五年级上奥数试题——第8讲 数阵图与数字谜(含解析)人教版
小学数学五年级《数阵、数字谜综合》练习题(含答案)
《数阵、数字谜综合》练习题(含答案)解决数阵类问题可以从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格),和关键点(方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.Ⅰ、数阵问题【例1】(★★★)如图,大三角形被分成了9个小三角形.试将1,2,3,4,5,6,7,8,9分别填入这9个小三角形内,每个小三角形内填一个数,要求靠近大三角形3条边的每5个数相加的和相等,问这5个数的和最大可能是多少?分析:第一步:确定关键区格,计算三条边时,其中有3个角上共6个区格内的数被重复计算了2遍,而位于每条边中心位置的区格值计算了一次.第二步:由于,边上的三个数分别计算了1遍,因此(1+2+3+4+5+6+7+8+9)×2再减去三个边上的数,所得应该为3的倍数,当三条边上的三角形中分别填入1、2、3时,这个和取得最大值,各条边上的和也取得最大值28.第三步:通过试验得到可行的填法:【例2】(★★)把1,2,3,…,13这13个数分别填在下图所示的3个圆圈内,使得同一个圆圈内任意两个数相减,所得的差不在这个圆圈内.现在已经把1,4,7填在第一个圆圈内,3填在第三个圆圈内,请将其余9个数填好.31 4 7_5_4_6 _7_8_9_3 _2_12 11 125 6 8 910 1331 4 7分析:第一步:由已知可推出6只能填在中间的圆中.第二步:由已经填的数可以得到:2、5、8、11不能出现在第一个圆中,且(2、8)和(5、11)不能在第二个圆中成对出现,(2、5)(5、8)(8、11)不能在第三个圆中成对出现,判断5和8的位置的各种情况,可以得出5、8只能都填在在第二个圆中,2、11填在第三个圆中.第三步:判断其余几个数的位置关系:13只能填在第一个圆中,9只能填在第二个圆中,12只能填在第三个圆中,10只能填在第一个圆中.【例3】(★★★)请在下图的每个圆圈内填入不同的自然数,使得图中每个圆圈中所填的数都是上一行与它相邻的两个圆圈中所填数的和.分析:第一步:由于每个圆圈中所填的数都是上一行与它相邻的两个圆圈中所填数的和,所以只要填出这四个数字就能得到其他圆圈中所填的数.如果第一行填入的是x 、y 、z 、w ,则20=x+w+3(y+z ),所以y+z 不超过6(事实上不超过5,此处可以讨论一下).第二步:由于y+z 的和不超过5所以,y 和z 只可能为1和2,1和3,1和4,2和3,通过尝试可以得到不止一个答案,下面的答案是其中一个.20911638421720[前铺]把1.2,3.7,6.5,2.9,4.6分别填在下图的5个圆圈内,然后在每个方框中填上和它相连的3个圆圈中的数的平均值,再把3个方框中的数的平均值,再把3个方框中的数平均值填在三角形中.请找出一种填法,使三角形中的数尽可能小.问这个最小的数是多少?分析:设个小圆中的数依次为a1、a2、a3、a4、a5,则三个正方形中的数依次为123a +a +a 3、234a +a +a 3、345a +a +a 3,继而求出三角形中的数值为12345a +2a +3a +2a +a 9.所以,a 3中应该填入最小的数1.2,a 2、a 4中应该填入次大的2.9和3.7,a 1、a 5中填入4.6和6.5.Ⅱ、数阵问题乘法解决数字谜类问题也需要寻找关键的突破口,运用的主要知识和方法主要有: 1、 数字乘法个位数字的规律,2、 数值大小的考量,3、 加减法进位规律,4、 合数分解质因数性质,5、 奇偶数性质规律.6、 余数性质.【例4】(★★保良局亚洲区城市小学数学邀请赛)下面残缺算式中只知道三个“4”,那么补全后它的乘积是 .分析:容易看出,乘数个位为9,而被乘数个位不小于5.依次验证各种可能情况,通过奇偶性等分析乘积的十位,可知只有7可能.此时乘数十位必须是6才能使乘积十位为4.故所求为47×69=3243.[点评]本题运用到的主要知识点和数学方法有:数值大小的考量、奇偶分析等【例5】(★★★全国小学数学奥林匹克)在下面残缺的算式中,只写出了3个数字1,其余的数字都不是1,那么这个算式的乘积是 .分析:为了说明的方便,这个算式中的关键数字用英文字母表示.很明显e= 0.从c ab ⨯的个位数是1,b 可能是3,7,9三数之一,两位数ab 应是(100+f )的因数.101,103,107,109是质数,f=0或5也明显不行.102=17×6,则ab =17,C 只能取3,317c ab ⨯=⨯,不是三位数;104=13×8,则13ab =,c 可取7,c ×ab =7×13,仍不是三位数;108=27×4,则ab =27,c 是3.327c ab ⨯=⨯,还不是三位数.只有106=53×2,53ab =,c=7,753c ab ⨯=⨯是三位数.因此这个乘法算式是故这个算式的乘积是3816.[点评]本题运用到的主要知识点和数学方法有数字乘法个位数字规律.【例6】(★★★2005年全国小学数学奥林匹克)下面算式(1)是一个残缺的乘法竖式,其中□≠2,那么乘积是 .分析:如式(2),由题意a ≠2,所以b ≥6,从而d ≥6.由22□÷c ≥60和c >2知c=3,所以22□是225或228,75de =或76.因为75×399<30 000,所以76de =.再由乘积不小于30000和所有的□≠2,推出唯一的解76×396=30096.[点评]本题运用到的主要知识点和数学方法有数量大小的考量,合数的分解等.【例7】(★★★★2003年北京市迎春杯数学邀请赛)在下面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.那么,“努力力争”四个汉字所代表的四个数字的和是 .分析:观察竖式可知:乘数个位数字,“习”ד争”的个位数字是1,则“习”与“争”取值有两种情况:①“习”=3,“争”=7;②“习”=7,“争”=3.先看第①种情况:“习”=3,“争”=7时,第二个部分的积其末位与千位对齐,可知“力=0”,“数学学习”×7,积仍为四位数,则“数”只能为1,“学”只能是2.又由于“学”×7+2(进位)=“学”,不能成立.所以“习”=3,“争”=7时,不能成立,无解. 再看第②种情况:由“习”=7,“争”=3,推出“数”=2或l ,“学”=9.当“数”=2时,积千位为8,则“努”×7的末位数应为“1”,不符合条件.所以“数”=1,“学”=9,“习”=7,“争”=3,则“努”=2,“努力力争”=2003.所以“努力力争”四个汉字所代表的数字和为5.[点评]本题运用到的主要知识点和数学方法有:数字乘法个位数规律、十进制数进位规律等.【例8】(★★★香港圣公会小学数学奥林匹克)在右面的乘法算式中,每一个□中要填一个数字,不同的中文字代表不同的数字,请问:“新年”两字代表什么数字?分析:由于乘积最后一位是1,还有三个9,可知乘数是7773或3337.于是可以逐一来确定被乘数的每一位,就知7773不符合,只有3337合适,并且逐一定出被乘数是4543.4543×3337—15 159 991.所以,“新年”两字是15.[点评]本题运用到的主要数学方法和知识点有:数字乘法个位数规律、十进制数进位规律.Ⅲ、数字谜除法【例9】(★★★全国小学数学奥林匹克)下面的除法算式(1)是一个小数的除法竖式,其中所注明的两个字母要求:A<B,那么满足这个竖式的除数与商的和是.C,分析:因为能够除尽但含有两位小数,所以除数含有因子2或5.由式(2)知除数应大于60,且能整除00所以除数只能是75,C≤7.又商的整数部分是9,75×9=675,B=5,因为A<B,所以C≥5.因为5≤C C是75的倍数,所以C=6,从而被除数等于675+6=681.这个和是75+681÷75=84.08.≤7,且00[点评]本题运用到的主要知识点和数学方法主要有:整除性质、数值大小的考量等.【例10】(★★★全国小学数学奥林匹克)下面这个残缺算式中,只知道其中两个数字,请补全.那么这个除法算式的商数是.分析:容易看出,第三行首位是9.另外,第三行的个位与第四行首位数字之和不小于10.如果商的首位数字大于1,那么除数要小于50,故第四行首位数字小于5,而第三行个位数字不小于6.分别验证6,7,8,9四种情况,知均不满足条件.如果商的首位数字等于1,验证第三行个位数字各种情况,知只有2满足条件.此时除数等于92,而商等于109.[点评]本题运用到的知识点和数学方法主要有:十进制数进位规律、数值大小的考量等.【例11】(★★2004年全国小学数学奥林匹克)已知下面的除法算式中,每个□表示一个数字,那么被除数应是.分析:由竖式知,商的十位是0,并且商的千位比百位大,只能是9,所以商是9807.因为除数乘8是两位数,乘9是3位数,所以除数是12.被除数=9807×12=117 684.[点评]本题运用到的知识点和数学方法有,数值大小的考量等.【例12】(★★★2002年全国小学数学奥林匹克)在下面的算式中,只有四个4是已知的,则被除数为.分析:设除数为4m n,商为abc,根据除法竖式可知4m n×b=□□4,再由减法竖式可知4m n×b=9□4.因为4m n×c=4□□,所以m≤4.试验:m=1时,由4m n×b=9□4,推出b=7,n=2;由142×a=□□4,推出a=2;由142×c=4□□,推出c=3.所以被除数为142×273=38 766.m=2,3,4时,均无解.[点评]本题运用到的主要知识点和数学方法有:数值大小的考量、乘法个位数字规律等.练习1、(★★)有10个连续的自然数,9是其中第三大的数.现在把这10个数填到下图的10个方格中,每格内填一个数,要求图中3个2×2的正方形中的4个数之和相等.那么,这个和数的最小值是多少?分析:第一步:首先确定数阵图中的关键区格,即相邻两个正方形相交的两个区格;第二步:由于9是其中第三大的数,所以这10个连续自然数是2、3、4、5……9、10、11,计算三个正方形和的和,显然这个和能被3整除,其中有两个数被重复计算了两次,2+3+……11=65除以3余2,因此被重复计算两个数的和被3除余1,这两个数取2、5时,这个和取得最小值,第三步,由已知的两个方格中的数,得到每个正方形中的和也取得最小值24,构造各个正方形中其他几个数使每个正方形中的数和为24,如图:4697103811522、(★★武汉明心奥数挑战赛)下面是一个残缺的乘法算式,只知道其中一个数字“8”,请你补全,那么这个算式的乘积是.分析:容易看出,乘数的个位大于8,故只能是9.又被乘数的9倍是三位数,8倍是两位数,它只能是12.故所求为12×89=1068.3、(★★★★香港圣公会小学数学奥林匹克)下面算式(1)中。
五年级奥数专题 数字谜初步(学生版)
学科培优 数学 “数字谜初步” 学生姓名授课日期 教师姓名授课时长 知识定位 数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。
横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。
主要涉及小数、分数、循环小数的数字谜问题,因此,会需要利用数论的知识解决数字谜问题。
知识梳理数字谜加减法(1)个位数字分析法(如图)加法各位数规律;减法个位数规律;乘法个位数规律;(2)加减法中的进位与错位(3)奇偶性分析法数字谜乘除法(1)解题方法:数字乘法个位数字的规律--最大值最小值的考量--加减法进位规律--合数分解质因数性质--奇偶数性质规律--余数性质数阵图1、从整体和局部两种方向入手,单和与总和2、区分数阵图中的普通点(或方格),和关键点(方格)3、在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些 关键点与相关点的数量关系,得到关键点上所填数的范围4、运用已经得到的信息进行尝试(试数)429+7例题精讲 【试题来源】 【题目】有一个五位数,在某一位数字后加上一个小数点,得到一个小数,再把这个小数和原来的五位数相加,得数十79358.73,求这个五位数? 【试题来源】 【题目】希1+望1+杯1=1,不同的汉字表示不同的自然数,则“希+望+杯”=【试题来源】【题目】在每个方框内填入一个数字,要求所填数字都是质数,并使竖式成立【试题来源】【题目】迎杯×春杯=好好好在上面的乘法算式中,不同的汉字表示不同的数字,相同的汉字表示相同的数字。
