大学物理2期末考试复习题

合集下载

大学物理II(期末考试)

大学物理II(期末考试)

⼤学物理II(期末考试)⼀、选择题(共 20 分每题 2 分)1、关于⾼斯定理的理解有下⾯⼏种说法,其中正确的是( D ) (A) 如果⾼斯⾯上场强处处为零,则该⾯内必⽆电荷; (B) 如果⾼斯⾯内⽆电荷,则⾼斯⾯上场强处处为零; (C) 如果⾼斯⾯上场强处处不为零,则⾼斯⾯内必有电荷; (D) 如果⾼斯⾯内有净电荷,则通过⾼斯⾯的电通量必不为零。

2、把轻的正⽅形线圈⽤细线挂在载流直导线AB 的附近,两者在同⼀平⾯内,直导线AB 固定,线圈可以活动。

当正⽅形线圈通以如图所⽰的电流时线圈将( C )(A) 发⽣转动,同时靠近导线AB ; (B) 发⽣转动,同时离开导线AB ; (C) 不转动,靠近导线AB; (D) 离开导线AB。

3、⼀个圆形线环,它的⼀半放在⼀分布在⽅形区域的匀强磁场中,另⼀半位于磁场之外,如图所⽰。

磁感强度的⽅向垂直指向纸内。

欲使圆线环中产⽣逆时针⽅向的感应电流,应使( C ) (A) 线环向右平移; (B)线环向上平移; (C) 线环向左平移;(D)磁场强度减弱。

4、在双缝⼲涉实验中,设双缝⽔平且到单⾊光源距离相等。

若将光源S向下稍微移动偏离轴线位置,其它条件不变,则屏上⼲涉条纹( B ) (A) 向下移动,间距不变; (B) 向上移动,间距不变; (C) 向下移动,间距增⼤;(D) 向上移动,间距增⼤.5、⼀束平⾏单⾊光垂直⼊射在光栅上,当k=3、6、9 等级次的主极⼤均不出现时,光栅常数(a 为透光部分宽度,b 为遮光部分宽度)应满⾜下⾯哪个条件 (B ) (A) a+b=3b ; (B) a+b=3a; (C) a+b=6b ;(D) a+b=6a。

6、光强为I 0的⾃然光垂直通过两个偏振⽚,它们的偏振化⽅向之间的夹⾓α=60°。

设偏振⽚没有吸收,则出射光强I 与⼊射光强I 0之⽐为( C )B(A)41; (B)43; (C)1; (D)3。

7、天狼星的温度约为11000℃.由维恩位移定律计算其辐射峰值的波长为( A )(K m b ??=-310898.2) (A) 257nm ;(B) 263nm ;(C) 32.669m ;(D) 31.878m 。

大学基础教育《大学物理(二)》期末考试试卷 含答案

大学基础教育《大学物理(二)》期末考试试卷 含答案

大学基础教育《大学物理(二)》期末考试试卷含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。

2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。

一、填空题(共10小题,每题2分,共20分)1、理想气体向真空作绝热膨胀。

()A.膨胀后,温度不变,压强减小。

B.膨胀后,温度降低,压强减小。

C.膨胀后,温度升高,压强减小。

D.膨胀后,温度不变,压强不变。

2、气体分子的最可几速率的物理意义是__________________。

3、图示曲线为处于同一温度T时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。

其中曲线(a)是________气分子的速率分布曲线;曲线(c)是________气分子的速率分布曲线。

4、刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成______,与刚体本身的转动惯量成反比。

(填“正比”或“反比”)。

5、两列简谐波发生干涉的条件是_______________,_______________,_______________。

6、若静电场的某个区域电势等于恒量,则该区域的电场强度为_______________,若电势随空间坐标作线性变化,则该区域的电场强度分布为 _______________。

7、如图,在双缝干涉实验中,若把一厚度为e、折射率为n的薄云母片覆盖在缝上,中央明条纹将向__________移动;覆盖云母片后,两束相干光至原中央明纹O处的光程差为_________________。

8、长为的匀质细杆,可绕过其端点的水平轴在竖直平面内自由转动。

如果将细杆置与水平位置,然后让其由静止开始自由下摆,则开始转动的瞬间,细杆的角加速度为_____,细杆转动到竖直位置时角加速度为_____。

9、一平面余弦波沿Ox轴正方向传播,波动表达式为,则x = -处质点的振动方程是_____;若以x =处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标轴,该波的波动表达式是_________________________。

大学物理学专业《大学物理(二)》期末考试试卷-附答案

大学物理学专业《大学物理(二)》期末考试试卷-附答案

大学物理学专业《大学物理(二)》期末考试试卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。

2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。

一、填空题(共10小题,每题2分,共20分)1、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。

2、一平行板空气电容器的两极板都是半径为R的圆形导体片,在充电时,板间电场强度的变化率为dE/dt.若略去边缘效应,则两板间的位移电流为__________________。

3、长为、质量为的均质杆可绕通过杆一端的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示。

现有一质量为的子弹以水平速度射入杆上点,并嵌在杆中. ,则子弹射入后瞬间杆的角速度___________。

4、两列简谐波发生干涉的条件是_______________,_______________,_______________。

5、一弹簧振子系统具有1.OJ的振动能量,0.10m的振幅和1.0m/s的最大速率,则弹簧的倔强系数为_______,振子的振动频率为_______。

6、动方程当t=常数时的物理意义是_____________________。

7、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。

8、在主量子数n=2,自旋磁量子数的量子态中,能够填充的最大电子数是______________。

9、一长直导线旁有一长为,宽为的矩形线圈,线圈与导线共面,如图所示. 长直导线通有稳恒电流,则距长直导线为处的点的磁感应强度为___________;线圈与导线的互感系数为___________。

10、一个中空的螺绕环上每厘米绕有20匝导线,当通以电流I=3A时,环中磁场能量密度w =_____________ .()二、名词解释(共6小题,每题2分,共12分)1、能量子:2、受激辐射:3、黑体辐射:4、布郎运动:5、熵增加原理:6、瞬时加速度:三、选择题(共10小题,每题2分,共20分)1、气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程()。

