兴奋的三要素: – 刺激强度Intensity – 刺激持续时间Duration – 强度-时间变化率dV/dt
观察项目2:动作电位传导的双向性

神经干动作电位、传导速度和不应期的测定

神经干动作电位、传导速度和不应期的测定

六、制作坐骨神经-腓肠神经标本
(1)分离神经时,一定要用玻璃分针,不能随便用刀、 剪进行操作。 (2)不能过分牵拉神经,以免造成损伤。 (3) 标本制备过程中应适当地用任氏液湿润标本。
(4)在制备坐骨神经-腓/胫神经标本时,尽可能使其长 些,最好达10厘米以上; (5)神经干应平直地置于电极之上,两端不可与屏蔽 盒接触,也不可把神经干两端缠绕于电极之上,两 端任其自然悬空
Via 哈尔滨医科大学 叶灿
二、阈值 三、动作电位传导
(一)静息电位 RP
1.概念:细胞在未受刺激时(静息状态下),存在于
细胞膜内外的电位差。
2.产生机制
安静时细胞膜对Na的少量通透性
Em(RP)
(二)动作电位 AP
1.概念:在静息电位的基础上,细胞受到一个适当的刺激后,其膜 电位所发生的一次可扩布、迅速的、短暂的波动。
模拟结果
6.动作电位记录方法
细胞内记录 (跨膜电位)
细胞外记录 (两点电位差)
6.动作电位的记录方法
细胞内记录 (单向动作电位)
细胞外记录 (双向动作电位)
1.坐骨神经的走行
蟾蜍
蛙类手术器械、 任氏液、蛙板、 培养皿
1.1 毁脑脊髓
1.2 剪除躯干上部及内脏 1.3 剥皮(之后洗净双手和用过的全部手术器械) 1.4 完成坐骨神经标本 1.4.1 分离两腿 1.4.2 游离坐骨神经 1.4.3 完成坐骨神经标本
六、制作坐骨神经-腓肠神经标本
向上分离坐骨神经 至脊柱根部, 向下分离内侧的胫神经和外侧的腓神经至踝关节。 结扎坐骨神经干的脊柱端及胫、腓神经的足端,游离神经干。 提起两端结扎线,将神经干标本放入任氏液中备用。
六、制作坐骨神经-腓肠神经标本

实验3神经干动作电位及神经冲动传导速度的测定-精选文档

实验3神经干动作电位及神经冲动传导速度的测定-精选文档
实验目的
1.观察坐骨神经干单相、双相动作电位 的基本波形,并了解其产生的基本原理。 2.学习用电生理学的方法测定蟾蜍坐骨 神经的神经冲动传导速度。
动作电位的传导 (Conduction of AP)
实 验 原 理
-+ -+ -+ -+ + + + + + + + + ++++ ---- +- +- +- +- - - - - - - - -
局部电流
+- +- +- +- - - - - - - - - ---- -+ -+ -+ -+ + + + + + + + + ++++ +++++++++++++++ ---------------
--------------- +++++++++++++++ 动作电位以局部电流的形式传导, 且神经纤维的动作电位是以“全”或“无”的方式发生的。
动作电位传导速度的测定
Measurement of Conduction Velocity of AP
+
S
Δt AC ———
传导速度测定 υ=
S Δt
刺激伪迹
刺激伪迹是刺激电流通过导电介质扩散至两引导电极而形成 的电位差信号。由于膜上离子通道的开放需要时间,因此刺 激伪迹的起点到动作电位起点有一段距离。


综合分析与描述
刺激电极
引导电极
实 验 步 骤
1.保持频率为某一数值(16Hz)时观察神经干动作电位的幅度 在一定范围内随刺激强度变化而变化的现象。 2.给予神经干最大强度刺激(1.5V),观察形成的双相动作电位 波形。分别测量两个动作电位起始点的时间,求出它们的时 间差值。两对引导电极之间的距离S=10cm。 3.用镊子依次将第二对引导电极、第一对引导电极以及刺激电 极处的神经干标本夹伤,荧屏上呈现电位变化。读出不同电刺激 强度时单相动作电位幅度和电位持续时间数值。