那么“迎+春+杯+好”之和等于多少?【试题来源】【题目】由3个不同数字能组成6个互异的三位数,这6个三位数的和是2886.求所有这样的6个三位数中最小的三位数.【试题来源】【题目】下面算式(1)是一个残缺的乘法竖式,其中□≠2,那么乘积是 .x7【试题来源】【题目】下面残缺的算式中,只写出了3个数字1,其余的数字都不是1,那么这个算式的乘积是.【试题来源】【题目】下面的除法算式(1)是一个小数的除法竖式,其中所注明的两个字母要求:A<B,那么满足这个竖式的除数与商的和是.【试题来源】【题目】在下面的算式中,只有四个4是已知的,则被除数为【试题来源】【题目】把1,2,3,…,13这13个数分别填在如图所示的3个圆圈内,使得同一个圆圈内任意两个数相减,所得的差不在这个圆圈内.现在已经把1,4,7填在第一个圆圈内,3填在第三个圆圈内,请将其余9个数填好.【试题来源】 【题目】将I,2,3,4,5,6,7,8这8个数分成3组,分别计算各组数的和.已知这3个和互不相等,且最大的和是最小的和的2倍,那么最小的和是多少?【试题来源】【题目】红、黄、蓝和白色卡片各一张,每张上写有一个数字.小明将这4张卡片如图7-l 放置,使它们构成一个四位数,并计算这个四位数与它的数字之和的10倍的差.结果小明发现,无论白色卡片上是什么数字,计算结果都是1998.问红、黄、蓝3张卡片上各是什么数字?红黄 白 蓝【试题来源】【题目】请补全下图这个残缺的除法竖式.问这个除法算式的商数是多少?31 4 7 2 11 125 6 8 910 1331 4 7习题演练【试题来源】【题目】ABCD表示一个四位数,EFG表示一个三位数,A,B,C,D,E,F,G代表1至9中的不同的数字.已知ABCD+EFG=1993,问:乘积ABCD×EFG的最大值与最小值相差多少?【试题来源】【题目】如图,4个小三角形的顶点处有6个圆圈。
五年级计算数阵图与数字谜学生版
数阵图与数字谜知识要点解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型,因此要求同学们能够很好地掌握上述知识点,并加以灵活运用.数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.数论知识【例1】(第一届“华罗庚金杯”少年数学邀请赛决赛一试)如图,4个小三角形的顶点处有6个圆圈。
如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形3个顶点上的数之和相等。
问这6个质数的积是多少?【例2】 一个整数乘以13后,乘积的最后三位数是123,这样的整数中最小的是多少?【例3】 红、黄、蓝和白色卡片各一张,每张上写有一个数字。
小明将这4张卡片如图放置,使它们构成一个四位数,并计算这个四位数与它的数字之和的10倍的差。
结果小明发现,无论白色卡片上是什么数字,计算结果都是1998。
问:红、黄、蓝3张卡片上各是什么数字?蓝白黄红【例4】 如图算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字,请求出这个算式。
春夏秋冬四季季年年年年年年【例5】 将1~9分别填入这九个区域,使得每个圆里的数字和相等。
【例6】已知76⨯=⨯,相同的字母代表相同的数字,不同的字母代表不同的数字,求ABCXYZ XYZABCABCXYZ是多少?【例7】三位数AAA乘三位数AAB等于六位数CCCDDD,求A,B,C,D分别是多少?【例8】(第二届“华罗庚金杯”少年数学邀请赛复赛)试将1,2,3,4,5,6,7分别填入下面的方框中,每个数字只用一次:(这是一个三位数)、(这是一个三位数)、(这是一个一位数),使得这三个数中任意两个都互质。
小学数学《数字谜与数阵图》练习题(含答案)
小学数学《数字谜与数阵图》练习题(含答案)数字谜这类题目往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型,因此要求同学们能够很好地掌握上述知识点,并加以灵活运用.数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜来解答.解题技巧:(一)解题的突破口多在于竖式或横式中的特殊之处,例如首位、个位、重复数字以及位数的差异. (二)要根据不同的情况逐步缩小范围,并进行恰当的估算.(三)当题目中涉及多个字母或汉字时,要注意利用不同符号代表不同数字这一条件来排除若干可能性.(四)注意结合进位及退位来考虑.(五)有时可运用到数论中的分解质因数等方法.【例1】右式中不同的汉字代表1~9中不同的数字,当算式成立时,“中国”这两个汉字所代表的两位数最大是多少?【分析】显然,“新”=9.因为要使“中国”尽量大,所以可以假定“中”=8.因为十位加法(含个位加法进位)等于20,所以“北+奥”在1~7中的取值有三种可能:7,5;7,4;6,5.再考虑到“国+京+运”的个位数是8,经试算,只有“北”、“奥”等于7,5,“国”、“京”、“运”等于1,3,4.“国”取l,3,4中最大的4,得到“中国”最大是84.【例2】下图的等式中,不同的汉字表示不同的数字,如果“巧+解+数+字+谜=30”,那么,“数字谜”所代表的三位数是_______.【分析】谜字只能取0或5.如果谜=0,字也要取0,不合题目要求,所以谜=5.3个字加上2是10的倍数,所以字=6. 2个数加上2是10的倍数.所以数=4或9,如果数=4,那么解+1=10,所以解=9.但这时巧=30-9-4—6—5=6与字相同,不合题意.因此数=9,解+2=10,所以解=8,巧=30-8-9-6-5=2,所以“数字谜”所代表的三位数是965.【巩固】在下面的算式中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6,7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于多少?【分析】根据加法规则,“第”=1.“届”+“赛”=6或“届”+“赛”=16.若“届”+“赛”=6,只能是“届”、“赛”分别等于2或4,此时“一”+“杯”=10 只能是“一”、“杯”分别为3或7.此时“十”+“华”=9,“十”、“华’’分别只能取 (1,8),(2,7),(3,6),(4,5).但l,2,3,4均已被取用,不能再取.所以,“届”+ “赛”=6填不出来,只能是“届”+“赛”=16.这时“届”、“赛”只能分别取9和7.这时只能是“一”+“杯”+1=10,且“十”+“华”+1=10,也就是“一”+“杯”=9,同时“十”+“华”=9.所以它们可以分别在(3,6),(4,5)两组中取值.因此“第、十、一、届、华、杯、赛”所代表的7个数字的和等于1+9+9+16=35.【例3】在图所示的乘法算式中,每个方框和汉字都代表一个数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字.那么,这个乘法算式的最后乘积是多少?【分析】问题中出现的都是末位数.而且都是奇数,故应先从末位数开始考虑.第三行的末位为1,共有三种可能的组合:1×1,3×7,9×9.由于第二行数的每一位与第一行相乘后都得到五位数,故第二行的各位数字不会为1.故1×1、9×9均不满足条件.第一行和第二行末位数为3、7或者7、3.分两种情况来讨论:若第一行末位为3,第二行末位为7,由末位的9推知第二行的数应为3337,由第三行的十位应为0知第一行的十位为4.从而得到第四、五、六行的十位皆为2,进而有第三行的百位应该是8,于是推出第一行的百位为5.这样便立刻得到第四、五、六行的百位为6,从而由第三行的4位为1得到第一行的千位为4.于是有4543×3337=15159991,满足条件.若第一行末位为7,第二行末位为3,同样的方法立刻有第二行数应为7773.依次推得第一行的十位、百位、千位分别为6、4、0,不符合题目要求.于是本题答案为15159991.评注:本题采用了枚举的方法,对可能的有限种情况分别讨论,从而求解出问题.在数字谜的求解中常常用到这种方法.【例4】内填入适当的数字,使下列竖式成立,并使商尽可能小:【分析】由右式知d=8,所以c=3或8.当a=2时,由bc×a=□5□,推出c不等于3,所以c=8,故推出b=7;因为除数是两位数,它与商的各个数位的乘积都是三位数,所以商的最小可能值为262.数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵. 幻方是特殊的数阵图,一般地,将九个不同的数填在3×3(即三行三列)的方格中,使每行、每列、及二条对角线上的三数之和均相等,这样的3×3的数阵阵列称为三阶幻方. n阶幻方的定义与三阶幻方相仿!【例5】请你把1~7这七个自然数,分别填在右图的圆圈内,使每条直线上的三个数的和都相等.应怎样填?【分析】关键在于确定中心数a和每条直线上几个圆圈内数的和k. 为了叙述方便,先在各圆圈内填上字母,设每条直线上的数字和为k.根据题意可得:2a+(1+2+3+4+5+6+7)=3k,2a+28=3k,由于28与2a的和为3的倍数,a又为1~7中的数字,经过尝试可知:a为1、4或7.答案如下:(1)当a=1,时2+7=5+4=3+6,得到第一种答案。
五年级奥数.数字谜综合
数字谜综合涉及分数与小数的各种类型的数字谜问题,包括竖式的补填、算式的构造、小数的舍人与变化等.较为复杂的数字问题,以及其他略有综合性的数字谜问题.1.有一个四位整数,在它的某位数字前面加上一个小数点,再与这个四位数相加,得数是2000.81.求这个四位数是多少?【分析与解】设四位整数4的某位数字前加上一个小数点得到一个新的数B,A与B 的和为2000.81,而小数只能由B得到,且0。
81为B的小数部分,所以小数点加在A的百位与十位之间,即缩小了100倍.有A+0.01A=2000。
81,所以A=1981.2.老师在黑板上写了13个自然数,让小明计算平均数(保留两位小数),小明计算出的答数是12.43.老师说最后一位数字错了,其他的数字都对.正确答案应该是什么?【分析与解】老师说最后一位数字错了,那么前3位数字是正确的,所以正确的平均数在12.40~12。
5(不能取12。
5)之间,那么这13个数的和在161.2~162.5(不能取162。
5),因为这13个数都是自然数,所以它们的和也应该是自然数.那么这13个数的和只能是162,它们的平均数应该是162÷13≈12.46.所以正确的平均数应该是12.46.3.两个带小数相乘,乘积四舍五人以后是22。
5.这两个数都只有一位小数,且个位数字都是4.这两个数的乘积四舍五入前是多少?数均是整数.开始它们的乘积在22.45~22.55(不能取22.55)之间,所以在这两个数在均乘以10以后再相乘而得到的乘积应该在2245~2255(不能取2255)之间.一一验证,2245=5×449,2246=2×1123,2247=3×7×107,2248=2×2×2×281,2249=13×173,2250=2×3×3×5×5×5,2251为质数,2252=2×2×563,2253=3×751,2254=2×7×7×23.其中只有2254可以表达为(2×23)×(7×7)=46×49,两个十位数字均为4的数的乘积.所以,四舍五人前的乘积应为2254÷10÷10=22。
五年级奥数数字谜
数字谜涉及质数与合数等概念,以及需要利用数的整除特征、分解质因数等数论手段解的数字谜问题.1.试将1,2,3,4,5,6,7分别填入下面的方框中,每个数字只用一次: 口口口(这是一个三位数).口口口(这是一个三位数),口(这是一个一位数),使得这三个数中任意两个都互质.已知其中一个三位数已填好,它是714,求其他两个数.【分析与解】714=2×3×7×17.由此可以看出,要使最下面方框中的数与714互质,在剩下未填的数字2,3,5,6中只能选5,也就是说,第三个数只能是5.现在来讨论第二个数的三个方框中应该怎样填2,3,6这3个数字.因为任意两个偶数都有公约数2,而714是偶数,所以第二个的三位数不能是偶数,因此个位数字只能是3.这样一来,第二个三位数只能是263或623.但是623能被7整除,所以623与714不互质.最后来看263这个数.通过检验可知:714的质因数2,3,7和17都不是263的因数,所以714与263这两个数互质.显然,263与5也互质.因此,其他两个数为263和5.2.如图19-1,4个小三角形的顶点处有6个圆圈.如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形3个顶点上的数之和相等.问这6个质数的积是多少?【分析与解】设每个小三角形三个顶点上的数的和都是S.4个小三角形的和S相加时,中间三角形每个顶点上的数被算了3次,所以 4S=2S+20,即S=10.这样,每个小三角形顶点上出现的三个质数只能是2,3,5,从而六个质数是2,2,3,3,5,5,它们的积是:2×2×3×3×5×5=9003.在图19-2.所示算式的每个方框内填人一个数字,要求所填的数字都是质数,并使竖式成立.【分析与解】记两个乘数为7a b 和cd 其中a 、b 、c 、d 的值只能取自2、3、5或7.由已知条件,b 与c 相乘的个位数字仍为质数,这只可能是b 与c 中有一个是5另一个是3、5或7,如果b 不是5,那么c 必然是5,但73×5=365、77×5=385的十位数字都不是质数.