大学物理A2期末总复习题及答案

大学物理A2期末总复习题及答案

大学物理A2期末总复习题及答案一、大学物理期末选择题复习1.一个质点在做圆周运动时,则有()(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变答案B2.如图所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为()(A) g sin θ(B) g cos θ(C) g tan θ(D) g cot θ答案D3.对质点组有以下几种说法:(1) 质点组总动量的改变与内力无关;(2) 质点组总动能的改变与内力无关;(3) 质点组机械能的改变与保守内力无关.下列对上述说法判断正确的是()(A) 只有(1)是正确的(B) (1) (2)是正确的(C) (1) (3)是正确的 (D) (2) (3)是正确的答案C4.一带电粒子垂直射入均匀磁场中,如果粒子的质量增加为原来的2倍,入射速度也增加为原来的2倍,而磁场的磁感应强度增大为原来的4倍,则通过粒子运动轨道所围面积的磁通量增大为原来的:()(A) 2倍 (B) 4倍 (C) 0.5倍 (D) 1倍答案B5.一个电流元Idl 位于直角坐标系原点 ,电流沿z 轴方向,点P (x ,y ,z )的磁感强度沿x 轴的分量是: ( )(A) 0(B) ()()2/32220/4/z y x Ixdl ++-πμ(C) ()()2/12220/4/z y x Ixdl ++-πμ(D)()()2220/4/z y x Ixdl ++-πμ答案B6.图为四个带电粒子在O点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片. 磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是( )(A) Oa (B) Ob(C) Oc (D) Od答案C7.下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零答案B8.在图(a)和(b)中各有一半径相同的圆形回路L 1 、L 2 ,圆周内有电流I 1 、I 2 ,其分布相同,且均在真空中,但在(b)图中L 2 回路外有电流I 3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠ 答案C9. 用水平力N F 把一个物体压着靠在粗糙的竖直墙面上保持静止。

《大学物理2》期末考试模拟题二题答案

《大学物理2》期末考试模拟题二题答案

《大学物理2》期末考试模拟题二题答案一、填空题(共38分)(一) 必答题(每空2分,共20分)1. 电流表的内阻 非常小 ,以减少测量时电流表上的 电压降 。

2. 系统误差是在对同一被测量的 多次 测量过程中 保持恒定 或以可预知的方式变化的 测量 误差分量。

3. 爱因斯坦狭义相对论的两个基本假设是 爱因斯坦相对性 原理和 光速不变 原理。

4. 静电场的高斯定理表明静电场是 有源 场。

5. 麦克斯韦感生电场假设的物理意义为 变化的磁场 能够在空间激发感生电场,位移电流假设的物理意义为 变化的电场 能够在空间激发磁场。

(二)选答题(每空2分,总分上限为18分)6.重原子核在中子作用下发生核裂变时,产生 两 个碎块、2或3个中子和 200 MeV能量。

(《原子能及其和平利用》)7.原子没有受到外来感应场的作用而__跃迁回____低能态,并同时发出光辐射的过程称为自发辐射跃迁,产生的光辐射称为__自发__辐射。

(《激光技术》)8.在锡单晶球超导体实验中发现,在小磁场中把金属冷却进入超导态时,超导体内的 磁感应线似乎一下子被排斥出去,保持体内磁感应强度等于 零 ,超导体的这一性质被称为迈斯纳效应。

(《超导电性》)9.利用超声检查并显示媒质中是否存在障碍物有哪些 特征 称为超声检测。

在超声检测中,障碍物是指 ρc(或填:声阻抗) 不同于基质的物体。

(《声学》) 10.从离地面60㎞处往上,来自太阳和太空的 电磁 辐射和 带电 粒子使高层大气电离,从而形成对无线电波的传播有显著影响的电离层。

(《空间物理学》)11.在研究摆的运动时,角位移和__角速度_运动状态是两个动力学变量,它们张成一个相平面。

相平面中的每一个点代表系统的一种可能的__运动状态_____。

(《混沌现象》) 12.19世纪发现了元素周期表,其中周期2、8、18等是经验数。

量子力学发展后才逐渐弄清楚, 这些数目不是 偶然 的数目。

它们可直接从 库仑 力的转动 对称 得出。

大学物理2期末复习

大学物理2期末复习
(1)今使线圈平面保持竖直,则线圈所受的磁力矩为多少.
(2)假若线圈能以某一条水平边为轴自由摆动,当线圈平衡时,线圈平面与竖直面夹角为多少.
解:1.(1)Pm=IS=Ia2
方向垂直线圈平面.
线圈平面保持竖直,即Pm与B垂直.有
Mm=Pm×B
Mm=PmBsin(/2)=Ia2B
=9.4×10-4mN
(2)平衡即磁力矩与重力矩等值反向
在平面②的上方向左,在平面②的下方向右.
(1)两无限大电流流在平面之间产生的磁感强度方向都向左,故有B=B1+B2=0J
(2)两无限大电流流在平面之外产生的磁感强度方向相反,故有B=B1B2=0
练习九安培力
三、计算题
1.一边长a=10cm的正方形铜导线线圈(铜导线横截面积S=2.00mm2,铜的密度=8.90g/cm3),放在均匀外磁场中.B竖直向上,且B=9.40103T,线圈中电流为I=10A .线圈在重力场中求:
解:1.取窄条面元dS=bdr,
面元上磁场的大小为
B=0I/(2r),面元法线与磁场方向相反.有
1=
2=
1/2=1
2.半径为R的薄圆盘均匀带电,总电量为Q.令此盘绕通过盘心且垂直盘面的轴线作匀速转动,角速度为,求轴线上距盘心x处的磁感强度的大小和旋转圆盘的磁矩.
解;2.在圆盘上取细圆环电荷元dQ=2rdr,
解得1=4=(Q1+Q2)/(2S)=2.66108C/m2
2=3=(Q1Q2)/(2S)=0.89108C/m2
两板间的场强E=2/0=(Q1Q2)/(20S)
V=UA-UB
=Ed=(Q1Q2)d/(20S)=1000V
四、证明题
1.如图6.7所示,置于静电场中的一个导体,在静电平衡后,导体表面出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.