神经干动作电位的引导和传导速度的测定

神经干动作电位的引导和传导速度的测定

神经干
标本屏蔽盒
S1 S2
R1 R1’ R2 R2’
Medlab-U生物信号放大器、刺激器
神经干动作电位及其传导速度测定装置示意图
表6-2 蛙神经干动作电位的引导及其传导速度测定实验结果
项目
结果
阈刺激 最大刺激强度 1通道上下相幅值 1通道上相时程 AP潜伏期(t1、t2) AP间隔时间(t) AP传导速度 1通道单相AP幅值 1通道单相AP时程 绝对不应期
t1 t2
实验后处理
两引导电极相隔较远,上、下相动作电位完全分离
上相动作电位复极完成,下相除极同时开始
上相动作电位复极未完成,下相除极已开始
神经干动作电位的引导和传 导速度的测定
实验目的
1. 掌握蛙坐骨神经-胫腓神经标本的制备方法 2. 掌握引导神经干复合动作电位和测定其传导
速度、兴奋不应期的基本原理和方法
实验原理
兴奋和兴奋性(excitability) 动作电位(action potential) 阈刺激(threshold stimulus) 最大刺激强度
神经干动作电位及其传导速度测定装置示意图
t
Байду номын сангаас通道1
R1 R2
t1
通道2
R3 R4
t2
V=s/(t2-t1) =s/t
实验步骤
制备蛙坐骨神经-胫腓神经标本 连接实验装置 实验参数设置 启动刺激器,记录1、2通道动作电位 寻找阈刺激和最大刺激强度 夹伤1通道两电极之间的神经,记录1通道动作电 位变化, 将脉冲数改为2,逐渐缩短间隔,测量绝对不应期 将保存的数据打开,测量各指标及传导速度,打印
20~50 3000Hz DC
X轴压缩比 Y轴压缩比

神经干动作电位传导速度的测定

神经干动作电位传导速度的测定

神经干动作电位传导速度的测定实验对象:蟾蜍一实验目的掌握坐骨神经标本的制备方法。

掌握引导神经干复合动作电位和测定其传导速度的基本原理。

二相关知识(一)兴奋及兴奋性的概念(二)动作电位的潜伏期、动作电位时程和幅值1、动作电位:各种可兴奋细胞在受到刺激而兴奋时,可以在细胞膜静息电位的基础上发生一次短暂的,可向周围扩布的电位波动。

这种电位波动称为动作电位。

(三)、动作电位的传导局部电流的形式1、细胞外记录2、神经干的动作电位神经干是由许多粗细不等的有髓和无髓神经纤维组成的混合神经,故神经干动作电位与单根神经纤维的动作电位不同,它是由许多神经纤维的动作电位合成的一种复合电位。

三实验原理(一)、单根神经纤维动作电位的引导及其传导1、记录出了一个先升后降的双相动作电位的原理当神经纤维未受刺激时,膜外与电极所接触的两点之间没有电位差,所以两电极之间也无电位差存在,扫描线为一水平基线。

在神经干左端给予电刺激后,则产生一个向右传导的冲动(负电位),当冲动传到1电极(负电极)下方时,此处电位较2处为低,产生了电位差,扫描线向上偏转,记录出一个向上的波形(在电生理实验中,为了便于观察,习惯上规定负波向上)。

随后,冲动继续向右侧传导,离开1电极传向2电极处。

当它到达2电极(正电极)下方时,因1电极处神经差不多已恢复到原来的状态,于是2电极处又较1电极处为负,引起扫描线向下偏转,记录出一个向下的波形。

这样,在神经冲动向右传导的过程中,就记录出了一个先升后降的双相动作电位。

负电极在前时,它首先记录到神经干表面由正变负的电位变化,经历了由正到负再到正的过程,因此记录出动作电位的上相。

当在后的正电极记录到这种同样的电位变化过程时,显示相反的情况,记录出动作电位的下相。

如果互换正、负电极的位置,则记录到先降后升的双相动作电位。

C. A点神经纤维多于B点(次要原因)。

(二)、神经干动作电位的引导及其传导四实验步骤(一)、制备蛙类坐骨神经-胫腓神经标本通过观看录象让学生学习制作方法(二)、连接实验装置注意电极的安装,正负不要接反。