因此b 是5,c 是3、5、7中的一个,同样道理,d 也是3、5、7中的一个.再由已知条件,75a 的乘积的各位数字全是质数,所以乘积肯定大于2000,满足积大于2000且a 、c 取质数,只有以下六种情况:775×3=2325,575×5=2875,775×5=3875,375×7=2625,575×7=4025,775×7=5425.其中只有第一组的结果各位数字是质数,因此a=7,c=3,同理,d 也是3.最终算式即为775×33=255754.把一个两位数的个位数字与其十位数字交换后得到一个新数,它与原来的数加起来恰好是某个自然数的平方.那么这个和数是多少?【分析与解】 设原来的两位数为xy ,则交换十位数字与个位数字后的两位数为,两个数的和为yx ,两个数和为 xy +yx =1010x y x y +++()11x y =+是ll 的倍数,因为它是完全平方数,所以也是11 ×11=121的倍数.但是这个和小于100+100=200 <121×2,所以这个和数只能是121.5. 迎杯×春杯=好好好在上面的乘法算式中,不同的汉字表示不同的数字,相同的汉字表示相同的数字.那么“迎+春+杯+好”之和等于多少?【分析与解】 好好好=好×111=好×3×37.那么37必定是“迎杯”或“春杯”的约数,不妨设为“迎杯”的约数,那么“迎杯”为37或74. 当“迎杯”为37时,“春杯”为“好”×3,且“杯”为7,此时“春杯”为27,“好”为9,“迎+春+杯+好”之和为3+2+7+9=21;当“迎杯”为74时,“春杯”为“好”×3÷2,且“杯”为4,此时“春杯”为24,“好”为16,显然不满足.所以“迎+春+杯+好”之和为3+2+7+9=21.6.数数×科学=学数学在上面的算式中,每一汉字代表一个数字,不同的汉字代表不同的数字.那么“数学”所代表的两位数是多少?【分析与解】“学数学”是“数数”的倍数,因而是“数”与1l的倍数.学数学=学×101+数×10是“数”的倍数,而101是质数,所以“学”一定是“数”的倍数.又“学数学”是11的倍数,因而:“学+学-数”为11的倍数.因为“学”是“数”的倍数,从上式推出“数”是11的约数,所以“数”=1,“学”=(11+1)÷2=6.“数学”所代表的两位数是16.7.将1,2,3,4,5,6,7,8,9这9个数字分别填人下式的各个方框中,可使此等式成立:口口×口口=口口×口口口=3634.填好后得到三个两位数和一个三位数,这三个两位数中最大的一个是多少?【分析与解】3634=2×23×79,表达为两个两位数的乘积只能是(2×23)×79,即46×79;表达为一个两位数与一个三位数的乘积,只能是23×(2×79)=23×158.满足题意,所以这三个两位数中最大的一个是79.8.六年级的学生总人数是三位数,其中男生占35,男生人数也是三位数,而组成以上两个三位数的6个数字,恰好是l,2,3,4,5,6.那么六年级共有学生多少人?【分析与解】设六年级总人数为xyz,其中男生有abc人.有xyz×35=abc,即5abc=3xyz,其中xyz为5的倍数,所以z为5.而abc为3的倍数,所以其数字和a+b+c应为3的倍数,则在剩下的5个数中,a、b、c(不计顺序)只能为1,2,6或l,2,3或4,2,6或4,2,3.而c不能是偶数(不然z应为0),所以只能是l,2,6或1,2,3或4,2,3可能满足;又因为xyz最大为645,对应abc为387,即c不超过3.于是abc有可能为261,123,321,213,231,243这6种可能,验证只有当abc=261时,对应xyz为261÷3×5=435.所以六年级共有学毕435人.9.图19-3是三位数与一位数相乘的算式,在每个方格填入一个数字,使算式成立.那么共有多少种不同的填法?【分析与解】设1992=abc×d(a,b,c,d可以相同),有1992=2×2×2×3×83,其中d可以取2,3,4,6,8这5种,对应的算式填法有5种.10.在图19-4残缺的算式中,只写出3个数字l,其余的数字都不是1.那么这个算式的乘积是多少?【分析与解】如下图所示,为了方便说明,将某些数用字母标出.第4行口口1对应为AB×C,其个位为1,那么B×C的个位数字也是1,而B、C又均不能为1,所以只有3×7,9×9对应为1,那么B为9、7或3.第3行10口对应为AB×D,可能为100、102、103、104、105、106、107、108、109.103、107、109均为质数,没有两位数的约数,不满足;100、105没有个位数字为3、7、9的约数,不满足;102=17×6、104=13×8、106=53×2、108=27×4,但102、104对应的AB中4均为1,不满足.所以AB为53或27.当AB为27时,第4行为27×C,且个位数字为1,所以只能为27×3=8l,但不是三位数,不满足.当AB为53时,第4行为53×C,且个位数字为1,所以只能为53×7=371,因此被乘数必须为53,乘数为72,积为3816.11.图19-5是一个残缺的乘法竖式,在每个方框中填入一个不是2的数字,可使其成为正确的算式.那么所得的乘积是多少?【分析与解】 方法一:由已知条件,最后结果的首位数字不能是2,因此只能是3.这说明千位上作加法时有进位.百位数上相加时最多向千位进2,所以要使千位数有进位,其中的未知数字至少是10-2-2=6,即三个三位数加数中的第二个至少是600.因为它是第一个乘数与一个一位数字的乘积,因此该乘数肯定大于60.第二个乘数的百位数字与第一个乘数的乘积在220~229之间,所以它只能是3(否则4×60>229).而220~229之间个位数字不是2且是3的倍数的只有225=3×75和228=3×76.如果第一乘数是75,又第二个乘数的百位数字是3,那么它们的乘积小于75×400=30000,它的首位数字也就不可能是3,不满足.乘数是76,另一个乘数就要大于30000÷76>394,那么只有395、396、397、398、399这五种可能,它们与76的乘积依次为30020、30096、30172、30248、30324.由于各个数字都不能是2,所以只有76×396=30096满足题目的要求.算式中所得的乘积为30096.方法二:为了方便说明,将某些位置标上字母,如下图所示,因为干位最多进1,而最终的乘积万位又不能是2,所以只能是3:而第5行对应为22口=AB×C ,其中C 不可能为1,又不能为2,那么最小为3.当C 为3时,22口=AB×3,那么A 只能为7,B 只能为4,5或6,(1)当B 为4时,74×3=222,第5行个位为2,不满足题意;(2)当B 为5时,AB×CDE 对应为75×3DE ,小于30000,不满足;(3)当B 为6时,AB×CDE 对应为76×3DE ,D 只能为9,此时第4行对应为AB ×D 即76×9=684.因为30000÷76>394,所以39E 只有395、396、397、398、399这五种可能,它们与76的乘积依次为30020、30096、30172、30248、30324.由于各个数字都不能是2,所以只有76×396=30096满足题目的要求.验证C 取其他值时没有满足题意的解.所以算式中所得的乘积为30096.12.请补全图19-6这个残缺的除法竖式.问这个除法算式的商数是多少?【分析与解】 易知除号下第二行的首位为9.除号下第一行开头两位为1、0,商的十位为0.第二行9口对应为CD ×A,(1)9口不可能为90,不然第一行前三位10口与第二行90的差不可能为一位数,不满足第三行特征;(2)9口对应为91时,第三行的首位对应为10口-91,最小为9,所以只能为9,那么有91=CD×A ,928=CD×B ,不可能;(3)9口对应为92时,第三行的首位对应为10口-92,最小为8,所以可能为8、9,①如果为9,那么对应有92=CD×A ,928=CD×B ,不可能;②如果为8,那么对应有92=CD×A ,828=CD×B ,不难得知A=l,B=9,CD=92时满足,那么被除数为92×109=10028.验证没有其他的情况满足,所以这个除法算式的商数为109.13.若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式学习好勤动脑×5=勤动脑学习好×8中,“学习好勤动脑”所表示的六位数最小是多少?【分析与解】 设“学习好”为x,“勤动脑”为Y,则“学习好勤动脑”为1000X+Y,“勤动脑学习好”为1000y+x ,有(1000x+Y)×5=(1000y +x )×8,化简有4992x=7995y,4992=128×3×13,7995=3×41×5×13,即128x=205y,有205,128x y =⎧⎨=⎩410,256x y =⎧⎨=⎩615,384x y =⎧⎨=⎩820512x y =⎧⎨=⎩所以,“学习好勤动脑”所表示的六位数可能为205128,410256,615384,820512,但是不能有重复数字,所以只有410256,615384满足,其中最小的是41025614.互为反序的两个自然数的积是92565,求这两个互为反序的自然数.(例如102和201,35和53,11和11,…,称为互为反序的数,但120和2l 不是互为反序的数.)【分析与解】 首先可以确定这两个自然数均为三位数,不然得到的乘积不可能为五位数. 设ABC ×CBA =92565,那么C 、A 中必定有一个为5,一个为奇数.不妨设C 为5.5AB ×5BA =92565,那么A 只能为1,1551B B =92565.又注意到92565=3×3×5×11×1l×17.验证只有15B 为165时满足,所以这两个自然数为165、561.15.开放的中国盼奥运×口=盼盼盼盼盼盼盼盼盼上面的横式中不同的汉字代表不同的数字,口代表某个一位数.那么,“盼”字所代表的数字是多少?【分析与解】 我们从“口”中所应填入的一位自然数开始分析,设A=“开放的中国盼奥运”,B=“盼盼盼盼盼盼盼盼盼”.于是B=A×口.显然口内不会是1.由于口是B 的约数,因此口不会是“盼”所代表的数字,要不然A 就等于111111111,这说明口内不会是5,而111111111不是7的倍数,说明口内也不会是7.如果口内填3,则“盼”只能是1或2,当“盼”是1时,B÷3=37037037,不符合要求;当“盼”时2时,B ÷3=74074074,也不符合要求;说明口内不能填入3.口内也不会是偶数数字2、4、6和8.因为口内是偶数数字时,“盼”也是偶数数字,口内显然不会是2,如果口内是4,根据被4整除的特征,“盼”只能是8,这时A就成了一个九位数,说明口内不能是4;类似的,可以说明口内不能是6和8.综上所需,口的数字只能是9,这时利用91111...1个=12345679×9,可以得到9个盼盼盼盼...盼=12345679×9×盼.于是“盼”代表的数字必须同时满足下面两个条件:经验证知◇=盼=7,即86419753×9=777777777.。
五年级计算数阵图与数字谜教师版
数阵图与数字谜知识要点解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型,因此要求同学们能够很好地掌握上述知识点,并加以灵活运用.数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.数论知识【例1】(第一届“华罗庚金杯”少年数学邀请赛决赛一试)如图,4个小三角形的顶点处有6个圆圈。
如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形3个顶点上的数之和相等。
问这6个质数的积是多少?【分析】 设每个小三角形三个顶点上的数的和都是S ,4个小三角形的和S 相加时,中间三角形每个顶点上的数被算了3次,即多算了2次,所以 4220S S =+,即10S =这样,每个小三角形顶点上出现的三个质数只能是2,3,5,从而六个质数是2,2,3,3,5,5,它们的积是:223355900⨯⨯⨯⨯⨯=【例2】 一个整数乘以13后,乘积的最后三位数是123,这样的整数中最小的是多少? 【分析】 方法一:由于13的倍数满足其后三位与前面隔开后,差是13的倍数。
1231396÷=L L ,所以123与6的差是13的倍数,所以6123一定是13的倍数,且为满足条件的最小自然数。
数字谜综合数阵图和式数字谜
练习2:
将1至12分别填入图中正方形四条边上的圆圈内,使每条边上四个圆 圈内的数之和均等于22.请填出一种解法。
练习2:
将1至12分别填入图中正方形四条边上的圆圈内,使每条边上四个圆 圈内的数之和均等于22.请填出一种解法。
1 10 8 3
12
6
5
11
47 9 2
例题4、请你将数1、2、3、4、5、6、 7填入图中的圆圈内,使得每个圆上三个 数之和相等,并且也等于每条直线上三 个数的和。应怎样填?
