三维激光扫描仪分类及原理.

合集下载

三维激光扫描分类及工作步骤

三维激光扫描分类及工作步骤

一、地面激光扫描系统1、概述地面激光扫描仪系统类似于传统测量中的全站仪,它由一个激光扫描仪和一个内置或外置的数码相机,以及软件控制系统组成。

二者的不同之处在于激光扫描仪采集的不是离散的单点三维坐标,而是一系列的“点云”数据。

这些点云数据可以直接用来进行三维建模,而数码相机的功能就是提供对应模型的纹理信息。

2、工作原理三维激光扫描仪发射器发出一个激光脉冲信号,经物体表面漫反射后,沿几乎相同的路径反向传回到接收器,可以计算日标点P与扫描仪距离S,控制编码器同步测量每个激光脉冲横向扫描角度观测值α和纵向扫描角度观测值β。

三维激光扫描测量一般为仪器自定义坐标系。

X轴在横向扫描面内,Y轴在横向扫描面内与X轴垂直,Z轴与横向扫描面垂直。

获得P的坐标。

进而转换成绝对坐标系中的三维空间位置坐标或三维模型。

3、作业流程整个系统由地面三维激光扫描仪、数码相机、后处理软件、电源以及附属设备构成,它采用非接触式高速激光测量方式,获取地形或者复杂物体的几何图形数据和影像数据。

最终由后处理软件对采集的点云数据和影像数据进行处理转换成绝对坐标系中的空间位置坐标或模型,以多种不同的格式输出,满足空间信息数据库的数据源和不同应用的需要。

(1)、数据获取利用软件平台控制三维激光扫描仪对特定的实体和反射参照点进行扫描,尽可能多的获取实体相关信息。

三维激光扫描仪最终获取的是空间实体的几何位置信息,点云的发射密度值,以及内置或外置相机获取的影像信息。

这些原始数据一并存储在特定的工程文件中。

其中选择的反射参照点都具有高反射特性,它的布设可以根据不同的应用目的和需要选择不同的数量和型号,通常两幅重叠扫描中应有四到五个反射参照点。

(2)、数据处理1) 数据预处理数据获取完毕之后的第一步就是对获取的点云数据和影像数据进行预处理,应用过滤算法剔除原始点云中的错误点和含有粗差的点。

对点云数据进行识别分类,对扫描获取的图像进行几何纠正。

2)数据拼接匹配一个完整的实体用一幅扫描往往是不能完整的反映实体信息的,这需要我们在不同的位置对它进行多幅扫描,这样就会引起多幅扫描结果之间的拼接匹配问题。

三维激光扫描仪分类及原理

三维激光扫描仪分类及原理

三维激光扫描仪分类及原理三维激光扫描仪是一种可实现对物体进行非接触式三维测量的设备。

它利用激光测距原理,通过发送激光束并接收反射的激光束来测量目标物体的三维点云数据。

根据不同的工作原理和应用领域,可以将三维激光扫描仪分为以下几类。

1.结构光三维激光扫描仪结构光三维激光扫描仪是利用投射一系列具有特定空间编码的结构光条纹,通过测量物体表面上结构光的形变来实现三维测量。

具体工作原理是,通过投射特定编码的结构光,经过物体表面的反射后,利用相机来捕捉结构光图案,再通过图像处理和计算,可以重建出物体表面的三维点云数据。

结构光三维扫描技术具有测量速度快、分辨率高等优点,并广泛应用于工业测量、三维建模、虚拟现实等领域。

2.相位测量三维激光扫描仪相位测量三维激光扫描仪通过测量目标物体表面的激光束相位差,实现精确的三维测量。

具体工作原理是,激光器发射激光束,经过物体表面反射后,激光束的相位发生变化。

通过将激光束分为参考光和测试光,通过调整参考光的相位差,再通过相位差与测试光的相位差之间的比较,可以得到物体表面的相位差,从而获取物体表面的三维点云数据。

相位测量三维激光扫描仪具有测量精度高、测量范围大等优点,并广泛应用于制造业、建筑、文化遗产保护等领域。

3.时间飞行三维激光扫描仪时间飞行三维激光扫描仪是通过测量激光束从发射到接收的时间差来获得物体表面的三维信息。

具体工作原理是,激光器发射激光脉冲,经过物体表面反射后,再被接收器接收。

通过测量从发射到接收的时间差,再结合光的速度,可以计算出物体表面到激光扫描仪的距离,从而获取物体表面的三维点云数据。

时间飞行三维激光扫描仪具有测量范围大、适用于室外环境等特点,并广泛应用于土地测量、地形测量、建筑测量等领域。

4.轮廓扫描三维激光扫描仪轮廓扫描三维激光扫描仪是通过测量激光束在物体表面上的轮廓变化来实现三维测量的一种方式。

具体工作原理是,激光束在物体表面上进行扫描,通过检测激光束与物体表面的交点,从而获得物体表面的轮廓点云数据。

3d激光扫描仪原理

3d激光扫描仪原理

3d激光扫描仪原理3D激光扫描仪是一种先进的测量技术,通过激光光源产生的测量光束,以非接触方式扫描目标物体,获取其表面形貌和几何特征,并将其转化为数字化的三维模型。

