整数指数幂及其运算(1)
指数与指数幂的运算知识点总结

指数与指数幂的运算知识点总结本节知识点 (1)整数指数幂; (2)根式; (3)分数指数幂; (4)有理数指数幂; (5)无理数指数幂. 知识点一 整数指数幂1.正整数指数幂的定义:,其中N*.an na a a a 个⋅⋅=∈n 2.正整数指数幂的运算法则: (1)(N*);nm nmaa a +=⋅∈n m ,(2)(且N*);nm nma a a -=÷,,0n m a >≠∈n m ,(3)(N*);()mn nma a=∈n m ,(4)(N*);()mmmb a ab =∈m (5)(N*).m m mb a b a =⎪⎭⎫⎝⎛,0≠b ∈m 3.两个规定(1)任何不等于零的数的零次幂都等于1.即.()010≠=a a 零的零次幂没有意义.(2)任何不等于零的数的(为正整数)次幂,等于这个数的次幂的倒数.即:n -n n . ()01≠=-a a a nn 零的负整指数幂没有意义. 知识点二 根式的概念及其性质 1.次方根n (1)定义 一般地,如果(且N*),那么叫做的次方根. a x n=1>n ∈n x a n (2)性质:①当为奇数时,正数的次方根是一个正数,负数的次方根是一个负数,这时,的次n n n a n方根用表示;na ②当为偶数时,正数的次方根有两个,这两个数互为相反数,表示为.负数没有偶n n na ±次方根;③0的任何次方根都是0,记作.00=n2.根式的定义 形如(且N*)的式子叫做根式,其中叫做根指数,叫做被na 1>n ∈n n a 开方数.对根式的理解,要注意以下几点: na (1)且N*; 1>n ∈n (2)当为奇数时,R ; n ∈a (3)当为偶数时,≥0.n a 根式(且N*)的符号的确定:由的奇偶性和被开方数的符号共同确定. na 1>n ∈n n a (1)当为奇数时,的符号与的符号相同; n na a (2)当为偶数时,≥0,为非负数. n a na 3.根式的性质: (1);()a a nn=(2)对于,当为奇数时,;当为偶数时,.nna n a a nn=n ()()⎩⎨⎧≤-≥==00a a a a a a nn与的联系与区别:()nna nn a (1)对于,当为奇数时,R ;当为偶数时,≥0.而对于,是一个恒有意义()nna n ∈a n a nn a 的式子,不受的奇偶性的限制,但式子的值受到的奇偶性的限制. n n (2)当为奇数时,.n ()=nna a a nn =知识点三 分数指数幂1. 规定正数的正分数指数幂的意义是(,N*,且)nm nm a a =0>a ∈n m ,1>n 于是在条件,N*,且下,根式都可以写成分数指数幂的形式.0>a ∈n m ,1>n2. 正数的负分数指数幂的意义与负整数指数幂的意义相仿,规定(,N*,且)nmnm nm aaa11==-0>a ∈n m ,1>n 3. 0的正分数指数幂等于0,0的负分数指数幂没有意义. 对分数指数幂的理解:(1)分数指数幂不能理解为个相乘,它是根式的一种新的写法; nm a nma (2)分数指数不能随意约分. nm如,事实上,,式子是有意义的;而在()()214233-≠-()()424233-=-()3321-=-实数范围内是没有意义的.(3)在保证相应的根式有意义的前提下,负数也存在分数指数幂.如上面提到的,但没有意义.()()424233-=-()()434355-=-所以对于分数指数幂,当≤0时,有时有意义,有时无意义.因此,在规定分数指数幂的nm a a 意义时,要求. 0>a 知识点四 有理数指数幂规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 整数指数幂的运算性质对于有理数指数幂同样适用: (1)(Q );sr sra a a +=⋅,0>a s r ,∈(2)(Q );()rs sra a=,0>a s r ,∈(3)(Q ).()rrrb a ab =0,0>>b a r ∈有理数指数幂的运算还有如下性质: (4)(Q );sr sraa a -=÷,0>a s r ,∈(5)(Q ).r r rb a b a =⎪⎭⎫⎝⎛0,0>>b a r ∈常用结论:(1)当时,; 0>a 0>ba (2)若则;,0≠a 10=a(3)若(,且),则; sr a a =0>a 1≠a s r =(4)乘法公式适用于分数指数幂.如().b a b a b a b a -=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+221221212121210,0>>b a 知识点五 无理数指数幂一般地,无理数指数幂(,是无理数)是一个确定的实数.有理数指数幂的运算性αa 0>a α质同样适用于无理数指数幂.知识点六 运用公式进行指数幂的运算(条件求值) 常用公式:(1)平方差公式 .()()b a b a b a -+=-22(2)完全平方公式 .()()2222222,2b ab a b a b ab a b a +-=-++=+(3)立方和公式 . ()()2233bab a b a b a +-+=+(4)立方差公式 .()()2233bab a b a b a ++-=-(5)完全立方和公式 .()3223333b ab b a a b a +++=+(6)完全立方差公式 .()3223333b ab b a a b a -+-=-常用公式变形:(1),.()ab b a b a 2222-+=+()ab b a b a 2222+-=+(2),.211222-⎪⎭⎫ ⎝⎛+=+x x x x 211222+⎪⎭⎫ ⎝⎛-=+x x x x 或者写成,.()22122-+=+--x x xx ()22122+-=+--x x x x (3);⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+b b a a b a b a b a 212121213213212323.⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-b b a a b a b a b a 212121213213212323例题讲解例1. 已知,求的值.32121=+-x x 32222323++++--x x x x 分析:采用整体思想方法,对所求式子进行合理变形,然后把条件整体代入求值.本题用到的公式和结论有:;()22122-+=+--x x x x . ()()1112121121213213212323-+⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+------x x x x x x x x x x xx 解:∵32121=+-xx ∴,∴. 92122121=++=⎪⎭⎫ ⎝⎛+--x x x x 71=+-x x ∴.()4727222122=-=-+=+--x x x x ()()181731121213213212323=-⨯=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+----x x x x x x xx ∴.52502034721832222323==++=++++--x x x x 例2. 已知,求下列各式的值:22121=+-a a (1); (2); (3).1-+a a 22-+a a 22--a a 分析:在求的值时,直接入手比较困难,我们可以先求出的值,然22--a a ()222--a a 后在进行开平方运算. 解:(1)∵22121=+-aa ∴,∴; 42122121=++=⎪⎭⎫ ⎝⎛+--a a a a 21=+-a a (2);()222222122=-=-+=+--a a a a (3)∵()()04242222222=-=-+=---a a a a ∴. 022=--a a例3. 已知,其中,求的值.41=+-x x 10<<x xx x x 122+--分析:要学会根式与分数指数幂的相互转化,在转化时要注意:根指数是分数指数的分母,被开方数(或式)的指数是分数指数的分子.解:∵41=+-x x ∴,∴,∴. 4222121=-⎪⎭⎫ ⎝⎛+-x x 622121=⎪⎭⎫ ⎝⎛+-x x 62121=+-x x()1424222122=-=-+=+--x x x x ∴()()19241442222222=-=-+=---x x x x ∵,∴,∴.10<<x 22-<x x 3819222-=-=--x x ∴. 24638121212222-=-=+-=+----x x x x x x x x 例4. (1)已知,求的值;42121=+-aa 21212323----aa a a (2)已知,且,求的值;9,12==+xy y x y x <21212121yx y x +-解:(1)∵42121=+-aa ∴,∴. 212212142=++=⎪⎭⎫ ⎝⎛+--a a a a 142161=-=+-a a ∴; ()15114111212112121212132132121212323=+=++=-++⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=----------a a a a a a a a a a a a aa a a (2)∵9,12==+xy y x ∴ ()()3192129212222221212212122121221212121=+-=++-+=++-+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+-xy y x xy y x xy y x xy y x y x y x y x y x∵,∴,∴y x <2121y x <021212121<+-yx y x ∴. 333121212121-=-=+-yx y x 例5. 已知,求的值.3232+=a 31311--++aa a a 分析:借助于分式的性质. 解:∵ 3232+=a ∴,.3232113232-=+==-a a()34732223234+=+=⎪⎭⎫⎝⎛=a a ∴()132323431313113131311++=⎪⎭⎫⎝⎛++=++-----a aa a a a a a a aa aa .