神经干动作电位传导速度的测定及不应期

神经干动作电位传导速度的测定及不应期

神经干动作电位传导速度的测定及不应期神经干动作电位(ACTION POTENTIAL)是神经元在受到刺激后产生的一种电信号,它的传导速度可以反映神经元的功能状态,测定神经干动作电位传导速度及不应期对临床诊断具有重要意义。

神经干电刺激对神经传递的影响取决于刺激的强度、刺激的波形、刺激的频率以及神经病理的程度等因素。

神经病理可以导致神经元的功能损害,这将影响神经干动作电位的产生和传导。

因此,测定神经干动作电位传导速度及不应期是一种常用的神经生理检查方法,可以评估神经系统的正常功能和病理情况。

神经干动作电位的传导速度取决于多个因素,包括神经元的轴突直径、髓鞘的存在、髓鞘的厚度、Na+、K+离子通道的数目和分布等。

在传导速度的测定中,可以通过电极对神经元进行刺激和检测,例如可以将电极放置在相距一定距离的相应位置上测量信号传递的时间。

在神经干动作电位传导速度的测定中,可以采用多种刺激方式,包括直接刺激、间接刺激和磁刺激。

其中,间接刺激是一种相对安全和可靠的方法。

在间接刺激中,使用一个高频脉冲刺激一个中枢神经干,同时在距离刺激位置一定距离内的皮肤表面上测量到反射的神经干动作电位。

在此基础上,可以计算出该神经干的传导速度,从而评估神经系统是否正常。

除了传导速度外,不应期也是评估神经系统功能的重要指标之一。

神经不应期是指神经元在发放一个动作电位后不能立即再次被兴奋的时间,不应期的长短取决于神经元的生物学特性,在某些神经病理情况下,不应期会有所改变。

测定神经干动作电位的不应期可以通过间隔给神经干传递脉冲来测定。

在这个过程中,脉冲与脉冲之间的间隔时间被逐渐缩短,直到神经元再次被兴奋。

这个过程可以通过测量神经干动作电位的延迟时间来评估神经元的不应期。

总体来说,神经干动作电位传导速度的测定及不应期是一种重要的神经生理检查方法,可以评估神经系统的正常功能和病理情况,对于神经病理的诊断和治疗具有重要意义。

第2课神经干动作电位的引导及神经兴奋传导速度的测定

第2课神经干动作电位的引导及神经兴奋传导速度的测定

神经干动作电位的引导及神经兴奋传导速度的测定【实验目的】1. 引导蟾蜍坐骨神经动作电位,并观察其基本波形(包括双相和单相动作电位)。

2. 学习和掌握神经干动作电位传导速度测定的原理和方法。

3. 学习和掌握蟾蜍坐骨神经-腓神经标本制备方法。

【实验原理】动作电位是神经细胞兴奋的客观标志,当神经纤维或神经干受到有效刺激时,必然会产生可传导的动作电位,也称为神经冲动。

由于神经干动作电位是许多单根神经纤维动作电位的复合,所以它的特征不同于单根神经纤维的动作电位。

本实验采用离体细胞外记录法,记录神经干兴奋时不同位置记录电极之间的电位变化。

动作电位可沿神经纤维进行双向传导,其传导速度取决于纤维直径、内阻、有无髓鞘等因素。

通过测定动作电位传导的距离和时间,可算出动作电位在神经纤维上的传导速度。

【实验材料】1. 动物蛙或蟾蜍。

2. 试剂和药品任氏液3. 装置和器材计算机、蛙类手术器械、神经屏蔽盒、直尺、圆规、培养皿。

【实验方法】1. 神经干动作电位的引导1)制备坐骨神经-腓神经标本制备方法与制备坐骨神经-腓肠肌标本基本相同,只是当把坐骨神经游离至膝关节后,在腓肠肌一侧继续分离腓神经至足趾,用线结扎,并在结扎线远端剪断。

