全等三角形培优竞赛讲义(全集)教师

合集下载

八年级数学培优.竞赛资料(共24讲)

八年级数学培优.竞赛资料(共24讲)

B AC D EF 第01讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同; 2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对 B .4对 C .3对 D .2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D ⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中BE CEEF EF=⎧⎨=⎩ ∴Rt △EFB ≌Rt △EFC (HL )故选C . 【变式题组】 01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等A F C E DB 02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF 在△ABE 和△DCF 中, AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE 中, AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( ) A .2 B .3 C .4 D .5A B C D O FE A CEFBD02.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. \ 03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠FAC =∠CDF∵∠AOD =∠FAC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCAB (E )OC F 图③DAAE第1题图A BCDEBCDO第2题图AFECB D【变式题组】 01.(绍兴)如图,D 、E 分别为△ABC 的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C落在AB 边上的点P 处.若∠CDE =48°,则∠APD 等于( ) A .42° B .48° C .52° D .58° 02.如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是( )A .△ABC ≌△DEFB .∠DEF =90°C . AC =DFD .EC =CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B 、F 、C 、D 在同一条直线上. ⑴求证:AB ⊥ED ;⑵若PB =BC ,找出图中与此条件有关的一对全等三角形,并证明.【例4】(第21届江苏竞赛试题)已知,如图,BD 、CE 分别是△ABC 的边A C 和AB 边上的高,点P 在BD 的延长线,BP =AC ,点Q 在CE 上,CQ =AB. 求证:⑴ AP =AQ ;⑵AP ⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP =AQ ,也就是证△APD 和△AQE ,或△APB 和△QAC 全等,由已知条件BP =AC ,CQ =AB ,应该证△APB ≌△QAC ,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP ⊥AQ ,即证∠PAQ =90°,∠PAD +∠QAC =90°就可以.证明:⑴∵BD 、CE 分别是△ABC 的两边上的高,∴∠BDA =∠CEA =90°, ∴∠1+∠BAD =90°,∠2+∠BAD =90°,∴∠1=∠2. 在△APB 和△QAC 中, 2AB QC BP CA =⎧⎪=⎨⎪=⎩∠1∠ ∴△APB ≌△QAC ,∴AP =AQEFB ACDG第2题图21ABCPQE F D⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠PAD =90° ∵∠CAQ +∠PAD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:02.直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40° 03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( )第1题图a αcca50° b72° 58°AECBA 75° C45° BNM第2题图第3题图DA .SASB .ASAC .AASD .SSS 04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°05.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( )A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB=AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对07.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______.09.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____. 11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .DA C .Q P.BA E FB DC 12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F , 请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC 的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明; ⑵若DE =a ,求梯形DABE 的面积.(温馨提示:补形法)15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE =DF .16.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等? ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等(证明略); 对于这两个三角形均为锐角三角形,它们也全等,可证明如下;已知△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1.(请你将下列证明过程补充完整)⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论.ABCDA 1B 1C 1D 1D B A C EF A E B F D CAEF C DB 培优升级·奥赛检测01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( ) A .4对 B .5对 C .6对 D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE , 则OE 平分∠AOB ,正确的是( ) A .①② B .②③ C .①③ D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC04.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______.06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE=AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCEF第6题图2 1AB CE N M3 21ADEBC FADECOA E O BFCD 第1题图B第2题图第3题图ABE D CAB C DEAEBDC=90°, ∠BAC =∠EAD .求证:∠CED =90°.10.(沈阳)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵若将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;⑶若将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。

全等三角形培优竞赛讲义难度

全等三角形培优竞赛讲义难度

全等三角形培优竞赛讲义(一)知识点全等三角形得性质:对应角相等,对应边相等,对应边上得中线相等,对应边上得高相等,对应角得角平分线相等,面积相等. 寻找对应边与对应角,常用到以下方法:(1)全等三角形对应角所对得边就是对应边,两个对应角所夹得边就是对应边.(2)全等三角形对应边所对得角就是对应角,两条对应边所夹得角就是对应角.(3)有公共边得,公共边常就是对应边.(4)有公共角得,公共角常就是对应角.(5)有对顶角得,对顶角常就是对应角.(6)两个全等得不等边三角形中一对最长边(或最大角)就是对应边(或对应角),一对最短边(或最小角)就是对应边(或对应角).要想正确地表示两个三角形全等,找出对应得元素就是关键.全等三角形得判定方法:(1) 边角边定理(SAS):两边与它们得夹角对应相等得两个三角形全等.(2) 角边角定理(ASA):两角与它们得夹边对应相等得两个三角形全等.(3) 边边边定理(SSS):三边对应相等得两个三角形全等.(4) 角角边定理(AAS):两个角与其中一个角得对边对应相等得两个三角形全等.(5) 斜边、直角边定理(HL):斜边与一条直角边对应相等得两个直角三角形全等.全等三角形得应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明得过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间得位置关系与大小关系.而证明两条线段或两个角得与、差、倍、分相等就是几何证明得基础.【例8】在等腰中,,顶角,在边AB 上取点D,使AD=BC,求、 【例9】(“勤奋杯”数学邀请赛试题)如图所示,在中,AC=BC,,又M 在AC 上,N 在BC 上,且满足,求、A BC DC A B MN。

《全等三角形》讲义

《全等三角形》讲义

《全等三角形》讲义一、全等三角形的定义两个能够完全重合的三角形叫做全等三角形。

“完全重合”意味着它们的形状和大小完全相同,对应边相等,对应角也相等。

例如,我们将一个三角形沿着某条直线对折,如果对折后的两部分能够完全重合,那么这就是一个全等三角形。

二、全等三角形的性质1、全等三角形的对应边相等这是全等三角形最基本的性质之一。

如果两个三角形全等,那么它们对应的三条边的长度是相等的。

比如,三角形 ABC 全等于三角形DEF,那么 AB = DE,BC = EF,AC = DF。

2、全等三角形的对应角相等同样,如果两个三角形全等,它们对应的三个角的度数也是相等的。

还是以上面的例子来说,∠A =∠D,∠B =∠E,∠C =∠F。

3、全等三角形的周长相等因为全等三角形的对应边相等,所以它们的周长也必然相等。

4、全等三角形的面积相等由于全等三角形的形状和大小完全相同,所以它们所覆盖的面积也是相等的。

三、全等三角形的判定1、 SSS(边边边)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。

比如说,有三角形 ABC 和三角形 DEF,AB = DE,BC = EF,AC = DF,那么就可以判定三角形 ABC 全等于三角形 DEF。

2、 SAS(边角边)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。

假设在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,那么可以得出这两个三角形全等。

3、 ASA(角边角)当两个三角形的两个角及其夹边分别对应相等时,这两个三角形全等。

例如,在三角形 ABC 和三角形 DEF 中,∠B =∠E,BC = EF,∠C =∠F,那么三角形 ABC 全等于三角形 DEF。

4、 AAS(角角边)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。

比如,在三角形 ABC 和三角形 DEF 中,∠A =∠D,∠B =∠E,BC = EF,那么这两个三角形全等。

三角形全等培优讲义

三角形全等培优讲义

学科教师辅导讲义
第4题第5题第6题
;,则此三角形()
学科教师辅导讲义
D.15°
2 图
3 沿其对角线BD翻折得到△BED,若∠1
°,∠B=48°;
D=48,E=52,
EBC绕B点逆时针旋转90ABD,若∠E=35°,求∠
第1题
如图所示,ΔABC≌如图所示,ΔABC≌
学科教师辅导讲义
.求证:AC=EF.
.如图,已知△ABC和△DBE,B为AD的中点,=BC,请增加的一个条件____________
.如图,点F、C在线段BE上,且AB=DF,AC=DE,若要使△ABC≌△DEF,则还需补充一个条件
DE折叠,点A落在点
附加:
(1)已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE 于D, CE⊥AE于E.试说明: BD=DE+CE.
(2)若直线AE绕A点旋转到图(2)位置时(BD<CE), 其余条件不变, 问BD与DE、CE的关系如何? 为什么?
(3)若直线AE绕A点旋转到图(3)位置时(BD>CE), 其余条件不变, 问BD与DE、CE的关系如何? 请直接写出结果, 不需说明.
学科教师辅导讲义
学科教师辅导讲义
3、如图,在四边形ABCD中,AB∥CD,∠ABC的平分线交AD于点E,
,求证:AC=AE+CD.
学科教师辅导讲义
A.
第1题图。