()3333333333913232347=++=++=++-++=解法二:∵3232+=a ∴113232313132323131313133133131311-+=+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++--------a a a a a a a a a a a a aa a a .313232132132113232=--++=-+++=-+=aa 例6. (1)当时,求的值;22,22-=+=y x ⎪⎭⎫ ⎝⎛++⋅⎪⎭⎫ ⎝⎛----323132343132y y x x y x (2)若,求的值. 122-=xaxx xx aa a a --++33分析: 结论 对于二次根式,若是完全平方数,则也是完全C B A ±C B A 22-C B A ±平方数. 本题中,,被开方数不是完全平方数,所以不能化简,当确有22+=x 22+x.()222222+=+=x 解:(1)∵22,22-=+=y x ∴12331332323132343132------=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++⋅⎪⎭⎫ ⎝⎛-y x y x y y x x y x ; ()22122222221222+=+-+=--+=(2)∵122-=x a ∴ ()()()()1122223333-+=++-+=++=++--------xx xx x x x x x x x x x x x x a a aa a a a a a a a a a a a a . 1121121122--+-=-+=xx a a 12211212-=-++-=另解:解例5的解法一.题型一 整数指数幂的运算例7. 已知(为常数,且Z ),求的值.a x x =+-22a ∈x x x -+88分析:因为,所以先由条()()()()x x x x x x x x x x 22333321222222288-----+-+=+=+=+件求出的值.a x x =+-22x x 2222-+完全立方和公式 .()3223333b ab b a a b a +++=+解法一:∵a x x =+-22∴()2222222222-=-+=+--a x x x x ∴()()()()x x x x x x x x x x 22333321222222288-----+-+=+=+=+.()()a a a a a a 3312322-=-=--=解法二:(完全立方和公式) ∵a x x =+-22∴,展开得:.()3322a x x =+-()()()()3322322232232a x x x x x x =+⨯⨯+⨯⨯+---整理得:,∴. ()382238a x x x x =+++--3838a a x x =++-∴.a a x x 3883-=+-例8. 已知,则_________. 3101=+-x x =--22x x 解:∵ 3101=+-x x ∴ ()9822310222122=-⎪⎭⎫⎝⎛=-+=+--x x xx ∴ ()()816400498242222222=-⎪⎭⎫⎝⎛=-+=---x x x x ∴. 98081640022±=±=--x x 解法二分析:使用平方差公式得. ()()1122----+=-x x x x x x 解法二:∵ 3101=+-x x ∴ ()()9644310422121=-⎪⎭⎫⎝⎛=-+=---x x xx ∴. 389641±=±=--x x ∴. ()()980383101122±=⎪⎭⎫ ⎝⎛±⨯=-+=----x x x x x x 例9. 若,求的值. 31=+-x x 2323-+x x 解:∵(这里)31=+-x x 0>x ∴,∴. 3222121=-⎪⎭⎫ ⎝⎛+-x x 522121=⎪⎭⎫ ⎝⎛+-x x ∵,∴.02121>+-x x 52121=+-xx ∴ ()1212132132123231----+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+x x x x x x xx . ()52135=-⨯=解法二:∵31=+-x x ∴()723222122=-=-+=+--x x x x∴ ()()()202173122213322323=+-⨯=+-+=++=⎪⎭⎫ ⎝⎛+----x x x x x x x x ∴.52202323==+-xx 例10. 已知,则【 】41=+-x x =+-2121x x (A )2 (B )2或 2-(C )(D )或666-分析:题目的隐含条件为. 0>x 解:∵41=+-x x ∴,∴ 42221211=-⎪⎭⎫ ⎝⎛+=+--x x x x 622121=⎪⎭⎫ ⎝⎛+-x x ∵02121>+-x x ∴.选择【 C 】.62121=+-x x例11. 已知,则【 】212121++=⎪⎭⎫ ⎝⎛+--x x x x f ()=+1x f (A ) (B )42-x ()21+x (C )(D )()()2111-+++-x x 322-+x x 解:(换元法)设,则有t xx =+-2121∴222221211-=-⎪⎭⎫ ⎝⎛+=+--t x x x x ∴,∴. ()2222t t t f =+-=()2x x f =∴.选择【 B 】.()()211+=+x x f 解法二(凑整法):∵212121++=⎪⎭⎫ ⎝⎛+--x x x x f ∴,∴.2212122121212122⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+---x x x x x x f ()2x x f =∴.()()211+=+x x f题型二 根式的化简在进行根式的化简时,主要用到的是根式的性质: (1);()a a nn=(2)对于,当为奇数时,;当为偶数时,.nna n a a nn=n ()()⎩⎨⎧≤-≥==00a a a a a a nn注意 对于,当为奇数时,R ;当为偶数时,≥0.而对于,是一个恒有意()nna n ∈a n a nn a 义的式子,不受的奇偶性的限制,但式子的值受到的奇偶性的限制.n n 例12. 化简下列各式: (1);()()222535-+-(2)(≥1).()()2231x x -+-x 解:(1)原式;125532535=-+-=-+-=(2).()()x x x x -+-=-+-313122∵≥1x ∴当1≤≤3时,原式; x 231=-+-=x x 当时,原式. 3>x 4231-=-+-=x x x 例13. 化简: (1); (2)(≤).()nnx π-62144+-a a a 21分析:对于(1),要对的奇偶性进行分类讨论. n 解:(1)当为奇数时,;n ()ππ-=-x x nn 当为偶数时,; n ()()()⎩⎨⎧<-≥-=-=-ππππππx x x x x x nn(2).()()()33162626221212112144a a a a a a -=-=-=-=+-注意:当底数为正数时,其分数指数可以约分.例14. 求下列各式的值: (1);223223-++(2).347246625-+--+分析: 结论 对于二次根式,若是完全平方数,则也是完全C B A ±C B A 22-C B A ±平方数.根据此结论,可知,,均可以化为完全平方的形式. 625+246-347-解:(1)原式;()()221212*********2=-++=-++=-++=(2)原式()()()222322232-+--+=.22322232322232=-++-+=-+--+=总结 形如()的双重二次根式的化简,一般是将其化为n m 2±0,0>>n m 的形式,然后再化简.由得:()2ba ±()ab b a ba n m 222±+=±=± ⎩⎨⎧==+nab mb a 所以是一元二次方程的两个实数根.b a ,02=+-n mx x 例15. 化简. 32-解:. ()()226213213222132324322-=-=-=-=-=-例16. 计算:.()()4123323-+-解:原式.()[]()58323233443=+-=-+-=-+-=注意 在利用根式的性质进行的化简时,一定要注意当为偶数时,底数的符号.nna n a 例17. 化简下列各式: (1)();()()665544b a b a a -+++0<<b a (2)(). 1212----+x x x x 21<<x 解:(1)∵0<<b a ∴原式; ()a b a b b a a b a b a a -=-+++-=-+++=2(2)∵,∴ 21<<x 110<-<x ∴原式()()1111111122---+-=---+-=x x x x. ()1211111111-=-+-+-=---+-=x x x x x 例18. 求值_________. =-++335252解:令,则有y x =-=+3352,52,.4525233=-++=+y x 1-=xy ∴,∴()()422=+-+y xy x y x ()()[]432=-++xy y x y x 设,则,有t y x =+0>t ,∴,()432=+t t 0433=-+t t 01333=--+t t ∴()()0412=++-t t t ∵,∴,∴. 042>++t t 01=-t 1=t ∴. 1525233=-++解法二:设,则有=x 335252-++,∴()x x 3452523333-=-++=0432=-+x x∴, ()()03313=-+-x x ()()0412=++-x x x ∵,∴,∴ 042>++x x 01=-x 1=x ∴. 1525233=-++例19. 根据已知条件求值: (1)已知,求的值;32,21==y x yx y x yx y x +---+(2)已知是方程的两根,且,求的值.b a ,0462=+-x x 0>>b a ba b a +-解:(1)∵ 32,21==y x ∴原式()()()()()()yx yx yx yx yx yx -+--+-+=22yx xyy x y x xy y x --+--++=22; 383221322144-=-⨯⨯=-=yx xy(2)∵是方程的两根 b a ,0462=+-x x ∴4,6==+ab b a ∴()()204464222=⨯-=-+=-ab b a b a ∵,∴ 0>>b a 0>-b a ∴. 