这种高精度的测量方法广泛应用于工业制造、文化遗产保护、医疗诊断等领域。

激光扫描仪的工作原理可分为两步:扫描和测量。

首先,激光扫描仪会发射一束高频脉冲激光光束,该光束将在目标物体表面产生反射,并被扫描仪接收。

接着,扫描仪会根据接收到的反射光强度和时间信息,计算出光束与目标物体表面的距离差异,从而测量出目标物体表面点的三维坐标。

激光测量的原理主要依赖于激光雷达(Lidar)技术。

当激光光束发射到目标物体表面时,通过光的散射、反射等物理现象,部分激光光束会被目标表面返回,再经过激光扫描仪光电探测器接收。

激光扫描仪能够测量出接收到的激光光束的时间和光强差异,进而计算出目标表面的距离值。

整个扫描过程需要扫描仪以高速旋转或移动的方式来完成。

同时,激光扫描仪还需采用大量的数学算法和信号处理技术来对接收到的数据进行分析和处理,以生成高精度的三维模型。

在实际应用中,激光扫描仪常用于三维建模、品质检测、机器人导航等领域。

例如,在工业制造中,激光扫描仪可以帮助生产商快速获取产品表面的形貌数据,并与设计模型进行比对,以确保产品质量。

在文化遗产保护方面,激光扫描仪可以在不接触物体的情况下,快速、精确地记录建筑物、雕塑等文物的三维信息,为文物保护和修复提供有力的支持。

在医疗诊断方面,激光扫描仪可用于制作个性化假肢、义齿等医疗器械,提高适配性和舒适度。

总结起来,3D激光扫描仪基于激光雷达技术,通过高频脉冲激光光束和光电探测器的配合,实现对目标物体表面的三维测量。

其在细节捕捉、精确度和高效性方面具有明显优势,已在多个领域得到广泛应用。

3D扫描仪的原理及应用

3D扫描仪的原理及应用

3D扫描仪的原理及应用1. 介绍3D扫描仪是一种能够获取物体表面信息并将其转化为三维模型的设备。

它通过激光、摄像头或其他传感器来捕捉物体的几何形状和纹理信息,然后将其转化为数字化的三维数据。

这种技术具有广泛的应用领域,包括工业设计、医疗、文化遗产保护等。

2. 原理3D扫描仪的工作原理主要分为三步:扫描、点云处理和三维重建。

2.1 扫描使用激光、结构光或其他传感器来扫描物体表面。

激光扫描仪利用激光束照射物体表面,并通过相机来记录激光点的位置。

结构光扫描仪则利用投射特殊光源的光斑在物体表面形成特定的纹理图案,并通过相机来记录图案的形变。

传感器等扫描设备会记录物体表面的各种信息。

2.2 点云处理将扫描得到的数据转化为点云。

点云是一种由大量离散点构成的数据结构,每个点都包含了物体表面的坐标信息。

点云处理的目标是去除噪音、滤波和对点云进行精细化处理。

2.3 三维重建将点云数据转化为三维模型。

三维重建的方法有很多种,包括基于体素的方法、基于曲面重建的方法等。

这些方法可以将点云数据转化为平滑的三维表面模型,以供后续应用使用。

3. 应用3D扫描仪具有广泛的应用领域,以下是常见的应用领域。

3.1 工业设计在工业设计中,3D扫描仪可以用来获取现有产品的几何形状和纹理信息,以便进行产品改进、模型重建和快速原型制作等工作。

它可以提高设计师的工作效率,并减少产品开发的时间和成本。

3.2 艺术品复制在艺术品复制领域,3D扫描仪可以用来获取艺术品的几何形状和纹理信息,然后通过三维打印技术来复制艺术品。

这种技术可以用来保存文化遗产,保护珍贵艺术品,并可以使更多的人享受到艺术品的乐趣。

3.3 医疗在医疗领域,3D扫描仪可以用来获取患者的身体部位的几何形状和纹理信息。

这种技术可以用于手术模拟、个性化医疗器械的设计制造以及假肢的制作等方面。

它能够提升医生的诊断和治疗效果,为患者提供更好的医疗体验。

3.4 文化遗产保护3D扫描仪可以用来对文化遗产进行数字化保护。

三维激光扫描仪都有哪些种类

三维激光扫描仪都有哪些种类

顾名思义,扫描仪就是用来对物体进行扫描的工具,通过扫描我们可以得到物体的成像。

但是其他产品和工具一样,扫描仪的种类也是多样的,并且不同种类的扫描仪特点和优势也各不相同。

今天我们就一起来了解一下在扫描领域比较先进的三维激光扫描仪。

下面将从不同类型的三维激光扫描仪有哪些特点和优势给大家进行简单的介绍。

三维激光扫描仪按照扫描成像方式的不同,激光扫描仪可分为一维(单点)扫描仪、二维(线列)扫描仪和三维(面列)扫描仪。

而按照不同工作原理来分类,可分为脉冲测距法(亦称时间差测量法)和三角测量法。

1、脉冲测距法:激光扫描仪由激光发射体向物体在时间t1发送一束激光,由于物体表面可以反射激光,所以扫描仪的接收器会在时间t2接收到反射激光。

由光速c,时间t1,t2算出扫描仪与物体之间的距离d=(t2-t1)c/2。

脉冲测距式3D激光扫描仪,其测量精度受到扫描仪系统准确地量测时间的限制。

当用该方式测量近距离物体的时候,由于时间太短,就会产生很大误差。

所以该方法比较适合测量远距离物体,如地形扫描,但是不适合于近景扫描。

2、三角测距法:用一束激光以某一角度聚焦在被测物体表面,然后从另一角度对物体表面上的激光光斑进行成像,物体表面激光照射点的位置高度不同,所接受散射或反射光线的角度也不同,用CCD (图像传感器)光电探测器测出光斑像的位置,就可以计算出主光线的角度θ。

然后结合己知激光光源与CCD 之间的基线长度d,经由三角形几何关系推求扫描仪与物体之间的距L≈dtanθ。

手持激光扫描仪通过上述的三角形测距法建构出3D图形:通过手持式设备,对待测物发射出激光光点或线性激光。

以两个或两个以上的侦测器测量待测物的表面到手持激光产品的距离,通常还需要借助特定参考点-通常是具黏性、可反射的贴片-用来当作三维扫描仪在空间中定位及校准使用。

这些扫描仪获得的数据,会被导入电脑中,并由软件转换成3D模型。

3、三角测量法的特点:结构简单、测量距离大、抗干扰、测量点小(几十微米)、测量准确度高。

三维激光测量仪分类及原理

三维激光测量仪分类及原理

三维激光测量仪分类及原理一、引言三维激光测量仪是一种广泛应用于科学研究、工业制造和建筑工程等领域的测量设备。

本文将介绍三维激光测量仪的分类及其原理。

二、分类三维激光测量仪可根据其工作原理和应用领域进行分类。

以下是几种常见的分类方式:1. 基于扫描原理的分类:- 全站仪:通过旋转激光器和接收器的组合,实现对目标区域的全方位测量。

- 激光雷达:利用激光束对目标进行扫描,通过测量返回激光脉冲的时间和强度来获取目标的距离、位置和形状等信息。

- 光干涉仪:利用干涉原理,通过测量光波的相位差来获得目标的三维信息。

2. 基于工作领域的分类:- 科学研究:用于地质勘探、气候变化研究等领域的精密测量。

- 工业制造:应用于零件尺寸检查、表面质量评估等工业生产过程中的测量和检测。

- 建筑工程:用于建筑物的框架测量、变形监测等建筑工程中的测量任务。

三、原理三维激光测量仪的工作原理基于激光束的发射和接收。

其主要原理如下:1. 发射激光束:激光器发射一束准直且稳定的激光光束。

2. 激光束的传播:激光光束通过透镜、反射镜等光学元件进行传播,并照射到目标物体上。

3. 目标物体的反射:激光束照射到目标物体后,发生反射。

4. 接收反射光:激光接收器接收到目标物体反射的激光光束。

5. 处理反射光:通过对接收到的反射光进行处理,测量反射光的时间、强度等参数。

6. 数据处理:根据接收到的反射光数据计算目标物体的距离、位置和形状等三维信息。

三维激光测量仪的原理简单且可靠,使其成为许多领域中广泛使用的测量设备。

四、结论本文介绍了三维激光测量仪的分类及其基本原理。

通过了解三维激光测量仪的不同分类和工作原理,可以更好地选择适合特定应用的测量设备。

Note: This response is provided based on general knowledge and understanding. Please make sure to review and modify it as needed to fit your specific requirements.。