著名机构初中数学培优讲义.三角形.第01讲.教师版

著名机构初中数学培优讲义.三角形.第01讲.教师版

内容基本要求略高要求较高要求三角形了解三角形的有关概念;了解三角形的稳定性;会按边和角对三角形进行分类;理解三角形的内角和、外角和及三边关系;会画三角形的主要线段;知道三角形的内心、外心、重心了解三角形的有关概念;了解三角形的稳定性;会按边和角对三角形进行分类;理解三角形的内角和、外角和及三边关系;会画三角形的主要线段;知道三角形的内心、外心、重心 等腰三角形直角、三角形了解等腰三角形、等边三角形和直角三角形的概念,会识别这三种图形,并理解这三种图形的性质和判定能用等腰三角形、等边三角形和直角三角形的性质和判定解决简单问题 能用等腰三角形、等边三角形和直角三角形的知识解决有关问题 全等三角形了解全等三角形的概念,了解相似三角形和全等三角形之间的关系掌握两个三角形全等的条件和性质;会应用三角形全等的性质和判定解决有关问题会利用全等三角形的知识解释或证明经过图形变换后得到的图形与原图形对应元素间的关系一、三角形的基本概念:⑴三角形的定义:由三条不在同一条直线上的线段首尾顺次连结组成的平面图形叫做三角形.三角形具有稳定性.⑵三角形的内角:三角形的每两条边所组成的角叫做三角形的内角.在同一个三角形内,大边对大角.⑶三角形的外角:三角形的任意一边与另一边的反向延长线所组成的角叫做三角形的外角. ⑷三角形的分类:例题精讲中考要求三角形()()():⎧⎪⎧⎨⎨⎪⎩⎩⎧⎪⎧⎨⎨⎪⎩⎩直角三角形:三角形中有一个角是直角三角形按角分锐角三角形:三角形中三个角都是锐角斜三角形钝角三角形:三角形中有一个角是钝角不等边三角形:三边都不相等的三角形三角形按边分底边和腰不相等的等腰三角形:有两条边相等的三角形等腰三角形等边三角形正三角形有三边相等的三角形注意:每个三角形至少有两个锐角,而至多有一个钝角.三角形的三个内角中,最大的一个内角是锐角(直角或钝角)时,该三角形即为锐角三角形(直角三角形或钝角三角形).二、与三角形相关的边⑴三角形中的三种重要线段①三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注:每个三角形都有三条角平分线且相交于一点,这个点叫做三角形的内心,而且它一定在三角形内部.②三角形的中线:在三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注:每个三角形都有三条中线,且相交于一点,这个点叫做三角形的中心,而且它一定在三角形内部. ③三角形的高:从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线. 注:每个三角形都有三条高且三条高所在的直线相交于一点,这个点叫做三角形的垂心. 锐角三角形的高均在三角形内部,三条高的交点也在三角形的内部;钝角三角形的高线中有两个垂足落在边的延长线上,这两条高落在三角形的外部, 直角三角形有两条高分别与两条直角边重合.反之也成立.画三角形的高时,只需要向对边或对边的延长线作垂线,连接顶点与垂足的线段就是该边的高. ⑵三角形三条边的关系①三角形三边关系:三角形任何两边的和大于第三边.②三角形三边关系定理的推论:三角形任何两边之差小于第三边.即a 、b 、c 三条线段可组成三角形⇔b c a b c -<<+⇔两条较小的线段之和大于最大的线段.注意:在应用三边关系定理及推论时,可以简化为:当三条线段中最长的线段小于另两条线段之和时,或当三条线段中最短的线段大于另两条线段之差时,即可组成三角形.三、等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形. 2.等边三角形的定义:有三条边相等的三角形叫做等边三角形. 3.等腰三角形的性质: (1)两腰相等. (2)两底角相等.(3)“三线合一”,即顶角平分线、底边上的中线、底边上的高互相重合. (4)是轴对称图形,底边的垂直平分线是它的对称轴. 线段的垂直平分线:性质定理:线段的垂直平分线上的点到线段的两个端点距离相等 判定定理:与线段的两个端点距离相等的点在这条线段的垂直平分线上,线段的垂直平分线可以看做是和线段两个端点距离相等的所有点的集合.4.等腰三角形的判定:(1)有两条边相等的三角形是等腰三角形.(2)有两个角相等的三角形是等腰三角形.5.等边三角形的性质:三边都相等,三个角都相等,每一个角都等于60o.6.等边三角形的判定:(1)三条边都相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形.(3)有一个角是60o的等腰三角形是等边三角形.7.等腰直角三角形的性质:顶角等于90︒,底角等于45︒,两直角边相等.等腰直角三角形的判定:(1)顶角为90︒的等腰三角形.(2)底角为45︒的等腰三角形.8.含30︒角的直角三角形的重要结论:在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半.四、全等的概念全等图形:能够完全重合的两个图形就是全等图形.全等三角形:能够完全重合的三角形就是全等三角形.全等三角形的对应边相等,对应角分别相等;反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等.全等三角形对应的中线、高线、角平分线及周长面积均相等.全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”.全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.二、全等的性质和判定全等三角形的判定方法:(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.奥数赛点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础. 判定三角形全等的基本思路:SAS HL SSS →⎧⎪→⎨⎪→⎩找夹角已知两边 找直角 找另一边ASA AAS SAS AAS ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩边为角的对边→找任意一角→ 找这条边上的另一角→已知一边一角 边就是角的一条边 找这条边上的对角→ 找该角的另一边→ ASAAAS →⎧⎨→⎩找两角的夹边已知两角 找任意一边【例1】 已知三角形中两边长为2和7,若第三边长为奇数,则这个三角形的周长为_________.【解析】第三边长x 的取值范围是59x <<,因为它是奇数,故只能是7,所以三角形的周长为27716++=. 【答案】16【例2】 有三条线段,其中两条线段的长为3和5,第三条线段的长为x ,若这三条线段不能构成三角形,则x 的取值范围是 . 【解析】略【答案】02x <≤或8x ≥.【例3】 如图所示,将ABC △沿着DE 翻折,若1280∠+∠=︒,则B ∠= .A BCDE 12【解析】略【答案】40︒【例4】 一个多边形的内角和是外角和的2倍,则这个多边形的边数为 . 【解析】略 【答案】6【例5】 ABC △中,AD BC ⊥,AE 平分BAC ∠,AG AE CG ⊥,是ABC △外角ACF ∠的平分线,若G DAE ∠-∠=60︒,则ACB ∠的度数为 .GFE D C B A【解析】过点A 作BF 的平行线交CG 的延长线于点H ,DAE HAG ∠=∠,∵G DAE ∠-∠=60︒∴G HAG ∠-∠=60︒,即60H ∠=°,∵AH BF ∥,故ACB ∠为60°.FC ED B【答案】6【例6】 如图所示,在ABC ∆中,100A ∠=︒,40ABC ∠=︒,BD 是ABC ∠的平分线,延长BD 至E ,使DE AD =.求证:BC AB CE =+EDCBAF EDCBA【解析】略【答案】在BC 上取一点F ,使得BF BA =易证得ADB FDB ∆∆≌ ∴DF AD =, 又∵DA DE = ∴DF DE =∵100A ∠=︒,AB AC = ∴40ABC ∠=︒∵BD 平分ABC ∠, ∴20ABD ∠=︒∴60ADB FDB ∠=∠=︒ ∵60CDE ADB ∠=∠=︒ ∴60FDC EDC ∠=∠=︒ ∴DCF DCE ∆∆≌ ∴FC EC =∴BC BF FC AB CE =+=+【例7】 如图,已知60ABD ACD ∠=∠=︒,且1902ADB BDC ∠=︒-∠.求证:ABC ∆是等腰三角形.D BAED CBA【解析】延长BD 到E ,使得DE CD =,连接AE .∵1902ADB BDC ∠=︒-∠,∴2180ADB BDC ∠+∠=︒,即180ADC ADB ∠+∠=︒.∵180ADE ADB ∠+∠=︒,∴ADC ADE ∠=∠, ∵CD DE AD AD ==,,∴()SAS ADC ADE ∆∆≌, ∴60ACD E ∠=∠=︒,AC AE =, ∵60ABD ACD ∠=∠=︒,∴ABD E ∠=∠,∴AB AE =,∴AB AC =,∴ABC ∆是等腰三角形.【例8】 如图,在ABC ∆中,3AB AC =,A ∠的平分线交BC 于D ,过B 作BE AD ⊥,垂足为E ,求证:AD DE =.DCBAEF21BAED C 【解析】解法一:如图,延长BE 、AC 交于F .∵12∠=∠,AE BF ⊥,∴AF AB =.∴2ABF ABE S S ∆∆=.而1133AC AB AF ==,∴13ABC ABF S S ∆∆=.∵AD 平分BAC ∠,∴3BD AB CD AC ==,334BD DC BC ==,∴311442ABD ABC ABF ABE S S S S ∆∆∆∆===.故12AD AE =,∴AD DE =.解法二:如图,延长AC 、BE 交于F .21BAHFEDC∵12∠=∠,AE BF ⊥, ∴AF AB =,2CF AC =.过E 作EH AF ∥,交BC 于H ,则12EH CF AC ==,1DEH ∠=∠,ACD EHD ∠=∠.∴ACD EHD ∆∆≌,∴AD DE =.解法三:如图,延长AC 、BE 交于G ,过E 作EH BC ∥交AG 于H .21BAEDC GH∵12∠=∠,AE BG ⊥,∴3AG AB AC ==,BE GE =.故有HC HG =. ∵2CG AB AC AC =-=,∴HC AC =.∵DC HE ∥,∴AD DE =.解法四:如图,取AB 的中点G ,连接EG 交BC 于F ,则EG 是Rt ABE ∆斜边上的中线.GC DEFAB12∴AG EG =,21AEG ∠=∠=∠. ∴EG AC ∥. 故BF CF =,12EG AC =,1322EG AB AC ==, 有13FG EG =,故F 是ABE ∆的重心.∴BD 为AE 的中线,故AD DE =.【例9】 如图所示,在ABC ∆中,AC AB >,M 为BC 的中点,AD 是BAC ∠的平分线,若CF AD ⊥且交AD 的延长线于F ,求证()1MF AC AB =-.MFD CB AEMFD CB A【解析】题目中有角平分线和垂直的条件,因此可以考虑将图形补成等腰AEC ∆,之后再证明MF 是CBE∆的中位线即可.如图所示,延长AB 、CF 相交于点E ,在AFE ∆和AFC ∆中,EAF CAF ∠=∠,AF AF =,AFE AFC ∠=∠, 故AFE AFC ∆∆≌, 从而AE AC =,EF FC =. 而CM MB =,故MF 是CBE ∆的中位线,从而()()111222MF BE AE AB AC AB ==-=-.【例10】 已知点M 是四边形ABCD 的BC 边的中点,且120AMD ∠=︒,证明:12AB BC CD AD ++≥.AB C DM B 1AB CDM C 1【解析】显然,要证题设的不等式,应当把AB ,12BC ,CD 三条线段首尾连接成一条折线,然后再与线段AD 比较.要实现这一构想,折线之首端应与A 点重合,尾端应与D 点重合,这可由轴对称来实现.以AM 为对称轴,作点B 关于AM 的对称点1B ,连接1AB 、1MB , 则1AB AB =,1MB MB =,即1AB M ∆≌ABM ∆,由此1B MA BMA ∠=∠. 再以DM 为对称轴,作点C 关于DM 的对称点1C ,连接1DC 、1MC , 则1DC DC =,1MC MC =,即1DC M ∆≌DCM ∆,由此1C MD CMD ∠=∠. 而120AMD ∠=︒,所以180********BMA CMD AMD ∠+∠=︒-∠=︒-︒=︒. 注意到1160B MA C MD BMA CMD ∠+∠=∠+∠=︒,因此1111120()B MC B MA C MD ∠=︒-∠+∠1206060=︒-︒=︒,而1112MB MC BC ==,所以11B MC ∆是等边三角形,1112B C BC =.由于两点之间以直线段为最短,所以1111AB B C C D AD ++≥,即12AB BC CD AD ++≥.【巩固】设M 是凸四边形ABCD 的边BC 的中点,135AMD ∠=︒,求证:AB CD AD +≥. M DC B AC'B'M DCB A【解析】作点B 关于AM 的对称点'B ,作点C 关于DM 的对称点'C ,连接'AB 、''B C 、'C D , 则''MB MB MC MC ===, 且'AB AB =,'C D CD =. 而''90C MB ∠=︒,则'''B C =,故''''AB CD AB B C C D AD +=++≥.【例11】 (2007年北京中考)如图,已知ABC ∆⑴请你在BC 边上分别取两点D 、E (BC 的中点除外),连结AD 、AE ,写出使此图中只存在两....对.面积相等的三角形的相应条件,并表示出面积相等的三角形; ⑵请你根据使⑴成立的相应条件,证明AB AC AD AE +>+.CBA⑴DE CBA⑵DF EG CBAF⑶D OE GCBA【解析】⑴如图⑴相应的条件是:BD CE DE =≠ ;两对面积相等的三角形分别是:ABD ∆和ACE ∆,ABE ∆和ACD ∆.⑵(方法1):如图⑵,分别过点D 、B 作CA 、EA 的平行线,两线交于F 点,DF 与AB 交于G 点. 所以ACE FDB ∠=∠,AEC FBD ∠=∠在AEC ∆和FBD ∆中,又CE BD =,可证AEC FBD ∆∆≌所以AC FD =,AE FB = 在AGD ∆中,AG DG AD +> 在BFG ∆中,BG FG FB +> 所以AG DG BG FG AD FB +++>+ 即AB FD AD FB +>+ 所以AB AC AD AE +>+(方法2):如图⑶取BC 中点O ,连结AO 并延长AO 至F ,OF AO =, 连结BF ,DF ,延长AD 交BF 于G 可证得BOF COA ∆∆≌,DOF EOA ∆∆≌ 所以AC BF =,AE DF = 在BGA ∆中,BG AB GD AD +>+ 在GFD ∆中,GD GF FD +>所以BG AB GD GF GD AD FD +++>++ 所以BG AB GF AD FD ++>+ 即BF AB AD FD +>+ 所以AB AC AD AE +>+【例12】 如图,梯形ABCD 中,AD BC ∥,以两腰AB ,CD 为一边分别向两边作正方形ABGE 和DCHF ,连接AD 的垂直平分线l 交线段EF 于点M .求证:点M 为EF 的中点.MlHFDCEGBANLSRQ'P'QP ABGEC DFHlM【解析】过E 、F 分别作l 的垂线EP ,FQ 交l 于P 于Q .如图,N 是AD 之中点,过N 作'NQ DF ∥交FQ 于'Q ,作'NP AE ∥交EP 于'P ,作NS DC ∥交BC 于S ,作NR AB ∥交BC 于R .在Rt 'P PN ∆和Rt LNR ∆中,有''90P NP PP N ∠+∠=︒. '1809090P NP LNR ∠+∠=︒-︒=︒,所以有'PP N LNR ∠=∠.又由'RN AB AE P N ===,知Rt 'Rt NP P RLN ∆∆≌. 从而得'PP NL =.同理可知Rt 'Rt Q QN NLS ∆∆≌,而得'QQ NL =,即有''PP QQ =. 显然,'EP AN ∥,'FQ ND ∥,又AN ND =,所以''EP FQ ∥.从而有''''EP EP PP FQ QQ FQ =+=+=.应EP FQ ∥知,四边形EQFP 是平行四边形,其对角线互相平分,所以M 是EF 的中点.【例13】 四边形ABCD 被对角线BD 分为等腰直角三角形ABD 和直角三角形CBD ,其中A ∠和C ∠都是直角,另一条对角线AC 的长度为2,求四边形ABCD 的面积.DCB AC'DCB A【解析】将三角形ABC 绕A 点旋转90︒,使B 与D 重合,C 到'C 点.则有''180CDC ADC ADC ADC ABC ∠=∠+∠=∠+∠=︒, 所以'C D C ,,在同一条直线上,'ACDC 是三角形. 又因为'AC AC =.所以三角形'ACC 是等腰直角三角形. 所以四边形ABCD 的面积等于等腰直角三角形'ACC 的面积。