大学物理2期末复习

大学物理2期末复习

(A) 4倍和 1 / 8 ,
(B) 4倍和 1 / 2 ,
(C) 2倍和 1 / 4 , (D) 2倍和 1 / 2 。
[B]
11
B 0I
2R
B1
0I
2R
, B2
2
0I
2r
.
R 2r
B2 2 R 4 B1 r
Pm IS Pm R2I , Pm 2r 2I.
Pm Pm
2
r2 R2
(A) 1 /(2a) (B) 1 / a (C) 1/ 2a (D) 1/ a
(x) 2 1 cos2 3x
a 2a
x 5a 6
(5 a) 2 1 6 2a
[A]
29
21.氢原子中处于2P态的电子,描述其量子态的四个 量子数(n,,m ,ms)可能取的值为:
(A) (3,2,1,-1/2) (B) (2,0,0,1/2) (C) (2,1,-1,-1/2)(D) (1,0,0,1/2)
(A) 7.96 102 , (B) 3.98 102 ,
(C) 1.99 102 , (D) 63.3 。
[B ]
B 0r nI
19
13. 如图,两个线圈 P 和 Q 并联地接到一电动势恒定 的电源上,线圈 P 的自感和电阻分别是线圈 Q 的两 倍。当达到稳定状态后,线圈 P 的磁场能量与 Q 的 磁场能量的比值是:
M
dI dt
)
(L
M
Hale Waihona Puke )dI dt1
2
(2L
2M
)
dI dt
比较: L dI
dt
17
11. 顺磁物质的磁导率:
(A)比真空的磁导率略小,

大学物理Ⅱ期末考试试卷及答案

大学物理Ⅱ期末考试试卷及答案

…………试卷装订线………………装订线内不要答题,不要填写考生信息………………试卷装订线…………学院专业班级学号姓名武汉理工大学考试试卷(A卷)2011 ~2012 学年1 学期大学物理B(下)课程时间120分钟56学时,3.5 学分,闭卷,总分100分,占总评成绩80 % 20XX年1月10日题号一二三四五六七八九十合计满分21 9 12 10 13 10 10 15 100得分一、填空题(每小题3分,共21分)1、把双缝干涉实验装置放在折射率为n的水中,两缝间距为d,双缝到屏的距离为D(D>>d),所用单色光在真空中波长为λ,则屏上干涉条纹相邻明纹之间的距离为。

2、在单缝衍射实验中,双色光含有两种波长1λ和2λ,垂直照射单缝,若波长为1λ的第2级明纹与波长为2λ的第3级明纹相重合,则=21λλ,对应1λ的第2级明纹,单缝恰好能分成个半波带。

3、自然光入射到两个叠在一起的偏振片上,若透射光强度为入射光强度的三分之一,则两偏振片偏振化方向之间的夹角为。

4、一束自然光从空气入射到一平板玻璃上,入射角为05.56,此时反射光是完全偏振光,则玻璃的折射率为、折射光的折射角为。

5、从太阳光谱的实验观测中,测得单色辐出度峰值所对应的波长为nm483,则由此估算的太阳表面的温度约为K,辐出度约为2-⋅mW (kmb⋅⨯=-310898.2,42810671.5---⋅⋅⨯=KmWσ)。

6、用频率为ν的紫外光照射某金属,测得光电子的动能为k E,则该金属的逸出功A为,红限频率ν为。

7、X射线光子的能量为MeV60.0,在康普顿散射后,波长增加了%20,则反冲电子的动能为。

二、选择题(每小题3分,共9分)1、已知两简谐振动)8.010cos(10321π+⨯=-tx,)3.010cos(10422π+⨯=-tx,则合振动21xx+的振幅为。

(A)m2-222107(D);m105(C);m103(B);m10---⨯⨯⨯得分得分2、某体系所发激光用作迈克耳孙干涉仪光源,实验中动臂反射镜移动距离为d 时,观察到干涉条纹移动了N 条,则该体系受激辐射跃迁的能级差为 (h 为普朗克常数,c 为光速)。