2、如果重叠数有1个时,数阵图的填法是唯 一的;如果重叠数有2个时,数阵图的填法可 能是不唯一的;如果重叠数有3个或4个时, 重叠数的确定还需要用尝试法进行确定,然 后再来完成数阵图。
方法总结:小结---数阵图
1.如果数•阵1.图如果中数有阵若图干中个有相若等干的个和相,等可的以把其中 某几个和和累,加可在以一把起其,中或某者几比个较和有累公加共在部分的两 个相等的一和起。,或者比较有公共部分的两
1
x3
2
3
2
2
5
1
8
0
2.5特殊数位分析
(1)如果是字母(文字)替数的问题,就要 多留意相同字母出现较多的数位。
2 0 09 QHFZ
+ QHFZ
1QHDX
• 可以先判断出 • Q和H
(2)、解字谜
ABCDEF
x
3
BCDEFA
(3)选讲:
在下面除法竖式的方框内填入适当的数字,使竖式成立
36
9 3 32 27 62 54
x
=
x
= 5568
例题1
将0至8这九个数字填入下面的方框内,使这个算式的 结果最大
五年级数学培优:数阵图、数字谜(含解析)
五年级数学培优:数阵图、数字谜(含解析)将1~11填入图中的○内,使得每条线段上的三个圆圈内数字之和等于22.知识概述1.数阵图的一般解题思路:由于数阵图中没有填充之前各个数的位置无法确定,从每一个单个数上无法进行判断,所以我们采用的是整体与个体相结合考虑的方法,即利用所有相关数和全部相加进行分析.2.数字谜:①数字谜介绍:数字谜从形式上可以分成为横式数字谜与竖式数字谜,从内容上可以分为加减乘除4种数字谜,横式数字谜一般可以转化为竖式数字谜.②数字谜常用的分析法介绍解决数字谜问题最重要的就是找到突破口,突破口你的寻找是需要一定得技巧性,一般来说,首先是观察题目中给出数字的位置,同时找出涉及这些已知数字的所有相关计算,然后根据各种分析法进行突破,突破的顺序一般是三位分析法(个位分析,高位分析和进位借位分析)另外加入三大技巧(估算技巧——结合数位,奇偶分析技巧和分解素因数技巧)等、而且一般应该先从涉及乘法的地方入手,然后在考虑加法后减法的分析(并不完全都是这样).例1数阵图与数字谜这类问题在历届杯赛中经常出现,属于各大杯赛的高频考点,因为这类题是正确率很高的题目,所以要想取得好成绩,必须掌握这类题型的解题方法. 名师点题【解析】首先求出数阵图中关键位置的数,在数阵图的中间位置,是:(22×5-66)÷4=11,剩下的数从下到大排列,首尾配对即可:1配10,2配9,,3配8,4配7,5配6.在下图中填9个数,使每行、每列、对角线上的三个数的和都相等.那么b处应该填入的数是().【解析】这是一个三阶幻方,每行、每列、每条对角线上三个数的和相等,我们称这个相等的和是幻和,幻和是中央的数的3倍,幻和=3b=1.9+b+0.9= 2.8+b,进而得到2b=2.8,b=1.4.在右边的算式中,相同的符号代表相同的数字,不同的符号代表不同的数字,根据这个算式,可以推算出:△□□〇+〇□□△□□☆☆那么:口+○+△+☆=_________.【解析】比较竖式中百位与十位的加法,十位上“□+□”肯定进位,(否则由百位可知□=0),且有“□+□+1=10+□”,从而□=9,☆=8.例3例2再由个位加法,推知○+△=8.从而口+○+△+☆=9+8+8=25.【巩固拓展】1.将从8开始的11个连续自然数填入下图中的圆圈内,要使每边上的三个数的和都相等,a共有()种填法.【解析】由于每边上的三个数字和都相等,设每边和为S,从整体考虑将其全部相加和为5S,从个体考虑,除中间数加了5次外,其他数均加了1次,可看作8至18均加了1次,中间数a多加了四次,表示为(8+9+......+18)+4a,列出等式为5S=(8+9+ (18)+4a,化简为5S=143+4a,要使等式成立,4a的末位必须为2,得出三种答案,8,13,18.2.将1-12这十二个自然数分别填入下图的12个圆圈内,使得每条直线上的四个数之和都相等,这个相等的和为__________.【解析】由于每条直线上的四个数之和都相等,设这个相等的和为S,把所有6条直线上的四个数之和相加,得到总和为6S;另一方面,在这样相加中,由于每个数都恰好在两条直线上,所以每个数都被计算了两遍.所以,6(12312)2S=++++⨯,得到S=26,即所求的相等的和为26.3.在右边的竖式中,相同字母代表相同数字,不同字母代表不同数字,则四位数tavs=______.s t v av t s tt t v t t+【解析】首先可以判断t=1,所以s+v=11,v=t+t+1=3,可解得s=11-3=8,又因为a+t=t,所以a=0,1038tavs=.将自然数1、10、19、28、37、46、55分别填人右图中的七个方框中,使每条直线上的三数之和与每个圆周上的三数之和都相等.那么圆心上的那个数应该填多少?【解析】圆心上的数属于三条直线,其余数都属于一条直线一个圆周,所以除中心的数被计算3遍外.其余数都被计算2遍.由()11019283746552392++++++⨯+=+中心数中心数,应是5的倍数,推知中心数为28.【巩固拓展】将3、5、7、11、13、17、19、23、29这9个数分别填人右图的9个○中,使3条边上的○中的数之和都相等.请分别求出满足上述条件的最大的和与最小的和.例1【解析】设三个顶点○内所填的数为a、b、c,每条边上的和为K,三个顶点上的数在求和时各用了2次,所以条边上的三数之和相加得()()3571113171923291273a b c a b c K+++++++++++=+++=;由于所得的和必须能被3整除,而1273421÷=,所以()a b c++的和应被3除余2,a b c++的最小值是571123++=,最大值是29231971++=,所以K的最小值是()12723350+÷=,最大值是()12771366+÷=.请将1~9这9个数填入右图3×3表格中,使得第1,2行三数的乘积分别是70,24,第l、2列三数的乘积分别是21、72.【解析】因为70=2×5×7,21=1×3×7,所以A=7,D等于2或5,因为D×E×F=72,72不能被5整除,所以D为2,72=2×4×9,即E为4或9,且B×E×H=24.24不能被9整除,所以E为4,24=1×4×6,也就是B=1,H=6,剩下的数易得.最后结果为:F IHGEDCBA986542317【巩固拓展】能否在8行8列的方格表的每个空格中(如图),分别填入1、2、3这三个数字中的任一个,使得每行每列及对角线AC、BD上的数字和互不相同?对你的结论加以说明.例2【解析】不可能.这里一共有8行、8列、2条对角线,每行每列及对角线AC、BD上的数字和互不相同,所以数字和一共有8+8+2=18(个);又根据题目要求,每行、每列及对角线的8个数的和最小取值是8×1=8,最大为8×3=24,8到24一共有17个数.17<18,所以不可能实现每行每列及对角线AC、BD上的数字和互不相同.将1、2、3、4、5填入5×5的正方形表格的小方格中,使每个数字在每行、每列、每条对角线上都只出现一次,其中部分数字已经填出,请按照以上要求填写其他小方格.【解析】①根据唯一解法,可以快速得到第四行第一列填5;②观察第5列,可知第5行第5列方格中不能填4、5(根据列摒除法);再观察从左上至右下的对角线,可知第5行第5列方格中不能填1、3(根据对角线摒除法).那么根据唯一解法,可以确定第5行第5列方格中填2;③对两条对角线进行分析,可以确定第3行第3列方格中只能填4;④再根据唯一解法确定第2行第2列方格中填5;⑤接着可确定第2行第4列方格中填2,第5行第1列方格中填3;至此我们已经填出第1行、第4行、两条对角线上的所有方格中的数字,根据以上解题思路,可以顺势得出其他方格中的数字,最终的问题答案如下:例3【巩固拓展】如右下图,9个3×3的小方格表合并成一个9×9的大方格表,每个格子中填入1-9中的一个数,每个数在每一行、每一列中都只出现一次,并且在原来的每个3 3的小方格表中也只出现一次,10个“☆”处所填数的总和是.【解析】①先确定第6列4个☆的和:(1+2+3+…+8+9)-(1+9+8+4+2)=21;②确定第2层第3宫(9宫格)4个☆的和:(1+2+3+…+8+9)-(3+4+5+6+9)=18;③确定第1行第8列☆:观察所在行、所在列、所在宫,可以确定是5;④确定第3行第1列☆:观察所在行、所在列、所在宫,可以确定是2;所以10个“☆”处所填数的总和是:21+18+5+2=46.将1、3、5、7、9填入等号左边的5个方框中,2、4、6、8填入等号右边的4个方框中,使等式成立,且等号两边的计算结果都是自然数,这个结果最大为.□÷□+□+□□=□÷□+□□例4【解析】 因为左边必是奇数,所以右边最大值为87.(否则为88),经过尝试,得3÷1+5+79=6÷2+84【巩固拓展】请在算式1111⨯=⨯中填入不同的四个数字,使等号成立.【解析】 在10-19这10个数中,剔除质数后只剩下6数,通过尝试可得到10×18=12×15.在右边的乘法算式中,字母A 、B 和C 分别代表一个不同的数字,每个空格代表一个非零数字.求A 、B 和C 分别代表什么数字.941A B CA B C⨯【解析】 第一个部分积中的9是C×C 的个位数字,所以C 要么是3,要么是7,假设C =3,第二个部分积中的4是积3×B 的个位数字,所以B =8.同理,第三个部分积中的1是积3×B 的个位数字,因此A =7.如果C =7,类似地可知B =2,A =3,但这时第二个部分积不是四位数,因此C ≠7.【巩固拓展】在下图中的除法竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么被除数DEFGF 是多少?例5【解析】显然的D=1,由AB×A=IF可知,A不会超过3,否则得到的乘积应该是3位数,如果A=3,那么B也不能超过3,所以B只能是2,这样的AB×B=32×3=96与AAH矛盾,所以A≠3,所以A=2,根据AB×B=AAH,可以尝试出B=8时,等式成立,得到这些条件既可依次求得:I=5,F=6,E=0,G=9,所以被除数DEFGF是10696.(第十一届中环杯初赛试题及答案)从1至13中选出12个自然数填入3×4的方格中,使每横行四数之和相等,每竖列三数之和也相等(横行的和没有必要与竖列的和相等).【解析】因为1+2+…+13=91,从中去掉一个数后应该能够被3以及4整除,即能被12整除.由于91÷12=7…7,应该去掉7,所有数的和为84.这样,每个横行的数字之和为84÷3=28,每个竖列的数字之和为84÷4=21.进一步分析可知,六个奇数必须有三个在一列,另外三个在另外一列.三个奇数和为21的,只有1+9+11和3+5+13两组,填好奇数,剩下的数就好填料.典型的两组答案(其余的答案均由这两个答案交换行列得到)如下:1 13 4 10 3 112 12例1如图大、中、小三个正方形组成了8个三角形,现在把2、4、6、8四个数分别填在大正方形的四个顶点;再把2、4、6、8分别填在中正方形的四个顶点上;最后把2、4、6、8分别填在小正方形四个顶点上:(1)能不能使8个三角形顶点上数字之和都相等? (2)能不能使8个三角形顶点上数字之和各不相同? 如果能,请画图填上满足要求的数;如果不能,请说明理由.【解析】 (1)不能.如果这8个三角形顶点上数字之和都相等,设它们都等于S.考察外面的4个三角形,每个三角形顶点上的数的和是S ,在它们的和4S 中,大正方形的2、4、6、8各出现一次,中正方形的2、4、6、8各出现二次.即()42468360S =+++⨯=.所以S=60÷4=15.但是三角形每个顶点上的数都是偶数,和不可能是奇数15,因此这8个三角形顶点上数字之和不可能相等.(2)能,下图是一种填法.8个三角形顶点数字之和分别是:8、10、12、14、16、18、20、22.248668862244(第十二届中环杯试题)如图,纸片盖住了乘法算式的所有数字,但是已知每一个被盖住的数都是质数,那么积的个位数是()【解析】积的个位数等于两个因数的个位数积的个位数;一位质数有2、3、5、7;2×3=6,2×5=10,2×7=14,3×5=15,3×7=21,5×7=35;其中符合积的个位数也是质数的只有3×5=15或5×7=35,故积的个位数是5.在下面的乘法算式中,“数”、“字”、“谜”各代表一个互不相同的数字,求这个算式.⨯数字谜数字谜谜谜谜谜谜【解析】这是集数字谜和填空格于一体的数字问题,从题面上看,提供的信息较少,“谜”所在的位置较多,紧紧抓住“谜”所在的位置特点,逐一突破.由“⨯=数字谜谜谜”可知“谜”≠1,因此“谜”=5或6.例4例3(1)若“谜”=5,“⨯=数字谜数”的乘数的百位数字必须大于3且小于等于5,所以“数”=2,由于“⨯=数字谜字谜”,可知“255⨯=字字”,“字”是单数且小于5,故“字”=1或3,当“字”=1时,21521546225⨯=,不符合条件,当“字”=3时,23523555225⨯=,符合题意.