5220==-b a ∴. ()()()55515242622==-=--+=-+-=+-b a ab b a ba ba ba ba b a (2)解法二:∵是方程的两根,∴b a ,0462=+-x x 4,6==+ab b a ∴. ()()5110242642622222==+-=++-+=+-=⎪⎪⎭⎫⎝⎛+-abb a ab b a b a b a b a b a ∵,∴,∴0>>b a b a >0>+-ba b a ∴. 5551==+-ba b a 例20. 已知,N*,求的值.⎪⎭⎫ ⎝⎛-=-nn x 115521∈n ()n x x 21++解:∵⎪⎭⎫ ⎝⎛-=-n nx 115521∴.n n n n n n x 222221125215525411552111---++=⎪⎭⎫ ⎝⎛+-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=+2115541⎪⎭⎫ ⎝⎛+=-n n∴⎪⎭⎫ ⎝⎛+=+-n nx 11255211∴.()55552155211111112=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=++--nn n nn n n nx x例21. 已知函数,.()53131--=x x x f ()53131-+=x x x g (1)证明:在上是增函数(已知在R 上是增函数);()x f ()+∞,031x y =(2)分别计算和的值,由此概括出函数和()()()2254g f f -()()()3359g f f -()x f 对所有不等于0的实数都成立的一个等式,并加以证明.()x g x (1)证明:任取,且()+∞∈,0,21x x 21x x <∴ ()()55531131231231131231231131121⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=---=-----x x x x x x x x x f x f ∵,且,在R 上是增函数 ()+∞∈,0,21x x 21x x <31x y =∴312311312311,--><x x x x ∴,∴ ()()021<-x f x f ()()21x f x f <∴在上是增函数; ()x f ()+∞,0(2)解:()()()2254g f f -.0522522552222554432323232313131313131=---=⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⨯--=-----同样求得. ()()()03359=-g f f 猜想:. ()()()052=-x g x f x f 证明:()()()x g x f x f 52-.055555532323232313131313232=---=⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⨯--=-----x x x x x x x x xx 例22. 当,且时,求的值.0,0>>y x ()()y x y y x x 53+⋅=+yxy x y xy x -+++32解:∵,且0,0>>y x ()()y x y y x x53+⋅=+∴, y xy xy x 153+=+0152=--y xy x ∴()()053=-+y x yx ∴,. 05=-y x y x y x 25,5==∴.22958525355032==-+++=-+++yyy y y y y y yxy x y xy x 题型三 根式与分数指数幂的互化在进行根式与分数指数幂的互化时要注意两个对应: (1)根指数对应分数指数的分母;(2)被开方数(或式)的指数对应分数指数的分子. 当出现多重根号时,应从里向外化简.例23. 用根式或分数指数幂表示下列各式:,,,;.51a ()043>a a 36a ()013>a a()0>a a a 解:;551a a =;()43430a a a =>;23636a a a ==;()23233101-==>a aa a.()4323210a a a a a a a ==⋅=>例24. 将根式化为分数指数幂是【 】 53-a (A ) (B )(C )(D )53-a 53a 53a -35a -解:选择【 A 】. 例25. 化简:_________.(用分数指数幂表示)()()=⋅÷⋅109532a a a a 解:由题意可知:.0>a ∴原式.561012101451310921532a a a a a a a a ==÷=⎪⎭⎫⎝⎛⋅÷⎪⎭⎫ ⎝⎛⋅=例26. 设,化简:.0>a 434334aa a a -解:∵0>a ∴.611616653163254343234434334---===⋅⋅=aaa aa a a aa aa aa例27. 下列根式与分数指数幂的互化中,正确的是【 】 (A )(B )()()0414>-=-x x x )0551≠-=-x x x(C ) (D )()0,4343≠⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-y x x y y x 4182y y =解:(A ),故(A )错;()0414>-=-x x x (B ),故(B )错; ()0155151≠==--x xx x(D ),故(D )错. 选择【 C 】. 4182y y =例28. 下列各式正确的是【 】 (A );(B )35531aa=-2332x x =(C )(D )⎪⎭⎫ ⎝⎛-⨯-=814121814121aaa a x x x x 412212323131-=⎪⎭⎫ ⎝⎛---解:(A ),故(A )错;53535311aaa ==-(B ),故(B )错; 3232x x =(C ),故(C )错. 选择【 D 】.85814121814121a aaa a ==⎪⎭⎫ ⎝⎛-+-题型四 根式和分数指数幂有意义的条件1.对于次根式,当为奇数时,R ;当为偶数时,≥0. n na n ∈a n a 2.0的0次幂和负实数幂都没有意义.例29. 若有意义,则的取值范围是__________.()4321--x x解:∵()()()43434321121121x x x -=-=--∴,解之得:. 021>-x 21<x 即的取值范围是.x ⎪⎭⎫ ⎝⎛∞-21,例30. 函数的定义域是【 】()()2125--+-=x x y (A ) (B ){}2,5≠≠x x x {}2>x x (C ) (D ){}5>x x {}552><<x x x 或解:∵()()()()()215215250210210-+-=-+-=-+-=-x x x x x x y ∴,解之得:且.⎩⎨⎧>-≠-0205x x 2>x 5≠x ∴该函数的定义域为.选择【 D 】.()()+∞,55,2 题型五 幂的运算目前,当底数大于0时,指数已经由整数指数推广到了实数指数,整数指数幂的运算性质适用于实数指数幂的运算.运算的结果可以化成根式形式或者保留分数指数幂的形式,但不能既有根式又有分数指数幂,也不能同时含有分母和负指数幂.(1)(R ); s r s r a a a +=⋅∈>s r a ,,0(2)(R );()rs sr a a =∈>s r a ,,0(3)(R ).()r r rb a ab =∈>>r b a ,0,0例31. 计算下列各式(式中的字母均为正数): (1);()()()c b a b a b a 24132124-----÷-⋅(2). ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--+----------212121211122b a b a b a b a 解:(1)原式;()ca ac cb a b a 33112412423-=-=÷-=-----(2)原式 ()()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+---=--------21212121112121b a b a b a b a ()()()bb b a b a b a ba b a b a221111111111111==+-+=----+=-------------例32. 化简下列各式: (1);212121211111aaa a a++------(2).111113131313132---+++++-x xx x x x x x 解:(1)原式; ()()011112121212121211=-=+⎪⎭⎫ ⎝⎛+---=-----a a a a a a a a a (2)原式 11111131323131333131323331-⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛=x x x x x x x x 31323132313131313131313231313231323111111111111xx x x x x x x x x x x x x x x x x --+-+-=-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=.31x -=例33. 化简:. ()()()()()1421443333211--------++-++-+aa a a a a a a a a a a解:原式 ()()()()()()1221442212212111---------+-+-++++-+-+=a a a a a a a a a a a a a aa a ()[]()[]()()1214412222111--------++++++-+=aa a a a a a a a a a a()()aa a a a aa a a a a a a 21111144144=-++=-++++++=------例34. 