将制备好的坐骨神经-腓神经标本浸入盛有任氏液的培养皿内备用。

2)将神经标本置于神经屏蔽盒的电极上。

将神经的近中枢端置于刺激电极一侧,外周端置于记录电极侧。

3)进入BL-420生物信号采集、处理系统,单击菜单栏中实验项目,在肌肉、神经实验中选择神经干动作电位的引导,观察所引导出的动作电位。

4)观察刺激强度对动作电位幅度的影响。

实验项目(单击)——>肌肉、神经实验——>阈强度与动作电位的关系——>设置起始刺激强度、刺激增量与时间间隔——>单击OK——>观察显示器所显示的随着刺激强度大增大,双向动作电位从无到有、到随着刺激强度的增大而增大、再到刺激强度增大到某一值时,动作电位不再随之增大的变化过程。

机能实验神经干复合动作电位及其传导速和兴奋不应期的测定

机能实验神经干复合动作电位及其传导速和兴奋不应期的测定
当前第4页\共有30页\编于星期五\9点
【实验目的与原理】
本实验的目的是学习蛙类坐骨神经干动作电位的记录方并观察几种因素对 动作电位波形的影响,测定神经干动作电位传导速度与不应期,并观察神经干 动作电位的兴奋性变化以及损伤后波形的改变。
当前第5页\共有30页\编于星期五\9点
单根神经纤维动作电位具有两个主要特征:(一)“全或无”特性,即动作电位幅度不随 刺激强度和传导距离而改变.引起动作电位产生的刺激需要有一定强度,刺激达不到阈强 度,动作电位就不出现;刺激强度达到阈值后就引发动作电位,而且动作电位的幅度也就 达到最大值,再继续加大刺激强度,动作电位的幅度不会随刺激的加强而增加;(二)可扩 布性,即动作电位产生后并不局限于受刺激部位,而是迅速向周围扩布,直至整个细胞膜都 依次产生动作电位.因形成的动作电位幅值比静息电位到达阈电位值要大数倍,所以,其扩 布非常安全,且呈非衰减性扩布,即动作电位的幅度、传播速度和波形不随传导距离远近 而改变.动作电位幅度不随刺激强度和传导距离而改变的原因主要是其幅度大小接近于K+ 平衡电位与Na+平衡电位之和,以及同一细胞各部位膜内外Na+、K+浓差都相同的原故.
4.如何记录神经干动作电位?神经功干动作电位波形与神纤维作电位有何不同?
神经组织是可兴奋的组织,当收到阈强度的刺激时,膜电位将发生一短暂的变化,即动作电位。动作电位可沿神经纤维 传导,使已兴奋的部位的神经细胞外表面带负电,未兴奋部位带正电。如果将两个引导电极分别置于正常的神经干表面 (细胞外记录),当神经干兴奋从一端向另一端传导依次通过这两个记录电极时,则可记录到两个方向相反的电位偏转 波形,此即神经干的动作电位,形成的波形为双向,而神经纤维动作电位的记录为细胞内记录,将无关电极置于细胞外, 记录电极插入细胞内,记录到的神经纤维动作电位时程很短,呈尖峰状单波形。神经干动作电位是用细胞外记录法记录 到的已兴奋部位和未兴奋部位的电位差。