大学基础教育《大学物理(二)》期末考试试卷 附答案

大学基础教育《大学物理(二)》期末考试试卷 附答案

大学基础教育《大学物理(二)》期末考试试卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。

2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。

一、填空题(共10小题,每题2分,共20分)1、已知质点的运动方程为,式中r的单位为m,t的单位为s。

则质点的运动轨迹方程,由t=0到t=2s内质点的位移矢量______m。

2、一条无限长直导线载有10A的电流.在离它 0.5m远的地方它产生的磁感强度B为____________。

一条长直载流导线,在离它1cm处产生的磁感强度是T,它所载的电流为____________。

3、两个相同的刚性容器,一个盛有氧气,一个盛氦气(均视为刚性分子理想气体)。

开始他们的压强和温度都相同,现将3J的热量传给氦气,使之升高一定的温度。

若使氧气也升高同样的温度,则应向氧气传递的热量为_________J。

4、理想气体向真空作绝热膨胀。

()A.膨胀后,温度不变,压强减小。

B.膨胀后,温度降低,压强减小。

C.膨胀后,温度升高,压强减小。

D.膨胀后,温度不变,压强不变。

5、两根相互平行的“无限长”均匀带正电直线1、2,相距为d,其电荷线密度分别为和如图所示,则场强等于零的点与直线1的距离a为_____________ 。

6、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。

7、一质点沿半径R=0.4m作圆周运动,其角位置,在t=2s时,它的法向加速度=______,切向加速度=______。

8、两个同振动方向、同频率、振幅均为A的简谐振动合成后振幅仍为A,则两简谐振动的相位差为_______ 。

9、质量为m的物体和一个轻弹簧组成弹簧振子,其固有振动周期为T.当它作振幅为A的自由简谐振动时,其振动能量E=__________。

10、一质点的加速度和位移的关系为且,则速度的最大值为_______________ 。

大学物理2期末考试重点及复习

大学物理2期末考试重点及复习

s1 s2
r1 r2
*
2 1 2π
r2 r1
P
对空间不同的位置,都有恒定的,因而合强 度在空间形成稳定的分布,即有干涉现象。

定值
讨 论
A
A1 A2 2 A1 A2 cos
2 2
可看出A是与时间无关的稳定值 ,其大小取决于该 点处两分振动的相位差
上式代表x1 处质点在其平衡位置附近以角频率w 作简谐运动。
x 2 1 2 2 t 一定。令t=t1,则质点位移y 仅是x 的函数。
x2 x1
2 x y A cos t1 即
同一波线上任意两点的振动位相差:
x A cos t u
由于 P 为波传播方向上任一点,因此上 述方程能描述波传播方向上任一点的振动, 具有一般意义,即为沿 x 轴正方向传播的平 面简谐波的波函数,又称波动方程.
2π 2πν 和 uT 利用 T 可得波动方程的几种不同形式:
干涉的位相差条件 当 2kπ时k 0,1,2,3... 合振幅最大 当
2k 1π
Amax A1 A2
合振幅最小
Amin A1 A2
干涉的波程差条件 当 r1 r2 k 时(半波长偶数倍)
合振幅最大
Amax A1 A2
然后确定三个特征量:、A、 旋转矢量法确定: 先在X轴上找到相应x0,有 两个旋转矢量,由的正 负来确定其中的一个

A
O
x0 A
X
v 0 0, 上半圆, 0 v 0 0, 下半圆, 2或 0 v 0 0, x0 A, 0, x0 A,

大学物理2期末考试复习,试卷原题与答案

大学物理2期末考试复习,试卷原题与答案

L L0 1 (v / c)2 54m

t1 L / 2.25 107 s
3分
L (2) 宇航员测得飞船船身的长度为 0 ,则
t2 L0 / 3.75 10 7 s
2分
习题7:假定在实验室中测得静止在实验室中的 子(不稳定的粒子)的寿命为
2.2 106 s , 而 当 它 相 对 于 实 验 室 运 动 时 实 验 室 中 测 得 它 的 寿 命 为
1eV 1.61019 J
E0
81.9 10 15 1.6 10 19
51.19 104 eV
0.51MeV
习题3:某核电站年发电量为100 亿度,它等于 36 1015 J 的能量,如果这是由核材料
的全部静止能转化产生的,则需要消耗的核材料的质量为
(A) 0.4 kg.
(B) 0.8 kg.
(C) (1/12)×107 kg. (D) 12×107 kg.
12 3
例题3 一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函 数描述,则其初相应为 (A) /6. (B) 5/6. (C) -5/6. (D) -/6. (E) -2/3.
答案:(C) -5/6
x Acost ; m cos t '
' 5
(C) 1 s 4
解:公式 ; 2
3
t 题意
2t
t 1s 2
ห้องสมุดไป่ตู้
(E)
例题2 一简谐振动的振动曲线如图所示.求振动方程.
解:由图 A 0.1m ; t 2s
由图 旋转矢量 2
26 3
旋转矢量 t 5
6
5
12
x A cost 0.1cos 5 t 2 (SI )

大学物理(2)期末复习试题库

大学物理(2)期末复习试题库

大学物理(2)期末复习试题库第四篇 电磁学一、判断题1.关系H B μ=对所有各向同性线性介质都成立。

( )2.静电场中任何两条电力线不相交,说明静电场中每一点的场强是唯一的。

( )3.导体内部处处没有未被抵消的静电荷,静电荷只分布在导体的表面上。

( )4.电源电动势的方向是自正极经电源内部到负极的方向。

( )5.自感系数只依赖线圈本身的形状、大小及介质的磁导率而与电流无关。

( )6.恒定磁场中定理∑⎰=⋅I l d H 成立。

( )7.关系E D ε=对所有各向同性电介质都成立。

( )8. 0ε∑⎰⎰=⋅q s d E 对任意电场均成立。

( ) 9.可以把电子的自旋运动和宏观物体的自转运动相类比。

( )10.无论是在稳恒磁场还是非稳恒磁场中安培环路定理∑⎰=⋅i LI l d H 都成立。

( )11.导体静电平衡的条件是导体内部场强处处为零。

( )12.有人把⎰⎰=⋅0S B d 称为磁场高斯定理,它只对恒定磁场成立,在变化磁场中⎰⎰≠⋅0S B d 。

( )13.由电容计算公式ab U q C =,理解为当0=q 时电容0=C 。

( )14.洛伦兹力不能改变运动电荷速度的大小,只能改变速度的方向。

( )15.任何导体内部场强都处处为零。

( )16.由安培环路定理∑⎰=⋅I l d H 可知,H 仅与传导电流有关。

( )17. 自感系数为L 的载流线圈磁场能量的公式221LI W =只适用于无限长密绕螺线管。

( )18.当一个带电导体达到静电平衡时, 表面上电荷密度较大处电势较高。

( )19.高斯定理⎰⎰=⋅VS dV d ρS D ,只对静电场成立,对变化的电场不成立。

( ) 20.在电场中,电场强度为零的点,电势不一定为零。

( )21.稳恒电流磁场的磁场强度H 仅与传导电流有关 。

( )22.当一个带电导体达到静电平衡时, 导体内任一点与其表面上任一点的电势差等于零。

( )23.有人把0=⋅⎰Sd S B 称为磁高斯定理,它只对恒定磁场成立,在变化的磁场中该式不成立。

100102大学物理(二)

100102大学物理(二)

《大学物理(二)》课程综合复习资料一、单选题1.如图所示,两个“无限长”的共轴圆柱面,半径分别为R 1和R 2,其上均匀带电,沿轴线方向单位长度上的带电量分别为1λ和2λ,则在两圆柱面之间,距离轴线为r 的P 点处的场强大小E 为()。