化简下列各式:(1);(2).436532yx xy⋅1111212331++-+++a a a a a 解:(1)原式;1212143653231--==yx yx y x (2)原式 111111111121212131313231213321313331++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=++-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛=a a a a a a a a a a a a a a21313221313211aa a a a a +-=-++-=例35. 【 】 ()=-⎪⎭⎫⎝⎛⨯+⎪⎭⎫ ⎝⎛--21212001.04122532(A )(B ) (C )(D )0151630173658-解:. ()21212001.04122532-⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛--1516101324111001491411=-⨯+=-⨯+=选择【 A 】.例36. 化简:_________.=⎪⎪⎭⎫⎝⎛÷⋅⋅----321132132a b b a bab a 解:原式.656161673223236167322121131212132--------=÷=⎪⎭⎫⎝⎛÷=⎪⎪⎪⎭⎫ ⎝⎛÷=b a ab b a b a b a b a ba b a b a 例37._________. =⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛---442102324953121解:原式. 22322322232491112=-++=-++-+=例38. 已知,则的值是_________. 3,2==n m 32432332⎪⎪⎭⎫⎝⎛÷⋅----m n nm m n n m 解:∵3,2==n m ∴原式 32325343322534312322332⎪⎭⎫ ⎝⎛÷=⎪⎭⎫ ⎝⎛÷=⎪⎪⎪⎭⎫ ⎝⎛÷=--------mn n m n m n m n m mn n m n m . 27232333131=⨯==⎪⎭⎫⎝⎛=---mn n m 例39. 已知函数,则_________.()()⎪⎩⎪⎨⎧≥--<=1,351,312x x x x x f =⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--4321353f f 解: ⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛---4343213533353f f f f . 33939335353331243=+-=+⎪⎭⎫⎝⎛-+-⨯=-题型六 解含幂的方程例40. 解下列方程:(1);(2).2291381+⎪⎭⎫ ⎝⎛=⨯x x0123222=-⨯++x x 解:(1),()2224333+-=⨯x x 424233--+=x x ∴,解之得:;4242--=+x x 2-=x (2),设,则()0123242=-⨯+⨯x x t x =20>t ∴, 01342=-+t t ()()0114=+-t t 解之得:(舍去). 1,241221-===-t t ∴,∴.222-=x 2-=x 结论 若(,且),则sra a =0>a 1≠a s r =题型七 指数幂等式的证明 设参数法例41. 设都是正数,且,求证:. c b a ,,c b a 643==ba c 122+=证明:设,则有. t cba===643cbat t t 12116,2,3===∵ 236⨯=∴,∴ba bacttt t 2112111+=⋅=ba c 2111+=等式两边同时乘以2得:. b a c 122+=例42. 设,且,则_________.m b a ==52211=+ba =m 分析:这是指数幂的连等式,参数已经给出. 解:∵,∴. m ba==52bam m 115,2==∵211=+ba ∴,∴,.2111152m m m m ba ba==⋅=⨯102=m 10±=m ∵,∴. 0>m 10=m 例43. 已知,且. 333cz by ax ==1111=++zy x 求证:.()31313131222c b a czby ax ++=++证明:设,则. t cz by ax ===333zt cz y t by x t ax ===222,,∴.⎪⎭⎫⎝⎛++=++z y x t cz by ax 111222∵,∴ 1111=++z y x t z y x t =⎪⎭⎫⎝⎛++111∴,t cz by ax =++222()3131222t czby ax =++∵3131313313313313131111t z y x t z t y t x t c b a =⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++∴.()31313131222c b a czby ax ++=++例44. 对于正整数(≤≤)和非零实数,若c b a ,,a b c ω,,,z y x ,ω70===z y x c b a ,求的值. zy x 1111++=ωc b a ,,解:设,则有.k c b a zyx====ω70ω111170,,,k k c k b k a zyx====∴zy x k abc 111=∵,∴. zy x 1111++=ω70=abc ∵为正整数,且≤≤ c b a ,,a b c ∴ 752107170⨯⨯=⨯⨯==abc ∴或10,7,1===c b a 7,5,2===c b a 当时,,不符合题意,舍去. 10,7,1===c b a 0===ωz y ∴.7,5,2===c b a 本节易错题例45. 计算_________.()()=-++44332121分析 对于对于,当为奇数时,;当为偶数时,.nna n a a nn=n ()()⎩⎨⎧≤-≥==00a a a a a a nn解:原式.2212212121=-++=-++=例46. 化简_________. ()()=-⋅-43111a a 分析:题目的隐含条件为. 1>a 解:原式.()()()()()()()414343431111111--=-⋅--=-⋅-=-⋅-=---a a a a a a a 例47. 已知,N*,化简.1,0><<n b a ∈n ()()nn nnb a b a ++-解:当为奇数时,原式; n a b a b a 2=++-=当为偶数时,原式.n b a b a ++-=∵,∴原式. 0<<b a a b a a b 2-=---=其它例48. 已知函数,则_________. ()⎪⎩⎪⎨⎧≤⎪⎭⎫ ⎝⎛>=0,210,21x x x x f x ()=-)4(f f 解:∵ ()1621121444=⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=--f ∴.()()4161616)4(21====-f f f 例49. 已知集合,,且,则_______.{}4,,2a a A -=⎭⎬⎫⎩⎨⎧-=b a aa B 2,,33B A ==+b a 解:{}{}4,,4,,2a a a a A -=-=根据集合元素的互异性,,∴a a -≠0>a ∴{}b b a a aa B 2,1,2,,33-=⎭⎬⎫⎩⎨⎧-=∴,解之得:.⎩⎨⎧==421b a ⎩⎨⎧==21b a ∴ 3.=+b a 例50. 设,若,则()244+=x xx f 10<<x _________. =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛10011000100131001210011f f f f 解:∵()244+=x x x f ∴()()=+++=+++=+++=-+--2422444444244244244111x x x x x x x x x x x x f x f 12424=++x x ∴ ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛10011000100131001210011f f f f.500111100150110015001001100010011=++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛= f f f f。
15.2.3整数指数幂(第1课时)教学PPT

x2 3
3、2(m+n)-2 (m n)2 6、(3 x ) 2 1
9x 2
3二、、利新用课讲负解整数指数幂把下列各式化
成不含分母的式子:
(1) x 2 1 y3
x 2y 3
(2)
y xa 4
yx 1a 4
2m (3) ( a b ) 5
2m(a b)5
二、新课讲解
a3 a5
即a3a5a35
1
, 3 3-1=
1 27
,(1 -3)-3=
16
1
x,
1 x3
1, 16
(-43-)212= 41 -2=2,
3 4
, 2
(169-4) -2=ba
1
,a
b
二、新课讲解
2、把下列各式转化为只含有正整数指数幂的形式
1、a-3
1 a3
4、
1 3
x
2
1 3x 2
2、x3y-2
x3 y2
2
5、 1 3 x 2
(4) amam2 (a0, m 是 正 整 数 )
观察第四条性质 amanamn 思考是否
必须要求 m﹥n,当m=n 或 m﹤n 时会如何?
}→ (1)
25 27
25 27
1 22
2 -2
= 25-7 = 2 -2
1 22
}→ (2)a4
a7
=
a4 a7
1 a3
a 3
1 a3
a47 a3
}→ (3)
八年级数学人教版·上册
第十五章 分式
15.2.3整数指数幂(第1课时)
授课人:XXXX
一、新课引 入
上节课我们学习了分式的混合运 算,了解了混合运算的顺序.这节 课学习新的运算.
整数指数幂

对于一个小于1的正小数, 对于一个小于1的正小数,如 果小数点后至第一个非0数字前有8 果小数点后至第一个非0数字前有8个0, 用科学记数法表示这个数时,10的指 用科学记数法表示这个数时,10的指 数是多少?如果有m 数是多少?如果有m个0呢?
9
m+1
例题
纳米是非常小的长度单位,1纳米=10-9 纳米是非常小的长度单位, 纳米=10 米。把1纳米的物体放在乒乓球上就如同把乒 乓球放在地球上。 乓球放在地球上。1立方毫米的空间可以放多 少个1立方纳米的物体? 少个1立方纳米的物体?