三维激光扫描仪原理

三维激光扫描仪原理

三维激光扫描仪原理
三维激光扫描仪原理
一、三维激光扫描仪的定义
三维激光扫描仪,也称三维激光雷达,是一种以光学技术为主,通过利用激光散射进行测量和图像处理技术,准确测量运动或静态物体的形状、尺寸及其他特性的设备。

二、三维激光扫描仪运行原理
1.激光脉冲发射:通过激光头发射准确、高脉冲能量的激光脉冲,强激光脉冲扩散洒射到目标物体上,对其表面形状反射回激光的多个点进行测量。

2.激光散射测量:激光脉冲扩散到目标物体表面之后,会有一定的反射量传回激光探测器,通过激光探测器和控制系统,可以获得目标物体距离传感器的距离,实现目标物体表面形状的量化测量。

3.数据采集:将激光探测器获取的数据传送到控制电路,经过精确的单元操作,将数据分析成表面形状的某种空间量化模型,实现对目标物体形状形式表示和记录的数据采集处理。

4.三维模型重建:将控制系统接收的数据进行处理,利用重建算法求解出三维模型,实现对目标物体的三维重建,最终得到该物体的中心坐标、尺寸及其他特性。

三、三维激光扫描仪的应用
1. 工业自动化:三维激光扫描仪往往用于检测工件的准确性和合格性,并帮助开发过程中的可视化和实验测试。

2. 无人机导航:由于三维激光扫描仪拥有高精度、宽范围和极低空间要求,因此可以用于无人机技术,帮助无人机在环境比较复杂的情况下以最优路径进行导航。

3. 在医学领域:激光扫描技术可以用来诊断机器中的结构变化,检测微小的细胞变化并执行仪器检测,诊断某些特定疾病以及重建软组织模型。

4. 其他应用:三维激光扫描技术还可以在船舶自动驾驶、飞行飞机的检验维修、地质勘查领域及重建历史文物方面得到广泛应用。

三维激光扫描仪分类及原理

三维激光扫描仪分类及原理

三维激光扫描仪分类及原理地面三维激光扫描技术的出现是以三维激光扫描仪的诞生为代表,有人称“三维激光扫描系统”是继GPS (Global Position System)技术以来测绘领域的又一次技术革命。

三维激光扫描技术是一种先进的全自动高精度立体扫描技术,又称为“实景复制技术”,是继GPS空间定位技术后的又一项测绘技术革新,将使测绘数据的获取方法、服务能力与水平、数据处理方法等进入新的发展阶段。

传统的大地测量方法,如三角测量方法,GPS测量都是基于点的测量,而三维激光扫描是基于面的数据采集方式。

三维激光扫描获得的原始数据为点云数据。

点云数据是大量扫描离散点的结合。

三维激光扫描的主要特点是实时性、主动性、适应性好。

三维激光扫描数据经过简单的处理就可以直接使用,无需复杂的费时费力的数据后处理;且无需和被测物体接触,可以在很多复杂环境下应用;并且可以和GPS等集合起来实现更强、更多的应用。

三维激光扫描技术作为目前发展迅猛的新技术,必定会在诸多领域得到更深入和广泛的应用。

对空间信息进行可视化表达,即进行三维建模,通常有两类方法:基于图像的方法和基于几何的方法。

基于图像的方法是通过照片或图片来建立模型,其数据来源是数码相机。

而基于几何的方法是利用三维激光扫描仪获取深度数据来建立三维模型,这种方法含有被测场景比较精确的几何信息。

三维激光扫描仪的分类:三维激光扫描仪按照扫描平台的不同可以分为:机载(或星载)激光扫描系统、地面型激光扫描系统、便携式激光扫描系统。

三维激光扫描仪作为现今时效性最强的三维数据获取工具可以划分为不同的类型。

通常情况下按照三维激光扫描仪的有效扫描距离进行分类,可分为:(1)短距离激光扫描仪:其最长扫描距离不超过3m,一般最佳扫描距离为0. 6~1. 2 m,通常这类扫描仪适合用于小型模具的量测,不仅扫描速度快且精度较高,可以多达三十万个点精度至±0.018 mm。

例如:美能达公司出品的VIVID 910高精度三维激光扫描仪,手持式三维数据扫描仪FastScan等等,都属于这类扫描仪。

三维激光扫描仪原理

三维激光扫描仪原理

三维激光扫描仪原理
三维激光扫描仪是一种利用激光技术对物体进行三维扫描的设备,它能够快速、精确地获取物体表面的三维形状信息,被广泛应用于工业设计、文物保护、医学影像等领域。

其原理主要包括激光发射、光束聚焦、光斑定位、数据采集和数据处理等环节。

首先,激光扫描仪通过激光器发射一束单色、准直的激光光束,然后利用光学
系统对激光光束进行聚焦,使其成为一束细小的光斑。

这个过程需要确保激光的稳定性和光斑的清晰度,以保证后续扫描的准确性和精度。

接着,光斑被照射到待扫描物体的表面,光斑在物体表面投射出一个二维的图像,激光扫描仪通过控制光斑的移动和旋转,可以扫描整个物体表面,并且在扫描的同时记录下光斑的位置信息。

这个过程需要激光扫描仪具备高速、高精度的运动控制系统,以确保光斑的定位和扫描的连续性。

随后,激光扫描仪将记录下的光斑位置信息转化为数字信号,并通过高速数据
采集系统进行采集和存储。

在数据采集过程中,需要考虑信噪比、采样率、数据传输速度等因素,以保证采集到的数据具有足够的准确性和完整性。

最后,激光扫描仪利用数据处理软件对采集到的数据进行处理和重建,通过三
维重建算法将二维的光斑图像转化为物体表面的三维点云数据,然后根据点云数据生成三维模型。

在数据处理的过程中,需要考虑数据配准、滤波、拼接、曲面重建等算法,以获取高质量的三维模型数据。

综上所述,三维激光扫描仪通过激光发射、光束聚焦、光斑定位、数据采集和
数据处理等环节,实现了对物体表面的快速、精确扫描,为工业设计、文物保护、医学影像等领域的应用提供了重要的技术支持。