(2)若“谜”=6,同理,“⨯=数字谜数”的乘积的百位数字必须大于4且小于等于6,所以“数”=2,由266⨯=字字,可知“字”=1,但21621646656⨯=,不符合条件.所以满足条件的算式是:23523555225⨯=.下面两个算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.⨯=美妙数学数数妙,美+妙数学=妙数数.=美妙数学___________【解析】由⨯=美妙数学数数妙知,“美”不为1,且“美”ד妙”<10,所以“美”≥2,“秒”≤4,“美”+“学”=“数”;1)当“秒”=1,根据“美”ד学”的个位数为“妙”,可知,“美”、“学”为3和7,此时“美”+“学”=10,但题目中“美”+“学”=“数”<10,所以“妙”不等于1;2)当“妙”=2,根据“美”ד学”的个位数为“妙”,可知,“美”、“学”为3和4,或者4和8,但4+8=12>10,所以“美”、“学”为3和4,“数”=3+4=7,但274×3=822,积出现重复数字2,不合要求,273×4>1000也不合要求.3)当“妙”=3,根据“美”ד学”的个位数为“妙”,可知“美”、“学”为7和9,“美”+“学”>10,不合要求.4)当“妙”=4,根据“美”ד学”的个位数为“妙”,可知“美”、“学”为7和2,或者6和9,又“美”+“学”<10,所以“美”、“学”为7和2,“数”=7+2=9.497×2=994,合乎要求.因此,2497=美妙数学【练习1】在5×5方格表的空白处填入1-5中的数,使得每行、每列、每条对角线上的数各例5不相同?【解析】先确定右下角的方格,只能填“2”;左下角只能填3,最下一行只能是3、4、5、1、2.其他方格不难填成,结果如下图.【练习2】下图中有五个正方形和12个圆圈,将1-12填入圆圈中,使得每个正方形四角上圆圈中的数字之和都相等.那么这个和是多少?【解析】设每个正方形四角上圆圈中的数字之和为x,则由5个正方形四角的数字之和,相当于将1-12相加,再将中间四个圆圈中的数加两遍,可得()++++=,x x121225 x=,具体填法如:26758649112310121【练习3】下图中有三个正三角形,其中有三条通过四点的线段.请你把1~9这九个自然数分别填在九个黑点的旁边,使每个正三角形顶点上三个数的和相等,每条线段上四个数的和也相等.【解析】每个正三角形顶点上三个数的和:(1+9)×9÷2÷3=15每条线段上四个数的和:[(1+9)×9÷2+15]÷3=20根据以上结论可以得到如下填法(答案不唯一):【练习4】如下图所示,A B C D E F G H I J、、、、、、、、、表示0-9这10个各不相同的数字.表中的数为所在行与列的对应字母的和,例如“G+C=14”.请将表中其它的数全部填好.A B C D E F G H I J+56771414【解析】 由于A+F=5,B+F=14,所以B-A=14-5=9,所以A 和B 只能是0和9.因此可以推出:A=0,B=9,C=6,D=3,E=2,F=5,G=8,H=1,I=4,J=7.可得下图.1013101041731694113107711881114147765+JI H G FE D C B A【练习5】 电子数字0-9如图所示,右图是由电子数字组成的乘法算式,但有一些模糊不清,请将右图的电子数字恢复,并将它写成横式形式:______________________.【解析】(1)显然乘积的百位只能是2;(2)被乘数的十位和乘数只能是0、2、6、8,才有可能形如,0首先排除;(3)如果被乘数十位是6或8,那么乘数无论是2、6或8,都不可能乘出百位是2的三位数.所以被乘数十位是2,相应得乘数是.(4)被乘数大于25,通过尝试得到符合条件的答案:28×8=224.【练习6】 下面式中不同的汉字代表不同的数字,问:“数学好玩”表示的四位数是多少?【解析】由积的千位数知“数”=1,由积的十位数知“学”=0,由积的百位数知“玩”=9.竖式化简为下式.由于“1真”×9= “10好”,所以“真”=2,“好”=8,“啊”=6.所以,“数学好玩”=1089.【练习7】在□中填入恰当的数字使算式能够成立.2【解析】①这个除法算式从相除的过程可以看出,商数的十位和千位均为0;②除数的2倍是一个三位数,而除数与商的万位相乘,积为两位数,可知商的万位数字为1,同样可知商的个位数字也为1,即商为10201;③又一个两位数的两倍必小于200,故第一次剩余(即被除数的前三位与除数之差)为1.而一个三位数与一个两位数之差为1,只能是100-99=1,故被除数前三位为“100”,而除数为99,由此可知,被除数为99×10201=1009899.。
奥数讲座 数阵图与数字谜
3741【分析】第一步:由已知可推出6只能填在中间的圆中;第二步:由已经填的数可以得到:2、5、8、11不能出现在第一个圆中,且(2、8)和(5、11)不能在第二个圆中成对出现,(2、5)、(5、8)、(8、11)不能在第三个圆中成对出现,考虑5和8的位置的各种情况,可以得出5、8只能都填在第二个圆中,2、11填在第三个圆中;第三步:判断其余几个数的位置关系:13只能填在第一个圆中,9只能填在第二个圆中,12只能填在第三个圆中,10只能填在第一个圆中。
12112986510133741111098765432【分析】第一步:首先确定数阵图中的关键方格,即相邻两个正方形相交的两个方格;第二步:计算三个22⨯正方形内4个数之和的和,显然这个和能被3整除,其把2~11这10个数填到右图的10个方格中,每格内填一个数,要求图中3个22⨯的正方形中的4个数之和相等.那么,这个和数的最小值是多少?把1,2,3,…,13这13个数分别填在下图所示的3个圆圈内,使得同一个圆圈内任意两个数相减,所得的差不在这个圆圈内.现在已经把1,4,7填在第一个圆圈内,3填在第三个圆圈内,请将其余9个数填好.数阵图与数字谜12中有两个数被重复计算了两次,而231165+++=,除以3余2,因此被重复计算的两个数的和被3除余1,这两个数取2、5时,这个和取得最小值;第三步,由已知的两个方格中的数,得到每个22⨯正方形中的4个数之和的最小值为24,构造各个正方形中其他几个数使每个正方形中的数的和为24,如图,所以所求的最小值是24。
20911638421720【分析】 第一步:由于每个圆圈中所填的数都是上一行与它相邻的两个圆圈中所填数的和,所以只要填出第一行的四个数字就能得到其他圆圈中所填的数.如果第一行填入的是x 、y 、z 、w ,则()320x w y z +++=,由于x w +至少为3,所以y z +不超过5;第二步:由于y z +的和不超过5,所以,y 和z 只可能为1和2、1和3、1和4或者2和3,通过尝试可以得到不止一个答案,右面的答案是其中一个。
一起学奥数-填数阵图(五年级)(重要知识)
因为这13个圆圈分别填上1~13这十三个数,所以 A+B+C+D+4+E+H+I+F+G+K+3+J=91 43+A+H+B+C+D=91 43+43+H=91 H=5
A=4+E=4+5+I=9+I,因为A≤13,所以I≤4,3、4已经给出,则I=1或2
J+K=G G+K=D 即J+K+K=D≤13,所以K≤6。当K=6时,J=1,则C=4(不符),而3 、4、5已经给出,所以K=1或2
观察图形,结合之前学过的知识,如何利用位置规律来填数
重点辅导
12
例3、如下图所示,试分别填入1、2、3、4、5、6、7、8这八个数字,使得图中 用线段连结的两个小圆圈内所填的数字之差(大数字减小数字)恰好是1、2、3、 4、5、6、7这七个数字。
E
G
【分析】先问大家一个问题,1、2、3……8,这8个数中 任意两个数相减(大数减小数),差最大是多少?
重点辅导
13
知识点小结
重点辅导
14
数阵图:把一些数字按照一定的要求,排成的各种各样的图形
辐射型数阵图
数阵图的 三种类型
封闭型数阵图 复合型数阵图
通过局部到整体,再到局部的 解题方法,具体可以分三步走:
区分数阵图中的普通点和关键点(方格)
01
通过已得到的信息进行尝试,或者 运用综合的数学方法进行填数
c1= b1+b2
c2= b2+b3 c3= b3+b4 则有b1+3b2+3b3+b4 =50
小学奥数:数阵图(二).专项练习及答案解析
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格); 第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.复合型数阵图【例 1】 由数字1、2、3组成的不同的两位数共有9个,老师将这9个数写在一个九宫格上,让同学选数,每个同学可以从中选5个数来求和.小刚选的5个数的和是120,小明选的5个数的和是111.如果两人选的数中只有一个是相同的,那么这个数是_____________.313233212223131211【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】迎春杯,中年级,决赛,3题 【分析】 这9个数的和:111213212223313233++++++++10203031233198=++⨯+++⨯=()()由小刚和小明选的数中只有一个是相同的,可知他们正好把这9个数全部都取到了,且有一个数取了两遍.所以他们取的数的总和比这9个数的和多出来的部分就例题精讲知识点拨教学目标5-1-3-2.数阵图是所求的数.那么,这个数是12011119833+-=.【答案】33【例 2】 如图1,圆圈内分别填有1,2,……,7这7个数。
如果6个三角形的顶点处圆圈内的数字的和是64,那么,中间圆圈内填入的数是 。
【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】希望杯,五年级,复赛,第5题,5分 【解析】 2 【答案】2【例 3】 如下图(1)所示,在每个小圆圈内填上一个数,使得每一条直线上的三个数的和都等于大圆圈上三个数的和.(1)17894【考点】复合型数阵图 【难度】3星 【题型】填空 【解析】 为叙述方便,先在每个圆圈内标上字母,如图(2),(2)a cb49817则有a+4+9=a+b+c (1)b+8+9=a+b+c (2)c+17+9=a+b+c (3) (1)+(2)+(3):(a+b+c )+56=3(a+b+c ),a+b+c=28,则 a=28-(4+9)=15,b=28-(8+9)=11,c=28-(17+9)=2解:见图.1789411215【答案】1789411215【例 4】请你将数字1、2、3、4、5、6、7填在下面图(1)所示的圆圈内,使得每个圆圈上的三个数之和与每条直线上的三个数之和相等.应怎样填?【考点】复合型数阵图【难度】3星【题型】填空【解析】为了叙述方便,将各圆圈内先填上字母,如图(2)所示.设A+B+C=A+F+G=A+D+E=B+D+F=C+E+G=k(A+B+C)+(A+F+G)+(A+D+E)+(B+D+F)+(C+E+G)=5k,3A+2B+2C+2D+2E+2F+2G=5k,2(A+B+C+D+E+F+G)+A=5k,2(1+2+3+4+5+6+7)+A=5k,56+A=5k.,因为56+A为5的倍数,得A=4,进而推出k=12,因为在1、2、3、5、6、7中,1+5+6=7+3+2=12,不妨设B=1,F=5,D=6,则C=12-(4+1)=7,G=12-(4+5)=3,E=12-(4+6)=2.,解:得到一个基本解为:(见图)7654321【答案】7654321【例 5】在左下图的每个圆圈中填上一个数,各数互不相等,每个圆圈有3个相邻(即有线段相连的圆圈)的圆圈。
五年级奥数-数阵图(AB卷)
1. 将1~6分别填在图中,使每条边上的三个○内的数的和相等.
2. 把1~8个数分别填入○中,使每条边上三个数的和相等.
3. 把1~9个数分别填入○中,使每条边上四个数的和相等.
4. 把1~10填入图中,使五条边上三个○内的数的和相等.
5. 将1~8个数分别填入图中,使每个圆圈上五个数和分别为20,21,22.
6. 把1~7填入下图中,使每条线段上三个○内的数的和相等.
7. 把1~16填入下图中,使每条边上4个数的和相等,两个八边形上8个数的和也相等.
8. 把4~9填入下图中,使每条线上三个数的和相等,都是18.
9. 把1~8这8个数填入下图,使每边上的加、减、乘、除成立.
10. 把0~9填入10个小三角形中,使每4个小三角形组成的大三角形的和相等.
11. 把1~11填入图中,使每条线上三个数的和相等.
12. 把1~8,填入图中,使每条线及正方形四个顶点上的数的和相等.
13. 把1~9,填入下图中,使每条线段三个数和及四个顶点的和也相等.