我们已经知道,一些较大的数适 我们已经知道, 合用科学记数法表示。例如, 合用科学记数法表示。例如,光速约 为3×108米/秒,太阳半径约为 6.96× 千米。 6.96×105千米。 有了负整数指数幂后,小于1的 有了负整数指数幂后,小于1 正数也可以用科学记数法表示。例如, 正数也可以用科学记数法表示。例如, 0.000257=2.57× 0.001=10-3,0.000257=2.57×10-4.
n
解:两个等式都正确。 两个等式都正确。
m+((1)∵am÷an=am-n=am+(-n)=am·a-n
∴am÷an=am·a-n
1 a a n n −n ( 2) Q = n = a • n = a b b b b n a n −n ∴ = a b b
n
n
科学记数法
= 100 = 1000000
3
3
(4)( 3a )
2 −3
1 1 = 2 = 6 27a 3a
引入负整数指数和0指数后, 引入负整数指数和0指数后,运算 性质a (a≠0,m,n是正整数 是正整数,m 性质am÷an=am-n(a≠0,m,n是正整数,m n)可以扩大到m,n是全体整数 可以扩大到m,n是全体整数。 >n)可以扩大到m,n是全体整数。 引入负整数指数和0指数后, 引入负整数指数和0指数后,运 算性质a (m,n是正整数 是正整数) 算性质am·an=am+n(m,n是正整数)能否扩 大到m,n是任意整数的情形? m,n是任意整数的情形 大到m,n是任意整数的情形?
高中数学实数指数幂及其运算1理解n次方根的概念及性质课件人教版必修一

a
m n
(2)(a ) a am mn (3) n a (m n,a 0) a
m n
nm
(4)(ab)
m
a b
m m
由
am an
=
a
mn
(m n,a 0)
a0
a a 3 3 a3
3
3
a
0
1
a 35 1 2 a a a2 5 a
将正整数指数幂推广到整数指数幂
an
和
1.5 , , ,( 2的过剩近似值); 1.42 1.415 .....
来近似地计算无理指数幂 3 2的不足或过剩近似值。如果 2 的任何一个有理数 不足近似值记为 a ,其相应的有理数过剩近似值为 b , 那么当 n 无限增大
3 , , 3 3
1.5 1.42
n
1.415
时,
数
an , bn 就逼近于一个实数
a a 2b 2c 1 2 bc
2
2 分数指数
若x a,则x叫a的平方根(或二次方根)
2
a 0时,两个平方根: , a a a 0时,有一个平方根: 0 a 0时,无实根
若x a,则x叫a的立方根(或三次方根)
3
a只有一个立方根
方根
若存在实数x,使x n = a a ? R ,n ( 则x叫a的n 次方根。 1,n N + ),
求a 的 n 次方根,叫做把 a 开 n 次方 ,称作开方运算
偶次方根 奇次方根
n
实 a0 n a 数 a a 0 不存在
n
a 0 a 0
a 根式
n 根指数
n
1.3 整数指数幂

(2)3 1 1 (2)3 8
5、用小数表示下列各数: ①10- 4; ② 1.6×10-3; ③2.1×10-5; ④-3.2×10- 6、计算:
(1)a2×a-3;(2)(a×b)-3;(3)(a-3)2。
7、计算下列各式,并把结果化为只含有正整数指 数幂的形式:
(1)(a-3)2(ab2)-3; (2)(2mn2)-2(m-2n-
=(
1 a
)n(a≠0,n为正整数)
特别地,a-1 =
1 a
(a≠0)
例如:33÷35=3-2=312
=
1
9
a4÷a6=a-2
1
=a2
例1 计算:
2-3
10-2 (-2)-4
-2-4
( 21 ) -3
(
2 3
)-2
58÷58
(
1 3
)
0×10-1
(a-1)2÷(a-1)2(a≠1)
例2 把下列各式写成分式:
2
0
=
1
,
3
100=1, x0=1(x≠0)
动脑筋 设a≠0,n是正整数,试问:a-n等于什么?
分析
如果想把公式
am an =
am-n
推广到m<n的情
形,那么就会有
a-n=
a0-n=
a0 an
=
1 an
这启发我们规定
n
a-n =
1 an
(a≠0,n为正整数)
由于
1 an
1 = a
因此
a-n
2.已知3m=2, 9n=10, 求33m-2n 的值
解: 33m-2n =33m÷32n=(3m)3÷(32)n=(3m)3÷9n =23÷10=8÷10=0.8
指数的运算与指数函数

指数的运算与指数函数4.1指数的运算【知识梳理】1. 整数指数幂1)定义:我们把n a 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数。
在上述定义中,n 为整数时,这样的幂叫做整数指数幂。
2)整数指数幂的运算法则:(1)n m a a = (2)=n m a )((3)=n maa (4)=m ab )(3)此外,我们作如下规定:零次幂:)0(10≠=a a ; 负整数指数幂:),0(1+-∈≠=N n a a a nn; 2. 根式:1)n 次方根:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *。
注:①当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数,分别表示为n a -,n a ;负数的偶次方根在实数范围内不存在;②当n 是奇数时,正数的n 次方根是一个正数;负数的n 次方根是一个负数,都表示为na ;③0的任何次方根都是0,记作00=n。
2)正数a 的正n 次方根叫做a 的n 次算数根。
当na 有意义时,n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.注:当n 是奇数时,a a nn =;当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn ;3. 有理指数幂1)我们进行如下规定: n na a=1 (0>a )那么,我们就将整数指数幂推广到分数指数幂。
此外,下面定义也成立: )1,,,0(*>∈>=n N n m a a a n m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm注:0的正分数指数幂等于0,0的负分数指数幂没有意义。
2)规定了分数指数幂的意义后,指数的概念就从整数指数幂推广到了有理数指数幂。
3)有理指数幂的运算性质:(1)r a ·sr r aa +=),,0(Q s r a ∈>; (2)rs s r a a =)(),,0(Q s r a ∈>;(3)s r r a a ab =)(),0,0(Q r b a ∈>> 题型一 根式与幂的化简与求值 【例1】.求下列各式的值:(1)223223-++ (2)347246625-+--+【例2】.计算下列各式的值: (1)()[]75.0343031162)87(064.0---+-+-- (2)()()()012132232510002.0833-+--+⎪⎭⎫⎝⎛----【例3】.化简下列各式:(1)()0,0332>>b a b a ab ba (2)212121211111a a a a a ++------【过关练习】1.求值:(1)335252-++ (2)3332332313421248a a b a ab b ba a ⋅⎪⎪⎭⎫ ⎝⎛-÷++-2.化简:(1)111113131313132---+++++-x xx x x x x x(2)()()14214214433332)1()1(1))((----------++-++-++-+a a a a a a a a a a a a a a a a3.下列关系式中,根式与分数指数幂的互化正确的是_____.())0()4)(0()1()3();0()2();0()1(434334316221>=>=<=>-=--a a a a x xxy y y x x x题型二 含附加条件的求值问题 【例1】(1)若3193=⋅ba,则下列等式正确的是( ) A. 1-=+b a B. 1=+b a C. 12-=+b a D.12=+b a(2)若,123-=++x x x 则2827211227281x x x x x x x x ++⋅⋅⋅++++++⋅⋅⋅++----的值是_____.【例2】(1)已知,32,21==y x 求yx y x y x y x +---+的值; (2)已知b a ,是方程0462=+-x x 的两个根,且0>>b a ,求ba ba +-的值.【过关练习】 1.已知.88(22的值常数),求x x xxa --+=+2.已知32121=+-a a ,求21212323----aa a a 的值.3. 