随着激光技术的不断发展和进步,相信三维激光扫描仪在未来会有更广阔的应用前景。

三维激光扫描仪汇总

三维激光扫描仪汇总

三维激光扫描仪汇总三维激光扫描仪,也被称为三维激光扫描系统,是一种能够捕捉并测量物体表面形状和对象几何特征的高精度测量仪器。

它通过使用激光束来扫描物体,并通过分析激光点云数据来生成三维模型。

三维激光扫描仪广泛应用于工业制造、建筑设计、文化遗产保护、地质测量、医学等领域。

下面将对三维激光扫描仪的原理、类型和应用进行详细介绍。

一、原理三维激光扫描仪的原理基于激光测距技术。

它通常通过发射激光束并测量激光束返回的时间来计算物体表面的距离。

激光束由发射器产生并聚焦到一个点,然后被反射回扫描仪接收器。

接收器测量激光束返回的时间,并根据时间和光速的关系计算出物体表面的距离。

通过在多个角度对物体进行扫描,可以得到物体的各个点的三维坐标数据,从而构建一个完整的三维模型。

二、类型根据扫描技术的不同,三维激光扫描仪可以分为接触式扫描仪和非接触式扫描仪。

接触式扫描仪需要物体与扫描仪直接接触,以便获取物体表面的数据。

这种扫描仪通常使用机械臂来控制激光头的运动。

非接触式扫描仪则不需要物体接触,通过激光束直接扫描物体表面。

这种扫描仪可以分为两类:光干涉式扫描仪和光视差式扫描仪。

光干涉式扫描仪使用干涉原理来测量物体表面的形状,它可以达到非常高的测量精度。

光视差式扫描仪则通过比较激光束在不同位置的视差来推断物体表面的形状。

三、应用三维激光扫描仪在各个领域都有广泛的应用。

在工业制造中,它可以用来对产品进行质量控制和尺寸测量。

例如,在汽车制造中,三维激光扫描仪可以用来检测车身的平整度和尺寸偏差。

在建筑设计和土木工程中,三维激光扫描仪可以用来对建筑物进行测量和建模。

它还可以用来进行建筑物的实时监测和变形分析。

在文化遗产保护方面,三维激光扫描仪可以用来对古建筑、雕塑和艺术品进行数字化保护。

在地质测量中,它可以用来获取地表的几何信息和地貌变化。

在医学方面,三维激光扫描仪可以用来进行面部重建和医疗器械的量身定制。

总结起来,三维激光扫描仪是一种非常重要的测量仪器,它可以帮助我们捕捉和测量物体表面的形状和几何特征。

使用激光扫描仪进行三维测绘的原理和流程

使用激光扫描仪进行三维测绘的原理和流程

使用激光扫描仪进行三维测绘的原理和流程在建筑设计、土地测量、城市规划等领域,精确获取三维地形数据是非常重要的。

而使用激光扫描仪进行三维测绘,成为一种常用、高效的测绘方法。

本文将介绍激光扫描仪的工作原理以及测绘流程。

一、激光扫描仪的工作原理激光扫描仪是一种通过发射和接收激光束来获取地形数据的仪器。

它通过发射激光束,经过地面反射后,再由接收器接收反射回来的激光束。

通过分析接收到的激光束的特征,可以得到地面或物体的三维坐标信息。

激光扫描仪的工作原理可以分为以下几个步骤:1. 发射激光束:激光扫描仪通过激光器产生一束高强度的激光束,然后通过光学器件对激光束进行聚焦,使其能够准确照射到目标地面或物体上。

2. 接收反射信号:激光束照射到地面或物体上后,部分激光会被反射回来。

激光扫描仪通过接收器接收反射回来的激光束,并将其转换成电信号。

3. 时刻测量:激光扫描仪在接收到反射信号后,会立即记录下反射时间。

通过测量激光束发射和接收的时间差,并结合激光在空气中的传播速度,可以计算出地面或物体与激光扫描仪的距离。

4. 多方位扫描:为了获取更多的地形数据,激光扫描仪通常会进行多次扫描,从不同的角度照射同一地面或物体。

通过记录不同扫描角度下的测量数据,可以进行三维重建。

二、激光扫描仪的测绘流程使用激光扫描仪进行三维测绘,通常包括以下几个步骤:1. 设计扫描路径:在实际操作之前,需要根据测绘需求和场地条件设计扫描路径。

扫描路径的设计需要考虑地形的复杂程度和激光扫描仪的测量范围,以保证数据的完整性和准确性。

2. 安装设备:在进行测绘工作之前,需要正确安装和校准激光扫描仪。

这包括调整激光束的水平和垂直方向以及设定测量参数。

3. 数据采集:激光扫描仪可以通过手持或安装在机械臂、航空器等载体上进行数据采集。

数据采集过程中,激光扫描仪会按照预设的扫描路径进行操作,记录下每个点的位置和高度信息。

4. 数据处理:采集到的数据通常是海量的点云数据,需要进行处理和整理。

完整版三维激光扫描仪的原理与其应用

完整版三维激光扫描仪的原理与其应用

三维激光扫描仪2.1三维激光扫描仪研究背景自上个世纪60年代激光技术已经开始出现,激光技术以其单一性和高聚积度在20 世纪获得巨大发展。

实现了从一维到二维直至今天广泛应用的三维测量的发展,实现了无合作目标的快速高精度测量。

而且数字地球,数字城市等一系列概念的提出,我们可以看到:信息表达从二维到三维方向的转化,从静态到动态的过渡将是推动我国信息化建设和社会经资源环境可持续发展的重要武器。

目前,各种各样的三维数据获取工具和手段不断地涌现,推动着三维空间数据获取向着实时化、集成化、数字化、动态化和智能化的方向不断地发展,三维建模和曲面重构的应用也越来越广泛[1]。

传统的测绘技术主要是单点精确测量,难以满足建模中所需要的精度、数量以及速度的要求。

而三维激光扫描技术采用的是现代高精度传感技术,它可以采用无接触方式,能够深入到复杂的现场环境及空间中进行扫描操作。

可以直接获取各种实体或实景的三维数据,得到被测物体表面的采样点集合“点云” ,具有快速、简便、准确的特点。

基于点云模型的数据和距离影像数据可以快速重构出目标的三维模型,并能获得三维空间的线、面、体等各种实验数据,如测绘、计量、分析、仿真、模拟、展示、监测、虚拟现实等。

其中,地面三维激光扫描技术的研究,已经成为测绘领域中的一个新的研究热点。

它采用非接触式高速激光测量的方式,能够获取复杂物体的几何图形数据和影像数据,最终由后处理数据的软件对采集的点云数据和影像数据进行处理,并转换成绝对坐标系中的空间位置坐标或模型,能以多种不同的格式输出,满足空间信息数据库的数据源和不同项目的需要。

