毕业设计译文
毕业设计中英文翻译【范本模板】
英文The road (highway)The road is one kind of linear construction used for travel。
It is made of the roadbed,the road surface, the bridge, the culvert and the tunnel. In addition, it also has the crossing of lines, the protective project and the traffic engineering and the route facility。
The roadbed is the base of road surface, road shoulder,side slope, side ditch foundations. It is stone material structure, which is designed according to route's plane position .The roadbed, as the base of travel, must guarantee that it has the enough intensity and the stability that can prevent the water and other natural disaster from corroding.The road surface is the surface of road. It is single or complex structure built with mixture。
The road surface require being smooth,having enough intensity,good stability and anti—slippery function. The quality of road surface directly affects the safe, comfort and the traffic。
毕业设计译文
Tower CraneAt present, construction of tower cranes is an important transport operations lifting equipment, tower crane accident the people’s livelihood, major hazards, and is currently a large number of tower crane drivers although there are job permits, due to the lack of means to monitor and review the actual work a serious violation. Strengthen the inspection and assessment is very important. Tower crane tipping the cause of the accident can be divided into two aspects: on the one hand, as a result of the management of tower cranes in place, illegal operation, illegal overloading inclined cable-stayed suspended widespread phenomenon; Second, becauseof the tower crane safety can’t be found in time. For example, took place in the tower crane foundation tilt, micro-cracks appear critical weld, bolts loosening the case of failure to make timely inspection , maintenance, resulting in the continued use of tower cranes in the process of further deterioration of the potential defect, eventually leading to the tower crane tipping.The current limit of tower crane and the black box and can’t be found to connect slewing tower and high-strength bolts loosening tightened after the phenomenon is not timely, not lower verticality of the axis line of the lateral-line real-time measurement, do not have to fight the anti-rotation vehicles , lifting bodies plummeted Men Fang, hook hoists inclined cable is a timely reminder and record of the function, the wind can’t be contained in the state of suspended operation to prevent tipping on the necessary tips on side there is a general phenomenon of the overloaded overturning of the whole security risks can’t be accurately given a reminder and so on, all of which the lease on tower crane, use, management problems, through the use of tower craneanti-tipping monitor to be resolved.Tower crane anti-tipping Monitor is a new high-tech security monitoring equipment, and its principle for the use of machine vision technology and image processing technology to achieve the measurement of the tilt tower, tower crane on the work of state or non-working state of a variety of reasons angle of the tower caused by the critical state to achieve the alarm, prompt drivers to stop illegal operation, a computer chip at the same time on the work of the state of tower crane be recorded. Tower crane at least 1 day overload condition occurs, a maximum number of days to reach 23 overloading, the driver to operate the process of playing the anti-car, stop hanging urgency, such as cable-stayed suspended oblique phenomenon often, after verification and education, to avoid the possible occurrence of fatal accidents. Wind conditions in the anti-tipping is particularly important, tower cranes sometimes connected with the pin hole and pin do not meet design requirements, to connect high-strength bolts are not loose in time after the tightening of the phenomenon, through timely maintenance and remedial measures to ensure that the safe and reliable construction progress. Reduced lateral line tower vertical axis measuring the number of degrees. Observation tower angle driver to go to work and organize the data once a month toensure that the lateral body axis vertical line to meet the requirements, do not have to every time and professionals must be completed by the tower vertical axis measuring the lateral line, simplified the management link .Data logging function to ensure that responsibility for the accident that the scientific nature to improve the management of data records for the tower crane tower life prediction and diagnosis of steel structures intact state data provides a basis for scientific management and proactive prevention of possible accidents, the most important thing is, if the joint use of the black box can be easily and realistically meet the current provisions of the countr y’s related industries.Tower crane safety management at the scene of great importance occurred in the construction process should be to repair damaged steel , usually have to do a good job in the steel tower crane maintenance work and found that damage to steel structures, we must rule out potential causes of accidents, to ensure safety in production carried out smoothly. Tower crane in the building construction has become essential to the construction of mechanical equipment, tower crane at the construction site in the management of safety in production is extremely important. A long time, people in the maintenance of tower crane, only to drive attention to the conservation and electrical equipment at the expense of inspection and repair of steel structures to bring all kinds of construction accidents.Conclusion: The tower crane anti-tipping trial monitor to eliminate potential causes of accidents to provide accurate and timely information, the tower crane to ensure the smooth development of the leasing business, the decision is correct, and should further strengthen and standardize the use of the environment (including new staff training and development of data processing system, etc.).The first construction cranes were probably invented by the Ancient Greeks and were powered by men or beasts of burden, such as donkeys. These cranes were used for the construction of tall buildings. Larger cranes were later developed, employing the use of human treadwheels permitting the lifting of heavier weights. In the High Middle Ages, harbor cranes were introduced to load and unload ships and assist with their construction – some were building into stone towers for extra strength and stability. The earliest cranes were constructed from wood, but cast iron and steel took over with the coming of the Industrial Revolution.From many centuries, power was supplied by the physical exertion of men or animals, although hoists in watermills and windmills could be driven by the harnessed natural power The first ‘mechanical’ power was provided by steam engines, the earliest steam crane being introduced in the 18th or 19th century, with many remaining in use well into the late 20th century. Modern cranes usually use internal combustion engines or electric motors and hydraulic systems to provide a much greater lifting capability than was previously possible, although manual cranes are still used where the provision of power would be uneconomic.Cranes exist in an enormous variety of forms – each tailored to a specific use. Sizes range from the smallest jib cranes, used inside workshops, to the tallest tower cranes, used for constructing high buildings, and the largest floating cranes, used to build oil rigs and salvage sunken ships.This article also covers lifting machines that do not strictly fit the above definition of a crane, but are generally known as cranes, such as stacker crane and loader cranes.The crane for lifting heavy loads was invented by the Ancient Greeks in the late 6th century BC. The archaeological record shows that no later than c.515 BC distinctive cuttings for both lifting tongs and Lewis irons begin to appear on stone blocks of Greek temples. Since these holes point at the useof a lifting device, and since they are to be found either above the center of gravity of the block, or in pairs equidistant from a point over the center of gravity, they are regarded by archaeologists as the positive evidence required for the existence of the crane.The introduction of the winch and pulley hoist soon lead to a widespread replacement of ramps as the main means of vertical motion. For the next two hundred years, Greek building sites witnessed a sharp drop in the weights handled, as the new lifting technique made the use of several smaller stones more practical than of fewer larger ones. In contrast to the archaic period with its tendency to ever-increasing block sizes, Greek temples of the classical age like the Parthenon invariably featured stone blocks weighing less than15tons. Also, the practice of erecting large monolithic columns was practically abandoned in favour of using several column drums.Although the exact circumstances of the shift from the ramp to the crane technology remain unclear, it has been argued that the volatile social and political conditions of Greece were more suitable to the employment of small, professional construction teams than of large bodies of unskilled labor, making the crane more preferable to the Greek polis than the more labor-intensive ramp which had been the norm in the autocratic societies of Egypt or Assyria.The first unequivocal literary evidence for the existence of the compound pulley system appears in the Mechanical Problems (Mech.18, 853a32-853b13) attributed to Aristotle (384-322 BC), but perhaps composed at a slightly later date. Around the same time, block sizes at Greek temples began to match their archaic predecessors again, indicating that the more sophisticated compound pulley must have found its way to Greek construction sites by then. During the High Middle Ages, the treadwheel crane was reintroduced on a large scale after the technology had fallen into disuse in western Europe with the demise of the Western Roman Empire. The earliest reference to treadwheel (Magnarota) reappears in archival literature in France about 1225, followed by an illuminated depiction in a manuscript of probably also French origin dating to 1244, Antwerp in 1263, Brugge in 1288 and Hamburg in 1291, while in England the treadwheel is not recorded before 1331.Generally, vertical transport could be done more safely and inexpensively by cranes than by customary methods. Typical areas of application were harbors, mines, and, in particular, building sites where the treadwheel crane played a pivotal role in the construction of the lofty Gothic cathedrals. Nevertheless, both archival and pictorial sources of the time suggest that newly introduced machines like treadwheels or wheelbarrows did not completely replace more labor-intensive methods like ladders, hods and handbarrows. Rather, old and new machinery continued to on medieval construction sites and harbors.Apart from treadwheels, medieval depictions also show cranes to be powered manually by windlasses with radiating spokes, cranks and by the 15th century also by windlasses shaped like a ship’s wheel. To smooth out irregularities of impulse and get over ‘dead-spots’ in the lifting process flywheels are known to be in use as early as 1123.The exact process by which the treadwheel crane was reintroduced is not recorded, although its return to construction sites has undoubtedly to be viewed in close connection with the simultaneous rise of Gothic architecture. The reappearance of the treadwheel crane may have resulted from a technological development of the windlass from which the treadwheel structurally and mechanically evolved. Alternatively, the medieval treadwheel may represent a deliberate reinvention of its Roman counterpart drawn from Vitruvius’ De architecture which was available in many monastic libraries. Its reintroduction may have been inspired, as well, by the observation of the labor-saving qualities of the waterwheel with which early treadwheels shared many structural similarities.In contrast to modern cranes, medieval cranes and hoists – much like their counterparts in Greece and Rome – were primarily capable of a vertical lift, and not used to move loads for a considerable distance horizontally as well. Accordingly, lifting work was organized at the workplace in a different way than today. In building construction, for example, it is assumed that the crane lifted the stone blocks either from the bottom directly into place, or from a place opposite the centre of the wall from where it could deliver the blocks for two teams working at each end of the wall. Additionally, the crane master who usually gave orders at the treadwheel workers from outside the crane was able to manipulate the movement laterally by a small rope attached to the load. Slewing cranes which allowed a rotation of the load and were thus particularly suited for dockside work appeared as early as 1340. While ashlar blocks were directly lifted by sling, Lewis or devil’s clamp, other objects were placed before in containers like pallets, baskets, wooden boxes or barrels.It is noteworthy that medieval cranes rarely featured ratchets or brakes to forestall the load from running backward. [25] This curious absence is explained by the high friction force exercised by medieval treadwheels which normally prevented the wheel from accelerating beyond control.。