全等三角形 培优讲义

全等三角形 培优讲义

第6讲 全等三角形一、全等三角形:能够完全重合的两个三角形叫做全等三角形。

全等三角形的性质:全等三角形的对应角相等、对应边相等。

对应角:∠A=∠A ′∠B=∠B ′∠C=∠C ′△ AB C ≌'''A B C ∆ AB=''A B对应边: BC =''B C AC =''A C 二、全等三角形的判定:1、两边及夹角对应相等的两个三角形全等。

AB=''A B∠B=∠B ′ △AB C ≌'''A B C ∆ (SAS )BC =''B C(1)、已知:如图,AD ∥BC ,AD =CB ,你能说明△ADC ≌△CBA 吗? 证明: ∵AD ∥BC (已知)∴∠=∠(两直线平行,内错角相等)在 中,⎪⎪⎩⎪⎪⎨⎧∠=∠(公共边)=(已证)(已知)= ∴ ≌ ( )A B C A ′B ′C ′ACBDA BCA ′B ′C ′(2)、如图,AB=AC ,AD平分∠BAC,你能证明△ABD≌△ACD?证明:∵AD平分∠BAC()∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD △ACD()(3)、如图(五--1),点B、F、C、E在同一条直线上,FB=CE,AB∥ED ,AC=FD ,求证:AB=DE(4)、如图,已知AB=AC,AE=AD,∠1=∠2,你能说明△ABD≌△ACE吗?(5)、求证:等腰三角形的两底角相等。

2、三边对应相等的两个三角形全等。

AB CA′B′C′AB CD图五—1BEADCFAB CDE12AB=''A BBC =''B C △AB C ≌'''A B C ∆ (SSS )AC =''A C(1)、如图,已知AB =AC ,AD 是BC 边上的中线,你能说明AD 是角平分线吗? 证明:∵AD 是BC 边上的中线(已知)∴ = (中线的定义) 在 中∴ ≌ ( )∴ = (全等三角形的对应角相等) ∴AD 是角平分线( )(2).如图,已知:AC=AD ,BC=BD 求证:∠1=∠2 (泉州)证明:(3)、已知AB=DE ,AC=DF ,BF=EC , 求证:∠B=∠F证明:3、两角及其夹边对应相等的两个三角形全等。