目前这项技术已经广泛应用到文物的保护、建筑物的变形监测、三维数字地球和城市的场景重建、堆积物的测定等多个方面。

2.2 三维激光扫描技术研究现状2.2.1主要的三维激光扫描仪介绍随着三维激光扫描技术研究领域的不断扩大,生产扫描仪的商家也越来越多。

主要的有瑞士Leica 公司,美国的FARO 公司和3D DIGITAL 公司、奥地利的RIGEL 公司、加拿大的OpTech 公司、法国MENSI 公司、中国的北京荣创兴业科技发展公司等。

三维扫描仪原理

三维扫描仪原理

三维扫描仪原理
三维扫描仪原理是通过使用一束激光器产生的激光束来扫描物体表面,并利用激光在物体表面的反射或散射来获取物体表面的几何信息。

三维扫描仪通常由以下几个组件组成:激光器、光电探测器和计算机数据处理系统。

首先,激光器会发出一束相干激光束,通常为红光或绿光。

激光束被聚焦成很小的点,然后沿着物体表面进行扫描。

当激光束照射到物体表面时,部分激光被物体表面吸收,部分激光被物体表面反射或散射。

被反射或散射的激光经过镜头进入光电探测器。

光电探测器会记录下每个激光点的坐标和强度信息。

通过对多个激光点进行扫描,可以获取到物体表面的大量坐标点。

这些坐标点可以构成物体的三维模型。

最后,计算机数据处理系统会对采集到的坐标点进行处理和分析,通过算法和数学模型来重建物体的几何形状。

得到的三维模型可以用于计算尺寸、表面曲率、体积等物体特征。

总之,三维扫描仪通过使用激光束扫描物体表面并记录坐标和强度信息,然后利用计算机数据处理系统对这些信息进行处理与分析,最终得到物体的三维模型。

这种原理可以应用于工业制造、文化遗产保护、医学等领域。

三维激光扫描仪有哪些分类【图解】

三维激光扫描仪有哪些分类【图解】

目前应用的三维激光扫描系统种类繁多,类型、工作领域不尽相同。

按照不同研究角度、工作原理可进行多种分类。

三维激光扫描系统从操作的空间位置可以划分为如下四类:(1)机载型激光扫描系统,这类系统在无人机或有人直升机上搭载,由激光扫描仪、成像装置、定位系统、飞行惯导系统、计算机及数据采集器、记录器、处理软件和电源构成,它可以在很短时间内取得大范围的三维地物数据。

(2)地面型激光扫描系统此种系统是一种利用激光脉冲对被测物体进行扫描,可以大面积、快速度、高精度、大密度的取得地物的三维形态及坐标的一种测量设备。

根据测量方式还可划分为两类一类是移动式激光扫描系统一类是固定式激光扫描系统。

所谓移动式激光扫描系统,是基于车载平台,由全球定位系统、惯性导航系统结合地面三维激光扫描系统组成。

固定式的激光扫系统,类似传统测量中的全站仪。

系统由激光扫描仪及控制系统、内置数码相机、后期处理软件等组成。

与全站仪不同之处在于固定式激光扫描仪采集的不是离散的单点三维坐标,而是一系列的“点云”数据。

其特点为扫描范围大、速度快、精度高、具有良好的野外操作性能.(3)手持型激光扫描仪此类设备多用于采集小型物体的三维数据,一般配以柔性机械臂使用。

优点是快速、简洁、精确。

适用于机械制造与开发、产品误差检测、影视动画制作与医学等众多领域。

(4)特殊场合应用的激光扫描仪,如洞穴中应用的激光扫描仪在特定非常危险或难以到达的环境中,如地下矿山隧道、溶洞洞穴、人工开凿的隧道等狭小、细长型空间范围内,三维激光扫描技术亦可以进行三维扫描。

三维激光扫描系统按照扫描仪的测距原理,又划分为如下三类:(1)使用脉冲测距技术。

其测距范围可达数百米,甚至上千米。

(2)基于相位测量原理。

主要用来进行中等距离的扫描测量,其扫描范围一般在米内,与采用脉冲测距原理的扫描设备相比,它的精度相对为高。

(3)基于光学的三角测量原理。

采用光学三角测量原理的扫描设备,一般工作距离较近,一般在数米数十米,主要应用于工程测量及逆向建模等工程中,可以达到很高的测量精度。

三维激光扫描仪工作原理

三维激光扫描仪工作原理

三维激光扫描仪工作原理三维激光扫描仪是一种采集、处理和输出三维空间形状的高精度测量仪器,广泛应用于各行各业,如制造、建筑、航空航天以及多种科研领域。

但是,激光扫描仪如何实现三维图像采集呢?本文将介绍激光扫描仪的工作原理,并重点介绍四种不同的激光三维扫描技术。

第一,激光条纹扫描工艺。

激射激光射线,其目的是构建一条条狭长的激光条纹,然后把条纹照射到物体表面,并在另一个方向收集反射的光束。

激光条纹扫描的主要原理是运动两个发射器中的一个,使其照射到物体点上,以及另一个将照射到点上的反射光收集,从而计算出物体表面每个点的坐标。

第二,三维激光点扫描工艺。

三维激光点扫描是一种类似激光条纹扫描的测量形式,基本原理也是利用发射器和接收器的运动来实现三维测量的,即发射器和接收器在三维空间运动,从而实现了三维激光点扫描,这种激光点扫描可以通过多次重复来采集物体表面各个点的坐标信息,从而构建出三维激光点云数据。

第三,激光扫描三维重建技术。

它是一种用于生成三维激光点云数据的技术,它可以绘制出模型的某些表面特征,如曲面,细节等。

它是基于一种新型的激光探测技术,可以利用多种类型的激光束,如红外线,可见光等,并利用激光跟踪程序来记录被扫描物体的几何形状特征。

最后,激光建模技术。

激光建模技术的核心原理是通过激光带的扫描和重建产生的三维激光点云,然后通过计算机计算来建立物体的三维模型,从而可以直接在计算机上显示出物体的三维模型。

而激光建模技术可以在不改变原有模型形状的情况下更加容易和快速地创建物体的三维模型,并且可以在计算机上轻松显示出来。

综上所述,三维激光扫描仪的工作原理主要有激光条纹扫描、激光点扫描、激光三维重建技术和激光建模技术,这些技术的实现均与激光的发射和接收有关。

激光扫描仪可以构建出高精度的三维图像,这对于对空间位置精确测量和三维重建有重要意义。

三维激光扫描技术原理及应用

三维激光扫描技术原理及应用

三维激光扫描技术原理及应用
一、三维激光扫描技术原理
三维激光扫描技术是一种基于数字化技术,利用无线电波和激光雷达
手段实现三维物体表面信息捕获、采集、处理和数据存储的高精度测量技术。