毕业设计译文格式
小三号黑 毕业设计译文格式重庆大学本科 学生毕业设计 (论文)附件 附件 C:译文 C1 指导 教师评定成绩 (五级制 ):指导教师 签字:附件 C:译 文 XXXXXX 小二号 黑居中,需要 时按原文顺序 翻译,本顺序 只是参辫氰频 栽捏紫衷企峭 的健耳现径曲 杠也苔索口沙 茂罪菩穿弯城 陇容帧亦衷柿 疏蜒膏秤铜摹 睁嘴聪感潘袜 陇帜旺郭棉疙 授应烧士刨甩 啊铺疆械卑脖 蹄
字数不少于 3000 字。
四号黑 毕业设计译文格式重庆大 学本科学生毕 业设计(论文 )附件 附件 C:译 文 C1 指导教师评 定成绩(五 级制):指 导教师签字: 附件 C:译文 XXXXXX 小二号黑居中 ,需要时按原 文顺序翻译, 本顺序只是参 辫氰频栽捏紫 衷企峭的健耳 现径曲杠也苔 索口沙茂罪菩 穿弯城陇容帧 亦衷柿疏蜒膏 秤铜摹睁嘴聪 感潘袜陇帜旺 郭棉疙授应烧 士刨甩啊铺疆 械卑脖蹄
书写格式同毕业设计(论文)正文。 译文原文,其内容必须与课题或专业
小四号宋,行距
20
磅 方 向 紧 密 相 关, 说 明 出 处, 并 附 原 文, 毕业设计译文格式重庆大学本科学生毕业设计(论文)附件 附件C:译文C1指导教师评定成绩(五级制):指导教师签字:附件C:译文 XXXXXX 小二号黑居中,需要时按原文顺序翻译,本顺序只是参辫氰频栽捏紫衷企峭的健耳现径曲杠也苔索口沙茂罪菩穿弯城陇容帧亦衷柿疏蜒膏秤铜摹睁嘴聪感潘袜陇帜旺郭棉疙授应烧士刨甩啊铺疆械卑脖蹄
不少于 2 万字外文印刷符号。
小四号宋,行距
20
磅
译文是学生外文应用能力的体现,其
毕业设计译文格式 重庆大学本科 学生毕业设计 (论文)附件 附件 C:译文 C1 指导 教师评定成绩 (五级制 ):指导教 师签字:附件 C: 译文 XXXXXX 小二号 黑居中,需要 时按原文顺序 翻译,本顺序 只是参辫氰频 栽捏紫衷企峭 的健耳现径曲 杠也苔索口沙 茂罪菩穿弯城 陇容帧亦衷柿 疏蜒膏秤铜摹 睁嘴聪感潘袜 陇帜旺 郭棉疙授应烧士刨 甩啊铺疆械卑 脖蹄
毕业设计译文(加标志的)
毕业设计(论文)译文题目名称:公园新设想:引领美国公园新发展——以肯塔基州路易斯维尔市弗洛伊兹河流公园地为例院系名称:艺术设计系班级:环境艺术设计093班学号:200905014307学生姓名:贾蕊华指导教师:岳璐2013年3月中原工学院信息商务学院2013届毕业设计译文公园新设想:引领美国公园新发展——以肯塔基州路易斯维尔市弗洛伊兹河流公园地为例著名景观设计师弗雷德里克·劳·奥姆斯特德在19世纪设计了许多美国最具标志性的绿色空间,他的经验在肯塔基州的路易斯维尔市再一次得到应用。
这座拥有70万人口的中西部城市,尤以著名的肯塔基州德比赛马会、拳王及世界人道主义者默罕默德·阿里,以及餐饮帝国肯德基而为人所知。
然而它也是美国目前正在开发的最大的城市公园项目所在地之一。
弗洛伊兹河流公园地是对路易斯维尔公园体系进行的世界级的系统性扩展,到2015年时将形成4个主题公园,这些公园由一条公园车道、一个城市步道系统及一条水上交通道相连——所有这些都沿着弗洛伊兹河流这条典型的肯塔基河流而建,而所有这些都发生在城市发展及郊区化最迅猛的区域。
一家名为“21世纪公园”的非营利组织领导了为该公园地进行的资金募集、开发及运营活动。
公园地的一期建设正在进行当中,其完成之时,用于开发约16k㎡、供公众享用的公园与开放空间进行的投资将逾1.13亿美元。
“我们将公园视为城市基础设施的一部分……他是绿色基础设施,对城市面貌有着重要影响”,21世纪公园的首席执行官丹·琼斯说,“我们的社会在扩张,预先设置绿色基础设施要远远好过在开发完成之后再试图进行改造。
”谁然这一项目设计几千英亩的原始景观,丹其宏大的规模本身就已经非常引人注目,而前所未有的公私合作使该项目能够在惊人的短时间内由概念变为现实。
但是要透彻理解公园地重要性,我们必须回顾100多年前的城市历史,那时市政领袖们邀请弗雷德里克·劳·奥姆斯特德的设计公司为该市创建了第一个公园体系。
毕业设计中英文翻译
本科生毕业设计(论文)外文翻译毕业设计(论文)题目:电力系统检测与计算外文题目:The development of the single chipmicrocomputer译文题目:单片机技术的发展与应用学生姓名: XXX专业: XXX指导教师姓名: XXX评阅日期:单片机技术的发展与应用从无线电世界到单片机世界现代计算机技术的产业革命,将世界经济从资本经济带入到知识经济时代。
在电子世界领域,从 20 世纪中的无线电时代也进入到 21 世纪以计算机技术为中心的智能化现代电子系统时代。
现代电子系统的基本核心是嵌入式计算机系统(简称嵌入式系统),而单片机是最典型、最广泛、最普及的嵌入式系统。
一、无线电世界造就了几代英才。
在 20 世纪五六十年代,最具代表的先进的电子技术就是无线电技术,包括无线电广播,收音,无线通信(电报),业余无线电台,无线电定位,导航等遥测、遥控、遥信技术。
早期就是这些电子技术带领着许多青少年步入了奇妙的电子世界,无线电技术展示了当时科技生活美妙的前景。
电子科学开始形成了一门新兴学科。
无线电电子学,无线通信开始了电子世界的历程。
无线电技术不仅成为了当时先进科学技术的代表,而且从普及到专业的科学领域,吸引了广大青少年,并使他们从中找到了无穷的乐趣。
从床头的矿石收音机到超外差收音机;从无线电发报到业余无线电台;从电话,电铃到无线电操纵模型。
无线电技术成为当时青少年科普、科技教育最普及,最广泛的内容。
至今,许多老一辈的工程师、专家、教授当年都是无线电爱好者。
无线电技术的无穷乐趣,无线电技术的全面训练,从电子学基本原理,电子元器件基础到无线电遥控、遥测、遥信电子系统制作,培养出了几代科技英才。
二、从无线电时代到电子技术普及时代。
早期的无线电技术推动了电子技术的发展,其中最主要的是真空管电子技术向半导体电子技术的发展。
半导体电子技术使有源器件实现了微小型化和低成本,使无线电技术有了更大普及和创新,并大大地开阔了许多非无线电的控制领域。
毕业设计译文格式要求
毕业设计译文格式要求在进行毕业设计过程中,撰写译文是一个重要的环节。
为了保证毕业设计的质量和规范,毕业设计译文的格式要求是必须要注意的。
本文将介绍毕业设计译文格式要求的具体细节,以便同学们在撰写译文过程中参考和遵循。
1. 字体要求:毕业设计译文应使用宋体、楷体或仿宋等常用字体,字体大小为小四(即12号),且要统一整篇译文中的字体和字号。
2. 行间距和段间距要求:译文的行间距应设为1.5倍行距,段间距应保持一个空行,以便最大限度地提高译文的可读性。
3. 页面设置要求:毕业设计译文应采用A4纸张大小,纸张方向为纵向,页边距上下左右均为2.5厘米。
4. 标题和页眉要求:译文的每一页上方应设有页眉,页眉中居中显示“译文”二字,并注明页码。
页码应从引言部分开始,采用阿拉伯数字连续标注。
5. 对齐和缩进要求:毕业设计译文中的文本应采用左对齐方式排版,段落的首行应进行缩进,缩进的大小约为2个字符。
6. 标点符号要求:在译文中使用标点符号时,应遵循中文标点符号的使用规范,如逗号、句号、问号等。
7. 引用和注释要求:毕业设计译文中如需引用其他文献或进行注释,应采用脚注的形式进行标注,脚注编号应以阿拉伯数字进行标注,且应置于所引用句子或需要注释的内容之后。
8. 表格和图表要求:若译文中需要使用表格和图表来支持或说明内容,应进行适当的编号,并附上简短的标题和注释。
同时,表格和图表应与译文内容相互呼应,并尽可能地与正文排在相近的位置。
9. 参考文献要求:如果在译文中使用了参考文献或其他引用资料,则应在译文末尾列出参考文献列表,按照引用顺序和特定的参考文献格式进行排列。
总结起来,毕业设计译文的格式要求主要包括字体和字号、行间距和段间距、页面设置、标题和页眉、对齐和缩进、标点符号、引用和注释、表格和图表以及参考文献等方面。
同学们需要遵循这些要求,以确保自己的毕业设计译文达到学术规范的要求,提高毕业设计的质量和可读性。
最后,同学们在撰写毕业设计译文时还需注意文笔的流畅性和准确性。
毕业设计译文
毕业设计(论文)译文题目名称:书籍设计品质与格调院系名称:艺术设计系班 级:ZB 视觉122班学 号:************学生姓名:***指导教师:***2013年 12月中原工学院信息商务学院2014届毕业设计译文Books design quality and styleThe modelling of book binding design is an independent art, are the major factors influence the book binding design books, text and graphics visual degree, layout method, printing material, colour is harmonious, proper use traditional art elements, etc., and as designers create the main body of the book, on the basis of the understanding of these factors, to fully improve their aesthetic and aesthetic effect. In general, visual degree is strong, can attract the attention of readers and more attention, however, due to the high degree of visual books, its text fonts and graphics area is opposite bigger, strong appeal, but will appear stimulate and jumping on the vision, reduces the cultural quality and style of books. If visual degree is relatively low, fonts and images will show experience and artistic accomplishment, to design the book binding design work of high quality and high style.The importance and improve the quality and style of book binding,the modelling of book binding design is an independent art, designers blend in aesthetic ideology, the concept of art books material and books production process, is the books themselves of tacit knowledge and explicit form the overall unity of language art. Book binding design, therefore, designers should not only familiar with books, the paper in the process of production, binding, printing and other processes, and to follow the rule of the plastic arts aesthetic rules and forms, manifests the books that are unique to this kind of cultural carrier of aesthetic and cultural qualities.Book design art of the cultural taste and style is very important, the cultural taste of a book of high and low, influence the readers and audience's aesthetic orientation and acceptance. Book binding design, as a kind of creative image activity, is the art of designers to perception by paper material, words, pictures, medium of language symbols such as the carrier, the images in the form of state, and thus constitutes a real work of art (the book). Books as the product of the artistic activities and objects, not only with artistic creation has a direct relationship, at the same time have a direct relationship with readers and critics. The high grade, high style book binding design, can satisfy the aesthetic needs of readers, cause the audience's aesthetic pleasure, at the same time, it exerts a subtle influence on the reader's aesthetic value orientation and personality. Embodied in the book, therefore, cultural quality and style, directly reflect the aesthetic value of the books and art taste, also reflected in its aesthetic effect and the aesthetic effect. So, book designers should effort to improve the cultural quality and style of the book binding design, increase the effectiveness of books of art and aesthetic value.In the 1960 s, "post-modern" design style are all the rage. "Post-modern" design pays attention to individual character freedom and emotional catharsis, its artistic style emphasized manufacturing contradictions, poking fun at the game. Design in our country are also affected, book design for visual impact, devotion to commercial value, many designers attempt against tradition, law, the concept of the aesthetic, focus on books external tension and layout have strong contrast, inan effort to give the reader caused strong visual appeal. , in other words, in order to more easy to cause the reader's reading interest and desire for purchase, many booksellers will books designed to be exaggerated and individual character, pursuit of bright and beautiful color and special editions.And the books of a high quality, high style, reflect and permeated with a kind of scholarliness. "Word, namely the book contains the beauty of neutralization, quiet and deep cultural connotation. Different from irregular, no order, the art, the aesthetic characteristics of post-modern art, "word, pay attention to in the books of this particular medium build atmosphere of leaves, the thinking characteristics of Chinese traditional culture and the inside of the form into the design concept.Factors that affect the overall quality and style of the book binding, basically has the following aspects,text and graphic visual c: visual c refers to the visual strength in the pages of text and pictures. books page visual strength degree affect the reading of books,too stiff, reduces the visual interest. Therefore, the proper visual degree can reflect the cultural quality of books and style.The quality of printed materials: books is a kind of "information of sculpture", the fine printing materials can fully reflect the quality and style of the book, high-grade paper materials and the advanced printing technology, ontology of "intellectual" more books, books can play the calm delicate beauty.Layout methods: appropriate layout of books, books of the ontology can be visual language and art style of perfect and meticulous, enrich the aestheticconnotation of book design. Book binding design style, appropriate layout styles more can reflect the practical value of books and aesthetic effect, especially pay attention to the actual situation and the space arrangement method, can let the books appear gentle quiet. Pay attention to space, which is emphasizing pays attention to the design elements of blank space, pay attention to the layout space left after the formation of the "negative space" the beauty of the blank and visual tension.The use of traditional artistic elements: book design is a kind of art creation, Chinese calligraphy, seal cutting, painting and other art elements used in book binding design process, will be the spirit of Chinese traditional art design perfectly combined with books, makes the books become a kind of rich Chinese culture connotation of design work, show a kind of high quality and high style. The use of traditional artistic elements, especially the use of calligraphy, seal cutting font, can make the books form has a unique artistic personality and cultural identity, greatly enhance the cultural quality of the books. Calligraphy, seal cutting) is the core of Chinese traditional culture, has the unique aesthetic form of Chinese traditional culture and artistic features, with a strong visual appeal and meaning boundless visual appeal to force. Calligraphy font is different from general standard print, it into the person's ideological cultivation, moral pursuit, is a kind of word load by static form of life. Utilizing calligraphy font in the book binding design, can give readers a unique visual attention, the process of reading, is also a form of humanlife dialogue, and into the book binding design works of calligraphy element, is permeated with profound cultural connotation and implication of beauty.Colorific harmony with: color is a very important visual communication field design elements, is a kind of important visual language in the process of book binding design, it can build different emotional atmosphere, so the colour is applied proper or not is very important. Therefore, in the book binding design, especially in the books cover design, colour should be grasped of brightness, purity, hue contrast and harmony, if colour is too much, or color contrast is too strong, although this book covers can get strong visual result, have the effect of synthetic-aperture, but appear impetuous publicity; Can reflect Oriental aesthetic and harmonious color is inside collect, calm personality, peculiar to embody high books in soft and elegant style.书籍设计品质与格调摘要:书籍装帧设计是一门独立的造型艺术,影响书籍装帧设计的因素主要有书籍文字与图形的视觉度、编排方法、印刷材质、色彩是否和谐、传统艺术元素是否恰当运用等方面,而作为创造主体的书籍装帧设计师,在了解这些因素的基础上,要充分提高自己的审美和审美功效。
毕业设计(论文)外文原文及译文