已知122+=xa ,求xx xx aa a a --++33的值题型三 解含幂的方程与等式的证明 【例1】解下列方程 (1)x x )41(212=+ (2)03241=-++x x【例2】已知433cz by ax ==,且1111=++zy x ,求证31313131222)(c b a cz by ax ++=++【过关练习】 1. 解下列方程(1)2291381+⎪⎭⎫⎝⎛=⨯x x (2)0123222=-⨯++x x2.设c b a ,,都是正数,且cb a 643==,求证ba c 122+=.4.2 指数函数及其性质【知识梳理】1. 指数函数 函数 )1,0(≠>=a a a y x叫做指数函数. 2. 指数函数的性质(1)定义域 :实数集合R ; (2)值域 :0>y ;(3) 奇偶性:指数函数是非奇非偶函数(4)单调性:1>a 时,函数 )1,0(≠>=a a a y x在),(+∞-∞上为增函数;10<<a 时,函数)1,0(≠>=a a a y x 在),(+∞-∞上为减函数;(5)函数值:0=x 时,1=y ,图象恒过点(0,1);(6)当0,1>>x a 时1>y ;0,1<>x a 时,10<<y .当10<<a ,0>x 时,10<<y ;0,10<<<x a 时,1>y .题型一 指数函数的概念例1 .已知指数函数)3)(2(--+=a a a y x的图像经过点(2,4),求a 的值.【过关练习】.若指数函数)(x f 的图像经过点(2,9),求)(x f 的解析式及)1(-f 的值.题型二 指数型复合函数的定义域和值域 【例1】.求下列函数的定义域和值域 (1) xy 31-= (2)412-=x y(3)xy -=)32( (4)32221--⎪⎭⎫ ⎝⎛=x x y【例2】.求函数[]2,2,221341-∈+⎪⎭⎫⎝⎛⨯-⎪⎭⎫ ⎝⎛=x y xx 的值域.【例3】.如果函数[]1,1-)1,0(122在且≠>-+=a a a a y x x上有最大值14,试求a 的值.【过关练习】1.求函数xy ⎪⎭⎫⎝⎛-=211的定义域和值域.2.已知集合⎭⎬⎫⎩⎨⎧∈==+R x y y A x,)21(12,则满足B B A =⋂的集合B 可以是( )A. ⎭⎬⎫⎩⎨⎧21,0 B. ⎭⎬⎫⎩⎨⎧<<210x x C.{}11≤≤-x x D.{}0>x x 3.函数22212+-=+x xy 的定义域为M ,值域[]2,1P ,则下列结论一定正确的个数是( )。
知识点整理-[高中数学]第三章 基本初等函数(I)
![知识点整理-[高中数学]第三章 基本初等函数(I)](https://img.taocdn.com/s3/m/c6d1d775524de518964b7da7.png)
如果 a=1,y=1x=1,是一个常量,对它就没有研究的必要。
为了避免上述各种情况,所以规定 a>0 且 a≠1。
1
③如 y=2·3x,y= 2 x ,y= 3 x2 ,y=3x+1 等函数都不是指数函数,要注意区分。
(2)指数函数的图象和性质
y=ax
0<a<1
a>1
图 象
定义域为 R,值域为(0,+∞)
质对于无理指数幂也适用,这样,指数概念就扩充到了整个实数范围。
(3)利用分数指数进行根式与幂的计算
在进行幂和根式的化简时,一般是先将根式化成幂的形式,并化小数指数幂为分数指
数幂,并尽可能的统一成分数指数幂形式,再利用幂的运算性质进行化简、求值、计算,
以利于运算、达到化繁为简的目的。
对于根式计算结果,并不强求统一的表示形式,一般用分数指数幂的形式来表示,如
a0=1,即 x=0 时,y=1,图像都过点(0,1)
性 a1=a,即 x=1 时,y 等于底数 a,图像都经过点(1,a)
质 在定义域上是单调减函数
在定义域上是单调增函数
x<0 时,ax>1;
x<0 时,0<ax<1;
x>0 时,0<ax<1
x>0 时,ax>1
既不是奇函数,也不是偶函数
4
学习指数函数的图象和性质,需要注意的几个问题: ①当底数 a 大小不定时,必须分“a>1”和“0<a<1”两种情况讨论。 ②当 0<a<1 时,x→+∞,y→0;当 a>1 时,x→-∞,y→0。当 a>1 时 a 的值越大, 图象越靠近 y 轴,递增速度越快;当 0<a<1 时,a 的值越小,图象越靠近 y 轴,递减的 速度越快。(其中“x→+∞”意义是:“x 接近于正无穷大”)。 ③在同一直角坐标系中指数函数图象的位置与底数大小的关系:在 y 轴右侧,图象从 上到下相应的底数由大变小;在 y 轴左侧,图象从下到上相应的底数由大变小。 规律:当 a>1,b>1 时,指数函数 y=ax,y=bx 的图象在同一坐标系中,在直线 x=0 的右边,当 a>b 时,y=ax 的图象在 y=bx 的图象上方,在直线 x=0 的左边正好相反。 当 0<a<1,0<b<1 时,指数函数 y=ax,y=bx 的图象的关系与 a>1,b>1 正好相反。 (3)指数函数的定义域与值域 指数函数 y=ax(a>0 且 a≠1)的定义域是(-∞,+∞),值域是(0,+∞)。 求由指数函数构成的复合函数的定义域时,可能涉及解指数不等式(即未知数在指数 上的不等式)。解指数不等式的基本方法是把不等式两边化为同底的幂的形式,利用指数 函数的单调性脱去幂的形式,从而转化为熟悉的不等式。同时还应注意负数不能开偶次方, 分母不能为零,限制 x 的取值。 求由指数函数构成的复合函数的值域,一般用换元法即可,但应注意在中间变量的值 域以及指数函数的单调性的双重作用下,函数值域的变化情况。 (4)指数函数图象的变换规律 ①平移规律 若已知 y=ax 的图象,则把 y=ax 的图象向左平移 b(b>0)个单位,则得到 y=ax+b 的图 象,向右平移 b(b>0)个单位,则得到 y=ax-b 的图象,向上平移 b(b>0)个单位,则得 到 y=ax+b 的图象,向下平移 b(b>0)个单位,则得到 y=ax-b 的图象。 一般的,把函数 y=f(x)图象向右平移 m 个单位得到函数 y=f(x-m)的图象(m∈R,m< 0,就是向左平移|m|个单位);把函数 y=f(x)的图象向上平移 n 个单位,得函数 g(x)=f(x)+n 的图象(n∈R,n<0,就是向下平移|n|个单位)。
整数指数幂的运算法则

整数指数幂的运算法则
一、整数指数幂的运算法则
1、乘方:乘方运算结果就是把基数(底数)连乘指数(指数)次的结果。
2、幂的乘法:当两个数的指数相同时,可以将它们相乘,结果只是把这两个数的底数相乘,而指数不变。
3、幂的除法:
当两个数的底数相同时,可以将它们相除,结果只是把这两个数的指数相减,而底数不变。
例如25^3/25^2=25.
4、幂的乘方:
当一个数的指数是另一个数的基数时,可以将它们相乘,结果只是把这两个数的基数相乘,而指数相加。
5、根号的指数:
当一个数的指数是另一个数的底数时,可以将它们进行操作,结果只是把这两个数的底数相加,而指数相减。
二、应用实例:
1、计算8^2×8^2
答案:8^2×8^2=8^4
2、计算(5^3)^2
答案:(5^3)^2 = 5^6
3、计算(64^2)÷64
答案:(64^2)÷64 = 64 4、计算(7^2)×7
答案:(7^2)×7 = 7^3 5、计算(49^1/2)×49
答案:(49^1/2)×49 = 49。
整数指数幂的运算性质

设 ∈Z, n ∈Z m
a a = a
m n
m n
n
m+n
(a ) = a
mn
(ab) = a b
n
n
a=0时,m或n不是正实数时 无意 时 或 不是正实数时 不是正实数时,无意 义.
思考: 思考 整数指数幂能否扩展成有理 数指数幂? 数指数幂
一. 根式 平方根: 若一个数的平方为a,则 平方根 若一个数的平方为 则 这个数叫做a的平方根 这个数叫做 的平方根. 的平方根 立方根: 若一个数的立方为 则 立方根: 若一个数的立方为a,则 这个数叫做a的立方根 这个数叫做 的立方根. 的立方根 次方为 n次方根 若一个数的n次方为 则 次方根: 若一个数的 次方为a,则 次方根 这个数叫做a的n次方根 这个数叫做 的 次方根. 次方根
(1) a+b a a b +b
2 3 1 3 1 3 2 3
ab a +a b +b
3
2 3
1 3
1 3
2 3
(2) ÷ 1 2 2 2 3 4 y 3 + 2 xy + x 3 x 8x y
3 4
1 3
y 3 × x x
小结: 小结 1. n次方根 次方根 正数的奇次方根为正数 负数的奇次方根为负数 正数的偶次方根有两个 2. 根式的性质 3.实数指数幂运算性质 实数指数幂运算性质
2 3
3 4
100
1 2
1 3 ( ) 4
16 ( ) 81
2 3
32 2
1 2 1 3 1 6 5 6
( 2a b )( 6a b ) ÷ ( 3a b )
沪教版(上海)初中数学七年级第一学期10.6整数指数幂及其运算课件

知识新授 例题2 将下列各式写成只含有正整数指数幂的情势:
(1) x–3; (2) a–3b4; (3) 2 (x+2y) –2.