八年级(上)培优班 第01讲 全等三角形

八年级(上)培优班  第01讲 全等三角形

八年级(上)培优班第01讲全等三角形全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形等图形性质的有力工具,是解决与线段、角相关问题的一个出发点,运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.1.判定三角形全等的方法:SAS,ASA,AAS,SSS.2.实际问题中,常将待证的线段相等、角相等、两直线垂直等转化为证明三角形全等,要注意添加适当的辅助线.3.发现或构造全等三角形是利用三角形全等证明问题的关键,一般是从发现两个三角形的对应元素相等入手,逐步发现或推出结论来“凑齐”三角形全等的条件.4.证明一条线段等于两条线段之和,一般有两种基本方法:(1)通过添辅助线“构造”一条线段等于求证中的两条线段之和,再证明所构造的线段与求证的那一条线段相等;(2)通过添辅助线先在求证的长线段上截取与两条线段中的某一条相等的线段,再证明剩下的部分与两条线段中的另一条相等.走进优高【例1】(江西南昌中考)如图,AB=AE,∠ABC=∠AED,BC=ED,F是CD的中点,试说明AF⊥CD.A【例2】(诸暨中学提前招生)如图,点D在边BC上,点E在△ABC外部,DE交AC于F,若AB=AD,∠BAD=∠CAE=∠CDE.求证:BC=DE. CDFAB E瞄准重高【例1】如图,∠E=∠F=90°,∠B=∠C,AC=AB,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN,其中正确的结论是 (把你认为所有正确结论的序号填上).(广州市中考题)思路点拨对一个复杂的图形,先找出比较明显的一对全等三角形,并发现有用的条件,进而判断推出其他三角形全等.注两个三角形的全等是指两个图形之间的一种‘对应”关系,“对应’两字,有“相当”、“相应”的含意,对应关系是按一定标准的一对一的关系,“互相重合”是判断其对应部分的标准.实际遇到的图形,两个全等三角形并不重合在一起,但其中一个三角形是由另一个三角形按平行移动、翻拆、旋转等方法得到,这种改变位置,不改变形状大小的图形变动叫三角形的全等变换.【例2】在△ABC中,AC=5,中线AD=4,则边AB的取值范围是( ) (连云港市中考题)A.1<AB<9 B.3<AB<13 C.5<AB<13 D.9<AB<13思路点拨线段AC、AD、AB不是同一个三角形的三条边,通过中线倍长将分散的条件加以集中.【例3】(江苏省竞赛题) 如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=A C,点Q在CE上,CQ=AB.求证:(1)AP=AQ;(2)AP⊥AQ.思路点拨 (1)证明对应的两个三角形全等;(2)在(1)的基础上,证明∠PAQ=90°善于在复杂的图形中发现、分解、构造基本的全等三角形是解题的关键,需要注的是,通常面临以下情况时,我们才考虑构造全等三角形:(1)给出的图形中没有全等三角形,而证明结论需要全等三角形;(2)从题设条件无法证明图形中的三角形全等,证明需要另行构造全等三角形.学力训练1. 如图,AD 、A ′D ′分别是锐角△ABC 和△A ′B ′C ′中BC 、B ′C 边上的高,且AB= A ′B ′,AD =A ′D ,若使△ABC ≌△A ′B ′C ′,请你补充条件(只需要填写一个你认为适当的条件) (黑龙江省中考题).2.如图,在△ABD 和△ACE 中,有下列4个论断:①AB=AC ;②AD =AE ;③∠B=∠C ;④BD=CE ,请以其中三个论断作为条件,余下一个论断作为结论,写出一个真命题(用序号○○○→○的形式写出) . (海南省中考题)3.如图,已知在等边△ABC 中,BD =CE ,AD 与BE 相交于P ,则∠APE 的度数是4.如图,DA ⊥AB ,EA ⊥AC ,AB =AD ,AC =AE ,BE 和CD 相交于O ,则∠DOE 的度数是.5.如图,已知OA=OB ,OC=OD ,下列结论中:①∠A=∠B ;②DE =CE ;③连OE ,则OE 平分∠O ,正确的是( ) A .①② B .②③ C .①③ D .①②③6.如图,A 在DE 上,F 在AB 上,且AC=CE ,∠1=∠2=∠3,则DE 的长等于( ) A .DC B . BC C .AB D .AE+AC (武汉市选拔赛试题)7.如图,AB ∥CD ,AC ∥DB ,AD 与BC 交于O ,AE ⊥BC 于E ,DF ⊥BC 于F ,那么图中全等的三角形有( )B对A .5B .6C . 7D .88.如图,把△A BC 绕点C 顺时针旋转35°,得到△A ′B ′C ′,A ′B ′交AC 于点D ,已知∠A ′DC=90°,求∠A 的度数.(贵州省中考题)9.如图,在△ABE 和△ACD 中,给出以下4个论断:①AB=AC ;②AD =AE ;③AM =AN ;④AD ⊥DC ,AE ⊥BE .以其中3个论断为题设,填人下面的“已知”栏中,一个论断为结论,填人下面的“求证”栏中,使之组成一个真命题,并写出证明过程.(荆州市中考题) 已知: 求证:10.如图,已知∠1=∠2,EF ⊥AD 于P ,交B C 延长线于M , 求证:∠M=(∠ACB -∠B ). (天津市竞赛题)11.在△ABC 中,高AD 和BE 交于H 点,且BH =AC ,则∠ABC =.12.如图,已知AE 平分∠BAC ,BE ⊥AE 于E ,ED ∥AC ,∠BAE =36°,那么∠BED .(河南省竞赛题) 13.如图,D 是△ABC 的边AB 上一点,DF 交A C 于点F ,给出3个论断:①DE=FE ;②AE =CE ;③FC ∥AB ,以其中一个论断为结论,其余两个论断为条件,可作出3个命题,其中正确命题的个数是.(武汉市选拔赛试题)14.如图,AD ∥BC ,∠1=∠2,∠3=∠4,AD=4,BC=2,那么AB=.2115.如图,在△ABC 中,AD 是∠A 的外角平分线,P 是AD 上异于A 的任意一点,设PB =m ,PC =n ,AB=c ,AC=b ,则(m+n )与(b+c)大小关系是( )A .m+n> b+cB . m+n<b+cC .m+n= b+cD .不能确定16.如图,在四边形ABCD 中,对角线AC 平分∠BAD ,AB>AD ,下列结论中正确的是( ) (江苏省竞赛题) A .A B -AD>CB -CD B .AB -AD =CB —CDC .AB —AD<CB —CD D .AB -AD 与CB —CD 的大小关系不确定. 17.考查下列命题( )(1) 全等三角形的对应边上的中线、高、角平分线对应相等;(2) 两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等; (3) 两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等; (4)两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等. 其中正确命题的个数有( )A .4个B .3个C . 2个D .1个18.如图,在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,并且AE=(AB+AD),求∠ABC+∠ADC 的度数.(上海市竞赛题)19.如图,△ABC 中,D 是BC 的中点,DE ⊥DF ,试判断BE+CF 与EF 的大小关系,并证明你的结论. 20.如图,已知AB=CD=AE =BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDC 的面积.(江苏省竞赛题)2121.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.(武汉市选拔赛试题)参考答案走进优高例1 如右图例2 (1)(2)(3)(4)都不正确.例3 证明△ABC≌△ADE.瞄准重高。

(完整版)人教版八年级上数学培优精编讲义教师版

(完整版)人教版八年级上数学培优精编讲义教师版

第十一章全等三角形及其应用【知识精读】1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。

互相重合的边叫对应边,互相重合的角叫对应角。

2. 全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC ≌△A′B′C′其中,“≌”读作“全等于”。

记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。

3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等;4. 寻找对应元素的方法(1)根据对应顶点找如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。

通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。

(2)根据已知的对应元素寻找全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(3)通过观察,想象图形的运动变化状况,确定对应关系。

通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。

①翻折如图(1),∆BOC≌∆EOD,∆BOC可以看成是由∆EOD沿直线AO翻折180︒得到的;②旋转如图(2),∆COD≌∆BOA,∆COD可以看成是由∆BOA绕着点O旋转180︒得到的;平移如图(3),∆DEF≌∆ACB,∆DEF可以看成是由∆ACB沿CB方向平行移动而得到的。

5. 判定三角形全等的方法:(1)边角边公理、角边角公理、边边边公理、斜边直角边公理(2)推论:角角边定理6. 注意问题:(1)在判定两个三角形全等时,至少有一边对应相等;(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。

全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。

在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。

《全等三角形》讲义(完整版)

《全等三角形》讲义(完整版)

全等三角形讲义一、知识点总结全等三角形定义:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。

:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。

补充说明:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等:全等三角形的对应边相等,全等三角形的对应角相等 全等三角形判定定理:(1)边边边定理:三边对应相等的两个三角形全等。

(简称SSS ) (2)边角边定理:两边和它们的夹角对应相等的两个三角形全等。

)边角边定理:两边和它们的夹角对应相等的两个三角形全等。

((简称SAS) (3)角边角定理:两角和它们的夹边对应相等的两个三角形全等。

(简称ASA ASA)) (4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等。

(简称AAS AAS)) (5)斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。

(简称HL HL)) 角平分线的性质:在角平分线上的点到角的两边的距离相等在角平分线上的点到角的两边的距离相等. .∵OP 平分∠平分∠AOB AOB AOB,,PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,∴PM=PN 角平分线的判定:到角的两边距离相等的点在角的平分线上到角的两边距离相等的点在角的平分线上. .∵PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,PM=PN ∴OP 平分∠平分∠AOB AOB三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离等。