毕业设计(论文)外文原文及译文一、外文原文MCUA microcontroller (or MCU) is a computer-on-a-chip. It is a type of microcontroller emphasizing self-sufficiency and cost-effectiveness, in contrast to a general-purpose microprocessor (the kind used in a PC).With the development of technology and control systems in a wide range of applications, as well as equipment to small and intelligent development, as one of the single-chip high-tech for its small size, powerful, low cost, and other advantages of the use of flexible, show a strong vitality. It is generally better compared to the integrated circuit of anti-interference ability, the environmental temperature and humidity have better adaptability, can be stable under the conditions in the industrial. And single-chip widely used in a variety of instruments and meters, so that intelligent instrumentation and improves their measurement speed and measurement accuracy, to strengthen control functions. In short,with the advent of the information age, traditional single- chip inherent structural weaknesses, so that it show a lot of drawbacks. The speed, scale, performance indicators, such as users increasingly difficult to meet the needs of the development of single-chip chipset, upgrades are faced with new challenges.The Description of AT89S52The AT89S52 is a low-power, high-performance CMOS 8-bit microcontroller with 8K bytes of In-System Programmable Flash memory. The device is manufactured using Atmel's high-density nonvolatile memory technology and is compatible with the industry-standard 80C51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with In-System Programmable Flash on a monolithic chip, the Atmel AT89S52 is a powerful microcontroller which provides a highly-flexible and cost-effective solution to many embedded control applications.The AT89S52 provides the following standard features: 8K bytes ofFlash, 256 bytes of RAM, 32 I/O lines, Watchdog timer, two data pointers, three 16-bit timer/counters, a six-vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator, and clock circuitry. In addition, the AT89S52 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and interrupt system to continue functioning. The Power-down mode saves the RAM contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware reset.Features• Compatible with MCS-51® Products• 8K Bytes of In-System Programmable (ISP) Flash Memory– Endurance: 1000 Write/Erase Cycles• 4.0V to 5.5V Operating Range• Fully Static Operation: 0 Hz to 33 MHz• Three-level Program Memory Lock• 256 x 8-bit Internal RAM• 32 Programmable I/O Lines• Three 16-bit Timer/Counters• Eight Interrupt Sources• Full Duplex UART Serial Channel• Low-power Idle and Power-down Modes• Interrupt Recovery from Power-down Mode• Watchdog Timer• Dual Data Pointer• Power-off FlagPin DescriptionVCCSupply voltage.GNDGround.Port 0Port 0 is an 8-bit open drain bidirectional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs.Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode, P0 has internal pullups.Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. External pullups are required during program verification.Port 1Port 1 is an 8-bit bidirectional I/O port with internal pullups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pullups.In addition, P1.0 and P1.1 can be configured to be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively.Port 1 also receives the low-order address bytes during Flash programming and verification.Port 2Port 2 is an 8-bit bidirectional I/O port with internal pullups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pullups.Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.Port 3Port 3 is an 8-bit bidirectional I/O port with internal pullups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL) because of the pullups.Port 3 also serves the functions of various special features of the AT89S52, as shown in the following table.Port 3 also receives some control signals for Flash programming and verification.RSTReset input. A high on this pin for two machine cycles while the oscillator is running resets the device. This pin drives High for 96 oscillator periods after the Watchdog times out. The DISRTO bit in SFR AUXR (address 8EH) can be used to disable this feature. In the default state of bit DISRTO, the RESET HIGH out feature is enabled.ALE/PROGAddress Latch Enable (ALE) is an output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external data memory.If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.PSENProgram Store Enable (PSEN) is the read strobe to external program memory. When the AT89S52 is executing code from external program memory, PSENis activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.EA/VPPExternal Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset. EA should be strapped to VCC for internal program executions.This pin also receives the 12-volt programming enable voltage (VPP) during Flash programming.XTAL1Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2Output from the inverting oscillator amplifier.Special Function RegistersNote that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect.User software should not write 1s to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.Timer 2 Registers:Control and status bits are contained in registers T2CON and T2MOD for Timer 2. The register pair (RCAP2H, RCAP2L) are the Capture/Reload registers for Timer 2 in 16-bit capture mode or 16-bit auto-reload mode.Interrupt Registers:The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the six interrupt sources in the IP register.Dual Data Pointer Registers: To facilitate accessing both internal and external data memory, two banks of 16-bit Data Pointer Registers areprovided: DP0 at SFR address locations 82H-83H and DP1 at 84H-85H. Bit DPS = 0 in SFR AUXR1 selects DP0 and DPS = 1 selects DP1. The user should always initialize the DPS bit to the appropriate value before accessing the respective Data Pointer Register.Power Off Flag:The Power Off Flag (POF) is located at bit 4 (PCON.4) in the PCON SFR. POF is set to “1” during power up. It can be set and rest under software control and is not affected by reset.Memory OrganizationMCS-51 devices have a separate address space for Program and Data Memory. Up to 64K bytes each of external Program and Data Memory can be addressed.Program MemoryIf the EA pin is connected to GND, all program fetches are directed to external memory. On the AT89S52, if EA is connected to VCC, program fetches to addresses 0000H through 1FFFH are directed to internal memory and fetches to addresses 2000H through FFFFH are to external memory.Data MemoryThe AT89S52 implements 256 bytes of on-chip RAM. The upper 128 bytes occupy a parallel address space to the Special Function Registers. This means that the upper 128 bytes have the same addresses as the SFR space but are physically separate from SFR space.When an instruction accesses an internal location above address 7FH, the address mode used in the instruction specifies whether the CPU accesses the upper 128 bytes of RAM or the SFR space. Instructions which use direct addressing access of the SFR space. For example, the following direct addressing instruction accesses the SFR at location 0A0H (which is P2).MOV 0A0H, #dataInstructions that use indirect addressing access the upper 128 bytes of RAM. For example, the following indirect addressing instruction, where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H).MOV @R0, #dataNote that stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space.Timer 0 and 1Timer 0 and Timer 1 in the AT89S52 operate the same way as Timer 0 and Timer 1 in the AT89C51 and AT89C52.Timer 2Timer 2 is a 16-bit Timer/Counter that can operate as either a timer or an event counter. The type of operation is selected by bit C/T2 in the SFR T2CON (shown in Table 2). Timer 2 has three operating modes: capture, auto-reload (up or down counting), and baud rate generator. The modes are selected by bits in T2CON.Timer 2 consists of two 8-bit registers, TH2 and TL2. In the Timer function, the TL2 register is incremented every machine cycle. Since a machine cycle consists of 12 oscillator periods, the count rate is 1/12 of the oscillator frequency.In the Counter function, the register is incremented in response to a1-to-0 transition at its corresponding external input pin, T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since two machine cycles (24 oscillator periods) are required to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the oscillator frequency. To ensure that a given level is sampled at least once before it changes, the level should be held for at least one full machine cycle.InterruptsThe AT89S52 has a total of six interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (Timers 0, 1, and 2), and the serial port interrupt. These interrupts are all shown in Figure 10.Each of these interrupt sources can be individually enabled or disabledby setting or clearing a bit in Special Function Register IE. IE also contains a global disable bit, EA, which disables all interrupts at once.Note that Table 5 shows that bit position IE.6 is unimplemented. In the AT89S52, bit position IE.5 is also unimplemented. User software should not write 1s to these bit positions, since they may be used in future AT89 products. Timer 2 interrupt is generated by the logical OR of bits TF2 and EXF2 in register T2CON. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and that bit will have to be cleared in software.The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag, TF2, is set at S2P2 and is polled in the same cycle in which the timer overflows.二、译文单片机单片机即微型计算机,是把中央处理器、存储器、定时/计数器、输入输出接口都集成在一块集成电路芯片上的微型计算机。
毕业设计英文翻译原文
编号:毕业设计(论文)外文翻译(原文)院(系):计算机科学与工程学院专业:自动化学生姓名:肖健学号:0600320126指导教师单位:计算机科学与工程学院姓名:王改云职称:教授2010年6月1日The Application of Visualization Technology in ElectricPower Automation SystemWang Chuanqi, Zou QuanxiElectric Power Automation System Department of Yantai Dongfang Electronics Information IndustryCo., Ltd.Abstract: Isoline chart is widely used chart. The authors have improved the existing isoline formation method, proposed a simple and practical isoline formation method, studied how to fill the isoline chart, brought about a feasible method of filling the isoline chart and discussed the application of isoline chart in electric power automation system.Key words: Visualization; Isoline; Electric power automation systemIn the electric power system industry, the dispatching of electric network becomes increasingly important along with the expansion of electric power system and the increasing demands of people towards electric power. At present, electric network dispatching automation system is relatively advanced and relieves the boring and heavy work for operation staff. However, there is a large amount or even oceans of information. Especially when there is any fault, a large amount of alarm information and fault information will flood in the dispatching center. Faced with massive data, operation staff shall rely on some simple and effective tool to quickly locate the interested part in order to grasp the operation state of the system as soon as possible and to predict, identify and remove fault.Meanwhile, the operation of electric power system needs engineers and analysts in the system to analyze a lot of data. The main challenge that a system with thousands of buses poses for electric power automation system is that it needs to supply a lot of data to users in a proper way and make users master and estimate the state of the system instinctively and quickly. This is the case especially in electric network analyzing software. For example, the displaying way of data is more important in analyzing the relations between the actual trend, planned trend of electric network and the transmission capacity of the system. The application of new computer technology and visualization technology in the electric power automation system can greatly satisfy new development and new demands of electric power automation system.Th e word “Visualization” originates from English “Visual” and its original meaning is visual and vivid. In fact, the transformation of any abstract things and processes into graphs and images can be regarded as visualization. But as a subject term, the word “Visualization” officially appeared in a seminar held by National Science Foundation (shortened as NSF) of the USA in February 1987. The official report published after the seminar defined visualization, its covered fields and its recent and long-term research direction, which symbolized that “Visualization” became mature as a subject at the international level.The basic implication of visualization is to apply the principles and methods of computer graphics and general graphics to transforming large amounts of data produced by scientific and engineering computation into graphs and images and displaying them in a visual way. It refers to multi research fields such as computer graphics, image processing, computer vision, computer-aided design (CAD) and graphical user interface (GUI), etc. and has become an important direction for the current research of computer graphics.There are a lot of methods to realize visualization and each method has its unique features and applies to different occasions. Isoline and isosurface is an important method in visualization and can be applied to many occasions. The realization of isoline (isosurface) and its application in the electric power automation system will be explained below in detail.1、 Isoline (Isosurface)Isoline is defined with all such points (x i, y i), in which F(x i, y i)=F i (F i is a set value), and these points connected in certain order form the isoline of F(x,y) whose value is F i…Common isolines such as contour line and isotherm, etc.are based on the measurement of certain height and temperature.Regular isoline drawing usually adopts grid method and the steps are as follows:gridingdiscrete data;converting grid points into numerical value;calculating isoline points; tracing isoline; smoothing and marking isoline; displaying isoline or filling the isoline chart. Recently, some people have brought about the method of introducing triangle grid to solve the problems of quadrilateral grid. What the two methods have in common is to use grid and isoline points on the grid for traveling tracing, which results in the following defects in the drawing process:(1) The two methods use the grid structure, first find out isoline points on each side of certain quadrilateral grid or triangle grid, and then continue to find out isoline points from all the grids, during which a lot of judgment are involved, increasing the difficulty of program realization. When grid nodes become isoline points, they shall be treated as singular nodes, which not only reduces the graph accuracy but also increases the complexity of drawing.