解:
原式
1 x3
解 :原式
解 :原式
练一练: 95页课内练习第2题
新知应用
例题3 计算: (1) 3-4
解:原式= _1__ 34
= _1__ 81
(2) (_23__)-1
(3)(_35__)-2
(_23
2__5_ 9
=( _35__)2
新知应用
例题3 计算: (1) 3-4
解:原式= _1__ 34
= _1__ 81
(2) (_23__)-1
(3)(_35__)-2
(_23__)-1 =
_2__ 3
( _3__)-2 5
=( _35__)2
(_a__)-p b
=(_ba__)p
(P是自然数,
a≠0,b≠0)
新知应用
例题3 计算: (1) 3-4
解:原式= _1__ 34
= _1__ 81
(2) (_23__)-1
解:原式 =
_2__ 3
(3)(_35__)-2
( _3__)-2 5
=( _35__)2
(_a__)-p b
积的 乘方
(2) (2–2)3;
解 原式 26
1 26
1. 64
整数指数幂的运算
例5 计算:
商的乘方
(3) ( 2x )3; y
解
原式
(2x)3 y3
8x3 y3
.
(4) 100÷3–3.
解
原式
1 1 33
高一数学指数与指数幂的运算1(新编201911)

平行 时加在辰少弱上 丞各一人 "先师尼父 增置少监一人 开府仪同三司 但无行参军员 长兼行参军等员 如初乃伏 月在丙上 朝请大夫张镇州击流求 佐
2.式
n
n
a
与
n
an含义相同吗?
【提示】 ①n∈N,且 n>1.
②当 n 为大于 1 的奇数时,n a对任意 a∈R
都有意义,它表示 a 在实数范围内唯一的一个 n
,完成化简.
【解析】
4 (1)
(-2)4=2
5 (2)
(2-π)5=2-π
4 (3)
(x+1)4=|x+1|=-x+x-1 1
(x≥-1) (x<-1)
3 (4)
(x-6)3=x-6
当 n 为奇数时,n an=a;当 n 为偶数时,n an =|a|,本题中要注意 n 的奇偶性对式子n an的值的 影响,做到理解,并能熟练应用.
次方根,n
an=a.
③当 n 为大于 1 的偶数时,n a只有当 a≥0 时有
意义,当 a<0 时无意义.n a(a≥0)表示 a 在实数范
拓展版-整数指数幂及分式的简便运算-教师版

教师姓名 学生姓名 年 级 初一 上课时间单击此处输入日期。
学 科 数学课题名称整数指数幂及其运算一、【知识梳理】要点一、零指数幂任何不等于零的数的零次幂都等于1,即()0___0a a =≠.要点诠释:同底数幂的除法法则可以推广到整数指数幂.即___m na a ÷=整数指数幂及其运算例13、逐步通分法 化简:(a b)(b c)(c a)++(a b)(b c)(c a)a b b c c a a b b c c a ------+++++++2(a c)(c a)[(a b)(b c)(a b)(b c)]=(a b)(b c)(a b)(b c)(c a)2(a c)2(a c)(c a)(a b)(b c)(a b)(b c)(c a)0b b b --+++--++++++-+-=++++++=解:原式1. 当x 2≠时,2(42)x -+有意义?2. 将代数式222332b a----化成不含负指数的形式3249a b3. 将235()x y --+写成只含有正整数幂的形式是2311()()5x y+ 4. 计算:(1)03211(0.5)()()22---÷-+ (2)2574x x x x x ÷÷⋅⋅9、我们常用“水滴石穿”来说明一个人只要持之以恒地做某件事,就一定能成功.经测算,当水滴不断地滴在一块石头上时,经过10年,石头上可形成一个深为1厘米的小洞,那么平均每个月小洞的深度增加多少米?(结果保留三个有效数字,并用科学记数法表示)解:因为10年=120个月,1厘米=10-2米,所以平均每个月小洞的深度增加10-2÷120=(1÷120)×10-2≈0.008 33×10-2=8.33×10-3×10-2=8.33×10-5(米).10、若(a b)(a c)(b c),a b c a b c a b cc b a abc+--+-+++++==求的值设参数法.令则a+b=(k+1)c,①a+c=(k+1)b,②b+c=(k+1)a.③①+②+③有2(a+b+c)=(k+1)(a+b+c),所以 (a+b+c)(k-1)=0,故有k=1或 a+b+c=0.当k=1时,当a+b+c=0时,说明 引进一个参数k 表示以连比形式出现的已知条件,可使已知条件便于使用.11、 若abc=1,求111a b cab a bc b ac c ++++++++的值 分析 本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.解法1 因为abc=1,所以a ,b ,c 都不为零.解法2 因为abc=1,所以a ≠0,b ≠0,c ≠0.。
指数函数和对数函数复习(有详细知识点和习题详解)

指数函数和对数函数复习(有详细知识点和习题详解)一、指数的性质一)整数指数幂整数指数幂的概念是指:a的n次方等于a乘以a的n-1次方,其中a不等于0,n为正整数。
另外,a的-n次方等于1除以a的n次方,其中a不等于0,n为正整数。
整数指数幂的运算性质包括:(1)a的m次方乘以a的n次方等于a的m+n次方;(2)a的n次方的m次方等于a的mn次方;(3)a乘以b的n次方等于a的n次方乘以b的n次方。
其中,a除以a的n次方等于a的n-1次方,a的m-n次方等于a的m除以a的n次方,an次方根的概念是指,如果一个数的n次方等于a,那么这个数叫做a的n次方根,记作x=√a。
例如,27的3次方根等于3,-27的3次方根等于-3,32的5次方根等于2,-32的5次方根等于-2.a的n次方根的性质包括:如果n是奇数,则a的n次方根等于a;如果n是偶数且a大于等于0,则a的正的n次方根等于a,a的负的n次方根等于负的a;如果n是偶数且a小于0,则a的n次方根没有意义,即负数没有偶次方根。
二)例题分析例1:求下列各式的值:(1)3的-8次方;(2)(-10)的2次方;(3)4的(3-π)次方;(4)(a-b)的2次方,其中a大于b。
例2:已知a小于b且n大于1,n为正整数,化简n[(a-b)/(a+b)]。
例3:计算:7+40+7-40.例4:求值:(59/24)+(59-45)/24 + 25×(5-2)/24.解:略。
二)分数指数幂1.分数指数幂当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式,例如:$5\sqrt[10]{a^5}=a^{\frac{1}{2}}$,$3\sqrt[12]{a^3}=a^{\frac{1}{4}}$。
当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式,例如:$\sqrt[4]{a^5}=a^{\frac{5}{4}}$。
规定:1)正数的正分数指数幂的意义是$a^{\frac{p}{q}}=\sqrt[q]{a^p}$。
第十三讲 指数幂运算