二、典型例题举例A BC PMNO A BCPMN O例1、如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.例2、如图,△、如图,△ABC ABC 是一个钢架,是一个钢架,AB=AC AB=AC AB=AC,,AD 是连结点A 与BC 中点D 的支架.的支架.求证:△求证:△ABD ABD ABD≌△≌△≌△ACD ACD ACD..例3、已知:点A 、F 、E 、C 在同一条直线上,AF =CE ,BE ∥DF ,BE =DF . 求证:△ABE ≌△CDF .例4、如图:、如图:D D 在AB 上,上,E E 在AC 上,上,AB AB AB==AC AC,∠,∠,∠B B =∠=∠C C .求证AD AD==AE AE..例5、如图:∠、如图:∠1=1=1=∠∠2,∠,∠3=3=3=∠∠4 求证:求证:AC=AD AC=AD例6、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由吗?说说你的理由D CB ACADB123 4例7、如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.例8、如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA 交OA 于D ,PE ⊥OB 交OB 于E ,F 是OC 上的另一点,连接DF ,EF ,求证DF =EF例9、如图,△ABC 中,AD 是它的角平分线,P 是AD 上的一点,PE ∥AB 交BC 于E ,PF ∥AC 交BC 于F ,求证:D 到PE 的距离与D 到PF 的距离相等的距离相等例10、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm,求DE 的长.AGF CBDE图1AEB DCFAB CDED C EF BA 例10、已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:①,求证:① △BEC ≌△DAE ;②DF ⊥BC .例11、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.三、专题版块三、专题版块 专题一:专题一: 全等三角形的判定和性质的应用全等三角形的判定和性质的应用例1、如图,在△ABC 中,AB=AC , BAC=40°,分别以AB AB、AC 为边作两个等腰三角形ABD 和ACE ACE,使∠,使∠BAD=∠CAE=90°.(1)求∠DBC 的度数.(2)求证:BD=CE.例2、如图,A B ∥CD,AF CD,AF∥∥DE,BE=CF,DE,BE=CF,求证:求证:求证:AB=CD. AB=CD.例3、如图在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 延长线上截取BM =AC ,在CF 延长线上截到CN =AB ,求证:AM =AN 。

初中数学竞赛培训讲义-第五讲-全等三角形

初中数学竞赛培训讲义-第五讲-全等三角形

ODCBA21FEDCBAFEDCBA初中数学竞赛培训讲义第四讲 三角形及全等三角形二 赛题精讲 1 三角形中的边角关系例1 周长为30,各边长互不相等且都是整数的三角形有几个?练习 在ABC D 中,5AC =,4AD =中线,求边AB 的取值范围.2 全等三角形的性质例 2 在ABC D 中和ABD D 中,,AC BD 交于点O ,90ACBADB ?? ,请再添加一个条件使ABC D ≌ABD D ,并证明你所提出的命题.练习 如图, 90,,,EF B C AE AF ?靶=?给出下列结论:①12? ,②BE CF =,③ACN D ≌ABM D ,④CD DN =,其中正确的结论是 (把你认为所有正确的结论的序号填上)3 构造全等证明几何问题 (1)直接连线添加辅助线例3 如图,点C 在线段AB 上,,,,DA AB EB AB FC AB ^^^且DA BC =,EB AC =,FC AB =,51AFB? ,求DFE Ð的度数.321EDC B A GNM EDC B AQPF EDCBA练习 1、如图,A 在DE 上,F 在AB 上,且AC CE =,123??,求DE 的长等于( ).....A D C B B C C A B D A E A C+2、如图,点C 在线段AB 上,分别以AC 和BC 为边向线段AB 同侧作等边三角形ACD D 和BCE D ,,,M N G 分别是,;,;,AE BD BD CE AE CD 的交点.(1) 找出图中的所有全等三角形,并予以证明. (2) 求AMB Ð的度数. (3) 判断CNG D 的形状.3、如图,,BD CE 分别是ABC D 的边,AC AB 上的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =.求证:(1)AP AQ =,(2)AP AQ ^.(2)与中点有关的辅助线构造例 4 如图,在ABC D 和A B C ⅱD 中,,AB A B AC A C ⅱⅱ==,AM 和A M ⅱ分别是ABC D 和DCBAM /C /B /A /MCBAFEDCBABA B C ⅱ D 的中线,且AM =A M ⅱ,求证: ABC D ≌A B C ⅱD .练习 ABC D 中,D 是BC 的中点,DE DF ^,判断BE CF +与EF 的大小关系,并证明你的结论.(2)与角平分线有关的辅助线构造例5 如图,在四边形ABCD 中,BC BA >,AD CD =,BD 平分ABC Ð, 求证 180A C ??例6 ABC D 中,60ABC ? ,,AD CE 分别平分,BAC ACB 行,求证:AC AE CD =+.DCB AE DCBADCBAFDA练习 1、如图,在ABC D 中,AD 平分BAC Ð,BD CD =,求证:AB AC =2、 如图,在ABC D 中,90BAC ? ,AB AC =,BE 平分ABC Ð,CE BE ^,求证:12CE BD =.3、 如图,在ABC D 中,,100AB AC A =? ,ABC Ð的平分线交AC 于D .求证:AD BD BC +=(3)截长不短法+旋转式全等的构造例7 如图,正方形ABCD 中,,E F 分别是边,BC CD 上的点,若BE DF EF +=, 求EAF Ð的度数.QPDC BAEDCBA MDCBADCBA练习 1、 在正方形ABCD 中,P 是上一点,AQ 平分PAD Ð交DC 于Q . 求证:PA PB QD =+2、如图,90,,C AC BC AD ?是BAC Ð的角平分线,求证:AC CD AB +=.3、如图,已知2,90AB CD AE BC DE ABCAED===+=?? ,求五边形ABCDE 的面积.练习题 (每道20分)1、如图,90BC ? ,M 是BC 的中点,DM 平分ADC Ð,求证:AM 平分DAB Ð.NMCBAD CBAFECBAD FEADCB2 如图,ABC D 中,过点A 分别作,ABC ACB 行 外角的平分线的垂线,垂足分别为,M N 设ABC D 的三边长,,BC CA AB 分别为,,a b c ,求线段MN 的长.3 如图,四边形ABCD 中,,60,120AB AD BAD BCD =?靶= ,求证:BC CD AC +=4 在ABC D 中,45ABC? ,AD 是BAC Ð的平分线,EF 的垂直平分线AD 交BC 的延长线于F ,试求CAF Ð的大小.5 如图,D 是ABC D 的BC 边的中点,分别以,AB AC 为斜边向ABC D 外作直角三角形ABE D 和ACF D ,若ABEACF ? ,求证:DE DF =1. 上帝对人说道:“我医治你,所以要伤害你;我爱你,所以要惩罚你。

初中八年级数学竞赛培优讲义全套专题15 全等三角形

初中八年级数学竞赛培优讲义全套专题15 全等三角形

初中八年级数学竞赛培优讲义全套专题15 全等三角形专题15:全等三角形全等是指两个几何图形之间的一种关系,其中最基本的关系是点的对应关系,以及对应边之间、对应角之间的相等关系。

全等三角形是研究三角形、四边形等图形性质的主要工具,是解决有关线段、角等问题的一个出发点。

证明线段相等、线段和差相等、角相等、两直线位置关系等问题总要直接或间接用到全等三角形,我们把这种应用全等三角形来解决问题的方法称为全等三角形法。

我们实际遇到的图形,两个全等三角形并不重合在一起,而是处于各种不同的位置,但其中一个是由另一个经过平移、翻折、旋转等变换而成的。

了解全等变换的这几种形式,有助于发现全等三角形、确定对应元素。

善于在复杂的图形中发现、分解、构造基本的全等三角形是解题的关键,应熟悉涉及有关共边、公共角的以下两类基本图形:1.三角形2.四边形例题与求解例1】考查下列命题:①全等三角形的对应边上的中线、高、角平分线对应相等;②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;④两边和其中一边上的高(或第三边上高)对应相等的两个三角形全等。

其中正确命题的个数有()解题思路:真命题给出证明,假命题举出一个反例。

例2】如图,已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB。

求证:(1)AP=AQ;(2)AP⊥AQ。

解题思路:(1)证明对应的两个三角形全等;(2)证明∠PAQ=90°。

例3】如图,已知AD为△ABC的中线,求证:AD<(AB AC)。

解题思路:三角形三边关系定理是证明线段不等关系的基本工具,关键是设法将AB,AC,AD集中到同一个三角形中,从构造2AD入手。

例4】如图,已知AC∥BD,EA、EB分别平分∠CAB、∠DBA,CD过点E。

求证:AB=AC+BD。

解题思路:本例是线段和差问题的证明,截长法(或补短法)是证明这类问题的基本方法,即在AB上截取AF,使AF=AC,以下只要证明FB=BD即可,于是将问题转化为证明两线段相等。

北师大版七年级下册数学《全等三角形》培优复习讲义

北师大版七年级下册数学《全等三角形》培优复习讲义

全等三角形(一)SSS【知识要点】1.边边边定理(sss):三边对应相等的两个三角形全等.【典型例题】1、已知:如图,A、B、E、F在一条直线上,且AC=BD,CE=DF,AF=BE。