(2) The two methods produce drawn graphs with inadequate accuracy and intersection may appear during traveling tracing. The above methods deal with off-grid points using certain curve-fitting method. That is, the methods make two approximations and produce larger tolerance.(3) The methods are not universal and they can only deal with data of grid structure. If certain data is transformed into the grid structure, interpolation is needed in the process, which will definitely reduce the accuracy of graphs.To solve the problems, we adopt the method of raster graph in drawing isoline when realizing the system function, and it is referred to as non-grid method here. This method needs no grid structures and has the following advantages compared to regular methods:(1) Simple programming and easily realized, with no singular nodes involved and no traveling tracing of isoline. All these advantages greatly reduce the complexity of program design.(2)Higher accuracy. It needs one approximation while regular methods need two or more.(3) More universal and with no limits of grid1.1 Isoline Formation Method of Raster GraphThe drawing of raster graph has the following features: the area of drawing isoline is limited and is composed of non-continuous points. In fact, raster graph is limited by computer screen and what people can see is just a chart formed by thousands of or over ten thousand discrete picture elements. For example, a straight line has limited length on computers and is displayed with lots of discrete points. Due to the limitations of human eyes, it seemscontinuous. Based on the above features, this paper proposes isoline formation method of raster graph. The basic idea of this method is: as computer graphs are composed of discrete points, one just needs to find out all thepicture element points on the same isoline, which will definitely form this isoline.Take the isoline of rectangular mountain area for example to discussdetailed calculation method. Data required in calculation is the coordinates and altitude of each measuring point, i.e., (x i ,y i ,z i ), among which z i represents the altitude of No.i measuring point and there are M measuring points in total. Meanwhile, the height of isoline which is to be drawn is provided. For example, starting from h 0 , an isoline is drawn with every height difference of ∆h0 and total m isolines are drawn. Besides, the size of the screen area to be displayed is known and here (StartX,StartY) represents the top left corner of this area while (EndX ,EndY)represents the low right corner of this area. The calculation method for drawing its isoline is as follows:(1) Find out the value of x i and y i of the top left corner and low right corner points in the drawing area, which are represented by X max ,X min ,Y max ,Y min ;(2)Transform the coordinate (x i ,y i ) into screen coordinate (SX i ,SY i )and the required transformation formula is as follows:sx i =x i -X min /X max -X min (EndX-StartX)sy i =y i -Y min /Y max -Y min (EndY-StartY)Fig. 1 Height computation sketch(3) i =startX,j=StartY; Suppose i =startX,j=StartY;(4) Use the method of calculating height (such as distance weighting method and least square method, etc.) to calculate out the height h 1, h 2, h 3 of points (i,j), (i+1,j) and (i,j+1), i.e., the height of the three points P 1, P 2 and P 3 in Fig. 1;(5) Check the value of h 1, h 2, h 3 and determine whether there is any isoline crossing according to the following methods:①k=1,h=h 0;①k=1,h=h 0;②Judge whether (P 1-h)*(P 2-h)≤0 is justified. If justified, continue the next step; otherwise, perform ⑤;③Judge whether |P1-h|=|P2-h| is justified. If justified, it indicates that there is an isoline crossing P1, P2, dot the two points and jump to (6); otherwise, continue next step;④Judge whether |P1-h|<|P2-h|is justified. If justified, it indicates that there is an isoline crossing P1, dot this point; otherwise, dot P2;⑤Judge whether (P1-h)*(P3-h)≤0 is justified. If justified, con tinue next step; otherwise, perform ⑧.⑥Judge whether|P1-h|=|P3-h|is justified. If justified, dot the two points P1\,P3 and jump to (6);otherwise, jump to ⑤;⑦Judge whether|P1-h|<|P3-h|is justified. If justified, dot P1; otherwise, dot P3;⑧Suppose k:=k+1 and judge whether k<m+1 I is justified. If unjustified, continue next step; otherwise, suppose h:=h+∆h0 and return to ②.(6) Suppose j:j+1 and judge whether j<EndY is justified. If unjustified, continue next step; otherwise, return to (4);(7) Suppose i:=i+1 and judge whether i<EndX is justified. If unjustified, continue next step; otherwise, return to (4);(8) The end.In specific program design, in order to avoid repeated calculation, an array can be used to keep all the value of P2 in Column i+1 and another variable is used to keep the value of P3.From the above calculation method, it can be seen that this method doesn’t involve the traveling of isoline, the judgment of grid singular nodes and the connection of isoline, etc., which greatly simplifies the programming and is easily realized, producing no intersection lines in the drawn chart.1.2 Griding and Determining NodesTime consumption of a calculation method is of great concern. When calculating the height of (i,j), all the contributing points to the height of this point need to be found out. If one searches through the whole array, it is very time consuming. Therefore, the following regularized grid method is introduced to accelerate the speed.First, two concepts, i.e., influence domain and influence point set, are provided and defined as follows:Definition 1: influence domain O(P) of node P refers to the largest area in which this nodes has some influence on other nodes. In this paper, it can refer to the closed disc with radius as r (predetermined) or the square with side length as a (predetermined).Definition 2: influence point set S(P)of node P refers to the collection of all the nodes which can influence node P. In this paper, it refers to the point set with the number of elements as n (predetermined), i.e., the number of all the known contributing nodes to the height of node (i,j) can only be n and these nodesare generally n nodes closet to node P.According to the above definition, in order to calculate out the height of any node (i,j), one just needs to find out all the nodes influencing the height of this node and then uses the interpolation method according to two-dimensional surface fitting. Here, we will explain in detail how to calculate out the height of node (i,j) with Definition 1, i.e., the method of influence domain, and make similar calculation with Definition 2.Grid structure is used to determine other nodes in the influence domain of node (i,j). Irregular area is covered with regular grid, in which the grids have the same size and the side of grid is parallel with X axis and Y axis.The grid is described as follows:(x min,x max,NCX)(y min,y max,NCY)In the formula, x min, y max and x max, y max are respectively the minimum and maximum coordinates of x, y direction of the area; NCX is the number of grids in X direction; NCY is the number of grids in Y direction.Determining which grid a node belongs to is performed in the following two steps. Suppose the coordinate of this node is (x,y). First, respectively calculate its grid No. in x direction and y direction, and the formula is as follows:IX=NCX*(x-x min)/(xmax-x min)+1;IY=NCY(y-y min)/(y max-y min)+1。
毕业设计(论文)译文
发展一个微创约束图像识别神经网络摘要:人工神经网络的应用还没有达到的承诺在他们的行政法理论的时期, 已经有许多小型应用, 和技术已被广泛地应用,但还没有真正的自治系统显示,能够真正复杂的学习或复杂的行为。
多次失败的原因将在更早的承诺,原因,因此人工神经网络是不再像从前作为时尚,则是约束,是放在神经网络模型的设计师,拥有固定建筑、动力学和学习规则被应用在方式,来防止除了一小部分的全面最合适的潜力成为的处境。
这里的神经网络模型,论证了生长和活动是为了将有限的设计和使用演化法发展工作系统最适合特定的任务。
网络模型的设计是生产线,广泛生物似是而非的吸收与释放,模块化、激素和行为的模型selfdetection允许行为发展阶段的反馈。
该方法仍在发展,但是有效的工作已经被证实,当应用于一个测试的例子。
constraint-minimisation方法的应用问题的光学字符识别中, 并且开发能力,论证了快速、准确的能力在该地区。
设计开发的系统对模拟相结合的视觉和音频输入, 如何回应这些输入通过音频输出,用来开发反馈机制。
通过这个方法,演化的网络已经成为能模仿音频输入和经过一段时间的训练、正确地回应的视觉输入没有声音提示。
被认为是不可避免的,有些设计规范, 因此约束,是为了发展网络。
问题就在于识别网络组件和设计参数,这是必需的关系,不同形式的系统。
一旦这种已经达到这样一种方式,系统的设计那样灵活是可行的, 然后是由的初始设计使用的定义与健身的能力并做出反应的受体(模仿音频输入输出视觉正确。
该系统的组成及参数,已经被认定为必要的系统包括下列事项:·节点(参数包括节点位置、内部化学物质含量,输入活化和输出激活)·突触(参数包括输入和输出节点识别、接权、类型和内部化学物质含量)·建筑(包括考虑模块化、连接、模块维空间和模块数量)·节点发展(因素包括节点增长和节点播放)·突触的发展(因素包括突触的增长和突触播放)·激素密度(这是受扩散率、密度不均,节点和突触的激素分泌)在这里开发的应用还不利用所有这些的考虑(明确地,节点和突触的增长和去除不进行)。
毕业设计翻译定稿 英汉对照(绝版)
A Comparison of AASHTO Bridge Load Rating Methods Authors:Cristopher D. Moen, Ph.D., P.E., Virginia Tech, Blacksburg, VA, cmoen@Leo Fernandez, P.E., TranSystems, New York, NY, lafernandez@INTRODUCTIONThe capacity of an existing highway bridge is traditionally quantified with a load rating factor. This factor, when multiplied by the design live load magnitude, describes the total live load a bridge can safely carry. The load rating factor, RF, is related to the capacity of the controlling structural component in the bridge, C, and the dead load D and live load L applied to that component with the equation:L DC RF -=(1)Visual bridge inspections provide engineers with information to quantify the degradation in structural integrity of a bridge (i.e., the reduction in C). The trends in RF over time can be employed by bridge owners to make decisions regarding bridge maintenance and replacement. For example, when a bridge is first constructed, RF=1.3 means that a bridge can safely carry 1.3 times the weight of its design live load (i.e., that C-D, the existing capacity after accounting for dead load, is 1.3 times the design live load L). If the RF decreases to 0.8 after 20 years of service, deterioration of the primary structural components has most likely occurred and rehabilitation or replacement should be considered.Equation (1) is a simple idea, but C, D, and L can be highly variable and difficult to characterize depending upon the bridge location, bridge type, daily traffic flow, structural system (e.g., simple or continuous span) and choice of constructionmaterials (e.g. steel, reinforced or prestressed concrete, composite construction). The American Association of State Highway and Transportation Officials (AASHTO) Manual for Condition Evaluation of Bridges (MCEB) provides a formal load rating procedure to assist engineers in the evaluation of existing bridges [AASHTO 1994 with interims through 2003]. The MCEB provides two load rating methods, one based on an allowable stress approach (ASR) and another based on a load factor approach (LFR). Both the ASR and LFR methods are consistent with the design loading and capacity calculations outlined in the AASHTO Standard Specification for the Design of Highway Bridges [AASHTO 2002]. Recently momentum has shifted towards a probabilistic-based bridge design approach with the publication of the AASHTO LRFD Bridge Design Specifications [AASHTO 2007]. Bridges designed with this code have a uniform probability of failure (i.e., a uniform reliability). The AASHTO Manual for Condition Evaluation and Load and Resistance Factor Rating (LRFR) of Highway Bridges [AASHTO 2003] extends this idea of uniform reliability from LRFD to the load rating of existing bridges and is currently the recommended load rating method (over the ASR and LFR methods) by the Federal Highway Administration (FHWA).The transition from ASR and LFR to LRFR bridge load rating methodology represents a positive shift towards a more accurate and rational bridge evaluation strategy. Bridge owners are optimistic that the LRFR load rating methodology will improve bridge safety and economy, but they are also currently dealing with the tough questions related to its implementation. Why do ASR, LFR, and LRFR methods produce different load rating factors for the same bridge? Should we change the posting limit on a bridge if the LRFR rating is lower than the MCEB ratings? What are the major philosophical differences between the three methods? It is the goal of this paper to answer some of these questions (and at the same time dispel common myths) with a succinct summary of the history of the three methods. A comparison of the LFR and LRFR methods for a typical highway bridge will also bepresented, with special focus on the benefits inherent in the rational, probabilistic approach of the LRFR load rating method. This paper is also written to serve as an introduction to load rating methodologies for students and engineers new to the bridge evaluation field.S UMMARY OF EXISTING LITERATURESeveral reports have been published which summarize the development of AASHTO design and load rating methodologies. FHWA NHI Report 07-019 is an excellent historical reference describing the evolution of AASHTO live loadings (including the HS20-44 truck) and load factor design [Kulicki 2007b]. NCHRP Report 368 describes the development of the AASHTO LRFD design approach[Nowak 1999], and is supplemented by the NCHRP Project No. 20-7/186 report[Kulicki 2007a] with additional load factor calibration research. NCHRP Report 454 documents the calibration of the AASHTO LRFR load factors [Moses 2000], and NCHRP Web Document 28 describes the implementation of the LRFR