1.整数指数幂及其运算(1),说明整数指数幂2073.1的含义是__ , x073.1*N ∈x ()的含义是____.n a 的含义是____)(*N ∈n , =0a ___(1≠a ),=-n a _____ (*N ∈≠n a ,0).(2)回忆初中所学知识,填写整数指数幂的运算性质:①sra a ∙=____(Z ∈>s r a ,,0);②s r a )(=______(Z ∈>s r a ,,0);③rb a )(∙=______(Z ∈>s r a ,,0);④nba )(=______.2.根式(1)平方根与立方根如果a x =2,那么________;如果a x =3,那么____________. (2)n 次方根如果a x n=,那么___________,其中1>n ,且*N ∈n .若n 是奇数,任意实数a 的n 次方根有 1个,正数的n 次方根是正数,负数的n 次方根是负数. 若n 是偶数, 负数 没有偶次方根,而正数的n 次方根有 2 个,它们互为相反数. 无论n 是奇数还是偶数,0的n 次方根为0 . 3.根式式子n a 叫做____,n 叫做______,a 叫做_______.若nn a x =,则x 可以用根式表示为nn a .当n 为奇数时,=x a ;当n 为偶数时,=x a ±.【基础练习】1.计算下列各式的值.(1)384+ (2)238+ (3)332)(a a + 2.填空(1)n n 33-=- ,则n 的取值集合是 . (2)n n a a -=,则=a . 3.计算下列各式的值.(1)33)8(-+3344)32()23(---;(2)033)20042005()13()4143(-++∙- 第十三讲 指数幂运算 【知识讲解】【典型例题】例1计算下列各式的值:(1)44)2(- (2))()(55ππ<-x x (3)),()(*N ∈<-n x x n nππ【变式训练】求等式3)3()9)(3(2+-=--a a a a 成立的实数a 的范围.例2计算:(1)3333)52(1)52(1-++; (2)625625++-(A )3 (B )-3 (C )±3 (D )-9 2.下列说法正确的是( ). (A )64的6次方根是2 (B )664的运算结果是2±(C )1>n 且*N ∈n 时,a a nn =)(对于任意实数a 都成立 (D )1>n 且*N ∈n 时,式子n na 对于任意实数a 都有意义 3.若62-x 有意义,则x 得取值范围是( ).(A )2≥x (B )2-≤x (C )2-≤x 或2≥x (D )R x ∈ 4.552)()(b a b a -+-的值是( ).(A )0 (B))(2b a - (C)0或)(2b a - (D)b a -5.当0<x ,则xx x x 22+-= .6.若a b b ==+=则a ,a b -= .7.已知22)()()(a b b a b a --=--成立,则b a ,需满足条件 . 8.化简下列各式.【自我检测】1.化简327-的值是( ).(1)x x 3223-+-(2)3322)1()1()1(a a a -+-+-9.化简:1212--+-+x x x x10.探究)(211*++N ∈=+n a a a n n n n 成立的条件.第二课时 知识讲解1. 1. 分数指数幂(1)正数的正分数指数幂的意义212= ,312= ,232= ;nm a = )1,,.,0(>N ∈>*n n m a .(2)正数的负分数指数幂的意义12-= ,212-= ,342-= ;nm a -= )1,,,0(>N ∈>*n n m a .(3)0的分数指数幂0的正分数指数幂等于 ,0的负分数指数幂 . (4)分数指数幂的运算性质:①=∙s r a a Q).,0(∈>s r a ;②=s r a )( Q).,0(∈>s r a ; ③r b a )(∙= Q).,0(∈>s r a . 2. 无理指数幂的含义:如32,它是一个确定的实数,可以看成由以3的一串不足近似值和相应的一串过剩近似值为指数的有理数幂的值 的结果.3. 根式的运算,先把根式化成分数指数幂,然后利用 的运算性质进行运算.【基础练习】1. 如果n m b a ,,0,0>>都是有理数,下列各式错误的是( ). (A )mnnm aa =)( (B )2.对任意实数a ,下列关系式不正确的是( ). (A )a a =2132)( (B )313221)(a a = (C )513153)(a a=-- (D )515331)(a a =例1用分数指数幂的形式表示下列各式(其中0>a ):a a ∙3; 322a a ∙;3a a .例2计算下列各式(式中字母均为正数): (1))3()6)(2(656131212132b a b a b a -÷-;3.求值:①3227; ②2116-; ③2)31(-; ④32)1258(-4.用根式表示2134()m n -, 其中,0m n>.【典型例题】(2)322aa a ∙)0(>a .例3已知22121=+-a a ,求:(1)1-+a a ; (2)22-+a a .【自我检测】1. 设a n n m ,1,,>N ∈*是正实数,则下列各式中正确的有( ).①n m nm a a=;②10=a ;③nmnm aa1=-(A )3个 (B )2个 (C )1个 (D )0个1. 计算)(84)21()2(21221*-++N ∈n n n n 的结果为( ). (A )461(B )522+n (C )6222+-n n (D )72)21(-n3.若0≠xy ,则xy y x 2422-=成立的条件可以是( ).(A )0,0>>y x (B )0,0<>y x (C )0,0≥<y x (D )0,0<<y x 4.已知31=+-a a ,下列各式中正确的个数是( ). ①722=+-aa ;②1833=+-a a ;③52121±=+-aa ;④521=+aa a a .(A)1 (B)2 (C)3 (D)45.14.333-π的值是 (精确到0.0001).6.=+-++--48373)27102(1.0)971(03225.0π .7.若410,310==y x ,则y x -10= ,=+y x 10 . 8.用分数指数幂表示下列各式.(1))0(4>a aa ; (2))0()(5≥++n m n m ;(3)3x x ;)0(≥x . 9.计算下列各式的值.(1)75.003116)87(064.0+---;(2)3263425.031)32()32(285.1--⨯+⨯+-.10.化简:223410623+--.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整数指数幂及其运算
主备人季春鸿
教学目标
1.理解负整数指数幂的概念,了解整式和分式在形式上的统
2.掌握整数指数幂运算的性质,会用性质进行简单的整数指数幂的相关计算
3.体验由正整数指数幂到负整数指数幂的扩充过程,体验数学研究的一般方法:由特殊到一般及转化思想教学重点与难点
1.负整数指数幂的概念
2.理解整数指数幂的运算性质;会运用性质进行相关的计算
教学过程一.复习引入:
1.计算:27炮3二 _____ , a9詔二
由学生用数学式子表示上述同底数幂的除法法则,并指出其中
字母的规定,强调指数是正整数,底数不等于零)
2.思考:22吃5二
在学生独立思考的基础上,让学生猜测计算的结果,并请学生讲解计算的过程及依据,体验分数与除法的关系;然后进一步提出“如何用
1 50
1 ⑤
(|) -2 9 4
幕的形式表示计算结果”的问题
_3
22
二.学习新课:整数指数幕及其运算
负整数和零
将下列各式写成只含正整数指数幕的形式:
通过变式训练2,学生同桌讨论当指数为负数,底数为分数时的情形, 判断正误:
① —27° =1
② (-2十=4
③ (-50)
7x 21.负整数指数幕的概念:
a" a p (a z o , P 是自然数) 2.整数指数幕:当a z 0时,
就是整数指数幕,n 可以是正整数、
10 _2
102 X 5
变式训练 1: (一10) (-10)2
(X-1)5 变式训练 2: (|)」
I 、(|) =(7)2 并总结出(尹
川)
例题讲解:
28;
10 —10 ;
512 — 512。
例题2将下列各式写成只含有正整数指数幕的形式:
-3」4
a b ;
例题3计算:
(1) a 2— a •
(2) (-a) 3 — a 5;
3. 整数指数幕的运算性质:
举例复习正整数指数幕的其它性质, 同时思考、验证整数指数幕 的相关
运算法则:
①22 2^22^
那么22 2"=22(勻
(-2)' (-2)2 (-2严
S 2 咒 3)4 =24 咒 34 (23)2 =23粽
那么(2X3)鼻=2佟3鼻
(22) ~3 =22(②
归纳整数指数幕的运算性质:
例题 1计算:
(1) -3
x
2(x+2y) -2
2)积的乘方性质: (ab) m =a m b m ;
上述性质中 a 、b 都不为 0,m 、n 都为整数) 例题 4 计算:
-5 2
(1) x • x ;
2)(2-2)3;
(3) 10°+ 3-3;
三.课堂小结 :今天我们学习了哪些数学知识?
四.布置作业 :
1)同底数幂的乘法性质:
m n m+n a a=a ; 3)幂的乘方性质: (a m ) n =a ;
mn。