14. 把17,23,25,31,46,53,58,66,72,88,94,100十二个数填入下图,使任意三个相邻的数相加的和除以7的余数相等.。
小学数学五年级《数阵图与数字谜》练习题(含答案)
《数阵图与数字谜》练习题(含答案)你还记得吗【复习1】把1~5这五个数填入右图中的○里,使每条直线上的三个数之和相等.分析:(1+2+3+4+5)+重叠数=每条直线上三数之和×2,所以,每条直线上三数之和=(15+重叠数)÷2.因为每条直线上的三数之和是整数,所以“15+重叠数”只能是偶数,重叠数只可能是1,3或5.若“重叠数”=1,则两条直线上三数之和为(15+1)÷2=8。
填法见下图(1);若“重叠数”=3,则两条直线上三数之和为(15+3)÷2=9。
填法见下图(2);若“重叠数”=5,则两条直线上三数之和为(15+5)÷2=10。
填法见下图(3).【复习2】将1~7这七个数分别填入右图的○里,使得每条直线上三个数之和与每个圆圈上的三个数之和都相等.分析:所有的数都是重叠数,中心数重叠两次,其它数重叠一次. 所以三条边及两个圆周上的所有数之和为:(1+2+…+7)×2+中心数=56+中心数.因为每条边及每个圆周上的三数之和都相等,所以这个和应该是5的倍数,再由中心数在1至7之间,所以中心数是4. 每条边及每个圆周上的三数之和等于(56+4)÷5=12.中心数是4,每边其余两数之和是12-4=8,两数之和是8的有1,7;2,6;3,5.于是得到右下图的填法.【复习3】在右图所示的竖式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字。
如果:巧+解+数+字+谜=30,那么“数字谜”所代表的三位数是多少?分析:还是先看个位,5个“谜”相加的结果个位还是等于“谜”,“谜”必定是5(0显然可以排除);接着看十位,四个“字”相加再加上进位2,结果尾数还是“字”,那说明“字”只能是6;再看百位,三个“数”相加再加上进位2,结果尾数还是“数”,“数”可能是4或9;再看千位,(1)如果“数”为4,两个“解”相加再加上进位1,结果尾数还是“解”,那说明“解”只能是9;5+6+4+9=24,30-24=6,“巧”等于6与“字”等于6重复,不能;(2)如果“数”为9,两个“解”相加再加上进位2,结果尾数还是“解”,那说明“解”只能是8;5+6+9+8=28,30-28=2,可以. 所以“数字谜”代表的三位数是965.数 阵 图数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵. 幻方是特殊的数阵图,一般地,将九个不同的数填在3×3(即三行三列)的方格中,使每行、每列、及二条对角线上的三数之和均相等,这样的3×3的数阵阵列称为三阶幻方. n 阶幻方的定义与三阶幻方相仿!【例1】 (1)将九个数填入下图(1)的九个空格中,使得任一行、任一列以及两条对角线上的三个数之和都等于定数k ,则中心方格中的数必为3k .请你说明理由! (2)将九个数填入下图(2)的空格中,使得每行、每列、每条对角线上的三个数之和都相等,则一定有:2a b e +=.请你说明理由!(3)将九个数填入下图(3)的空格中,使得每行、每列、每条对角线上的三个数之和都相等,则一定有:2a b c +=.请你说明理由!分析:(1)因为每行的三数之和都等于k ,共有三行,所以九个数之和等于3k.如右下图所示,经过中心方格的有四条虚线,每条虚线上的三个数之和都等于k ,四条虚线上的所有数之和等于4k ,其中只有中心方格中的数是“重叠数”,九个数各被计算一次后,它又被重复计算了三次.所以有:九数之和+中心方格中的数×3=4k ,3k+中心方格中的数×3=4k ,中心方格中的数=3k (2)和=3e ,a+e+b=和=3e ,所以a+b=2e ,即得:2a b e +=.(3)设中心数为d. 每行、每列、每条对角线上的三个数之和都等于3d. 由此可得右图,那么有:c +(2d -b )= a +(2d -c ),由此可得:2a b c +=. 值得注意的是,这个结论对于a 和b 并没有什么限制,可以是自然数,也可以是分数、小数;可以相同,也可以不同.【巩固】在右图的空格中填入七个自然数,使得每一行、每一列及每一条对角线上的三个数之和都等于90.分析:中心数为90÷3=30;右上角的数为(23+57)÷2=40,其它数依次可填(见右下图).【巩固】在下图的每个空格中填入个自然数,使得每一行、每一列及每条对角线上的三个数之和都相等.分析:右下角的数为(8+10)÷2=9,中心数为(5+9)÷2=7,且每行、每列、每条对角线上的三数之和都等于7×3=21.由此可得右下图的填法.【巩固】图中3×3的正方形的每一个方格内的字母都代表一个数,已知其每行、每列以及两条对角线上三个数之和都相等.若f=19,g=96.那么b是多少?分析:我们知道:g=(b+f)÷2,易得b=173.【例2】在右图的每个空格中,填入不大于12且互不相同的八个自然数,使得每行、每列、每条对角线上的三个数之和都等于21 .分析:中央一数必定是21÷3=7.从而一条对角线为8,7,6.另两个角上的数,和为14=2+12=3+11=4+10=5+9,不难验证只有3、11与4、10两种符合要求.于是填法有:【巩固】在右图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21.分析:【例3】将1,3,5,7,9,11,13,15,17填入3×3的方格内,使其构成一个幻方. 分析:(法1):易得中心数为9,然后将剩余那么其余8个数分为4组,每组两个数的和是18,把它们分别填入图中关于中心格对称的格子内,实验可得结果,如右图. 答案不唯一,仅供参考.(法2):其实会学习的小朋友就知道理利用已经学习过的一些典型题目结果加以变形得到新题答案.事实上我们可以把结果中的幻方看作是1~9填图的幻方相应位置数字乘2减1得来的.推广开来可以知道等差数列填图的三阶幻方几乎都具有相似的形式.【前铺】将自然数1至9,分别填在右图的方格中,使得每行、每列以及两条对角线上的三个数之和都相等.分析:(法1):三行的总和=1+2+3+4+…+9=45,所以每行三个数的和是45÷3=15,所以E代表15÷3=5,由于在同一条直线的三个数之和是15,因此若某格中的数是奇数,那么与这个数在同一条直线上的另两个数的奇偶性相同.因此,四个角上的数A、C、G、I必为偶数.(否则,若A为奇数,则I为奇数.此时若B为奇数,则其余所有格亦为奇数;若B为偶数,则其余所有格亦为偶数.无论哪种情形,都与1至9中有5个奇数,4个偶数这一事实矛盾.)因此,B、D、F、H为奇数.我们不妨认为A=2(否则,可把3×3方格绕中心块旋转即能做到这一点).此时I=8.此时有两种选择:C=4或G=4.因而,G=6或C=6.其他格的数随之而定.如果把经过中心块旋转而能完全重合的两种填数法视作一种的话,一共只有两种不同的填数法:A=2,C=4或A=Z,G=4(2,4被确定位置后,其他数的位置随之而定).(法2):从法1知道中心数为5,那么其余8个数分为4组,每组两个数的和是10,把它们分别填入图中关于中心格对称的格子内,实验可得结果.这种试填的方法更易让学生接受.【拓展】如图(1)的3×3的阵列中填入了l~9的自然数,构成大家熟知的3阶幻方.现在另有一个3×3的阵列,如图(2),请选择9个不同自然数填人9个方格中,使得其中最大者为20,最小者大于5,且要求横加、竖加、对角线方式相加的3个数之和都相等.分析:①观察原表中的各数是从1~9不同的九个自然数,其中最大的数是9,最小的数是1,且横加、竖加、对角线方式相加结果相等.②根据题意,要求新制的幻方最大数为20,而9+11=20,因此,如果原表中的各数都增加11,就能符合新表中的条件了.【例4】右图是一个四阶幻方,请将其补全:分析:根据各行,各列,各对角线和相等为34,可得图(1),此时我们可以设未知数,如图(2),将一些数表示出来,进而根据和为34求得x代表9,随后得到答案,如图(3).【拓展】在图中所示方格表的每个方格内填入—个恰当的字母;可使每行、每列及两条对角线上4个方格中字母都是A、B、C、D,那么标有“*”的方格内应填的字母是什么?分析:考虑含A和*的对角线上的元素.第二行第二个元素与C同行,因此不是C,第三行第三个元素与C同列,因此也不是C,所以*代表的元素必为C.【巩固】在右图的每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数字都是1,2,3,4.分析:如下图所示,受列及对角线的限制,a处只能填1,从而b处填3;进而推知c处填4,d处填3,e处填4,……右下图为填好后的数阵图.【例5】右图是大家都熟悉的奥林匹克的五环标志. 请将1~9分别填入五个圆相互分割的九个部分,并且使每个圆环内的数字之和都相等.分析:设每个圆内的数字之和为k,则五个圆内的数字之和是5k,它等于1~9的和45,再加上两两重叠处的四个数之和. 而两两重叠处的四个数之和最小是1+2+3+4=10,最大是6+7+8+9=30,所以,5k≤45+30=75且5k≥45+10=55,即11≤k≤15 .当k=11,13,14时可得四种填法(见下图),k=12,15时无解.【前铺】将1~11填入左下图的○内,使每条虚线上的三数之和都等于18.分析:设中心数为a,由五条虚线上的数字之和得到5×18=(1+2+…+11)+4a,解得a=6. 填数方法如下图.【例6】将1~7这七个自然数分别填入右图的七个○内,使得三个大圆周上的四个数之和都等于定数,指出这个定数所有的可能取值,并给出定数为13时的一种填法.分析:设每个大圆周上的四个数之和为k(即题中的定数). 图中有一个○属于三个大圆公有,有三个○各属于两个大圆公有. 设属于三个大圆公有的○内的数为w,属于两个大圆公有的三个○内的数字之和为v.将三个大圆上的数字和相加,得到:3k=1+2+3+4+5+6+7+v+2w=28+v+2w,因为v+2w最小为11(w=1,v=2+3+4),最大为29(w=7,v=6+5+4),分别代入上式,解得13≤k≤19,即定数可以取13至19之间的整数.本题是k=13的情况,此时w=1,v=2+3+4,填法见右下图.【例7】在右图所示立方体的八个顶点上标出1~9中的八个,使得每个面上四个顶点所标数字之和都等于k,并且k不能被未标出的数整除.分析:标出的八个数是每面四个数和的2倍,是偶数,1~9和为45 ,因此未标出的数是一个奇数,在1,3,5,7,9中选一个数,并使余下八个数之和的一半不能被这个数整除,依此可知未标出的数是7.下面用余下的8个数填图,每面四个数和为:(45-7)÷2=19.如果已知某一面上四个数和为19.那么与其平行的面上四数和也必为19.因此我们只考虑有公共顶点的三个面即可.下面我们考虑以9为公共顶点的三个面.由于8,9不公面,因此8在顶点9的对顶点上,有公共点9的三个面上,每面其余三个数和为10,且每两个面有一个公共顶点.由此试验易得三个面上的数分别为:(6,3,1),(5,4,1),(3,2,5),填图如右下图.数字谜【例8】将0~9中的8个不同的数字分别用a、b、c、d、e、f、g、h替换.在替换规则+=,如上面4个式子中,“+”、“×”、下:g×g=db,g×c=bd,g×f=ef,ag b eh⨯的“=与平常算术中相应的符号意义相同,而且也是十进位制.在这种替换规则下,ca e数值等于 .分析:由g×g=db知,g≥4.若g=4,d=1,与g ×c=bd 是偶数矛盾; 若g=5,则d=2,b=5,与g ≠b 矛盾;若g=6,则d=3,b=6,与g ≠b 矛盾;若g=7,则d=4,b=9,由g×c =bd =94,得到c =4÷7=3137也不合题意; 若g=8,则d=6,b=4,由g×c =bd 46,得到c=46÷8=354,仍不合题意; 若g=9,则d=8,b=1,由g×c =bd =18,得到c=18÷9=2,再由g ×f=ef ,f=5,e=4,再由ag b eh +=,得a=e-1=3.所以23492ca e ⨯=⨯=.【例9】 在下面的加法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.请把下面汉字算式翻译成数字算式.分析:首先“华”=1.由于“人”≠“华”,故“人”只能是0.从百位看出. 百位没有向千位进位,即有“香”=9.看百位,知“回”比“港”大1;再看十位,可知“爱”=8,并且个位要向十位进位,即“归”+“港”=10 +“游”.因为“游”≠0,1,知“游”≥2,即“归”+“港”≥12.又“归”≠8,9,知“归”≤7,从而“港”≥5.同样,“归”也不小于5,并且由于“回”比 “港”大1,知“归”、“港”、“回”应该是5,6,7(次序未确定).容易验证,只有“归”=7,“港”=5,“回”=6符合条件,此时“游”=2,即算式为 :9567+1085=10652 .【巩固】在下面的算式中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6,7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于多少?分析:根据加法规则,“第”=1.“届”+“赛”=6或“届”+“赛”=16.若“届”+“赛”=6,只能是“届”、“赛”分别等于2或4,此时“一”+“杯”=10 只能是“一”、“杯”分别为3或7.此时“十”+“华”=9,“十”、“华’’分别只能取 (1,8),(2,7),(3,6),(4,5).但l ,2,3,4均已被取用,不能再取.所以,“届”+ “赛”=6填不出来,只能是“届”+“赛”=16.这时“届”、“赛”只能分别取9和7.这 时只能是“一”+“杯”+1=10,且“十”+“华”+1=10,也就是“一”+“杯”=9, 同时“十”+“华”=9.所以它们可以分别在(3,6),(4,5)两组中取值.因此“第、十、一、届、华、杯、赛”所代表的7个数字的和等于1+9+9+16=35.【例10】在右面的□内,各填一个合适的数字,使算式成立.分析:从被乘数个位上的□里填什么数字入手及竖式中□×6=()4,是本题的突破口.这里有两种情况:4×6=24或9×6=54,都可使□×6=()4成立.也就是说,被乘数个位上的数字可能是4,也可能是9.先考虑被乘数个位上的数字是9的可能性,因为在乘数十位上找不出任何数字与9相乘得“整十数”,所以被乘数个位上的数字不可能是9.如果被乘数个位上的数字是4,很容易推出乘数十位上的数字应是5,才能与4相乘得“整十数”.由被乘数乘以乘数十位上的5得270,也很容易推出被乘数十位上的数字是5,进而可推出其它各数字.【巩固】在□内填入适当的数字,使下列乘法竖式成立:分析:(1)17×64=1088;(2)5283×39=206037;(3)734×619=454346,被乘数是6606和4404的三位数的公约数.【例11】□内填入适当的数字,使下列竖式成立,并使商尽可能小:分析:由右式知d=8,所以c=3或8.当a=2时,由bc×a=□5□,推出c不等于3,所以c=8,故推出b=7;因为除数是两位数,它与商的各个数位的乘积都是三位数,所以商的最小可能值为262。