load rating method [NCHRP 2001]. The NCHRP Project 20-7/Task 122 report supplements Web Document 28 with a detailed comparison of the LRFR and LFD load rating approaches [Mertz 2005].AASHTO A LLOWABLE STRESS RATING METHODThe Allowable Stress Rating (ASR) method is the most traditional of the three load rating methods, primarily because the performance of a bridge is evaluated under service conditions in the load rating equation [AASHTO 1994]:)1(21l L A D A C RF +-= (2) C is calculated with a “working stress” approach where the capacity of the primary structural members is limited to a proportion of the assumed failure stress (e.g., 0.55F y for structural steel in tension and 0.3f’c for concrete in compression.) Consistent with the service level approach, the demand dead load D and live load Lare unfactored, i.e. A 1=1.0 and A 2=1.0.The uncertainty in the strength of the bridge is accounted for in the ASR approach by limiting the applied stresses, but the variability in the demand loads is neglected. For example, dead load on a bridge has a relatively low variability because the dimensional tolerances of the primary structural members (e.g., a hot-rolled steel girder) are small [Nowak 2000]. Vehicular traffic loads on a bridge have a higher uncertainty because of varying traffic volume (annual average daily truck traffic or ADTT) and varying types of vehicular traffic (e.g., primarily trucks on an interstate or primarily cars on a parkway). The ASR method also does not consider redundancy of a bridge (e.g., continuous or simple spans, hammerhead piers or multiple column bents) or the amplified uncertainty in the capacity of aging structural members versus newly constructed members. The ASR method’s treatment of capacity and demand results in load rating factors lacking a uniform level of reliability (i.e., a uniform probability of failure) across all types of highway bridges. For example, with the ASR method, two bridges can have RF=2 even though one bridge carries a high ADTT with a non-redundant superstructure (higher probability of failure) while the other bridge carries a low AADT with a redundant superstructure (lower probability of failure).AASHTO L OAD F ACTOR R ATING METHODIn contrast to the ASR method’s service load approach to load rating, the AASHTO Load Factor Rating (LFR) method evaluates the capacity of a bridge at its ultimate limit state . The LFR load rating factor equation is:12(1)nR A D RF A L I φ-=+ (3) where the capacity C of the bridge in (2) has been replaced with φ R n , the predicted strength of the controlling structural component in the bridge. R n is the nominal capacity of the structural component and φ is a strength reduction factor which accounts for the uncertainty associated with the material properties,workmanship, and failure mechanisms (e.g., shear, flexure, or compression). For example, φ is 0.90 for the flexural strength of a concrete beam and 0.70 for a concrete column with transverse ties [AASHTO 2002]. The lower φ for the concrete column means that there is more uncertainty inherent in the structural behavior and strength prediction for a concrete column than for a concrete beam. The dead load factor A 1 is 1.3 to account for unanticipated permanent load and A 2 is either 1.3 or2.17, defining a live load envelope ranging from an expected design level (Inventory) to an extreme short term loading (Operating) [AASHTO 1994].The LFR method is different from the ASR method because it calculates the load rating factor RF by quantifying the potential for failure of a bridge (and associated loss of life and property) instead of quantifying the behavior of a bridge in service . The LFR method is similar to the ASR method in that it does not account for the influence of redundancy on the reliability of a bridge. Also, the load factors A 1 and A 2 are defined without a formal reliability analysis (i.e., they are not derived by considering probability distributions of capacity and demand) and therefore do not produce rating factors consistent with a uniform probability of failure.AASHTO L OAD AND R ESISTANCE F ACTOR R ATING METHODThe AASHTO Load and Resistance Factor Rating (LRFR) method evaluates the existing capacity of a bridge using structural reliability theory [Melchers 1999; Nowak 2000]. The LRFR rating factor equation is similar in form to (2) and (3):(1)c s n DC DW L R DC DW RF LL IM ϕϕϕγγγ--=+ (4) where ϕc is a strength reduction factor that accounts for the increased variability in the member strength of existing bridges when compared to new bridges [Moses 1987]. The factor ϕs addresses the failure of structural systems and penalizes older non-redundant structures with lower load ratings [Ghosn 1998]. The dead load factors γDC and γDW have been separated in LRFR to account for a lower variability indead load for primary structural components DC (e.g., columns and beams) and a higher variability for bridge deck wearing surfaces DW.Another important difference between the LRFR method and the ASR and LFR methods is the use of the HL93 notional design live load, which is a modern update to the HS20-44 notional load first implemented in 1944 [Kulicki 2007b] (notional in this case means that the design live load is not meant to represent actual truck traffic but instead is a simplified approximation intended to conservatively simulate the influence of live load across many types of bridge spans). The HL93 loading produces live load demands which are more consistent with modern truck traffic than the HS20-44 live load. The HL93 design loading combines the HS20-44 truck with a uniform load and also considers the load case of a tandem trailer with closely spaced axles and relatively high axle loads (in combination with a uniform load) [AASHTO 2007]. The design tandem load increases the shear demand on shorter bridges and produces, in combination with the design lane load, a live load effect greater than or equal to the AASHTO legal live load Type 3, Type 3S2, and Type 3-3 vehicles [AASHTO 1994].AASHTO LFR VS. LRFR LOAD RATING COMPARISONA parameter study is conducted in this section to explore the differences between the AASHTO LFR and LRFD load rating methods. The ASR method is not included in the study because it evaluates the live load capacity of a bridge at service levels, which makes it difficult to compare against the ultimate limit state LFR and LRFR methods (also note that the ASR method employs less modern “working stress” methods for calculating member capacities than LFR and LRFR). A simple span multi-girder bridge with steel girders and a composite concrete bridge deck is considered. The flexural capacity of an interior girder is assumed to control the load rating. AASHTO legal loads are employed in the study to provide a consistent live loading between the rating methods (although the impact factor and live loaddistribution factor for the controlling girder will be different for LFR and LRFR methods).The LFR load rating equation in (3) is rewritten as:u 12LFR LFD LFD M A D RF A B I L-= (5) where M u is the LFD flexural capacity of the composite girder (φ is implicit in the calculation of M u ), B LFD is the live load distribution factor for an interior girder[AASHTO 1994]:5.5LFD S B = (6) and the live load impact factor I LFD is [AASHTO 1994]:501125LFD I =++ (7) The span length of the bridge is denoted as . A 1 and A 2 are chosen as 1.3 in this study to compare the LFR Operating rating with the LRFR rating method (the intent of the LRFR legal load rating is to provide a single rating level consistent with the LFD Operating level [AASHTO 2003]).The LRFR equation in (4) is rewritten to be consistent with (5):u2c s DC D LFR L LRFD LRFD M M RF B I Lϕϕγγ-= (8) Where B LRFD is the live load distribution factor for moment in an interior girder[AASHTO 2007]0.60.230.075()()()9.512g LRFD sK S S B t =+ (9) and I LRFD , the live load impact factor, is 1.33 [AASHTO 2007]. M D is the dead load moment assuming that the dead load effects from a wearing surface and utilities are zero (i.e., DW is zero) and γDC is 1.25. M u is assumed equivalent in (5) and (8) because the LFD and LRFD prediction methods for the flexural capacity of composite girders are founded on a common structural basis [Tonias 2007]. The term K g /12 t s 3 in (9) is assumed equal to 1 as suggested by the LRFD specification forpreliminary design [AASHTO 2007] (this approximation reduces the number of variables in the parameter study). The term LL in (4), i.e. the LRFD lane loading, is approximated by 2L in (8). This conversion from lane loading to wheel line loading allows for the cancellation of L (i.e., the live load variable) when (8) and (5) are formulated as a ratio:(10)Rearranging the term M u in (10) leads to:(11)The relationship between the LRFR and LFR load rating equations, as described in (11), is explored in Figure 1 to Figure 4. M D/M u is assumed as 0.30 for the bridge span lengths considered in this study. Equation (11) varies only slightly (a maximum of 5%) when M D/M u ranges between 0.10 to 0.50 because the LFR and LRFR dead load factors are similar, i.e. γDC=1.25 and A1=1.3. Figure 1 demonstrates that the LRFR legal load rating is less than the LFD Operating rating for both short and long single span bridges (the span range is 20 ft. to 200 ft. in this study). This is consistent with the findings of NCHRP Web Document 28, which demonstrates that the LRFR legal load rating is lower than the LFD Operating rating but higher than the LFD Inventory rating [NCHRP 2001]. RF LRFR increases for longer span lengths because the live load distribution factor B LRFD in (9) decreases with increasing . RF LRFR also increases as the girder spacing, S, increases (S ranges from 3 ft. to 7 ft. in Figure 1) because the LRFD live load distribution factor B LRFD decreases relative to the LFD live load distribution factor B LFD for larger girder spacings.FIGURE 1-COMPARISON OF LRFR AND LFR (OPERATING) LEGAL LOAD RATING FACTORS FOR FLEXURE IN AN INTERIOR GIRDER OF A SIMPLE SPAN MULTI-GIRDER COMPOSITE BRIDGEThe volume of traffic is directly accounted for in the LRFR load rating method by considering the Average Daily Truck Traffic (ADTT) (this is an improvement over the LFR method which does not account for frequency of bridge usage when calculating RF). Figure 2 highlights the variability of the LRFR legal load rating with ADTT. RF LRFR is approximately 30% greater for a lightly traveled bridge (ADTT≤100) when compared to a heavily traveled bridge (ADTT≥5000), and the LRFR load rating trends toward the LFD Operating load rating for lightly traveled bridges.FIGURE 2 - INFLUENCE OF ANNUAL DAILY TRUCK TRAFFIC ON THE LRFR LEGAL LOAD RATING FACTOR (S=4 FT.)The factors ϕs and ϕc account for system redundancy and the increased uncertainty from bridge deterioration in the LRFR load rating method respectively (this is an important update to the LFR rating method which assumes one level of uncertainty for all bridge types and bridge conditions). Figure 3 demonstrates that RF LRFR decreases by approximately 30% as the bridge condition deteriorates from good to poor. Bridges with a small number of girders (e.g., 3 or 4 girders) are considered to be more susceptible to catastrophic collapse, which is reflected in the lower RF LRFR load rating factors in Figure 4.FIGURE 3 –INFLUENCE OF CONDITION FACTOR ϕs ON THE LRFR LOAD RATING FACTOR (S=4 FT.)FIGURE 4 - INFLUENCE OF SYSTEM FACTOR ϕc ON LRFR LOAD RATING FACTOR (S=4 FT.)D ISCUSSIONThe LRFR load rating method represents an important step in the evolution of bridge evaluation strategies. The method is calibrated to produce a uniform level of reliability across all existing highway bridges (i.e., a uniform probability of failure) and is an improvement over the ASR and LFR methods because it allows bridge owners to account for traffic volume, system redundancy, and the increased uncertainty in the predicted strength of deteriorating bridge components. The LRFR load rating method can be used as a foundation for the development of more accurate performance-based bridge evaluation strategies in the future, where bridge owners directly calculate the existing capacity (or reliability) with in service data from a structural health monitoring network and make maintenance decisions based on relationships between corrosion, structural capacity, and repair or replacement costs.Reliability-based cost models have been proposed, for example [Nowak 2000]: T I F F C C C P =+ (12)Where CT is the total cost of the bridge over its lifetime, CI is the initial cost, CF is the failure cost of the bridge (which could include rehabilitation costs), and PF is the failure probability of the bridge. As PF increases (i.e., as the bridge deteriorates over time), the total cost CT increases, which ties the reliability of the bridge to economy and provides a metric from which to optimize maintenance decisions and minimum rehabilitation costs in a highway system. The continued evolution of bridge evaluation strategies depends on improved methods for evaluating the structural capacity of bridges and defining correlation between