A.r012πελ B.r0212πελλ+C.)(2202r R -πελD.)(2101R r -πελ答案:A2.在图a 和b 中各有一半径相同的圆形回路1L 、2L ,圆周内有电流1I 、2I ,其分布相同,且均在真空中,但在b 图中2L 回路外有电流3I ,P 1、P 2为两圆形回路上的对应点,则()。

A.2121,d d P P L L B B l B l B =⋅=⋅⎰⎰B.2121,d d P P L L B B l B l B =⋅≠⋅⎰⎰C.2121,d d P P L L B B l B l B ≠⋅=⋅⎰⎰D.2121,d d P P L L B B l B l B ≠⋅≠⋅⎰⎰答案:C3.在点电荷+q 的电场中,若取图中P 点处为电势零点,则M 点的电势为()。

A.a q 04πεB.aq 08πεC.a q 04πε-D.aq 08πε-答案:D4.电荷面密度为σ+和σ-的两块“无限大”均匀带电平行平面,放在与平面相垂直的Ox 轴上的a (,)0和a -(,)0位置,如图所示。

设坐标原点O 处电势为零,在-a <x <+a 区域的电势分布曲线为()。

答案:C5.边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为()。

A.0,021==B BB.lI22B ,0B 021πμ==C.0,22201==B lIB πμD.lIB lIB πμπμ020122,22== 答案:C6.一空气平行板电容器,极板间距为d ,电容为C ,若在两板中间平行地插入一块厚度为d /3的金属板,则其电容值变为()。

《大学物理A》(2)期末复习题+答案

《大学物理A》(2)期末复习题+答案

大学物理2期末复习题2. 在静电场中,任意作一闭合曲面,通过该闭合曲面的电通量s E dS ∫⋅G G 的值仅取决于高斯面内电荷的代数和,而与面外电荷无关。

G 5. 半径为R 的半球面置于场强为E 的均匀电场中,其对称轴与场强方向一致,如图所示。

则通过该半球面的电场强度通量为2R E π4. 一电量为Q 的点电荷固定在空间某点上,将另一电量为q 的点电荷放在与Q 相距r 处。

若设两点电荷相距无限远时电势能为零,则此时的电势能r14qQ W 0e πε=。

5.两同心导体球壳,内球壳带电量+q ,外球壳带电量-2q ,静电平衡时,外球壳的电荷分布为:内表面q −; 外表面q −。

7. 一平板电容器充电后切断电源,若改变两极板间的距离,则下述物理量中哪个保持不变? 【 B 】(A) 电容器的电容量;(B) 两极板间的场强;(C) 两极板间的电势差; (D) 电容器储存的能量。

1、已知一真空平行板电容器,极板面积为S,两极板间的距离为d ,极板上的电荷面密度分别为0σ±;求:(1)极板间的电场强度;(2)极板间的电势差;(3)电容;(4)电容器的储能。

2、一圆柱形真空电容器由半径分别为和的两同轴圆柱导体面所构成,单位长度上的电荷分别为1R 2R λ±,且圆柱的长度l 比半径大得多。

2R 求:(1)电容器内外的场强分布;(2)电容器内外的电势分布;(3)电容器的电容;(4)极板间的电场能量。

解:(1)电场分布:02020211=>=<<=<E R r r E R r R E R r πελ(2)电势分布:211012122023ln 2ln 20R r R U R R R r R U r r R U λπελπε<=<<=>= (3)极板间的电势差:201ln 2R U R λπε=电容:0212ln l C R R πε=(4)电场能量:2201ln 4e R l W R λπε= 3、真空中的球形电容器的内、外半径分别为和,所带电荷量分别为1R 2R Q ±。