神经干动作电位的引导和传导速度的测定

神经干动作电位的引导和传导速度的测定

对神经系统疾病诊断和治疗的潜在价值
早期诊断
01
通过测定神经干动作电位引导和传导速度,有助于早期发现神
经系统疾病,为患者争取最佳治疗时机。
疗效评估
02
该技术可为神经系统疾病的治疗效果提供客观指标,有助于评
估治疗效果和调整治疗方案。
个体化治疗
03
通过神经干动作电位引导和传导速度的测定,可以为患者制定
个体化的治疗方案,提高治疗效果。
1 2
技术创新
随着科技的不断进步,神经干动作电位引导和传 导速度测定技术将不断优化,提高测定的准确性 和可靠性。
应用范围扩大
未来该技术有望应用于更多种类的神经系统疾病 ,为临床诊断和治疗提供更多有价值的信息。
3
智能化发展
随着人工智能和机器学习技术的进步,神经干动 作电位引导和传导速度测定技术将实现智能化, 提高测定的效率和精度。
临床意义
测定神经干动作电位引导和传导速度对于诊断神经性疾病、评估神经损伤程度和治疗效果等具有重要价值。例如 ,周围神经病变、脊椎病变等神经系统疾病可能导致神经传导速度减慢,通过测定神经干动作电位的传导速度可 以评估病情和治疗效果。
02
神经干动作电位的引导
引导方法
01
02
03
电极放置
将引导电极放置在神经干 表面或插入神经组织内, 以记录动作电位。
神经干动作电位的引导和传导速 度的测定
汇报人:可编辑 2024-01-11
• 引言 • 神经干动作电位的引导 • 神经干动作电位的传导速度 • 神经干动作电位引导和传导速度的
生理意义 • 展望与未来研究方向
01
引言
神经干动作电位的基本概念
神经干动作电位

神经干动作电位及传导速度的测定-实验指导.

神经干动作电位及传导速度的测定-实验指导.

实验二神经干动作电位及传导速度的测定【实验目的】学习神经干动作电位的测定方法,观察动作电位的波形、时程、幅度,学会测定动作电位的传导速度。

【实验原理】神经干在受到有效刺激后,可以产生动作电位,标志着神经发生兴奋。

如果在神经干另一端引导传来的兴奋冲动,可以引导出双相的动作电位,如在两个引导电极之间将神经麻醉或损坏,则引导出的动作电位即为单相动作电位。

神经细胞的动作电位是以“全或无”方式发生的。

坐骨神经干是由很多不同类型的神经纤维组成的,所以,神经干的动作电位是复合动作电位。

复合动作电位的幅值在一定刺激强度下是随刺激强度的变化而变化的。

用蟾蜍坐骨神经-胫腓神经标本来观察神经干动作电位及其传导,测定神经兴奋传导速度。

【实验对象】蟾蜍或蛙【实验材料】生物机能实验系统、神经标本屏蔽盒、蛙类手术器械、剪刀、手术剪、镊子、探针、玻璃分针、滴管、培养皿、烧杯、锌铜弓、棉花、缝线、任氏液。

【方法和步骤】1.制备蟾蜍坐骨神经干标本(1)破坏脑和脊髓取蟾蜍一只,用水洗净。

左手握住蟾蜍,用示指压住头部前端使头前俯。

右手持探针从枕骨大孔垂直刺入,左右划动,横断脑和脊髓。

再将探针刺入颅腔,左右搅动捣毁脑髓。

然后将探针撤回向后伸入椎管破坏脊髓。

当脑和脊髓完全破坏时,此时蟾蜍的呼吸停止,四肢松软。

(2)剪除躯干上部及内脏在骶髂关节水平以上 1.5~2.0cm处剪断脊柱。

左手握蟾蜍后肢,使蟾蜍头与内脏下垂,右手持普通剪刀,沿脊柱断端两侧剪除内脏及头胸部,仅留下后肢、骶骨、脊柱及由它发出的坐骨神经。

(3)剥皮左手握脊柱断端,右手捏住其上的皮肤边缘,向下剥掉全部后肢的皮肤,将标本放在盛有任氏液的培养皿中。

(4)分离左右两腿用镊子将标本提起,剪去向上突出的骶骨,梨状肌(注意勿损伤坐骨神经),然后沿正中线用普通剪刀将脊柱分为两半,并从耻骨联合中央剪开两侧大腿,放在盛有任氏液的培养皿中。