五年级上册数学奥数试题 数阵图---难度5星 人教版 含答案
--------数阵图(★★★★★)1.学习简单的数阵图;2.学习解决简单的数学问题。
知识结构我们在以前已经学习过辐射型和封闭型数阵,其解题的关键在于“重叠数”。
本讲和下一讲,我们学习三阶方阵,就是将九个数按照某种要求排列成三行三列的数阵图,解题的关键仍然是“重叠数”。
我们先从一道典型的例题开始。
(★★★★★)把20以内的质数分别填入下图的一个○中,使得图中用箭头连接起来的四个数之和都相等。
分析与解:由上图看出,三组数都包括左、右两端的数,所以每组数的中间两数之和必然相等。
20以内共有2,3,5,7,11,13,17,19八个质数,两两之和相等的有5+19=7+17=11+13,于是得到下图的填法。
(★★★★★)在右图的每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数字都是1,2,3,4。
分析与解:如左下图所示,受列及对角线的限制,a处只能填1,从而b处填3;进而推知c处填4,d处填3,e处填4,……右下图为填好后的数阵图。
(★★★★★)将1~8填入左下图的○内,要求按照自然数顺序相邻的两个数不能填入有直线连接的相邻的两个○内。
分析与解:因为中间的两个○各自只与一个○不相邻,而2~7中的任何一个数都与两个数相邻,所以这两个○内只能填1和8。
2只能填在与1不相邻的○内,7只能填在与8不相邻的○内。
其余数的填法见右上图。
(★★★★★)在右图的六个○内各填入一个质数(可取相同的质数),使它们的和等于20,而且每个三角形(共5个)顶点上的数字之和都相等。
分析与解:因为大三角形的三个顶点与中间倒三角形的三个顶点正好是图中的六个○,又因为每个三角形顶点上的数字之和相等,所以每个三角形顶点上的数字之和为20÷2=10。
10分为三个质数之和只能是2+3+5,由此得到右图的填法。
(★★★★★)在右图所示立方体的八个顶点上标出1~9中的八个,使得每个面上四个顶点所标数字之和都等于k,并且k不能被未标出的数整除。
小学数学五年级《数阵图与数字谜》练习题(含答案)
《数阵图与数字谜》练习题(含答案)你还记得吗【复习1】把1~5这五个数填入右图中的○里,使每条直线上的三个数之和相等.分析:(1+2+3+4+5)+重叠数=每条直线上三数之和×2,所以,每条直线上三数之和=(15+重叠数)÷2.因为每条直线上的三数之和是整数,所以“15+重叠数”只能是偶数,重叠数只可能是1,3或5.若“重叠数”=1,则两条直线上三数之和为(15+1)÷2=8。
填法见下图(1);若“重叠数”=3,则两条直线上三数之和为(15+3)÷2=9。
填法见下图(2);若“重叠数”=5,则两条直线上三数之和为(15+5)÷2=10。
填法见下图(3).【复习2】将1~7这七个数分别填入右图的○里,使得每条直线上三个数之和与每个圆圈上的三个数之和都相等.分析:所有的数都是重叠数,中心数重叠两次,其它数重叠一次. 所以三条边及两个圆周上的所有数之和为:(1+2+…+7)×2+中心数=56+中心数.因为每条边及每个圆周上的三数之和都相等,所以这个和应该是5的倍数,再由中心数在1至7之间,所以中心数是4. 每条边及每个圆周上的三数之和等于(56+4)÷5=12.中心数是4,每边其余两数之和是12-4=8,两数之和是8的有1,7;2,6;3,5.于是得到右下图的填法.【复习3】在右图所示的竖式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字。
如果:巧+解+数+字+谜=30,那么“数字谜”所代表的三位数是多少?分析:还是先看个位,5个“谜”相加的结果个位还是等于“谜”,“谜”必定是5(0显然可以排除);接着看十位,四个“字”相加再加上进位2,结果尾数还是“字”,那说明“字”只能是6;再看百位,三个“数”相加再加上进位2,结果尾数还是“数”,“数”可能是4或9;再看千位,(1)如果“数”为4,两个“解”相加再加上进位1,结果尾数还是“解”,那说明“解”只能是9;5+6+4+9=24,30-24=6,“巧”等于6与“字”等于6重复,不能;(2)如果“数”为9,两个“解”相加再加上进位2,结果尾数还是“解”,那说明“解”只能是8;5+6+9+8=28,30-28=2,可以. 所以“数字谜”代表的三位数是965.数 阵 图数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵. 幻方是特殊的数阵图,一般地,将九个不同的数填在3×3(即三行三列)的方格中,使每行、每列、及二条对角线上的三数之和均相等,这样的3×3的数阵阵列称为三阶幻方. n 阶幻方的定义与三阶幻方相仿!【例1】 (1)将九个数填入下图(1)的九个空格中,使得任一行、任一列以及两条对角线上的三个数之和都等于定数k ,则中心方格中的数必为3k .请你说明理由! (2)将九个数填入下图(2)的空格中,使得每行、每列、每条对角线上的三个数之和都相等,则一定有:2a b e +=.请你说明理由!(3)将九个数填入下图(3)的空格中,使得每行、每列、每条对角线上的三个数之和都相等,则一定有:2a b c +=.请你说明理由!分析:(1)因为每行的三数之和都等于k ,共有三行,所以九个数之和等于3k.如右下图所示,经过中心方格的有四条虚线,每条虚线上的三个数之和都等于k ,四条虚线上的所有数之和等于4k ,其中只有中心方格中的数是“重叠数”,九个数各被计算一次后,它又被重复计算了三次.所以有:九数之和+中心方格中的数×3=4k ,3k+中心方格中的数×3=4k ,中心方格中的数=3k (2)和=3e ,a+e+b=和=3e ,所以a+b=2e ,即得:2a b e +=.(3)设中心数为d. 每行、每列、每条对角线上的三个数之和都等于3d. 由此可得右图,那么有:c +(2d -b )= a +(2d -c ),由此可得:2a b c +=. 值得注意的是,这个结论对于a 和b 并没有什么限制,可以是自然数,也可以是分数、小数;可以相同,也可以不同.【巩固】在右图的空格中填入七个自然数,使得每一行、每一列及每一条对角线上的三个数之和都等于90.分析:中心数为90÷3=30;右上角的数为(23+57)÷2=40,其它数依次可填(见右下图).【巩固】在下图的每个空格中填入个自然数,使得每一行、每一列及每条对角线上的三个数之和都相等.分析:右下角的数为(8+10)÷2=9,中心数为(5+9)÷2=7,且每行、每列、每条对角线上的三数之和都等于7×3=21.由此可得右下图的填法.【巩固】图中3×3的正方形的每一个方格内的字母都代表一个数,已知其每行、每列以及两条对角线上三个数之和都相等.若f=19,g=96.那么b是多少?分析:我们知道:g=(b+f)÷2,易得b=173.【例2】在右图的每个空格中,填入不大于12且互不相同的八个自然数,使得每行、每列、每条对角线上的三个数之和都等于21 .分析:中央一数必定是21÷3=7.从而一条对角线为8,7,6.另两个角上的数,和为14=2+12=3+11=4+10=5+9,不难验证只有3、11与4、10两种符合要求.于是填法有:【巩固】在右图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21.分析:【例3】将1,3,5,7,9,11,13,15,17填入3×3的方格内,使其构成一个幻方. 分析:(法1):易得中心数为9,然后将剩余那么其余8个数分为4组,每组两个数的和是18,把它们分别填入图中关于中心格对称的格子内,实验可得结果,如右图. 答案不唯一,仅供参考.(法2):其实会学习的小朋友就知道理利用已经学习过的一些典型题目结果加以变形得到新题答案.事实上我们可以把结果中的幻方看作是1~9填图的幻方相应位置数字乘2减1得来的.推广开来可以知道等差数列填图的三阶幻方几乎都具有相似的形式.【前铺】将自然数1至9,分别填在右图的方格中,使得每行、每列以及两条对角线上的三个数之和都相等.分析:(法1):三行的总和=1+2+3+4+…+9=45,所以每行三个数的和是45÷3=15,所以E代表15÷3=5,由于在同一条直线的三个数之和是15,因此若某格中的数是奇数,那么与这个数在同一条直线上的另两个数的奇偶性相同.因此,四个角上的数A、C、G、I必为偶数.(否则,若A为奇数,则I为奇数.此时若B为奇数,则其余所有格亦为奇数;若B为偶数,则其余所有格亦为偶数.无论哪种情形,都与1至9中有5个奇数,4个偶数这一事实矛盾.)因此,B、D、F、H为奇数.我们不妨认为A=2(否则,可把3×3方格绕中心块旋转即能做到这一点).此时I=8.此时有两种选择:C=4或G=4.因而,G=6或C=6.其他格的数随之而定.如果把经过中心块旋转而能完全重合的两种填数法视作一种的话,一共只有两种不同的填数法:A=2,C=4或A=Z,G=4(2,4被确定位置后,其他数的位置随之而定).(法2):从法1知道中心数为5,那么其余8个数分为4组,每组两个数的和是10,把它们分别填入图中关于中心格对称的格子内,实验可得结果.这种试填的方法更易让学生接受.【拓展】如图(1)的3×3的阵列中填入了l~9的自然数,构成大家熟知的3阶幻方.现在另有一个3×3的阵列,如图(2),请选择9个不同自然数填人9个方格中,使得其中最大者为20,最小者大于5,且要求横加、竖加、对角线方式相加的3个数之和都相等.分析:①观察原表中的各数是从1~9不同的九个自然数,其中最大的数是9,最小的数是1,且横加、竖加、对角线方式相加结果相等.②根据题意,要求新制的幻方最大数为20,而9+11=20,因此,如果原表中的各数都增加11,就能符合新表中的条件了.【例4】右图是一个四阶幻方,请将其补全:分析:根据各行,各列,各对角线和相等为34,可得图(1),此时我们可以设未知数,如图(2),将一些数表示出来,进而根据和为34求得x代表9,随后得到答案,如图(3).【拓展】在图中所示方格表的每个方格内填入—个恰当的字母;可使每行、每列及两条对角线上4个方格中字母都是A、B、C、D,那么标有“*”的方格内应填的字母是什么?分析:考虑含A和*的对角线上的元素.第二行第二个元素与C同行,因此不是C,第三行第三个元素与C同列,因此也不是C,所以*代表的元素必为C.【巩固】在右图的每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数字都是1,2,3,4.分析:如下图所示,受列及对角线的限制,a处只能填1,从而b处填3;进而推知c处填4,d处填3,e处填4,……右下图为填好后的数阵图.【例5】右图是大家都熟悉的奥林匹克的五环标志. 请将1~9分别填入五个圆相互分割的九个部分,并且使每个圆环内的数字之和都相等.分析:设每个圆内的数字之和为k,则五个圆内的数字之和是5k,它等于1~9的和45,再加上两两重叠处的四个数之和. 而两两重叠处的四个数之和最小是1+2+3+4=10,最大是6+7+8+9=30,所以,5k≤45+30=75且5k≥45+10=55,即11≤k≤15 .当k=11,13,14时可得四种填法(见下图),k=12,15时无解.【前铺】将1~11填入左下图的○内,使每条虚线上的三数之和都等于18.分析:设中心数为a,由五条虚线上的数字之和得到5×18=(1+2+…+11)+4a,解得a=6. 填数方法如下图.【例6】将1~7这七个自然数分别填入右图的七个○内,使得三个大圆周上的四个数之和都等于定数,指出这个定数所有的可能取值,并给出定数为13时的一种填法.分析:设每个大圆周上的四个数之和为k(即题中的定数). 图中有一个○属于三个大圆公有,有三个○各属于两个大圆公有. 设属于三个大圆公有的○内的数为w,属于两个大圆公有的三个○内的数字之和为v.将三个大圆上的数字和相加,得到:3k=1+2+3+4+5+6+7+v+2w=28+v+2w,因为v+2w最小为11(w=1,v=2+3+4),最大为29(w=7,v=6+5+4),分别代入上式,解得13≤k≤19,即定数可以取13至19之间的整数.本题是k=13的情况,此时w=1,v=2+3+4,填法见右下图.【例7】在右图所示立方体的八个顶点上标出1~9中的八个,使得每个面上四个顶点所标数字之和都等于k,并且k不能被未标出的数整除.分析:标出的八个数是每面四个数和的2倍,是偶数,1~9和为45 ,因此未标出的数是一个奇数,在1,3,5,7,9中选一个数,并使余下八个数之和的一半不能被这个数整除,依此可知未标出的数是7.下面用余下的8个数填图,每面四个数和为:(45-7)÷2=19.如果已知某一面上四个数和为19.那么与其平行的面上四数和也必为19.因此我们只考虑有公共顶点的三个面即可.下面我们考虑以9为公共顶点的三个面.由于8,9不公面,因此8在顶点9的对顶点上,有公共点9的三个面上,每面其余三个数和为10,且每两个面有一个公共顶点.由此试验易得三个面上的数分别为:(6,3,1),(5,4,1),(3,2,5),填图如右下图.数字谜【例8】将0~9中的8个不同的数字分别用a、b、c、d、e、f、g、h替换.在替换规则+=,如上面4个式子中,“+”、“×”、下:g×g=db,g×c=bd,g×f=ef,ag b eh⨯的“=与平常算术中相应的符号意义相同,而且也是十进位制.在这种替换规则下,ca e数值等于 .分析:由g×g=db知,g≥4.若g=4,d=1,与g ×c=bd 是偶数矛盾; 若g=5,则d=2,b=5,与g ≠b 矛盾;若g=6,则d=3,b=6,与g ≠b 矛盾;若g=7,则d=4,b=9,由g×c =bd =94,得到c =4÷7=3137也不合题意; 若g=8,则d=6,b=4,由g×c =bd 46,得到c=46÷8=354,仍不合题意; 若g=9,则d=8,b=1,由g×c =bd =18,得到c=18÷9=2,再由g ×f=ef ,f=5,e=4,再由ag b eh +=,得a=e-1=3.所以23492ca e ⨯=⨯=.【例9】 在下面的加法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.请把下面汉字算式翻译成数字算式.分析:首先“华”=1.由于“人”≠“华”,故“人”只能是0.从百位看出. 百位没有向千位进位,即有“香”=9.看百位,知“回”比“港”大1;再看十位,可知“爱”=8,并且个位要向十位进位,即“归”+“港”=10 +“游”.因为“游”≠0,1,知“游”≥2,即“归”+“港”≥12.又“归”≠8,9,知“归”≤7,从而“港”≥5.同样,“归”也不小于5,并且由于“回”比 “港”大1,知“归”、“港”、“回”应该是5,6,7(次序未确定).容易验证,只有“归”=7,“港”=5,“回”=6符合条件,此时“游”=2,即算式为 :9567+1085=10652 .【巩固】在下面的算式中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6,7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于多少?分析:根据加法规则,“第”=1.“届”+“赛”=6或“届”+“赛”=16.若“届”+“赛”=6,只能是“届”、“赛”分别等于2或4,此时“一”+“杯”=10 只能是“一”、“杯”分别为3或7.此时“十”+“华”=9,“十”、“华’’分别只能取 (1,8),(2,7),(3,6),(4,5).但l ,2,3,4均已被取用,不能再取.所以,“届”+ “赛”=6填不出来,只能是“届”+“赛”=16.这时“届”、“赛”只能分别取9和7.这 时只能是“一”+“杯”+1=10,且“十”+“华”+1=10,也就是“一”+“杯”=9, 同时“十”+“华”=9.所以它们可以分别在(3,6),(4,5)两组中取值.因此“第、十、一、届、华、杯、赛”所代表的7个数字的和等于1+9+9+16=35.【例10】在右面的□内,各填一个合适的数字,使算式成立.分析:从被乘数个位上的□里填什么数字入手及竖式中□×6=()4,是本题的突破口.这里有两种情况:4×6=24或9×6=54,都可使□×6=()4成立.也就是说,被乘数个位上的数字可能是4,也可能是9.先考虑被乘数个位上的数字是9的可能性,因为在乘数十位上找不出任何数字与9相乘得“整十数”,所以被乘数个位上的数字不可能是9.如果被乘数个位上的数字是4,很容易推出乘数十位上的数字应是5,才能与4相乘得“整十数”.由被乘数乘以乘数十位上的5得270,也很容易推出被乘数十位上的数字是5,进而可推出其它各数字.【巩固】在□内填入适当的数字,使下列乘法竖式成立:分析:(1)17×64=1088;(2)5283×39=206037;(3)734×619=454346,被乘数是6606和4404的三位数的公约数.【例11】□内填入适当的数字,使下列竖式成立,并使商尽可能小:分析:由右式知d=8,所以c=3或8.当a=2时,由bc×a=□5□,推出c不等于3,所以c=8,故推出b=7;因为除数是两位数,它与商的各个数位的乘积都是三位数,所以商的最小可能值为262。