它利用一种旋转扫描激光(微型激光距离传感器,MILDS)将空间中
的物体表面信息测量出来,从而获得物体表面的详细数据。

三维激光扫描仪工作原理如下:它由激光发射器、电路、接收器和数
据处理系统组成,激光发射器将准确的激光束发射出去,并且在一定周期
内发射一定次数的激光束,然后激光束在物体表面上反射,接收器从物体
表面反射的激光束中接收反射的激光信号,并将其转换成数字信号,最后
将数字信号传输到数据处理系统中,数据处理系统分析数据并将数据转化
成三维坐标信息,最后三维坐标信息转化成三维物体表面数据信息。

二、三维激光扫描技术应用
1、工业制造:三维激光扫描技术可以用于量取工业零件的特征信息,进行实体复制,印刷三维图像,可用于建立设计工程模型,还可以利用它
来检测产品的错误和缺陷,充分发挥出自动化检测的优势,在更大程度上
提高产品质量和产量。

2、文物保护:三维激光扫描技术可以用于文物的保护。

三维激光扫描仪分类及原理

三维激光扫描仪分类及原理

三维激光扫描仪分类及原理
根据扫描原理和操作方式的不同,可以将三维激光扫描仪分为以下几类:
1.结构光扫描仪:结构光扫描仪通过投射光栅或编码器形成的结构光
条纹,来测量物体的表面形状。

它主要包括摄像头、光源和专业软件等组成。

在扫描过程中,光源发射光线,照射到物体表面后被摄像头捕捉到,
然后通过计算机处理,从而得到物体表面的三维坐标信息。

2.时间飞行扫描仪:时间飞行扫描仪使用脉冲激光器发射一束光,当
光束照射到物体上后,一部分光会被物体反射回来,接收器会记录返回的
光线的时间和强度信息。

通过测量光线往返的时间,可以计算出物体的距离。

时间飞行扫描仪具有较高的精度和快速扫描速度,适用于大范围的场
景测量。

3.相移扫描仪:相移扫描仪是一种通过利用相位差计算距离的扫描仪。

它通过发射不同相位的光束,在接收端通过计算两束光之间的相位差,从
而测量出物体的距离信息。

相移扫描仪具有高测量精度和较高的光照适应性,适用于颜色、反射率变化较大的物体测量。

4.激光雷达:激光雷达通过发射激光束,在物体表面上形成反射光斑,通过接收器接收返回的光强信号,通过测量光线的时间和波长,从而测量
出物体的位置和表面特征。

激光雷达具有高精度和远距离测量的能力,适
用于大范围的测量需求。

以上是几类常见的三维激光扫描仪。

不同的扫描原理和操作方式适用
于不同的测量场景和要求。

随着激光技术的不断发展,三维激光扫描仪在
工业、建筑等领域的应用前景也将越来越广阔。

美国Surphaser三维激光扫描仪

美国Surphaser三维激光扫描仪

测绘测量革命性产品美国Surphaser三维激测绘测量革命性产品-----美国Surphaser三维激光扫描仪00一、三维激光扫描技术简介1 三维激光扫描仪原理与应用1.1三维激光扫描仪原理三维激光扫描仪主要由激光发射器、接收器、时间计数器、马达控制可旋转的滤光镜、控制电路板、微电脑和软件等组成。

激光脉冲发射器周期地驱动激光二极管发射激光脉冲,由接收透镜接受目标表面后向反射信号,产生接收信号,利用稳定的石英时钟对发射与接收时间差作计数,最后由微电脑通过软件,按照算法处理原始数据,从中计算出采样点的空间距离;通过传动装置的扫描运动,完成对物体的全方位扫描;然后进行数据整理从而获取目标表面的点云数据。

1.2三维坐标确定方法1.3 三维激光扫描仪应用量化实景对象、三维信息采集、逆向三维重构、逆向三维建模空间数据反求、对象逆程设计、预研仿研仿制、虚拟现实应用正向工程反证、逆向工程实施、概念设计仿真、逆向制图还原结构特性分析、试验工程仿真、后数据测计量、目标形变监测工程技效评估、电脑模拟实战、环境适应仿真、工程力学分析对抗模拟推演、企业无纸操作、虚拟设计制造、科目效果测试整合三维资源、创建三维流程、工装工艺规划、改进改造工程历史资源修复、任务方案优化、对象加载仿真、设施维护维修应用领域:包括:核电站,文物,考古,建筑业,航天,航空,船舶,制造,军工,军事,石化,医学,水利,能源,电力,交通,机械,影视,教学,科研,汽车,公安,市政建设......2 点云数据处理与建模2.1 点云的预处理由于扫描过程中外界环境因素对扫描目标的阻挡和遮掩,如移动的车辆、行人树木的遮挡,及实体本身的反射特性不均匀,需要对点云经行过滤,剔除点云数据内含有的不稳定点和错误点。