(5)制作坐骨神经-胫腓神经标本取出一侧下肢,用蛙钉固定于蛙板上。

神经干动作电位及其传导速度的测定

神经干动作电位及其传导速度的测定

神经干动作电位及其传导速度的测定1.实验目的:应用微机生物信号采集处理系统和电生理实验的方法,测定蛙类坐骨神经干双相、单相动作电位,测定神经冲动的传导速度。

2.实验材料和方法:⑴材料:蟾蜍;任氏液;BB-3G标本屏蔽盒,微机生物信号采集处理系统。

⑵方法:2.1系统连接和参数设置启动RM6240系统:点击“实验”菜单,选择“神经干动作电位”项目。

仪器参数:1、2通道时间常数0.02s、滤波频率3kHz、灵敏度5mV,采样频率40~100kHz,扫描速度1.0ms/div。

单刺激模式,刺激宽度0.1ms,延迟1ms,同步触发。

2.2制备蟾蜍坐骨神经干标本2.2.1毁蟾蜍脑脊髓和下肢标本制备2.2.2剥皮的下肢标本俯卧位于蛙板上,并剪除其骶骨。

用玻璃分针分离脊柱两侧的坐骨神经,穿线,紧靠脊柱根部结扎,近中枢端剪断神经干,用尖头镊子夹结扎线将神经干从骶部剪口处穿出。

2.2.3用分针循股二头肌和半膜肌之间的坐骨神经沟,纵向分离暴露坐骨神经大腿部分,直至分离至腘窝胫腓神经分叉处,并用分针将腓浅神经、胫神经与腓肠肌和胫骨前肌分离。

2.2.4提起一侧结扎神经的线头,置剪刀于神经与组织之间,紧贴股骨,腘窝,顺神经走向,剪切至跟腱并剪断跟腱和神经。

剥离附着在神经干上的组织,完成后将其浸入盛有任氏液培养皿中待用。

2.3实验观察2.3.1神经干标本兴奋性将神经干移入标本屏蔽盒内,中枢端置于刺激电极处。

在刺激器功能框,选中触发选项,选择单刺激,波宽0.1ms,刺激电压1.0V,按“开始刺激”,观察屏幕上是否有动作电位,若神经干标本兴奋性良好,继续下一项目。

2.3.2中枢端引导动作电位神经干末梢置于刺激电极处,刺激电压1.0V,波宽0.1ms,按“开始刺激”,测定第1对引导电极引导的双相动作电位正相波和负相波的振幅和时程。

2.3.3末梢端引导动作电位和测定动作电位传导速度神经干中枢端置于刺激电极处,刺激电压1.0V,波宽0.1ms,按“开始刺激”,测定第1对引导电极引导的双相动作电位正相波和负相波的振幅和时程。

关于神经干动作电位的引导,传导速度及不应期的测定实验报告指导

关于神经干动作电位的引导,传导速度及不应期的测定实验报告指导

关于神经干动作电位的引导,传导速度及不应期的测定实验报告指导一、实验目的:1.观察牛蛙坐骨神经干的动作电位,比较神经干与单根神经纤维动作电位的区别。

2、了解神经干电位的特点二.实验原理:动作电位:指的是细胞在静息电位的基础上接受有效刺激后产生的一个迅速的可向远处传播的膜电位波动。

动作电位是神经兴奋的客观指标。

双相动作电位:如将两个引导电极分别置于正常完整的神经干表面,动作电位先后通过两个引导电极,可引导出两个相反方向的电位偏转,称为双相动作电位。

三.实验材料1.动物:牛蛙或者蟾蜍2.药品:林格液3.器材:蛙板,蛙类手术器械一套,滤纸,烧杯,手术线,棉球,RM6240生物信号记录系统,刺激电极,屏蔽盒。

四.实验方法:1.制备坐骨神经标本①破坏蛙的脑脊髓②剪除躯干上部及内脏③后肢剥皮④清洗干净⑤分离左右后肢⑥游离出坐骨神经⑦制备坐骨神经干标本⑧清理标本2.连接实验装备3.系统调试:①开机并启动RM6240生物机能实验系统②本实验采取单通道记录,将一对引导电极与通道一连接,刺激电极连接至刺激器输出接口。

③将坐骨神经-腓神经标本放入神经屏蔽盒(坐骨神经中枢端放在刺激电极上,外周端放在引导电极上)4.项目观察:1.观察细胞外引导双相动作电位的波形特点,测定幅值及时程2.测定神经干动作电位传导速度3.测定不应期:记录下第二个动作电位刚消失时的两个刺激脉冲之间的波间隔,此时的波间隔值即为绝对不应期。