求证:△ACE≌△BDF2、已知:如图,B、E、C、F在一条直线上,且BE=CF,AB=DE,AC=DF。

求证:△AB C≌△DEF。

3、如图,△ABC中,D是BC边的中点,AB=AC,求证:∠B=∠C。

4、已知:如图,AB=DC,AD=BC,求证:∠A=∠C。

D CBDDBFCEB全等三角形(二)SAS【知识要点】1.边角边定理(SAS):有两边及其夹角对应相等的两个三角形全等.【典型例题】例1 、已知:AB=AC、AD=AE、∠1=∠2(图4)。

求证:△ABD≌△ACE。

练习:1、已知:如图,AB=AC,F、E分别是AB、AC的中点。

求证:△ABE≌△ACF。

2、已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.ABC D E3、已知:如图AB=AC,AD=AE,∠BAC=∠DAE,求证:△ABD≌△ACE4、已知:如图,AD∥BC,CBAD=,CFAE=。

求证:CEBAFD∆≅∆。

5、已知:如图,点A、B、C、D在同一条直线上,DBAC=,DFAE=,ADEA⊥,ADFD⊥,垂足分别是A、D。

求证:FDCEAB∆≅∆全等三角形(三)AAS和ASA【知识要点】1.角边角定理(ASA):有两角及其夹边对应相等的两个三角形全等.2.角角边定理(AAS):有两角和其中一角的对边对应相等的两个三角形全等.【典型例题】例1.如图,AB∥CD,AE=CF,求证:AB=CDAD CFO例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:OC=OD.例4.如图已知:AB=CD ,AD=BC ,O 是BD 中点,过O 点的直线分别交DA 和BC 的延长线于E ,F.求证:AE=CF.直角三角形全等HL 【知识要点】斜边直角边公理:有斜边和直角边对应相等的两个直角三角形全等. 【典型例题】例1 如图,B 、E 、F 、C 在同一直线上,AE ⊥BC ,DF ⊥BC ,AB=DC ,BE=CF ,试判断AB 与CD 的位置关系. 例2 已知 如图,AB ⊥BD ,CD ⊥BD ,AB=DC ,求证:AD ∥BC.AFD90,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,例3.如图,在△ABC中,∠ACB=求证:DE=AD+BE.ACE N。

全等三角形讲义

全等三角形讲义

全等三角形讲义(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--全等三角形一、知识点:1.全等形的定义2.全等三角形的定义3.对应顶点、对应边、对应角的定义4.全等三角形的性质二、重难点:1.全等三角形的概念2.对应顶点、对应边、对应角的定义3.全等三角形的性质三、考点全等三角形的性质一、全等形1. 叫做全等形。

全等用符号表示,读作2.两个图形是否为全等形,关键是看两个图形的是否相同,是否相等,而与图形所在的无关;判断两个图形是否是全等形,只要把它们在一起,看是否完全;一个图形经过、、等变换后,所得到的图形与原图形全等。

例题:1.下列说法不正确的是()A.形状相同的两个图形是全等形 B.大小不同的两个图形不是全等形C. 形状、大小都相同的两个图形是全等形D.能够完全重合的两个图形是全等形2.下列说法正确的是()A.面积相等的两个图形是全等图形 B.周长相等的两个图形是全等图形C. 形状相同的两个图形是全等图形D.能够重合的两个图形是全等图形二、全等三角形1. 叫做全等三角形2. 两个全等三角形重合在一起,重合的顶点叫做,重合的边叫做,重合的角叫做3.寻找对应因素的方法:①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角;③全等三角形的公共角是对应角;④全等三角形的公共边是对应边;⑤全等三角形中的对顶角是对应角;⑥全等三角形中一对最长(短)的边是对应边,一对最大(小)的角是对应角例题:1.下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角oO BCDCDABCDCBD2.将ABC ∆沿直线BC 平移,得到DEF ∆,说出你得到的结论,说明理由B AD3.如图,,ACD ABE ∆≅∆AB 与AC ,AD 与AE 是对应边,已知: 30,43=∠=∠B A ,求ADC ∠的大小。

全等三角形培优讲义

全等三角形培优讲义
第 3 页 共 10 页
求 证 ;AB
E
B
C
=AC+BD
3、如图,已知在
ABC
内,BAC

0
60
,C

400
,P,Q
分别在
BC,CA
上,并且
AP,BQ
分别是
BAC

ABC 的角平分线。求证:BQ+AQ=AB+BP
A
B Q
P
C
4、如图,在四边形 ABCD 中,BC>BA,AD=CD,BD 平分 ABC,
特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用 三角形面积的知识解答.
第二部分:例题剖析
一、倍长中线(线段)造全等 例 1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线 AD 的取值范围是_________.
A
B
D
C
例 2、如图,△ABC 中,E、F 分别在 AB、AC 上,DE⊥DF,D 是中点,试比较 BE+CF 与 EF 的大小. A
.
全等三角形常见辅助线作法
精准诊查
【知识导图】
概念
三边之和大于等于第三边 稳定性
三角形
与三角形有关的线段
高 中线 角平分线
与三角形有关的角
三角形内角和定理 三角形的外角
性质
直角三角形
判定
多边形及其内角和
【导学】全等三角形
第一部分:知识点回顾
常见辅助线的作法有以下几种: 1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全

苏科版八年级上册 第一章 全等三角形 培优讲义设计(无答案)

苏科版八年级上册 第一章 全等三角形 培优讲义设计(无答案)

B AC D EF 2019年9月培优 全等三角形的性质与判定知识储备1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同; 2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.典例【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对 B .4对 C .3对 D .2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D ⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中BE CEEF EF=⎧⎨=⎩ ∴Rt △EFB ≌Rt △EFC (HL )故选C . 【变式题组】 01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等A F C E DB 02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF 在△ABE 和△DCF 中, AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE 中, AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( ) A .2 B .3 C .4 D .5A B C D O FE A CEFBD02.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. \ 03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠FAC =∠CDF∵∠AOD =∠FAC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCAB (E )OC F 图③DAAFECB DAE第1题图A BCDEBCDO第2题图【变式题组】01.(绍兴)如图,D、E分别为△ABC的AC、BC边的中点,将此三角形沿DE折叠,使点C 落在AB边上的点P处.若∠CDE=48°,则∠APD等于()A.42°B.48°C.52°D.58°02.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是()A.△ABC≌△DEF B.∠DEF=90°C.AC=DF D.EC=CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B、F、C、D在同一条直线上.⑴求证:AB⊥ED;⑵若PB=BC,找出图中与此条件有关的一对全等三角形,并证明.【例4】(第21届江苏竞赛试题)已知,如图,BD、CE分别是△ABC的边A C和AB边上的高,点P在BD的延长线,BP=AC,点Q在CE上,CQ=AB.求证:⑴AP=AQ;⑵AP⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP=AQ,也就是证△APD和△AQE,或△APB和△QAC全等,由已知条件BP=AC,CQ=AB,应该证△APB≌△QAC,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP⊥AQ,即证∠PAQ=90°,∠PAD+∠QAC=90°就可以.证明:⑴∵BD、CE分别是△ABC的两边上的高,∴∠BDA=∠CEA=90°,∴∠1+∠BAD=90°,∠2+∠BAD=90°,∴∠1=∠2.在△APB和△QAC中, 2AB QCBP CA=⎧⎪=⎨⎪=⎩∠1∠∴△APB≌△QAC,∴AP=AQE FBACDG第2题图21ABCPQEFD⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠PAD =90° ∵∠CAQ +∠PAD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BC =ED ,点F 是CD 的中点,求证:02.直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________巩固提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40° 03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( )第1题图a αcca50° b72° 58°AECBA 75° C45° BNM第2题图第3题图DA .SASB .ASAC .AASD .SSS 04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°05.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( )A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB =AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对07.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________. 08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______.09.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____. 11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .DA C .Q P.BA E FB DC 12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F , 请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明; ⑵若DE =a ,求梯形DABE 的面积.(温馨提示:补形法)15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE =DF .16.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等? ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等(证明略); 对于这两个三角形均为锐角三角形,它们也全等,可证明如下;已知△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1.(请你将下列证明过程补充完整)⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论.ABCDA 1B 1C 1D 1D B A C EF A E B F D CAEF C DB 培优升级01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( ) A .4对 B .5对 C .6对 D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE , 则OE 平分∠AOB ,正确的是( ) A .①② B .②③ C .①③ D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC04.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______.06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE=AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .AB E D CF第6题图2 1AB CE N M3 21ADEBC FADECOA E O BFC D 第1题图B第2题图第3题图AB C DEAE B DC 09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCE=90°, ∠BAC =∠EAD .求证:∠CED =90°.10.(沈阳)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵若将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;⑶若将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。

【期末培优讲义】专题 全等三角形八大模型必考点(人教版)(含解析)

【期末培优讲义】专题  全等三角形八大模型必考点(人教版)(含解析)