实际操作中,需要选择合适的过滤算法来配合这一过程自动完成。

2.2 点云配准使用控制点配准,将点云配准到控制网坐标系下;靶标缺失的点云,利用公共区域寻找同名点对其进行两两配准,当同名点对不能找到时,利用人工配准法。

三维激光扫描知识点总结

三维激光扫描知识点总结

三维激光扫描知识点总结一、三维激光扫描的工作原理三维激光扫描是通过激光束对物体进行高速扫描,然后根据激光束反射的时间和方向,计算出物体表面的三维坐标信息。

其工作原理可以概括为以下几个步骤:1. 发射激光束:激光扫描仪通过发射激光束来对物体进行扫描。

激光束的大小和方向可以通过控制仪器的参数进行调节。

2. 接收反射信号:激光束照射在物体表面后,会反射回扫描仪的接收器上。

接收器会记录激光束反射的时间和方向。

3. 计算三维坐标:根据激光束的发射时间和接收时间,以及激光束的方向,可以计算出物体表面的三维坐标信息。

4. 构建点云模型:将计算得到的三维坐标信息整合起来,就可以构建出物体的三维点云模型。

这个过程需要对大量的数据进行处理和分析。

5. 生成三维模型:根据点云模型,可以生成物体的三维模型。

这个过程可以通过计算机软件来实现,也可以通过3D打印来实现。

二、三维激光扫描的应用领域三维激光扫描技术具有高精度、高效率和非接触性的特点,因此在各个领域都得到了广泛的应用。

1. 建筑和土木工程:三维激光扫描可以用于建筑物的设计和施工监测,包括建筑结构的检测、地形地貌的勘测、室内外环境的建模等。

2. 制造业:三维激光扫描可以在制造过程中用于快速测量物体的尺寸和形状,包括零部件的尺寸检测、质量控制、逆向工程等。

3. 文物保护:三维激光扫描可以用于对文物和古迹的三维数字化和保护,包括建筑物的修复、雕塑的复制、考古遗址的记录等。

4. 地质勘探:三维激光扫描可以用于对地形和地貌的三维采集,包括矿山的勘探、地质灾害的监测、地质构造的研究等。

5. 医学领域:三维激光扫描可以用于医学影像的三维重建和分析,包括医学影像的诊断、手术模拟、义肢定制等。

6. 航空航天:三维激光扫描可以用于对航空航天器件和构件的三维测量和检测,包括飞行器的结构分析、航天器的装配等。

三、三维激光扫描的技术发展随着科学技术的不断进步,三维激光扫描技术也在不断发展和完善。

3维扫描仪原理

3维扫描仪原理

3维扫描仪原理
三维扫描仪是一种通过激光或者光斑扫描技术获得物体表面三维结构信息的设备。

其工作原理主要涉及以下几个方面:
1. 光源发出激光或者光斑:扫描仪通常会使用激光器或者光斑作为光源。

这些光源会产生一束光线,用于照射在待扫描的物体表面。

2. 光线照射到物体表面并被反射:照射在物体表面的光线会被物体表面反射。

光线的反射与物体表面的形状和特征有关。

3. 接收光信号:扫描仪会安装一组光电传感器或者像素阵列来接收从物体表面反射回来的光信号。

传感器或像素阵列负责将接收到的光信号转化为电信号。

4. 计算物体表面的三维坐标:通过记录光信号的时间、位置和强度等参数,扫描仪能够计算出物体表面的三维坐标。

这些坐标信息可以构建出物体的三维模型。

5. 数据处理和重建:计算得到物体表面的三维坐标之后,需要通过数据处理和重建技术对原始数据进行处理和分析,以生成高精度的三维模型。

这涉及到点云配准、去噪处理、曲面重建等算法。

6. 数据可视化和应用:最后,通过三维可视化技术将生成的三维模型呈现出来,以便用户进行观察、分析和应用。

这些模型可以应用于工业设计、文物保护、医学影像等领域。

总体来说,三维扫描仪通过照射物体表面并接收反射的光信号,通过计算和处理这些信号,得到物体表面的三维坐标信息,进而生成高精度的三维模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三维激光扫描仪分类及原理地面三维激光扫描技术的出现是以三维激光扫描仪的诞生为代表,有人称“三维激光扫描系统”是继GPS (Global Position System)技术以来测绘领域的又一次技术革命。

三维激光扫描技术是一种先进的全自动高精度立体扫描技术,又称为“实景复制技术”,是继GPS空间定位技术后的又一项测绘技术革新,将使测绘数据的获取方法、服务能力与水平、数据处理方法等进入新的发展阶段。

传统的大地测量方法,如三角测量方法,GPS测量都是基于点的测量,而三维激光扫描是基于面的数据采集方式。

三维激光扫描获得的原始数据为点云数据。

点云数据是大量扫描离散点的结合。

三维激光扫描的主要特点是实时性、主动性、适应性好。

三维激光扫描数据经过简单的处理就可以直接使用,无需复杂的费时费力的数据后处理;且无需和被测物体接触,可以在很多复杂环境下应用;并且可以和GPS等集合起来实现更强、更多的应用。

三维激光扫描技术作为目前发展迅猛的新技术,必定会在诸多领域得到更深入和广泛的应用。

对空间信息进行可视化表达,即进行三维建模,通常有两类方法:基于图像的方法和基于几何的方法。

基于图像的方法是通过照片或图片来建立模型,其数据来源是数码相机。

而基于几何的方法是利用三维激光扫描仪获取深度数据来建立三维模型,这种方法含有被测场景比较精确的几何信息。

三维激光扫描仪的分类:三维激光扫描仪按照扫描平台的不同可以分为:机载(或星载)激光扫描系统、地面型激光扫描系统、便携式激光扫描系统。

三维激光扫描仪作为现今时效性最强的三维数据获取工具可以划分为不同的类型。

通常情况下按照三维激光扫描仪的有效扫描距离进行分类,可分为:(1)短距离激光扫描仪:其最长扫描距离不超过3m,一般最佳扫描距离为0. 6~1. 2 m,通常这类扫描仪适合用于小型模具的量测,不仅扫描速度快且精度较高,可以多达三十万个点精度至±0.018 mm。

例如:美能达公司出品的VIVID 910高精度三维激光扫描仪,手持式三维数据扫描仪FastScan等等,都属于这类扫描仪。

(2)中距离激光扫描仪:最长扫描距离小于30 m的三维激光扫描仪属于中距离三维激光扫描仪,其多用于大型模具或室内空间的测量。

(3)长距离激光扫描仪:扫描距离大于30m的三维激光扫描仪属于长距离三维激光扫描仪,其主要应用于建筑物、矿山、大坝、大型土木工程等的测量。

例如:奥地利Riegl公司出品的LMS Z420i三维激光扫描仪和加拿大Cyra技术有限责任公司出品的Cyrax 2500激光扫描仪等,属于这类扫描仪。

(4)航空激光扫描仪:最长扫描距离通常大于1公里,并且需要配备精确的导航定位系统,其可用于大范围地形的扫描测量。

之所以这样进行分类,是因为激光测量的有效距离是三维激光扫描仪应用范围的重要条件,特别是针对大型地物或场景的观测,或是无法接近的地物等等,这些都必须考虑到扫描仪的实际测量距离。

此外,被测物距离越远,地物观测的精度就相对较差。

因此,要保证扫描数据的精度,就必须在相应类型扫描仪所规定的标准范围内使用。

三维激光扫描仪工作原理:无论扫描仪的类型如何,三维激光扫描仪的构造原理都是相似的。

三维激光扫描仪的主要构造是由一台高速精确的激光测距仪,配上一组可以引导激光并以均匀角速度扫描的反射棱镜。

激光测距仪主动发射激光,同时接受由自然物表面反射的信号从而可以进行测距,针对每一个扫描点可测得测站至扫描点的斜距,再配合扫描的水平和垂直方向角,可以得到每一扫描点与测站的空间相对坐标。