大学物理II期末复习

大学物理II期末复习

大学物理II 期末复习1、图示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为1R ,外表面半径为2R .设无穷远处为电势零点,求空腔内任一点的电势.解法1: 由高斯定理可知空腔内E =0,故带电球层的空腔是等势区,各点电势均 为U . 在球层内取半径为r r dr →+的薄球层.其电荷为24dq r dr ρπ=该薄层电荷在球心处产生的电势为()00/d 4/d d ερεr r r q U =π= 整个带电球层在球心处产生的电势为()21220002d d 21R R r r U U R R -===⎰⎰ερερ 因为空腔内为等势区所以空腔内任一点的电势U 为()2122002R R U U -==ερ 解法2:由高斯定理可知1r R <,10E =, 2分12R r R <<,331220()r R E r ρε-=, 2r R >,3321320()R R E rρε-= 若根据电势定义⎰⋅=l E Ud空腔内任一点电势为:12121230R R R R U E dr E dr E dr ∞=++⎰⎰⎰()222102R R ρε=- 2、如图所示,两个共面的平面带电圆环,其内外半径分别为1R 、2R 和2R 、3R ,外面的圆环以每秒钟2n 转的转速顺时针转动,里面的圆环以每秒钟1n 转的转速反时针转动.若电荷面密度都是σ,求1n 和2n 的比值多大时,圆心处的磁感强度为零.解:(1) 在内圆环上取半径为r 宽度为dr 的细圆环,其电荷为σr r q d 2d π= 由于转动而形成的电流 r rn q n i d 2d d 11σπ==di 在O 点产生的磁感强度为r n r i B d )2/(d d 1001σμμπ==其方向垂直纸面向外.(2) 整个内圆环在O 点产生的磁感强度为==⎰11d B B ⎰π21d 10R R r n σμ)(121R R n -π=0σμ其方向垂直纸面向外.(3) 同理得外圆环在O 点产生的磁感强度)(23203R R n B -π=σμ 其方向垂直纸面向里. (4) 为使O 点的磁感应强度为零,B 1和B 2的量值必须相等, 即 )(121R R n -π0σμ)(232R R n -π=0σμ于是求得n 1和n 2之比122312R R R R n n --=3、一电子以0.99v c =(c 为真空中光速)的速率运动.试求: (1) 电子的总能量是多少焦耳?(2) 电子的相对论动能是多少焦耳?(电子静止质量319.1110kg e m -=⨯)解:(1) 222)/(1/c c m mc E e v -===5.8×10-13 J(2) 22k e E mc m c =-= 4.99×10-13 J4、两根平行无限长直导线相距为d ,载有大小相等方向相反的电流I ,电流变化率0dI dt a =>.一个边长为d 的正方形线圈位于导线平面内与一根导线相距d ,如图所示.求线圈中的感应电动势ε,并指出线圈中的感应电流是顺时针还是逆时针方向.解:(1) 载流为I 的无限长直导线在与其相距为r 处产生的磁感强度为:)2/(0r I B π=μ以顺时针绕向为线圈回路的正方向,与线圈相距较远的导线在线圈中产生的磁通量为:300123d ln222ddIIdd r rμμφ=⋅=⎰ππ与线圈相距较近的导线对线圈的磁通量为:2002d ln 222ddIIdd r r μμφ=-⋅=-ππ⎰总磁通量 0124ln 23Id μφφφ=+=-π 2分感应电动势为: 00d 4d 4(ln )ln d 23d 23d d I a t t μμφε=-==ππ (2) 线圈中的感应电流是顺时针方向.5、用波长00.1nm λ=的光子做康普顿散射实验.(1) 散射角o 90ϕ=的康普顿散射波长是多少? (2) 反冲电子获得的动能是多少焦耳? (普朗克常量346.6310h -=⨯J ·s ,电子静止质量319.1110kg e m -=⨯)解:(1) 康普顿散射光子波长改变: ()(1cos )e hm cλϕ∆=-=0.024×10-10 m =+=∆λλλ0 1.024×10-10 m(2)根据能量守恒: 220e h m c h mc νν+=+即 220k e E mc m c h h νν=-=-0//k E hc hc λλ=-故k E =4.66×10-17 J =291 eV6、电荷Q (Q >0)均匀分布在长为L 的细棒上,在细棒的延长线上距细棒中心O 距离为a 的P 点处放一电荷为q (q >0 )的点电荷,求带电细棒对该点电荷的静电力.解:沿棒方向取坐标Ox ,原点O 在棒中心处.求P 点场强:()()20204d 4d d x a xx a q E -π=-π=ελε ()⎰--π=2/2/204d L L x a xE ελ()2202/2/0414L a Qx a L L -π=-⋅π=-εελ 方向沿x 轴正向. 点电荷受力:==qE F ()2204πL a qQ-ε方向沿x 轴正方向.7、图所示为两条穿过y 轴且垂直于x -y 平面的平行长直导线的正视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a .(1) 推导出x 轴上P 点处的磁感强度)(x B 的表达式.(2) 求P 点在x 轴上何处时,该点的B 取得最大值.解:(1) 利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为:r I B π=201μ2/1220)(12x a I +⋅π=μ 2导线在P 点产生的磁感强度的大小为: r I B π=202μ2/1220)(12x a I +⋅π=μ 1B 、2B 的方向如图所示. P 点总场 θθcos cos 2121B B B B B x x x +=+= 021=+=y y y B B B )()(220x a Iax B +π=μ,i x a Iax B)()(220+π=μ(2) 当 0d )(d =x x B ,0d )(d 22=<xx B 时,B (x )最大. 由此可得:x = 0处,B 有最大值.8、如图所示,一电荷线密度为λ的长直带电线(与一正方形线圈共面并与其一对边平行)以变速率v =v (t )沿着其长度方向运动,正方形线圈中的总电阻为R ,求t 时刻方形线圈中感应电流i (t )的大小(不计线圈自身的自感).解:长直带电线运动相当于电流λ⋅=)(t I v . 正方形线圈内的磁通量可如下求出d d 2Ia x a x μφ=⋅π+000d ln 222ax Ia Ia a x μμφ==⋅π+π⎰0d d ln 2d 2d i a It tμφε=-=π2ln d )(d 20t t a v λμπ=d ()()ln 22d it i t aRRtεμλ==πv9、一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少?(2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为=-=20)/(1c L L v 54 m则 ∆t 1 = L /v =2.25×10-7 s(2) 宇航员测得飞船船身的长度为L 0,则∆t 2 = L 0/v =3.75×10-7s10、已知粒子在无限深势阱中运动,其波函数为)/sin(/2)(a x a x π=ψ (0 ≤x ≤a )求发现粒子的概率为最大的位置.解:先求粒子的位置概率密度)/(sin )/2()(22a x a x π=ψ)]/2cos(1)[2/2(a x a π-=当 1)/2c o s(-=πa x 时, 2)(x ψ有最大值.在0≤x ≤a 范围内可得 π=πa x /2 ∴ a x 21=.a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11章10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1)]ln [ln π2d π2d π2000d a d b a b Il r l r I r l r I ab ba d d m +-+=-=⎰⎰++μμμΦ(2)t Ib a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v ϖ方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεϖϖϖBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰μεϖϖϖ∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.10-9 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B ϖ的方向如题10-9图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0).解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题10-9图(a)题10-9图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题10-10图10-15 一无限长的直导线和一正方形的线圈如题10-15图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aI M μΦ==10-16 一矩形线圈长为a =20cm ,宽为b =10cm ,由100匝表面绝缘的导线绕成,放在一无限长导线的旁边且与线圈共面.求:题10-16图中(a)和(b)两种情况下,线圈与长直导线间的互感.解:(a)见题10-16图(a),设长直电流为I ,它产生的磁场通过矩形线圈的磁通为2ln π2d 2πd 020)(12Iar r Ia S B b b S μμΦ⎰⎰==⋅=ϖϖ∴ 6012108.22ln π2-⨯===a N I N M μΦ H (b)∵长直电流磁场通过矩形线圈的磁通012=Φ,见题10-16图(b) ∴ 0=M题10-16图题10-17图13章12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk dDx =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 12-11 白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有λλk ne =+22 ),2,1(⋅⋅⋅=k得 122021612380033.14124-=-⨯⨯=-=k k k ne λ 2=k , 67392=λo A (红色) 3=k , 40433=λ oA (紫色)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k 所以 kk ne 101082==λ 当2=k 时, λ =5054oA (绿色) 故背面呈现绿色.14章13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm 当 3=k ,得60003=λo A4=k ,得47004=λoA(2)若60003=λoA ,则P 点是第3级明纹;若47004=λoA ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带; 当4=k 时,单缝处的波面可分成912=+k 个半波带.13-14 用5900=λoA 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?解:5001=+b a mm 3100.2-⨯= mm 4100.2-⨯=o A 由λϕk b a =+sin )(知,最多见到的条纹级数m ax k 对应的2πϕ=,所以有39.35900100.24max ≈⨯=+=λba k ,即实际见到的最高级次为3max =k .第五章5-7 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t5-8 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动; (3)过2Ax =处向负向运动; (4)过2A x -=处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x5-11 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题5-11图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+= 5-16 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。