专题全等三角形八大模型必考点【考点1 一线三等角构造全等模型】方法点拨:“一线三等角模型”最关键的要点就是证明角相等,(1)三垂直:利用同角的余角相等(2)一般角:利用三角形的外角的性质1.阅读理解,自主探究:“一线三垂直”模型是“一线三等角”模型的特殊情况,即三个等角角度为90°,于是有三组边相互垂直.所以称为“一线三垂直模型”.当模型中有一组对应边长相等时,则模型中必定存在全等三角形.(1)问题解决:如图1,在等腰直角△ABC中,△ACB=90°,AC=BC,过点C作直线DE,AD△DE于D,BE△DE于E,求证:△ADC△△CEB;(2)问题探究:如图2,在等腰直角△ABC中,△ACB=90°,AC=BC,过点C作直线CE,AD△CE于D,BE△CE于E,AD=2.5cm,DE=1.7cm,求BE的长;(3)拓展延伸:如图3,在平面直角坐标系中,A(﹣1,0),C(1,3),△ABC为等腰直角三角形,△ACB=90°,AC=BC,求B点坐标.【分析】(1)证△DAC=△ECB,再由AAS证△ADC△△CEB即可;(2)证△ADC△△CEB(AAS),得AD=CE=2.5cm,CD=BE,即可解决问题;(3)过点C作直线l△x轴,交y轴于点G,过A作AE△l于点E,过B作BF△l于点F,交x轴于点H,证△AEC△△CFB(AAS),得AE=CF=3,BF=CE=2,则FG=CG+CF=4,BH=FH﹣BF=1,即可得出结论.【解答】(1)证明:△AD△DE,BE△DE,△△ADC=△CEB=90°,△△ACB=90°,△△ACD+△ECB=90°,△DAC+△ACD=90°,△△DAC=△ECB,在△ADC和△CEB中,,△△ADC△△CEB(AAS);(2)解:△BE△CE,AD△CE,△△ADC=△CEB=90°,△△CBE+△ECB=90°,△△ACB=90°,△△ECB+△ACD=90°,△△ACD=△CBE,在△ADC和△CEB中,,△△ADC△△CEB(AAS),△AD=CE=2.5cm,CD=BE,△BE=CD=CE﹣DE=2.5﹣1.7=0.8(cm),即BE的长为0.8cm;(3)解:如图3,过点C作直线l△x轴,交y轴于点G,过A作AE△l于点E,过B作BF△l 于点F,交x轴于点H,则△AEC=△CFB=△ACB=90°,△A(﹣1,0),C(1,3),△EG=OA=1,CG=1,FH=AE=OG=3,△CE=EG+CG=2,△△ACE+△EAC=90°,△ACE+△FCB=90°,△△EAC=△FCB,在△AEC和△CFB中,,△△AEC△△CFB(AAS),△AE=CF=3,BF=CE=2,△FG=CG+CF=1+3=4,BH=FH﹣BF=3﹣2=1,△B点坐标为(4,1).【点评】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、坐标与图形性质、一线三垂直”模型等知识,本题综合性强,证明三角形全等是解题的关键,属于中考常考题型.2.如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,P A与CQ有何位置和数量关系,猜想并证明;(3)在(2)的条件下若C、P,Q三点共线,求此时△APB的度数及P点坐标.【分析】(1)作CH△y轴于H,证明△ABO△△BCH,根据全等三角形的性质得到BH=OA =3,CH=OB=1,求出OH,得到C点坐标;(2)证明△PBA△△QBC,根据全等三角形的性质即可得到P A=CQ,P A△CQ;(3)根据C、P,Q三点共线,得到△BQC=135°,根据全等三角形的性质得到△BP A=△BQC =135°,根据等腰三角形的性质求出OP,即可得到P点坐标.【解答】解:(1)如图1,过C作CH△y轴于H,则△BCH+△CBH=90°,△AB△BC,△△ABO+△CBH=90°,△△ABO=△BCH,在△ABO和△BCH中,,△△ABO△△BCH(AAS),△BH=OA=3,CH=OB=1,△OH=OB+BH=4,△C点坐标为(1,﹣4);(2)CQ=AP,CQ△AP.证明:如图2,延长CQ交x轴于D,交AB于E,△△PBQ=△ABC=90°,△△PBQ﹣△ABQ=△ABC﹣△ABQ,即△PBA=△QBC,在△PBA和△QBC中,,△△PBA△△QBC(SAS),△P A=CQ,△BAP=△BCQ,又△△AED=△CEB,△△ADE=△CBE=90°,即CD△AD,△CQ△AP;(3)△△BPQ是等腰直角三角形,△△BQP=45°,当C、P,Q三点共线时,△BQC=135°,由(2)可知,△PBA△△QBC,△△BP A=△BQC=135°,△△OPB=180°﹣135°=45°,△OP=OB=1,△P点坐标为(1,0).【点评】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.3.如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分△AOB交AB于点C,点D为线段AB上一点,过点D作DE△OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣12n+36+|n ﹣2m|=0.(1)求A、B两点的坐标;(2)若点D为AB中点,延长DE交x轴于点F,在ED的延长线上取点G,使DG=DF,连接BG.△BG与y轴的位置关系怎样?说明理由;△求OF的长;(3)如图2,若点F的坐标为(10,10),E是y轴的正半轴上一动点,P是直线AB上一点,且P点的坐标为(6,﹣6),是否存在点E使△EFP为等腰直角三角形?若存在,求出点E 的坐标;若不存在,说明理由.【分析】(1)先利用非负数的性质求出m,n的值,即可得出结论;(2)△先判断出△BDG△△ADF,得出BG=AF,△G=△DF A,然后根据平行线的判定得出BG△AF,从而利用平行线的性质即可得出结论;△利用等腰三角形的性质,建立方程即可得出结论;(3)分析题意知要使△EFP为等腰直角三角形,必有EF=EP,且△FEP═90°,再过F、P分别向y轴作垂线垂足分别为M、N,然后利用全等三角形的判定证得△FME△△ENP,从而利用全等的性质求得ME的长,进而求出OE,即可得出结论.【解答】解:(1)由n2﹣12n+36+|n﹣2m|=0,△(n﹣6)2+|n﹣2m|=0,△n﹣6=0,n﹣2m=0,△n=6,m=3,△A(3,0),B(0,6);(2)△BG△y轴.在△BDG与△ADF中,BD=DA,△BDG=△FDA,DG=DF,△△BDG△△ADF(SAS),△BG△AF.△AF△y轴,△BG△y轴.△由△可知,BG=F A,△BDE为等腰直角三角形.△BG=BE.设OF=x,则有OE=x,△3+x=6﹣x,△x=1.5,即:OF=1.5;(3)要使△EFP为等腰直角三角形,必有EF=EP,且△FEP═90°,如图,过F、P分别向y轴作垂线垂足分别为M、N.△△FEP═90°,△△FEM+△PEN=90°,又△FEM+△MFE=90°,△△PEN=△MFE,△Rt△FME△Rt△ENP(HL),△ME=NP=6,△OE=10﹣6=4.即存在点E(0,4),使△EFP为等腰直角三角形.【点评】此题是三角形综合题,主要考查的是全等三角形的判定与性质、等腰三角形的性质、勾股定理等知识,正确作出辅助线是解决此题的关键.【考点2 手拉手模型-旋转模型】方法点拨:手拉手模型有一个特点,就是从一个顶点出发,散发出来的四条线段,两两相等(或者对应成比例),然后夹角相等。

全等三角形的性质及判定培优辅导

全等三角形的性质及判定培优辅导

全等三角形的性质及判定(培优)1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等.(3)全等三角形的面积相等,全等三角形的周长相等.3、全等三角形判定方法:(1) “边角边”或“SAS” (2) “角边角”或“ASA” (3) “边边边”或“SSS”(4) “角角边”或“AAS”一:判断题1.两边和一角对应相等的两个三角形全等.()2.两角和一边对应相等的两个三角形全等.()3.两条直角边对应相等的两个三角形全等.()4.腰长相等,顶角相等的两个等腰三角形全等.()5.三角形中的一条中线把三角形分成的两个小三角形全等. ()6.两个等边三角形全等. ()7.一腰和底边对应相等的两个等腰三角形全等. ()8.腰长相等,且都有一个40°角的两个等腰三角形全等.()9.腰长相等,且都有一个100°角的两个等腰三角形全等.()10.有两边和第三边上的中线对应相等的两个三角形全等.()二、证明题1、已知:AB=DE,AC=DF,BF=EC,求证:∠B=∠E (长沙·中考题)2、已知:OA=OB,AC=BD,∠A=∠B,M为CD中点.求证:OM平分∠AOB (红河·中考题)3、已知AD是⊿ABC的中线,BE⊥AD,CF⊥AD,问BE=CF吗?说明理由。

4.已知如图,E.F在BD上,且AB=CD,BF=DE,AE=CF,求证:AC与BD互相平分.5. 如图在ABC∆则DEB∆6、已知∠BAC=∠7、已知∠1=∠2,∠3=∠4,问AC=AD吗?说明理由。