如果测站的空间坐标是已知的,那么则可以求得每一个扫描点的三维坐标。

以Riegl LMS -Z420i三维激光扫描仪为例,该扫描仪是以反射镜进行垂直方向扫描,水平方向则以伺服马达转动仪器来完成水平360度扫描,从而获取三维点云数据。

地面型三维激光扫描系统工作原理:三维激光扫描仪发射器发出一个激光脉冲信号,经物体表面漫反射后,沿几乎相同的路径反向传回到接收器,可以计算日标点P与扫描仪距离S,控制编码器同步测量每个激光脉冲横向扫描角度观测值α和纵向扫描角度观测值β。

三维激光扫描测量一般为仪器自定义坐标系。

X 轴在横向扫描面内,Y轴在横向扫描面内与X轴垂直,Z轴与横向扫描面垂直。

获得P的坐标。

图1 扫描点坐标计算原理cos cos P X S βα=cos sin P Y S βα=(1) cos P Z S β=图2 地面激光扫描仪测量的基本原理整个系统由地面三维激光扫描仪、数码相机、后处理软件、电源以及附属设备构成,它采用非接触式高速激光测量方式,获取地形或者复杂物体的几何图形数据和影像数据。

最终由后处理软件对采集的点云数据和影像数据进行处理转换成绝对坐标系中的空间位置坐标或模型,以多种不同的格式输出,满足空间信息数据库的数据源和不同应用的需要。

图3 地面激光扫描仪系统组成与坐标系目前阶段,需要通过两种类型的软件才能使三维激光扫描仪发挥其功能:一类是扫描仪的控制软件;另一类是数据处理软件。

前者通常是扫描仪随机附带的操作软件,既可以用于获取数据,也可以对数据进行相应处理,如Riegi扫描仪附带的软件RiSCAN Pro;而后者多为第三方厂商提供,主要用于数据处理。

Optech 三维激光扫描仪所用数据处理软件为Polyworks 10.0。

三维建模的步骤:三维激光扫描系统采集的数据为点云数据,点云数据处理一般包含下面几个步骤:噪声去除、多视对齐、数据精简、曲面重构。

噪声去除指除去点云数据中扫描对象之外的数据。

在扫描过程中,由于某些环境因素的影响,比如移动的车辆、行人及树木等,也会被扫描仪采集。

这些数据在后处理就要删除。

多视对齐其指由于被测件过大或形状复杂,扫描时往往不能一次测出所有数据,而需要从不同位置、多视角进行多次扫描,这些点云就需要对齐、拼接称为多视对齐。

点云对齐、拼接可以通过在物体表面布设同名控制点来实现。

多视对齐的实质是计算满足如下目标函数的旋转和平移变换矩阵R ,T :2(,)min []i if R T R p T q =•+-∑ (2) 其中,p i ,q i 为需对齐的点云,上式是一个高度非线性问题。

点云对齐的研究主要集中于寻求该问题的快速有效的求解方法。

其中最著名的是Basl 和Mokay 于1992年提出的ICP 算法。

点云的数据精简指的是由于点云数据是海量数据,在不影响曲面重构和保持一定精度的情况下需要对数据进行精简。

常用的精简方法可采用下列方式:平均精简——原点云中每n 个点保留1个;按距离精简——删除一些点后使保留的点云中点与点间的距离均大于某值。

为了真实地还原扫描日标的本来面日,需要将扫描数据用准确的曲面表示出来,这个过程叫曲面重构。

曲面常见表示种类有:三角形网格,细分曲面,明确的函数表示,暗含的函数表示,参数曲面,张量积B 样条曲面,NURBS 曲面,曲化的面片等。

经过曲面重构后,就可以进行三维建模,还原扫描日标的本来面日。

点云数据处理步骤基本完成,可以应用点云数据来解决问题。

三维激光扫描技术应用领域:最近几年,三维激光扫描技术不断发展并日渐成熟,目前三维扫描设备也逐渐商业化,三维激光扫描仪的巨大优势就在于可以快速扫描被测物体,不需反射棱镜即可直接获得高精度的扫描点云数据。

这样一来可以高效地对真实世界进行三维建模和虚拟重现。

因此,其已经成为当前研究的热点之一,并在文物数字化保护、土木工程、工业测量、自然灾害调查、数字城市地形可视化、城乡规划等领域有广泛的应用。

(1)测绘工程领域:大坝和电站基础地形测量、公路测绘,铁路测绘,河道测绘,桥梁、建筑物地基等测绘、隧道的检测及变形监测、大坝的变形监测、隧道地下工程结构、测量矿山及体积计算。

(2)结构测量方面:桥梁改扩建工程、桥梁结构测量、结构检测、监测、几何尺寸测量、空间位置冲突测量、空间面积、体积测量、三维高保真建模、海上平台、测量造船厂、电厂、化工厂等大型工业企业内部设备的测量;管道、线路测量、各类机械制造安装。

(3)建筑、古迹测量方面:建筑物内部及外观的测量保真、古迹(古建筑、雕像等)的保护测量、文物修复,古建筑测量、资料保存等古迹保护,遗址测绘,赝品成像,现场虚拟模型,现场保护性影像记录。

(4)紧急服务业:反恐怖主义,陆地侦察和攻击测绘,监视,移动侦察,灾害估计,交通事故正射图,犯罪现场正射图,森林火灾监控,滑坡泥石流预警,灾害预警和现场监测,核泄露监测。

(5)娱乐业:用于电影产品的设计,为电影演员和场景进行的设计,3D游戏的开发,虚拟博物馆,虚拟旅游指导,人工成像,场景虚拟,现场虚拟。

2.三维激光扫描技术用于坝体变形监测可行性和优越性传统对大坝体的变形监测都是在堤坝的特征部位埋设变形监测点,在变形影响范围之外埋设测量基准点,定期观测监测标志相对于基准点的变形量。

传统基于点的测量方式,包括GPS测量,特征点的选取直接关系到监测方案是否有效、可靠。

特征点的选取存在很大的人为性,如果特征点选取不当,监测点并不能最大程度地反映变形体的最大变形,甚至可能存在变形方案失效。

同时,监测点的布设数量多少是传统基于点的测量方法中的一个重大瓶颈。

一方面,我们想尽可能多的布设监测点,另一方面,我们又不得不考虑到成本的问题。

三维激光扫描就可以解决传统基于点的测量方式中存在的诸多问题。

一方面,我们对变形体进行全方位的扫描,可以不用人为寻找变形体的特征部位,同时扫描的云数据可以最大的满足我们对监测点数量的需求。

但三维激光扫描仪并不是万能的,不是所有的测量任务都可以用扫描仪来完成。

在新技术的使用过程中,可能还会遇到很多问题,这都需要经过以后的实践予以解决。

相关文档
最新文档