解:∵ πππφ=--=∆)65(6 ∴ m 1.021=-=A A A 合3365cos3.06cos4.065sin3.06sin4.0cos cos sin sin tan 22122211=+-⨯=++=ππππφφφφφA A A A ∴ 6πφ=其振动方程为m )62cos(1.0π+=t x第六章6-9 沿绳子传播的平面简谐波的波动方程为y =0.05cos(10x t ππ4-),式中x ,y 以米计,t 以秒计.求:(1)波的波速、频率和波长;(2)绳子上各质点振动时的最大速度和最大加速度;(3)求x =0.2m 处质点在t =1s 时的位相,它是原点在哪一时刻的位相?这一位相所代表的运动状态在t =1.25s 时刻到达哪一点? 解: (1)将题给方程与标准式)22cos(x t A y λππυ-=相比,得振幅05.0=A m ,频率5=υ1-s ,波长5.0=λm ,波速5.2==λυu 1s m -⋅. (2)绳上各点的最大振速,最大加速度分别为ππω5.005.010max =⨯==A v 1s m -⋅ 222max 505.0)10(ππω=⨯==A a 2s m -⋅(3)2.0=x m 处的振动比原点落后的时间为08.05.22.0==u x s故2.0=x m ,1=t s 时的位相就是原点(0=x ),在92.008.010=-=t s 时的位相, 即 2.9=φπ. 设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则825.0)0.125.1(5.22.0)(11=-+=-+=t t u x x m6-13 一列机械波沿x 轴正向传播,t =0时的波形如题6-13图所示,已知波速为10 m ·s -1,波长为2m ,求: (1)波动方程;(2) P 点的振动方程及振动曲线; (3) P 点的坐标;(4) P 点回到平衡位置所需的最短时间.解: 由题6-13图可知1.0=A m ,0=t 时,0,200<=v A y ,∴30πφ=,由题知2=λm , 10=u 1s m -⋅,则5210===λυuHz∴ ππυω102==(1)波动方程为]3)10(10cos[.01ππ+-=x t y m题6-13图(2)由图知,0=t 时,0,2<-=P P v A y ,∴34πφ-=P (P 点的位相应落后于0点,故取负值)∴P 点振动方程为)3410cos(1.0ππ-=t y p (3)∵ πππ34|3)10(100-=+-=t x t ∴解得 67.135==x m(4)根据(2)的结果可作出旋转矢量图如题6-13图(a),则由P 点回到平衡位置应经历的位相角题6-13图(a)πππφ6523=+=∆ ∴所属最短时间为6-19 如题6-19图所示,设B 点发出的平面横波沿BP 方向传播,它在B 点的振动方程为t y π2cos 10231-⨯=;C 点发出的平面横波沿CP 方向传播,它在C 点的振动方程为)2cos(10232ππ+⨯=-t y ,本题中y 以m 计,t 以s 计.设BP =0.4m ,CP =0.5 m ,波速u =0.2m ·s -1,求:(1)两波传到P 点时的位相差;(2)当这两列波的振动方向相同时,P 处合振动的振幅;*(3)当这两列波的振动方向互相垂直时,P 处合振动的振幅. 解: (1) )(2)(12BP CP ---=∆λπϕφφ)(BP CP u --=ωπ0)4.05.0(2.02=--=ππ题6-19图(2)P 点是相长干涉,且振动方向相同,所以321104-⨯=+=A A A P m(3)若两振动方向垂直,又两分振动位相差为0,这时合振动轨迹是通过Ⅱ,Ⅳ象限的直线,所以合振幅为33122211083.210222--⨯=⨯==+=A A A A m6-20 一平面简谐波沿x 轴正向传播,如题6-20图所示.已知振幅为A ,频率为ν8波速为u .(1)若t =0时,原点O 处质元正好由平衡位置向位移正方向运动,写出此波的波动方程; (2)若从分界面反射的波的振幅与入射波振幅相等,试写出反射波的波动方程,并求x 轴上 因入射波与反射波干涉而静止的各点的位置. 解: (1)∵0=t 时,0,000>=v y ,∴20πφ-=故波动方程为]2)(2cos[ππ--=u x t v A y m题6-20图(2)入射波传到反射面时的振动位相为(即将λ43=x 代入)2432πλλπ-⨯-,再考虑到波由波疏入射而在波密界面上反射,存在半波损失,所以反射波在界面处的位相为πππλλπ-=+-⨯-2432 若仍以O 点为原点,则反射波在O 点处的位相为 ππλλπ25432-=-⨯-,因只考虑π2以内的位相角,∴反射波在O 点的位相为2π-,故反射波的波动方程为]2)(2cos[ππυ-+=u x t A y 反此时驻波方程为]2)(2cos[ππυ--=ux t A y ]2)(2cos[ππυ-++u x t A )22cos(2cos 2ππυπυ-=t u x A 故波节位置为2)12(22πλππυ+==k x u x 故 4)12(λ+=k x (,2,1,0±±=k …)根据题意,k 只能取1,0,即λλ43,41=x 121106/5==∆=∆ππωφt s 7-7 速率分布函数)(v f 的物理意义是什么?试说明下列各量的物理意义(n 为分子数密度,N 为系统总分子数).(1)v v f d )( (2)v v nf d )( (3)v v Nf d )( (4)⎰vv v f 0d )( (5)⎰∞d )(v v f (6)⎰21d )(v v v v Nf解:)(v f :表示一定质量的气体,在温度为T 的平衡态时,分布在速率v 附近单位速率区间内的分子数占总分子数的百分比.(1) v v f d )(:表示分布在速率v 附近,速率区间v d 内的分子数占总分子数的百分比.(2) v v nf d )(:表示分布在速率v 附近、速率区间dv 内的分子数密度. (3) v v Nf d )(:表示分布在速率v 附近、速率区间dv 内的分子数. (4)⎰vv v f 0d )(:表示分布在21~v v 区间内的分子数占总分子数的百分比.