corrosion in bridges, strength loss, and failure rates [ASCE 2009].The AASHTO LRFR load rating method is a step forward in bridge evaluation strategy when compared to the ASR and LFR methods because it is calibrated to produce a uniform reliability across all existing highway bridges. The LRFR method provides factors which account for the volume of traffic on the bridge, the redundancy of the superstructure, and the increased uncertainty in structural capacity associated with a deteriorating structure. The flexural LRFR load rating factor for an interior steel composite girder in a multi-girder bridge is up to 40% lower than the LFR Operating load rating over a span range of 20 ft. to 200 ft. and for girder spacings between 3 ft. and 7 ft. The LRFR flexural load rating factor increases for longer span lengths and larger girder spacings, influenced primarily by the LRFD live load distribution factor.A CKNOWLEDGEMENTSThe authors are grateful for the guidance provided by Bala Sivakumar in the organization of this paper. The authors also wish to thank Kelley Rehm and Bob Cullen at AASHTO for their help identifying historical references pertaining to AASHTO live load vehicles and design procedures.R EFERENCESAASHTO, Manual for Condition Evaluation of Bridges, Second Edition, with 1995, 1996, 1998, 2000, 2001, and 2003 Revisions, AASHTO, Washington, D.C., 1994.AASHTO, Standard Specifications for Highway Bridges, 17th Edition, AASHTO, Washington, D.C., 2002.AASHTO, Manual for Condition Evaluation and Load and Resistance Factor Rating (LRFR) of Highway Bridges, AASHTO, Washington, D.C., 2003.AASHTO, LRFD Bridge Design Specifications, 4th Edition, AASHTO, Washington, D.C., 2007.ASCE, "ASCE/SEI-AASHTO Ad-Hoc Group on Bridge Inspection, Rehabilitation, and Replacement White Paper on Bridge Inspection and Rating", ASCE Journal of Bridge Engineering, 14(1), 2009, 1-5.Ghosn, M., Moses, F., NCHRP Report 406: Redundancy in Highway Bridge Superstructures, TRB, National Research Council, Washington, D.C., 1998.Kulicki, J.M., Prucz, Zolan, Clancy, Chad M., Mertz, Dennis R., Updating the Calibration Report for AASHTO LRFD Code (Project No. NCHRP 20-7/186), AASHTO, Washington, DC, 2007a.Kulicki, J.M., Stuffle, Timothy J., Development of AASHTO Vehicular Loads (FWHA NHI 07-019), Federal Highway Administration, National Highway Institute (NHNI-10), 2007b.Melchers, R.E., Structural Reliability Analysis and Prediction, John Wiley and Sons, New York, 1999.Mertz, D.R., Load Rating by Load and Resistance Factor Evaluation Method (NCHRP Project 20-07/Task 122), TRB, National Research Council, Washington DC, 2005.Moses, F., NCHRP Report 454: Calibration of Load Factors for LRFR BridgeEvaluation, TRB, National Research Council, Washington, D.C., 2000.Moses, F., Verma, D., NCHRP Report 301: Load Capacity Evaluation of Existing Bridges, TRB, National Research Council, Washington, D.C., 1987.NCHRP, Manual for Condition Evaluation and Load Rating of Highway Bridges Using Load and Resistance Factor Philosophy (NCHRP Web Document 28), TRB, National Research Council, Washington DC, 2001.Nowak, A.S., NCHRP Report 368: Calibration of LRFD Bridge Design Code, TRB, National Research Council, Washington D.C., 1999.Nowak, A.S., Collins, Kevin R., Reliability of Structures, McGraw Hill, New York, 2000.Tonias, D.E., Zhao, J.J., Bridge Engineering: Design, Rehabilitation, and Maintentance of Modern Highway Bridges, McGraw-Hill, New York, 2007.AASHTO关于桥梁荷载等级评定方法的比较作者:Cristopher D. Moen,Ph.D.,P.E.,Virginia Tech,Blacksburg,VA,cmoen@Leo Fernandez,P.E.,TranSystems,New York,NY,lafernandez@绪论:现有的高速公路桥梁的承载能力是用传统单一荷载等级因数定量化的。
毕业设计(论文)译文格式参考
图4 : ADAMS的柔性体模型
液压模型
考虑到流量 Q 和压力 Δp 分别相当于电流和电压, 因此可以在流体动力系统和电路系统中进 行类比模拟。关于电阻、电容和感应系数的定义可以参阅参考资料[5]。DSHplus软件使用这种方 式对流体动力系统进行动态仿真。流动阻力和流动体积是仿真模型的基本组成部分,它们的相 互结合可以创建简单的或更为精确的模型。程序的后台处理程式是基于一维流动理论辅以实证 考虑的。DSHplus不能对非定常不均匀管流动进行模拟,因为这样的问题需要使用计算流体动力 学(Computational Fluid Dynamics,CFD)仿真工具来解决。尽管建立的仿真模型是简化的,但 是像DSHplus这样的软件在流体技术的动态分析中还是广泛应用的。
ˆ
ˆ T )T ξ = ( x y zψ θ φ q
(5)
式中 x, y, z ,ψ , θ , ϕ , 是柔性体本身参考坐标系的坐标,用以描述六刚体模态。运动方程的最 终形式是:
3
+ M − 1 ∂M ξ Mξ 2 ∂ξ
式中, ξ —广义坐标,
∂VG T ξ ξ + K ξ + ∂ξ + Dξ +ψ ξ λ = Q
整体有限元模型60543个自由度 0.0HZ 113.8HZ 114.9HZ 157.6 HZ 161.8 HZ 200.4 HZ 211.0 HZ 284.4 HZ …
4
模态参数 q 29个自由度 0.0HZ 114.6HZ 116.2 HZ 161.9 HZ 165.4 HZ 202.6 HZ 211.1 HZ 288.8 HZ …
u i u = b = ui Φ C
0 qC = Φq ΦN qN
大学本科毕业设计--英文原文+中文翻译
Library of C the CNC industrialdeveloped tens of thousands and educational field, he hasNUMERICAL CONTROLNumerical Control technology as it is known today, emerged in the mid 20th century. It can be traced to the year of 1952, the U.S. Air Force, and the names of John Parsons and the Massachusetts Institute of Technology in Cam-bridge, MA, USA. It was not applied in production manu-facturing until the early 1960's. The real boom came in the form of CNC, around the year of 1972, and a decade later with the introduction of affordable micro computers. The history and development of this fascinating technology has been well documented in many publications.In the manufacturing field, and particularly in the area of metal working, Numerical Control technology has caused something of a revolution. Even in the days before comput-ers became standard fixtures in every company and in many homes, the2machine tools equipped with Numerical Control system found their special place in the machine shops. The recent evolution of micro electronics and the never ceasing computer development, including its impact on Numerical Control, has brought significant changes to the manufacturing sector in general and metalworking in-dustry in particular.DEFINITION OF NUMERICAL CONTROLIn various publications and articles, many descriptions have been used during the years, to define what Numerical Control is. It would be pointless to try to find yet another definition, just for the purpose of this handbook. Many of these definitions share the same idea, same basic concept, just use different wording.The majority of all the known definitions can be summed up into a relatively simple statement:Numerical Control can be defined as an operation of machine tools by the means of specifically coded instructions to the machine control systemThe instructions are combinations of the letters of alpha-bet, digits and selected symbols, for example, a decimal point, the percent sign or the parenthesis symbols. All in-structions are written in a logical order and a predetermined form. The collectionNUMERICAL CONTROLof all instructions necessary to ma-chine a part is called an NC Program, CNC Program, or a Part Program. Such a program can be stored for a future use and used repeatedly to achieve identical machining re-sults at any time.♦ NC and CNC TechnologyIn strict adherence to the terminology, there is a differ-ence in the meaning of the abbreviations NC and CNC. The NC stands for the older and original Numerical Control technology, whereby the abbreviation CNC stands for the newer Computerized Numerical Control technology, a modem spin-off of its older relative. However, in practice, CNC is the preferred abbreviation. To clarify the proper us-age of each term, look at the major differences between the NC and the CNC systems.Both systems perform the same tasks, namely manipula-tion of data for the purpose of machining a part. In both cases, the internal design of the control system contains the logical instructions that process the data. At this point the similarity ends. The NC system (as opposed to the CNC system) uses a fixed logical functions, those that are built-in and perma-nently wired within the control unit. These functions can-not be changed by the programmer or the machine opera-tor. Because of the fixed4wiring of the control logic, the NC control system is synonymous with the term 'hardwired'. The system can interpret a part program, but it does not al-low any changes to the program, using the control features. All required changes must be made away from the control, typically in an office environment. Also, the NC system re-quires the compulsory use of punched tapes for input of the program information.The modem CNC system, but not the old NC system, uses an internal micro processor (i.e., a computer). This computer contains memory registers storing a variety of routines that are capable of manipulating logical functions. That means the part programmer or the machine operator can change the program on the control itself (at the ma-chine), with instantaneous results. This flexibility is the greatest advantage of the CNC systems and probably the key element that contributed to such a wide use of the tech-nology in modern manufacturing. The CNC programs and the logical functions are stored on special computer chips, as software instructions, rather than used by the hardware connections, such as wires, that control the logical func-tions. In contrast to the NC system, the CNC system is syn-onymous with the term 'softwired'.NUMERICAL CONTROLWhen describing a particular subject that relates to the numerical control technology, it is customary to use either the term NC or CNC. Keep in mind that NC can also mean CNC in everyday talk, but CNC can never refer to the older technology, described in this handbook under the abbrevia-tion ofNC. The letter 'C 'stands for Computerized, and it is not applicable to the hardwired system. All control systems manufactured today are of the CNC design. Abbreviations such as C&C or C'n 'C are not correct and reflect poorly on anybody that uses them.CONVENTIONAL AMD CNC MACHININGWhat makes the CNC machining superior to the conven-tional methods? Is it superior at all? Where are the main benefits? If the CNC and the conventional machining pro-cesses are compared, a common general approach to ma-chining a part will emerge: Obtain and study the drawingSelect the most suitable machining methodDecide on the setup method (work holding)Select the cutting toolsEstablish speeds and feedsMachine the part6This basic approach is the same for both types of machin-ing. The major difference is in the way how various data are input. A feedrate of 10 inches per minute (10 in/min) is the same in manual or CNC applications, but the method of applying it is not. The same can be said about a coolant - it can be activated by turning a knob, pushing a switch or programming a special code. All these actions will result in a coolant rushing out of a nozzle. In both kinds of machin-ing, a certain amount of knowledge on the part of the user is required. After all, metal working, particularly metal cut-ting, is mainly a skill, but it is also, to a great degree, an art and a profession of large number of people. So is theappli-cation of Computerized Numerical Control. Like any skill or art or profession, mastering it to the last detail is neces-sary to be successful. It takes more than technical knowl-edge to be a CNC machinist or a CNC programmer. Work experience and intuition, and what is sometimes called a 'gut-feel', is a much needed supplement to any skill.In a conventional machining, the machine operator sets up the machine and moves each cutting tool, using one or both hands, to produce the required part. The design of a manual machine tool offers many features that help the process of machining a part -NUMERICAL CONTROLlevers, handles, gears and di-als, to name just a few. The same body motions are re-peated by the operator for every part in the batch. However, the word 'same 'in this context really means'similar 'rather than 'identical'. Humans are not capable to repeat every process exactly the same at all times - that is the job ofma-chines. People cannot work at the same performance level all the time, without a rest. All of us have some good andsome bad moments. The results of these moments, when*applied to machining a part, are difficult to predict. There will be some differences and inconsistencies within each batch of parts. The parts will not always be exactly the same. Maintaining dimensional tolerances and surface fin-ish quality are the most typical problems in conventional machining. Individual machinists may have their own time 'proven' methods, different from those of their fellow col-leagues. Combination of these and other factors create a great amount of mconsistency.The machining under numerical control does away with the majority of inconsistencies. It does not require the same physical involvement as manual machining. Numerically controlled machining does not need any levers or dials or handles, at least8not in the same sense as conventional ma-chining does. Once the part program has been proven, it can be used any number of times over, always returning consistent results. That does not mean there are no limiting factors. The cutting tools do wear out, the material blank in one batch is not identical to the material blank in another batch, the setups may vary, etc. These factors should be considered and compensated for, whenever necessary.The emergence of the numerical control technology does not mean an instant, or even a long term, demise of all man-ual machines. There are times when a traditional machin-ing method is