用不应期减去绝对不应期即为得出相对不应期。

五.实验结果从以下几个方面写解释双相动作电位产生的机制,记录动作电位的时程,幅值测定神经干动作电位传导速度动作电位不应期的测定刺激强度与复合动作电位幅值的关系六.注意事项1.制备神经标本过程中,应避免用手捏神经或镊子夹伤神经。

2.为了防止神经干标本干燥,制备过程中应不断滴加任氏液,使其保持良好兴奋性。

3.将神经干放在屏蔽盒之前,用刀片轻刮引导电极,以保证电极和神经干密切接触。

神经干动作电位传导速度的测定原理

神经干动作电位传导速度的测定原理

神经干动作电位传导速度的测定原理引言:神经干动作电位是指在神经纤维上产生的电信号,它是神经系统中信息传递的基础。

神经干动作电位的传导速度是指电信号在神经纤维上传递的速度,它反映了神经纤维的功能状态。

本文将介绍神经干动作电位传导速度的测定原理。

一、神经干动作电位的产生和传导神经纤维是由许多神经元组成的,当神经元受到刺激时,会产生电信号。

这些电信号通过神经纤维的轴突传导,形成神经干动作电位。

神经干动作电位的传导是通过离子通道的开闭来实现的。

二、神经干动作电位传导速度的测定方法1. 刺激法:通过在神经纤维上施加电刺激,观察电信号的传导时间来测定传导速度。

这种方法适用于测定较短的神经纤维段的传导速度。

2. 记录法:将电极置于神经纤维的起始和终止部位,记录电信号的传导时间,然后根据两点之间的距离计算传导速度。

这种方法适用于测定较长的神经纤维段的传导速度。

3. 神经刺激-肌肉反应法:通过刺激神经,观察肌肉的反应时间来测定神经干动作电位的传导速度。

这种方法适用于测定周围神经的传导速度。

三、神经干动作电位传导速度的影响因素1. 神经纤维直径:神经纤维直径越大,传导速度越快。

这是因为直径较大的纤维内离子通道较多,电信号传导的阻抗较小。

2. 髓鞘:髓鞘是由神经细胞髓鞘细胞形成的多层脂质结构,它可以增加神经纤维的传导速度。

髓鞘越完善,传导速度越快。

3. 温度:温度越高,离子的运动速度越快,神经干动作电位的传导速度也越快。

四、临床应用神经干动作电位传导速度的测定在临床上有着重要的应用。

它可以用于诊断神经疾病,如周围神经病变、多发性硬化等。

通过测定传导速度的变化,可以判断神经纤维是否受损,以及受损的程度。

结论:神经干动作电位传导速度的测定原理是基于神经纤维上电信号的传导机制。

通过刺激法、记录法和神经刺激-肌肉反应法等方法,可以测定神经干动作电位的传导速度。

神经纤维的直径、髓鞘和温度等因素会影响传导速度。

神经干动作电位传导速度的测定在临床上具有重要的应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验4 神经干动作电位不应期和传导速度的测定
【实验目的】
1.加深理解兴奋传导的概念并了解神经兴奋传导速度测定的基本原理和方法。

2.验证和加深理解神经干动作电位后兴奋性的规律性变化。

【实验原理】
1.神经纤维兴奋时产生一个可以传播的动作电位,动作电位依局部电流或跳跃传导的方式
沿神经纤维传导,其速度取决于神经纤维直径、内阻、有无髓鞘等。

坐骨神经的动作电位是由一群不同兴奋阈值、传导速度(v)和幅值的峰形电位所总和而成,为复合动作电位。

测定该复合动作电位传导的距离(s)和经过这些距离所需的时间(t),即可根据v=s/t计算出神经干兴奋的传导速度。

2.神经组织和其他可兴奋组织一样,在接受一次刺激产生兴奋后,其兴奋性将会发生规律
性的变化,一次经过绝对不应期、相对不应期、超常期和低常期,然后再回到正常的兴奋水平。