(5)⎰∞d )(v v f :表示分布在∞~0的速率区间内所有分子,其与总分子数的比值是1.(6)⎰21d )(v v v v Nf :表示分布在21~v v 区间内的分子数.7-15 试说明下列各量的物理意义. (1)kT 21 (2)kT 23 (3)kT i2(4)RT i M M mol 2 (5)RT i 2 (6)RT 23解:(1)在平衡态下,分子热运动能量平均地分配在分子每一个自由度上的能量均为k 21T . (2)在平衡态下,分子平均平动动能均为kT 23. (3)在平衡态下,自由度为i 的分子平均总能量均为kT i2. (4)由质量为M ,摩尔质量为mol M ,自由度为i 的分子组成的系统的内能为RT iM M 2mol .(5) 1摩尔自由度为i 的分子组成的系统内能为RT i2. (6) 1摩尔自由度为3的分子组成的系统的内能RT 23,或者说热力学体系内,1摩尔分子的平均平动动能之总和为RT 23.7-22 容器中储有氧气,其压强为p =0.1 MPa(即1atm)温度为27℃,求(1)单位体积中的分子n ;(2)氧分子的质量m ;(3)气体密度ρ;(4)分子间的平均距离e ;(5)平均速率v ;(6)方均根速率2v ;(7)分子的平均动能ε. 解:(1)由气体状态方程nkT p =得242351045.23001038.110013.11.0⨯=⨯⨯⨯⨯==-kT p n 3m - (2)氧分子的质量26230mol 1032.51002.6032.0⨯=⨯==N M m kg(3)由气体状态方程RT M M pV mol= 得 13.030031.810013.11.0032.05mol =⨯⨯⨯⨯==RT p M ρ 3m kg -⋅ (4)分子间的平均距离可近似计算932431042.71045.211-⨯=⨯==n e m(5)平均速率 58.446032.030031.860.160.1mol =⨯≈=M RT v 1s m -⋅ (6) 方均根速率 87.48273.1mol2=≈M RT v 1s m -⋅ (7) 分子的平均动能 20231004.13001038.12525--⨯=⨯⨯⨯==kT εJ7-24 一瓶氧气,一瓶氢气,等压、等温,氧气体积是氢气的2倍,求(1)氧气和氢气分子数密度之比;(2)氧分子和氢分子的平均速率之比.解:(1)因为 nkT p =则1=HO n n (2)由平均速率公式 mol 60.1M RT v = 41mol mol ==O H H O M M v v8-12 1 mol 单原子理想气体从300 K 加热到350 K ,问在下列两过程中吸收了多少热量?增加了多少内能?对外作了多少功?(1)体积保持不变;(2)压力保持不变.解:(1)等体过程由热力学第一定律得E Q ∆= 吸热)(2)(1212V T T R i T T C E Q -=-=∆=υυ25.623)300350(31.823=-⨯⨯=∆=E Q J对外作功 0=A (2)等压过程)(22)(1212P T T R i T T C Q -+=-=υυ 吸热75.1038)300350(31.825=-⨯⨯=Q J)(12V T T C E -=∆υ 内能增加 25.623)300350(31.823=-⨯⨯=∆E J对外作功 5.4155.62375.1038=-=∆-=E Q A J8-14 0.01 m 3氮气在温度为300 K 时,由0.1 MPa(即1 atm)压缩到10 MPa .试分别求氮气经等温及绝热压缩后的(1)体积;(2)温度;(3)各过程对外所作的功.解:(1)等温压缩 300=T K由2211V p V p = 求得体积3211210101.0101-⨯=⨯==p V p V 3m对外作功 21112ln ln p p V p V V VRT A ==01.0ln 01.010013.115⨯⨯⨯⨯=31067.4⨯-=J(2)绝热压缩R C 25V = 57=γ 由绝热方程 γγ2211V p V p =γγ/12112)(p V p V =1121/12112)()(V p p p V p V γγγ==3411093.101.0)101(-⨯=⨯=m由绝热方程γγγγ---=22111p T p T 得K 579)10(30024.04.1111212=⨯==--T p p T T γγγγ热力学第一定律A E Q +∆=,0=Q 所以 )(12mol T T C M M A V --=RT M M pV mol =,)(2512111T T R RT V p A --=35105.23)300579(25300001.010013.1⨯-=-⨯⨯⨯⨯-=A J8-15 理想气体由初状态),(11V p 经绝热膨胀至末状态),(22V p .试证过程中气体所作的功为12211--=γV p V p A ,式中γ为气体的比热容比.答:证明: 由绝热方程C V p V p pV ===γγγ2211 得γγV V p p 111=⎰=21d V V V p A⎰-----==21)11(1d 11121111V V r V V V p v v V p A γγγγγ ]1)[(112111---=-γγV V V p 又 )(1111211+-+----=γγγγV V V p A 112221111--=+-+-γγγγγV V p V V p所以 12211--=γV p V p A8-19 一卡诺热机在1000 K 和300 K 的两热源之间工作,试计算(1)热机效率;(2)若低温热源不变,要使热机效率提高到80%,则高温热源温度需提高多少?(3)若高温热源不变,要使热机效率提高到80%,则低温热源温度需降低多少?解:(1)卡诺热机效率 121T T -=η%7010003001=-=η(2)低温热源温度不变时,若%8030011=-=T η 要求 15001=T K ,高温热源温度需提高500K(3)高温热源温度不变时,若%80100012=-=T η要求 2002=T K ,低温热源温度需降低100K。

相关文档
最新文档