五年级奥数数阵问题
课时3 数阵问题(一)一.数阵填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。
这里,主要讨论一些数阵的填法。
解答数阵问题通常用两种方法:一是待定数法,二是试验法。
待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。
试验法就是根据题中所给条件选准突破口,确定填数的可能范围。
把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。
二.例题精析例1 把5、6、7、8、9五个数分别填入下图的五个方格里,如图a使横行三个数的和与竖行三个数的和都是21。
先把五格方格中的数用字母A、B、C、D、E来表示,根据题意可知:A+B+C+D +E=35,A+E+B+C+E+D=21×2=42。
把两式相比较可知,E=42-35=7,即中间填7。
然后再根据5+9=6+8便可把五个数填进方格,如图b。
小试牛刀把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。
2、把1——9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。
3、将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。
例2 将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30。
分析设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3+……+10+a+b=30×2、即55+a+b=60,a+b=5。
在1——10这十个数中1+4=5,2+3=5。
当a和b是1和4时,每个大圆上另外四个数分别是(2、6,8,9)和(3、5,7,10);当a和b是2和3时,每个大圆上另外四个数分别为(1、5,9,10)和(4,6,7,8)。
小试牛刀1、把1——8八个数分别填入下图的○内,使每个大圆上五个○内数的和相等。
2、把1——10这十个数分别填入下图的○内,使每个四边形顶点的○内四个数的和都相等,且和最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八讲数阵图与数字谜教学目标1. 熟悉数阵图与数字谜的题目特点;2. 掌握数阵图与数字谜的解题思路。
精讲讲练数阵图数阵图是把一些数按照一定规则填在某一特定图形的规定位置上而来的图形,有时简称数阵。
【例1】 (2007年“希望杯”第二试)在右图所示○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点的三个数的和是__________。
【分析】 由于每条边上的三个数的和都是12,所以把这三条边上的三个数的和都加起来,总和应为12336⨯=,在其中,A 、B 、C 各算了一次,三个顶点的三个数各算了两次,所以三个顶点的三个数的和为(3618)29-÷=。
【例2】 (2007年天津“陈省身杯”国际青少年数学邀请赛)将112:这十二个自然数分别填入右图的12个圆圈内,使得每条直线上的四个数之和都相等,这个相等的和为__________。
【分析】 由于每条直线上的四个数之和都相等,设这个相等的和为S ,把所有6条直线上的四个数之和相加,得到总和为6S ;另一方面,在这样相加中,由于每个数都恰好在两条直线上,所以每个数都被计算了两遍。
所以,6(12312)2S =++++⨯L ,得到26S =,即所求的相等的和为26。
【例3】 (2007年“走进美妙的数学花园”决赛)如右图所示,A ,B ,C ,D ,E ,F ,G ,H ,I ,J 表示110:这10个各不相同的数字。
表中的数为所在行与列的对应字母的和,例如“14G C +=”。
请将表中其它的数全部填好。
C BA【分析】 由于5A F +=,14B F +=,所以1459B A -=-=,所以A 和B 只能是0和9。
因此可以推出:0A =,9B =,6C =,3D =,2E =,5F =,8G =,1H =,4I =,7J =。
可得右下图。
【例4】 (2007年“走进美妙的数学花园”初赛)从1、2、3…20这20个数中选出9个不同的数放入33⨯的方格表中,使得每行、每列、每条对角线上的三个数的和都相等。
这9个数中最多有__________个质数。
【分析】 120:中的质数有2、3、5、7、11、13、17、19,共8个。
如果这8个质数都用上,无论另外一个数是奇数还是偶数,根据奇偶性分析,都无法满足题目的要求。
所以8个质数不可能都用上,最多只能用7个。
若用7个,只有用3、5、7、11、13、17、19这7个奇数,再加上两个奇数9和15时,恰好是9个连续奇数,方格表可以填出,如右图。
故这9个数中最多有7个质数。
[前铺] 在右图的每个空格中填入一个数字,使得每行、每列及每条对角线上的三个数之和都等于24。
[分析] 我们知道19:填图的幻方每行、每列及每条对角线上的三个数之和都等于15,而本题中的幻方每行、每列及每条对角线上的三个数之和都等于24,比19:填图的幻方大了24159-=,相当于每个数都大了933÷=,所以只需要把19:填图的幻方中的每个数都加3就可以了。
[前铺] 将1、3、5、7、9、11、13、15、17填入33⨯的方格内,使其构成一个幻方。
[分析] (法1):中心数为9,然后将其余8个数分为4组,每组两个数的和是18,把它们分别填入图中关于中心格对称的格子内,实验可得结果,如右图。
答案不唯一,仅供参考。
(法2):其实会学习的小朋友知道利用已经学习过的一些典型题目的结果加以变形得到新题的答案。
事实上我们可以把本题中的幻方看作是19:填图的幻方相应位置的数字乘以2再减1得来的。
推广开来可以知道等差数列填图的三阶幻方几乎都具有相似的形式。
19171513119753691257108411961357911131517【例5】 在右图所示立方体的八个顶点上标出19:中的八个,使得每个面上四个顶点所标数字之和都等于k ,并且k 不能被未标出的数整除。
【分析】 标出的八个数之和是每面四个数之和的2倍,是偶数,19:的和为45 ,因此未标出的数是一个奇数,只能是1、3、5、7、9中的一个,并使余下八个数之和的一半不能被这个数整除,由于1、3、5、9都不满足这一条件,依此可知未标出的数是7。
下面用余下的8个数填图,每面四个数之和为:(457)219-÷=。
如果已知某一面上四个数的和为19,那么与其平行的面上的四数之和也必为19。
因此我们只考虑有公共顶点的三个面即可。
下面我们考虑以9为公共顶点的三个面,由于8,9不共面,因此8在顶点9的对顶点上,有公共点9的三个面上,每面其余三个数之和为10,且每两个面有一个公共顶点,由此试验易得三个面上的数分别为:(6,3,1),(5,4,1),(3,2,5),填图如右下图。
数字谜数字谜,顾名思义就是猜数字,它是与数字有关的一类有趣的数学问题。
【例6】 (湖北省“创新杯”初赛)如右图,加法算式中,七个方格中的数字之和等于__________。
【分析】 由加法算式中的百位要向千位进位知百位的数字和为19,但两个加数的百位之和最大为9918+=,由于十位最多向百位进1,这说明两个加数的百位数字都是9。
同理可知两个加数的十位数字都是9,且个位之和向十位进1,所以这两个加数的个位数字之和为14。
所以七个方格中的数字之和为1941451+⨯+=。
【例7】 (“我爱数学夏令营”)右图加法算式中相同的汉字表示相同的数字,不同的汉字表示不同的数字,那么汉字“我爱夏令营”表示的5位数是__________。
【分析】 两个五位数相加得到一个六位数,由于这两个五位数均小于100000,所以它们的和小于200000,所以图中的“数”小于2,故“数”1=。
由于“我爱夏令营”=“数学夏令营好”-“数学夏令营”9=⨯“数学夏令营”+“好”,所以“我”9=。
而图中加法算式的千位最多向万位进1,所以“学”只能为1或0。
由于“学”与“数”不同,所以“学”不能为1,只能是0。
图中算式可简化为“爱夏令营”+“夏令营”=“夏令营好”,即1000⨯“爱”+“夏令营”+“夏令营”10=⨯“夏令营”+“好”。
得1000⨯“爱”8=⨯“夏令营”+“好”,所以“好”是8的倍98326541499+夏令营数学好+学数营令夏营令夏爱我数。
由于“好”不能是0,所以“好”8=,“夏令营”125=⨯“爱”1-。
由于“爱”、“夏”、“令”、“营”均不能为0、1、8、9,经试验只有当“爱”5=时,“夏令营”624=符合条件。
所以“我爱夏令营”表示的5位数是95624。
[前铺] (“走进美妙的数学花园”决赛)如右图所示,相同的汉字代表相同的数字,不同的汉字代表不同的数字。
“美妙数学花园”代表的6位数最小为__________。
[分析] 本题中4个数的和是一个各个数位上的数字都相同的四位数,由于加法算式中百位上没有进位,所以和的千位上只能是2,因此“好”2=。
要使“美妙数学花园”代表的6位数最小,则“美”、“妙”都要尽可能小。
“美妙”+“数学”+“花园”22222007215=-=,由于“数学”+“花园”最大只能为908076183+++=,所以“美妙”不小于21518332-=。
但是“妙”不能与“好”和“美”相同,所以“美妙”最小为34,此时“数学”最小为85,“花园”为96,所以这个六位数最小为348596。
【例8】(“走进美妙的数学花园”初赛)请在右图每个方框中填入一个数字,使乘法竖式成立。
【分析】设被乘数为abc,,乘数为2de。
由于20abc⨯=W W,所以5b=,且4c≤(这是因为2c⨯最多向十位进1,而0是一个偶数,从而2c⨯不向十位进位)。
又由57a c d⨯=W W且4c≤知d为奇数(若d为偶数,那么c d⨯的十位数字为7,但4c≤,这是不可能的),那么c d⨯向十位进2,所以d最小为5,又显然d小于7(若d大于等于7,那么5a c d⨯将是四位数),于是5d=。
这时c只能为4,a只能为1。
所以154abc=。
再由1540e⨯=W W知e只能为2。
所以这个乘法算式的被乘数与乘数分别为154和522,乘法竖式如图所示。
【例9】(香港圣公会数学竞赛)在右图中的除法算式中,只知好好好好+园花学数妙美722道2、0两个数字,其余残缺的数字都用□表示。
补上残缺的数字后,那么被除数是__________。
【分析】这个除法算式从相除的过程可以看出,商数的十位和千位均为0;除数的2倍是一个三位数,而除数与商的万位相乘,积为两位数,可知万位数字为1,同样可知商的个位数字也为1,即商为10201;又一个两位数的两倍必小于200,故第一次剩余(即被除数的前三位与除数之差)为1。
而一个三位数与一个两位数之差为1,只能是100991-=,故被除数前三位为“100”,而除数为99,由此可知,被除数为99102011009899⨯=。
【例10】(北京“数学解题能力展示”读者评选活动决赛)将数字19:填入下面方框,每个数字恰用一次,使得下列等式成立:现在“2”、“4”已经填入,当把其他数字都填入后,算式中唯一的减数(●处)是__________。
【分析】首先可以估算四位数的取值范围。
四位数不大于(2007913)428010+-⨯-=,不小于(2007198)427638+-⨯-=,所以四位数的首位数字只能是7。
再由四位数与2的和能被4整除,可以确定四位数的个位数字一定是偶数,只能是6或8。
若为6,那么四位数与2的和的个位数字为8,所以十位数字必须为偶数,只能是8。
这个四位数要大于7638,只能是7986,而(79862)41997+÷=,与2007相差10。
但此时剩下的三个数字为1、3、5,无法用这三个数字凑出10。
所以四位数的个位数字不能是6。
四位数的个位数字是8时,十位数字为奇数,只能是1、3、5或9。
当四位数的十位数字为1时,四位数只能是7918,而(79182)41980+÷=,与2007相差27。
但剩下的三个数字3、5、6不能凑出27;当四位数的十位数字为3时,四位数只能是7938,而(79382)41985+÷=,与2007相差22。
但剩下的三个数字1、5、6不能凑出22;当四位数的十位数字为5时,四位数可能是7658或7958。
若为7958,则由(79582)41990+÷=,与2007相差17,但剩下的三个数字1、3、6不能凑出17;若为7658,有(76582)49312007+÷+-=;当四位数的十位数字为9时,四位数只能是7698,而(76982)41925+÷=,与2007相差82。
但剩下的三个数字1、3、5不能凑出82。
综上可知本题只有唯一答案(76582)49312007+÷+-=。