为了测定坐骨神经发生一次兴奋后的兴奋性周期变化,可采用双脉冲刺激法。

即先给与一个一定强度的“条件刺激”,使神经产生兴奋,在神经发生兴奋后,按不同的时间间隔在给与一个“测试刺激”,观察测试刺激是否引起动作电位以及动作电位的大小,以此来反应神经兴奋性的变化,测出相对不应期和绝对不应期。

【实验对象】
蛙或蟾蜍。

【实验器材与药品】
微机生物信号采集处理系统、蛙类手术器械1套、神经标本屏蔽盒、滤纸片、棉球、任氏液。

【实验方法和步骤】
一、蛙或蟾蜍坐骨神经标本制备
标本制备方法参见实验“神经干动作电位的引导”。

二、仪器连接及参数选定
1.仪器连接:同实验3。

2.刺激器参数选定:刺激方式:单次;刺激波宽:0.1~0.2ms;刺激强度:数伏至数十伏。

通过显示器观察到方波位置,而后调节延时使之到适当位置。

3.前置放大器调节:增益:1000;高频滤波:10kHz;时间常数:0.01。

4.计算机调节:见有关计算机操作部分。

三、观察项目
1.神经干兴奋传导速度的测量
将坐骨神经干标本置于神经标本屏蔽盒内的电极上,神经干需与两对引导电极r1和r2以及刺激电极保持良好的接触。

1.1 将r1记录电极连于前置放大器输入端,调节刺激器刺激强度以产生最大动作电位。

1.2 根据计算机采样时间,可测量出从刺激伪迹前沿至动作电位起始转折处的时间间隔(毫
秒),用t1表示。

1.3 将r2记录电极连入前置放大器,采用同样方法,可测得数值t2。

1.4 量出r1和r2之间的距离,即神经长度的mm数,用d表示,t2-t1则为动作电位从r1传至r2走
过d距离所需的时间。

1.5 神经兴奋传导的平均速度用V表示,则V= d/t2-t1(mm/ms)。

2.神经干兴奋不应期的测定
按前述的方法引导单相动作电位,先用单刺激找出最适刺激强
度,然后调节刺激器使之输出双脉冲刺激。

B A C
D
E 2.1 在不改变刺激强度条件下适当调节两个方波之间时间间隔,观察两个方波刺激所产生的两个动作电位,并注意它们的幅度。

2.2 逐渐缩短两个方波之间的时间间隔,可见第二个动作电位向第一个动作电位靠近,当两个方波刺激之间时间缩短到一定程度,可观察到第二个动作电位开始变小,记下刚减小时两个方波之间的间隔时间,此为不应期。

图4-1 神经干兴奋后兴奋性的变化
上线:动作电位;下线:刺激标记;
A-E为不同时间间隔双脉冲引起的动作电位波形;
2.3 继续改变两个方波之间的时间间隔,是第二个动作电位继续向第一个动作电位靠近,并
且逐渐消失,记下刚消失时第二个与第一个刺激方波之间的间隔时间,即为绝对不应期的近似值,不应期减去绝对不应期即为相对不应期,如果刺激器用作条件刺激和测试刺激,刺激输出参数可分别独立调节,则在绝对不应期测量时,应在第二个动作电位刚刚消失时,加大测试刺激强度后动作电位仍不能出现,此时用第二个与第一个刺激方波的时间间隔代表绝对不应期才较准确(图4-1)。

【注意事项】
1. 同实验3。

2. 标本盒内两对引导电极的距离愈远愈好。

【思考题】
1.如果神经干标本足够长(超过10cm以上),将记录电极和刺激电极间距离加大,适当
增强刺激强度,所记录的动作电位可出现数个波峰或下降支分出几个突起,试解释其原因。

2.绝对不应期等于前后两个刺激方波的间隔时间,还是第一个动作电位起点至第二个刺激
方波之间的间隔时间?为什么?
3.在实验中可否用刺激电极与记录电极r1间距离除以t1来计算传导速度,这与本实验所
采用方法有何不同?
4.如果条件刺激与测试刺激的参数独立可调,请您设计一下如何可观察坐骨神经-腓神经
干产生一次兴奋后其兴奋性的超常期和低常期。

5.如何证明坐骨神经是混合神经?
(段玉斌裴建明)。

相关文档
最新文档