ABCDEFAB CDFEACDB12348、在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,问⊿BHD ≌⊿ACD ,为什么?9、已知AD =AE ,BD =CE ,∠1=∠2,问⊿ABD ≌⊿ACE 吗?10、已知∠1=∠2,AC =BD ,E ,F ,A ,B 在同一直线上,问∠3=∠4吗?11.已知如图(1),△ABC 中,∠BAC =90°,AB =AC ,AE 是过A 的一条直线,且B 、C 在AE 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E ,求证:(1)BD =DE +CE ;(2)若直线AE 绕A 点旋转到(2)位置时(BD <CE ),其余条件不变,问BD 与DE 、CE 的关系如何?请予证明.(3)若直线AE 绕A 点旋转到图(3)位置时,(BD >CE ),其余条件不变,问BD 与DE 、CE 的关系如何?请直接写出结果,不须证明.(4)归纳(1)、(2)、(3),请用简捷语言表述BD 、DE 、CE 的关系.12、已知,AC ⊥CE ,AC =CE , ∠ABC =∠DEC =900,问BD =AB +ED 吗?13.已知:如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相交于点G 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
A F
B
E
B
E
C
D
C
D
3
【解析】 延长 DE 至 F,使得 EF=BC,连接 AC. ∵∠ABC+∠AED=180°,∠AEF+∠AED=180° ∵AB=AE,BC=EF ∴△ABC≌△AEF ∴EF=BC,AC=AF ∵BC+DE=CD ∴CD=DE+EF=DF ∴△ADC≌△ADF ∴∠ADC=∠ADF 即 AD 平分∠CDE.
A D
A
D
F B C
F C
E
M
B
E
【解析】 延长 CB 至 M,使得 BM=DF,连接 AM. ∵AB=AD,AD⊥CD,AB⊥BM,BM=DF ∴△ABM≌△ADF ∴∠AFD=∠AMB,∠DAF=∠BAM ∵AB∥CD ∴∠AFD=∠BAF=∠EAF+∠BAE=∠BAE+∠BAM=∠EAM ∴∠AMB=∠EAM ∴AE=EM=BE+BM=BE+DF.
A
A
N M B D C
N M B D C E
【解析】 如图所示,延长 AC 到 E 使 CE BM . 在 BDM 与 CDE 中,因为 BD CD , MBD ECD 90 , BM CE , 所以 BDM ≌ CDE ,故 MD ED . 因为 BDC 120 , MDN 60 ,所以 BDM NDC 60 . 又因为 BDM CDE ,所以 MDN EDN 60 . 在 MND 与 END 中, DN DN , MDN EDN 60 , DM DE , 所以 MND ≌ END ,则 NE MN ,所以 AMN 的周长为 2 . 【例6】 五边形 ABCDE 中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°, 求证:AD 平分∠CDE
全等三角形培优竞赛讲义(一) 知识点
全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等, 对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. (6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角), 一对最短边(或 最小角)是对应边(或对应角). 要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法: (1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS):三边对应相等的两个三角形全等. (4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证 明的过程中,注意有时会添加辅助线. 拓展关键点: 能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系. 而证 明两条线段或两个角的和、差、倍、分相等是几何证明的基础.
∴∠ABC=∠AEF
A
板块二、全等与角度 C D B 【例 7】如图,在 ABC 中, BAC 60 , AD 是 BAC 的平分线,且 AC AB BD ,
求 ABC 的度数.
A
【解析】 如图所示,延长 AB 至 E 使 BE BD ,连接 ED 、 EC . 由 AC AB BD 知 AE AC , 而 BAC 60 ,则 AEC 为等边三角形. 注意到 EAD CAD , AD AD , AE AC , 故 AED ≌ ACD . D B 从而有 DE DC , DEC DCE , 故 BED BDE DCE DEC 2DEC . E 20 80 . 所以 DEC DCE 20 , ABC BEC BCE 60
【例 8】在等腰 ABC 中, AB AC ,顶角 A 20 ,在边 AB 上取点 D ,使 AD BC ,
求 BDC . 【解析】 以 AC 为边向 ABC 外作正 ACE ,连接 DE . 在 ABC 和 EAD 中, AD BC , AB EA , EAD BAC CAE C 60 B 20 A 80 ABC , 则 ABC ≌ EAD . 由此可得 ED EA EC ,所以 EDC 是等腰三角形. D E 由于 AED BAC 20 , 则 CED AEC AED 60 20 40 , 从而 DCE 70 , DCA DCE ACE 70 60 10 , 则 BDC DAC DCA 20 10 30 .
B C
D
4
A E
【另解 1】以 AD 为边在 ABC 外作等边三角形 ADE ,连接 EC . D 在 ACB 和 CAE 中, CAE 60 20 ACB , AE AD CB , AC CA , 因此 ACB ≌ CAE , 从而 CAB ACE , CE AB AC . 在 CAD 和 CED 中, AD ED , CE CA , CD CD , 故 CAD ≌ CED , 从而 ACD ECD , CAB ACE 2ACD , B C A 故 ACD 10 ,因此 BDC 30 . 【另解 2】如图所示,以 BC 为边向 ABC 内部作等边 BCN ,连接 NA D 、 ND . 在 CDA 和 ANC 中, CN BC AD , CAD 20 , ACN ACB BCN 80 60 20 , 故 CAD ACN , N 而 AC CA ,进而有 CDA ≌ ANC . 则 ACD CAN 10 , B C 故 BDC DAC DCA 30 . 【点评】上述三种解法均是向三边作正三角形,然后再由三角形全等得到边长、角度之间的 C 关系. 【例 9】(“勤奋杯”数学邀请赛试题) 如图所示,在 ABC 中, AC BC , C 20 , 又 M 在 AC 上, N 在 BC 上,且满足 BAN 50 , ABM 60 ,求 NM
B
E
A
M
B
E
【解析】 猜测 DM MN .在 AD 上截取 AG AM , ∴ DG MB ,∴ ∠AGM 45 ∴ ∠DGM ∠MBN 135 ,∴ ∠ADM ∠NMB , ∴ DGM ≌ MBN ,∴ DM MN . 【例3】 已知:如图,ABCD 是正方形,∠FAD=∠FAE. 求证:BE+DF=AE.
例题精讲
板块一、截长补短 A 60 ,BD 、 CE 分别平分 ABC 和 .ACB , 【例1】 ( 06 年北京中考题)已知 ABC 中,
BD 、 CE 交于点 O ,试判断 BE 、 CD 、 BC 的数量关系,并加以证明.
A A
E
O
D
E 1
O 4 2 3 F
D
B
C
B
C
【解析】 BE CD BC , 理由是:在 BC 上截取 BF BE ,连结 OF , 利用 SAS 证得 BEO ≌ BFO ,∴ 1 2 , 1 ∵ A 60 ,∴ BOC 90 A 120 ,∴ DOE 120 , 2 ∴ A DOE 180 ,∴ AEO ADO 180 ,∴ 1 3 180 , ∵ 2 4 180 ,∴ 1 2 ,∴ 3 4 , 利用 AAS 证得 CDO ≌ CFO ,∴ CD CF ,∴ BC BF CF BE CD .
C
【解析】 过 M 作 AB 的平行线交 BC 于 K ,连接 KA 交 MB 于 P . 连接 PN ,易知 APB 、 MKP 均为正三角形. 因为 BAN 50 , AC BC , C 20 , 所以 ANB 50 , BN AB BP , BPN BNP 80 , 则 PKN 40 , KPN 180 60 80 40 , M K 故 PN KN . N 从而 MPN ≌ MKN . P 1 进而有 PMN KMN , NMB KMP 30 . 2
2
【例4】 以 ABC 的 AB 、 AC 为边向三角形外作等边 ABD 、 ACE ,连结 CD 、 BE 相交 于点 O .求证: OA 平分 DOE .
D A D F O B C B O C A
E
E
【解析】 因 为 ABD 、 ACE 是 等 边 三 角 形 , 所 以 AB AD , AE AC , CAE BAD 60 , 则 BAE DAC ,所以 BAE ≌ DAC , 则有 ABE ADC , AEB ACD , BE DC . 在 DC 上截取 DF BO ,连结 AF ,容易证得 ADF ≌ ABO , ACF ≌ AEO . 进而由 AF AO .得 AFO AOF ; 由 AOE AFO 可得 AOF AOE ,即 OA 平分 DOE . 【例5】 (北京市、天津市数学竞赛试题)如图所示, ABC 是边长为 1 的正三角形, BDC 是顶角为 120 的等腰三角形,以 D 为顶点作一个 60 的 MDN ,点 M 、 N 分别 在 AB 、 AC 上,求 AMN 的周长.
C
【另解】在 AC 上取点 E ,使得 AE AB ,则由题意可知 CE BD . A 在 ABD 和 AED 中, AB AE , BAD EAD , AD AD , 则 ABD ≌ AED ,从而 BD DE , 进而有 DE CE , ECD EDC , E AED ECD EDC 2ECD . 注意到 ABD AED ,则: C D B 1 3 ABC ACB ABC ABC ABC 180 BAC 120 , 2 2 故 ABC 80 . 【点评】由已知条件可以想到将折线 ABD “拉直”成 AE ,利用角平分线 AD 可以构造全等 三角形.同样地,将 AC 拆分成两段,之后再利用三角形全等亦可,此思路也是十 分自然的. 需要说明的是,无论采取哪种方法,都体现出关于角平分线“对称”的思想. A 上述方法我们分别称之为“补短法”和“截长法” ,它们是证明等量关系时优先考 虑的方法.
相关文档
最新文档