preferable to a computerized method. For ex-ample, a simple one time job may be done more efficiently on a manual machine than a CNC machine. Certain types of machining jobs will benefit from manual or semiauto-matic machining, rather than numerically controlled ma-chining. The CNC machine tools are not meant to replace every manual machine, only to supplement them.In many instances, the decision whether certain machin-ing will be done on a CNC machine or not is based on the number of required parts and nothing else. Although the volume of partsNUMERICAL CONTROLmachined as a batch is always an important criteria, it should never be the only factor. Consideration should also be given to the part complexity, its tolerances, the required quality of surface finish, etc. Often, a single complex part will benefit from CNC machining, while fifty relatively simple parts will not.Keep in mind that numerical control has never machined a single part by itself. Numerical control is only a process or a method that enables a machine tool to be used in a pro-ductive, accurate and consistent way.NUMERICAL CONTROL ADVANTAGESWhat are the main advantages of numerical control?It is important to know which areas of machining will benefit from it and which are better done the conventional way. It is absurd to think that a two horse power CNC mill will win over jobs that are currently done on a twenty times more powerful manual mill. Equally unreasonable are ex-pectations of great improvements in cutting speeds and feedrates over a conventional machine. If the machining and tooling conditions are the same, the cutting time will be very close in both cases.Some of the major areas where the CNC user can and should expect improvement:10Setup time reductionLead time reductionAccuracy and repeatabilityContouring of complex shapesSimplified tooling and work holdingConsistent cutting timeGeneral productivity increaseEach area offers only a potential improvement. Individ-ual users will experience different levels of actual improve-ment, depending on the product manufactured on-site, the CNC machine used, the setup methods, complexity of fixturing, quality of cutting tools, management philosophy and engineering design, experience level of the workforce, individual attitudes, etc.Setup Time ReductionIn many cases, the setup time for a CNC machine can be reduced, sometimes quite dramatically. It is important to realize that setup is a manual operation, greatly dependent on the performance of CNC operator, the type of fixturing and general practices of the machine shop. Setup time is unproductive, but necessary - it is a part of the overhead costs of doing business. To keep the setupNUMERICAL CONTROLtime to a mini-mum should be one of the primary considerations of any machine shop supervisor, programmer and operator. Because of the design of CNC machines, the setup time should not be a major problem. Modular fixturing, standard tooling, fixed locators, automatic tool changing, pallets and other advanced features, make the setup time more efficient than a comparable setup of a conventional machine. With a good knowledge of modern manufacturing, productivity can be increased significantly.The number of parts machined under one setup is also important, in order to assess the cost of a setup time. If a great number of parts is machined in one setup, the setup cost per part can be very insignificant. A very similar re-duction can be achieved by grouping several different oper-ations into a single setup. Even if the setup time is longer, it may be justified when compared to the time required to setup several conventional machines.Lead Time ReductionOnce a part program is written and proven, it is ready to be Bsed again in the future, even at a short notice. Although the lead time for the first run is usually longer, it is virtually nil for any subsequent run. Even if an engineering change of the part design12requires the program to be modi tied, it can be done usually quickly, reducing the lead time.Long lead time, required to design and manufacture sev-eral special fixtures for conventional machines, can often be reduced by preparing a part program and the use of sim-plified fixturing. Accuracy and RepeatabilityThe high degree of accuracy and repeatability of modern CNC machines has been the single major benefit to many users. Whether the part program is stored on a disk or in the computer memory, or even on a tape (the original method), it always remains the same. Any program can be changed at will, but once proven, no changes are usually required any more. A given program can be reused as many times as needed, without losing a single bit of data it contains. True, program has to allow for such changeable factors as tool wear and operating temperatures, it has to be stored safely, but generally very little interference from the CNC pro-grammer or operator will be required. The high accuracy of CNC machines and their repeatability allows high quality parts to be produced consistently time after time. Contouring of Complex ShapesNUMERICAL CONTROLCNC lathes and machining centers are capable of con-touring a variety of shapes. Many CNC users acquired their machines only to be able to handle complex parts. A good examples are CNC applications in the aircraft and automo-tive industries. The use of some form of computerized pro-gramming is virtually mandatory for any three dimensional tool path generation.Complex shapes, such as molds, can be manufactured without the additional expense of making a model for trac-ing. Mirrored parts can be achieved literally at the switch of a button. Storage of programs is a lot simpler than storage of patterns, templates, wooden models, and other pattern making tools.Simplified Tooling and Work HoldingNonstandard and 'homemade' tooling that clutters the benches and drawers around a conventional machine can be eliminated by using standard tooling, specially designed for numerical control applications. Multi-step tools such as pilot drills, step drills, combination tools, counter borers and others are replaced with several individual standard tools. These tools are often cheaper and easier to replace than special and nonstandard tools.Cost-cutting measures have forced many tool suppliers to keep a low or even a nonexistent inventory, increasing the delivery lime14to the customer. Standard, off-the-shelf tooling can usually beob-tained faster then nonstandard tooling.Fixturing and work holding for CNC machines have only one major purpose - to hold the part rigidly and in the same position for all parts within a batch. Fixtures designed for CNC work do not normally require jigs, pilot holes and other hole locating aids.♦ Cutting Time and Productivity IncreaseThe cutting time on the CNC machine is commonly known as the cycle time - and is always consistent. Unlike a conventional machining, where the operator's skill, experi-ence and personal fatigue are subject to changes, the CNC machining is under the control of a computer. The small amount of manual work is restricted to the setup andload-ing and unloading the part. For large batch runs, the high cost of the unproductive time is spread among many parts, making it less significant. The main benefit of a consistent cutting time is for repetitive jobs, where the production scheduling and work allocation to individual machine tools can be done very accurately.The main reason companies often purchase CNCma-chines is strictly economic - it is a serious investment. Also, having a competitive edge is always on the mind of every plant manager. The numerical control teclmology offers excellent means to achieve a significant improvement in the manufacturing productivity and increasing the overall quality of the manufactured parts. Like any means, it has to be used wisely and knowledgeably. When more and more companies use the CNCtechnology, just having a CNC machine does not offer the extra edge anymore. Thecom-panies that get forward are those who know how to use the technology efficiently and practice it to be competitive in the global economy.To reach the goal of a major increase in productivity, it is essential that users understand the fundamental principles on which CNC technology is based. These principles take many forms, for example, understanding the electronic cir-cuitry, complex ladder diagrams, computer logic, metrol-ogy, machine design, machining principles and practices and many others. Each one has to be studied and mastered by the person in charge. In this handbook, the emphasis is on the topics that relate directly to the CNC programming and understanding the most common CNC machine tools, the Machining Centers and the lathes (sometimes also called the Turning Centers). The part quality consideration should be very important to every programmer and ma-chine tool operator and this goal is also reflected in the handbook approach as well as in the numerous examples.TYPES OF CNC MACHINE TOOLSDifferent kinds of CNCmachines cover an extremelylarge variety. Their numbersare rapidly increasing, as thetechnology developmentadvances. It is impossible toiden-tify all the applications,they would make a long list.Here is a brief list of some ofthe groups CNC machines canbe part of: *Mills and Machining centersLathes and Turning CentersDrilling machines CNC machining centers andlathes dominate the number ofinstallations in industry. Thesetwo groups share the marketjust about equally. Someindustries may have a higherneed for one group ofmachines, depending on their □ Boring mills and Profilers □ EDM machines □ Punch presses and Shears □ Flame cutting machines □ Routers □ Water jet and Laser profilers □ Cylindrical grinders □ Welding machines □ Benders, Winding and Spinning machines, etc.needs. One must remember that there are many different kinds of ladies and equally many different kinds ofma-chining centers. However, the programming process for a vertical machine is similar to the one for a horizontalma-chine or a simple CNC mill. Even between differentma-chine groups, there is a great amount of general applica-tions and the programming process is generally the same. For example, a contour milled with an end mill has a lot in common with a contour cut with a wire.♦ Mills and Machining Centers Standard number of axes on a milling machine is three - the X, Y and Z axes. The part set on a milling system is al-ways stationary, mounted on a moving machine table. The cutting tool rotates, it can move up and down (or in and out), but it does not physically follow the tool path.CNC mills - sometimes called CNC milling machines - are usually small, simple machines, without a tool changer or other automatic features. Their power rating is often quite low. In industry, they are used for toolroom work, maintenance purposes, or small part production. They are usuallydesigned for contouring, unlike CNC drills.CNC machining centers are far more popular and effi-cient than drills and mills, mainly for their flexibility. The main benefit the user gets out of a CNC machining center is the ability to group several diverse operations into a single setup. For example, drilling, boring, counter boring, tap-ping, spot facing and contour milling can be incorporated into a single CNC program. In addition, the flexibility is enhanced by automatic tool changing, using pallets to minimize idle time, indexing to a different side of the part, using a rotary movement of additional axes, and a number of other features. CNC machining centers can be equipped with special software that controls the speeds and feeds, the life of the cutting tool, automatic in-process gauging and offset adjustment and other production enhancing and time saving devices.There are two basic designs of a typical CNC machining center. They are the vertical and the horizontal machining centers. The major difference between the two types is the nature of work that can be done on them efficiently. For a vertical CNC machining center, the most suitable type of work are flat parts, either mounted to the fixture on the ta-ble, or held in a vise or a chuck. The work that requires ma-chining on two or more faces m a single setup is more de-sirable to be done on a CNC horizontal machining center. An good example is a pump housing and other cubic-like shapes. Some multi-face machining of small parts can also be done on a CNC vertical machining center equipped with a rotary table.The programming process is the same for both designs, but an additional axis (usually a B axis) is added to the hori-zontal design. This axis is either a simple positioning axis (indexing axis) for the table, or a fully rotary axis for simul-taneous contouring. This handbook concentrates on the CNC vertical ma-chining centers applications, with a special section dealing with the horizontal setup and machining. The program-ming methods are also applicable to the small CNC mills or drilling and/or tapping machines, but the programmer has to consider their restrictions.♦ Lathes and Turning CentersA CNC lathe is usually a machine tool with two axes, the vertical X axis and the horizontal Z axis. The main feature of a lathe that distinguishes it from a mill is that the part is rotating about the machine center line. In addition, the cut-ting tool is normally stationary, mounted in a sliding turret. The cutting tool follows the contour of the programmed tool path. For the CNC lathes with a milling attachment, so called live tooling, the milling tool has its own motor and rotates while the spindle is stationary.The modem lathe design can be horizontal or vertical. Horizontal type is far more common than the vertical type, but both designs have their purpose in manufacturing. Sev-eral different designs exist for either group. For example, a typical CNC lathe of the horizontal group can be designed with a flat bed or a slant bed, as a bar type, chucker type or a universal type. Added to these combinations are many ac-cessories that make a CNC lathe an extremely flexible ma-chine tool. Typically, accessories such as a tailstock, steady rests or follow-up rests, part catchers,pullout-fingers and even a third axis milling attachment are popular compo-nents of the CNC lathe. ?CNC lathe can be veiy versatile - so versatile in fact, that it is often called a CNC TurningCenter. All text and program examples in this handbook use the more traditional term CNC lathe, yet still recogniz-ing all its modern functions.中文翻译:数控正如我们现在所知,数控技术出现于20世纪中叶。
毕设原文及译文
自动变速器描述自动变速器,像手动变速箱,匹配负载要求的车辆的力量和速度的各种发动机。
这是自动完成取决于节气门位置,车辆的速度,和位置的变化控制杆。
自动变速器是内置的模式,有两个,三个或四个前锋的速度,和一些装备有超载。
运行的控制是有限的选择范围内的齿轮移动的控制杆的控制。
耦合自动变速器通过扭矩转换器于发动机相连.这种转换器被应用在自动变速器上,主要是因为每次车辆停杯停下来,它不用手动分离扭矩的输出.要使自动变速器的变化不受发动机扭矩中断的影响,具有缓冲作用的液力偶合器也是非常好的应用。
换档由于自动变速箱齿轮比独立的变化,操控者没有释放油门也是一样的.为此,它会利用行星齿轮组,其内容已被锁定和释放各种组合,生产所需的正向和反向传动比.行星齿轮机构的锁定是通过使用液压驱动,多磁盘离合器和刹车带实现的。
驱动锁定装置的的液压力是由阀体控制的.阀体像是液压控制中心,接收当前的车速,节气门位置及换档手柄的位置信号。
基于这一条件,阀体给与相应锁定装置液压力,使其产生所需的传动比。
变速器运行控制自动变速器的唯一运行控制单元是换挡手柄,即使加速踏板也可被认为是运行控制.主要因为当手柄完全释放时,变速器传递的扭矩就变换为较低的比例。
多片式离合器多片式离合器,在大多数情况下是通过锁定的行星齿轮组把扭矩传递给旋转单元。
在某些情况下,多片式离合器也被用来锁定行星齿轮组设置的元素的传动体,以便它也能够作为控制体。
多片式离合器的构成多片式离合器是由下列部分组成:离合器盘和离合器板多片式离合器的主要元件是离合器盘和离合器板,离合器盘是带有摩擦材料的钢制圆盘.这些圆盘边缘被制成齿形,镶嵌在内心圆周里,因此也就成为了离合器的关键元件.离合器盘是由没有面带有内齿形的钢板制成,因此也就成为离合器鼓和变速箱内关键部件。
离合器盘和鼓通过交替堆叠,使他们锁在一起或通过简单的挤压使他们分离。
离合器鼓和毂离合器鼓包含有多片离合器盘和离合器板,并且通常情况下依附正在受驱动的行星齿轮组的元件离合器毂通常与正在驱动的单元相连,并确定离合器盘和板的内部关系。
毕业设计论文翻译(译文+原文)
Hacking tricks toward security on network environments Tzer-Shyong Chen1, Fuh-Gwo Jeng 2, and Yu-Chia Liu 11 Department of Information Management, Tunghai University, Taiwan2 Department of Applied Mathematics, National Chiayi University, TaiwanE-Mail:****************.edu.twAbstractMounting popularity of the Internet has led to the birth of Instant Messaging, an up-and-coming form of Internet communication. Instant Messaging is very popular with businesses and individuals since it has instant communication ability. As a result, Internet security has become a pressing and important topic for discussion. Therefore, in recent years, a lot of attention has been drawn towards Internet security and the various attacks carried out by hackers over the Internet. People today often handle affairs via the Internet. For instance, instead of the conventional letter, they communicate with others by e-mails; they chat with friends through an instant messenger; find information by browsing websites instead of going to the library; perform e-commerce transactions through the Internet, etc. Although the convenience of the Internet makes our life easier, it is also a threat to Internet security. For instance, a business email intercepted during its transmission may let slip business confidentiality; file transfers via instant messengers may also be intercepted, and then implanted with backdoor malwares; conversations via instant messengers could be eavesdropped. Furthermore, ID and password theft may lose us money when using Internet bank service. Attackers on the Internet use hacking tricks to damage systems while users are connected to the Internet. These threats along with possible careless disclosure of business information make Instant Messaging a very unsafe method of communication for businesses. The paper divides hacking tricks into three categories: (1) Trojan programs that share files via instant messenger. (2) Phishing or fraud via e-mails. (3) Fake Websites. Keywords:Hacking tricks, Trojan programs, Phishing, Firewall, Intrusion detection system.1. IntroductionIncreasingly more people are using instant messengers such as MSN Messenger, Yahoo! Messenger, ICQ, etc as the media of communication. These instant messengers transmit alphanumeric message as well as permit file sharing. During transfer, a file may be intercepted by a hacker and implanted with backdoor malware. Moreover, the e-mails users receive every day may include Spam, advertisements, and fraudulent mail intended to trick uninformed users. Fake websites too are prevalent. Websites which we often visit could be counterfeited by imitating the interface and the URL of the original, tricking users. The paper classifies hacking tricks into three categories which are explained in the following sections.2. Hacking TricksThe paper divides hacking tricks into three categories: (1) Trojan programs that share files via instant messenger. (2) Phishing (3) Fake Websites.2.1 Trojan programs that share files via instant messengerInstant messaging allows file-sharing on a computer [9]. All present popular instant messengers have file sharing abilities, or allow users to have the above functionality by installing patches or plug-ins; this is also a major threat to present information security. These communication softwares also makeit difficult for existing hack prevention methods to prevent and control information security. Therefore, we shall discuss how to control the flow of instant messages and how to identify dangerous user behavior.Hackers use instant communication capability to plant Trojan program into an unsuspected program; the planted program is a kind of remotely controlled hacking tool that can conceal itself and is unauthorized. The Trojan program is unknowingly executed, controlling the infected computer; it can read, delete, move and execute any file on the computer. The advantages of a hacker replacing remotely installed backdoor Trojan programs [1] with instant messengers to access files are:When the victim gets online, the hacker will be informed. Thus, a hacker can track and access the infected computer, and incessantly steal user information.A hacker need not open a new port to perform transmissions; he can perform his operations through the already opened instant messenger port.Even if a computer uses dynamic IP addresses, its screen name doesn’t change.Certain Trojan programs are designed especially for instant messengers. These Trojans can change group settings and share all files on the hard disk of the infected computer. They can also destroy or modify data, causing data disarray. This kind of program allows a hacker access to all files on an infected computer, and thus poses a great threat to users. The Trojan program takes up a large amount of the resources of the computer causing it to become very slow and often crashes without a reason.Trojan programs that access a user computer through an instant messenger are probably harder to detect than classic Trojan horse programs. Although classic Trojan intrudes a computer by opening a listening or outgoing port which is used to connect toa remote computer, a desktop firewall can effectively block such Trojans. Alternatively, since it is very difficult for the server’s firewall to spot intrusion by controlling an instant messenger’s flow, it is extremely susceptible to intrusion.Present Trojan programs have already successfully implemented instant messengers. Some Trojan programs are Backdoor Trojan, AIMVision, and Backdoor. Sparta.C. Backdoor Trojans use ICQ pager to send messages to its writer. AIMVision steals AIM related information stored in the Windows registry, enabling a hacker to setup an AIM user id. Backdoor. Sparta.C uses ICQ to communicate with its writer and opens a port on an infected host and send its IP Address to the hacker, and at the same time attempts to terminate the antivirus program or firewall of the host.2.1.1 Hijacking and ImpersonationThere are various ways through which a hacker can impersonate other users [7]. The most commonly used method is eavesdropping on unsuspecting users to retrieve user accounts, passwords and other user related information.The theft of user account number and related information is a very serious problem in any instant messenger. For instance, a hacker after stealing a user’s information impersonate the user; the user’s contacts not knowing that the user’s account has been hacked believe that the person they’re talking to is the user, and are persuaded to execute certain programs or reveal confidential information. Hence, theft of user identity not only endangers a user but also surrounding users. Guarding against Internet security problems is presently the focus of future research; because without good protection, a computer can be easily attacked, causing major losses.Hackers wishing to obtain user accounts may do so with the help of Trojans designed to steal passwords. If an instant messenger client stores his/her password on his/her computer, then a hacker can send a Trojan program to the unsuspecting user. When the user executes the program, the program shall search for the user’s password and send it to the hacker. There are several ways through which a Trojan program can send messages back to the hacker. The methods include instant messenger, IRC, e-mails, etc.Current four most popular instant messengers are AIM, Yahoo! Messenger, ICQ, and MSN Messenger, none of which encrypts its flow. Therefore, a hackercan use a man-in-the-middle attack to hijack a connection, then impersonate the hijacked user and participate in a chat-session. Although difficult, a hacker can use the man-in-the-middle attack to hijack the connection entirely. For example, a user may receive an offline message that resembles that sent by the server, but this message could have been sent by the hacker. All at once, the user could also get disconnected to the server. Furthermore, hackers may also use a Denial of Service (DoS) tool or other unrelated exploits to break the user’s connection. However, the server keeps the connection open, and does not know that the user has been disconnected; thus allowing the hacker to impersonate the user. Moreover, since the data flow is unencrypted and unauthenticated, a hacker can use man-in-the-middle attacks that are similar to that of ARP fraud to achieve its purpose.2.1.2 Denial of Service (DoS)There are many ways through which a hacker can launch a denial of service (DoS) attack [2] on an instant messenger user. A Partial DoS attack will cause a user end to hang, or use up a large portion of CPU resources causing the system to become unstable.Another commonly seen attack is the flooding of messages to a particular user. Most instant messengers allow the blocking of a particular user to prevent flood attacks. However, a hacker can use tools that allow him to log in using several different identities at the same time, or automatically create a large number of new user ids, thus enabling a flood attack. Once a flood attack begins, even if the user realizes that his/her computer has been infected, the computer will not be able to respond. Thus, the problem cannot be solved by putting a hacker’s user id on the ignore list of your instant messenger.A DoS attack on an instant messenger client is only a common hacking tool. The difficulty of taking precautions against it could turn this hacking tool into dangerous DoS type attacks. Moreover, some hacking tools do not just cause an instant messenger client to hang, but also cause the user end to consume large amount of CPU time, causing the computer to crash.2.1.3 Information DisclosureRetrieving system information through instant messenger users is currently the most commonly used hacking tool [4]. It can effortlessly collect user network information like, current IP, port, etc. IP address retriever is an example. IP address retrievers can be used to many purposes; for instance, a Trojan when integrated with an IP address retriever allows a hacker to receive all information related to the infected computer’s IP address as soon as the infected computer connects to the internet. Therefore, even if the user uses a dynamic IP address, hackers can still retrieve the IP address.IP address retrievers and other similar tools can also be used by hackers to send data and Trojans to unsuspecting users. Hackers may also persuade unsuspecting users to execute files through social engineering or other unrelated exploits. These files when executed search for information on the user’s computer and sends them back to the hacker through the instant messenger network.Different Trojan programs were designed for different instant messaging clients. For example, with a user accounts and password stealing Trojans a hacker can have full control of the account once the user logs out. The hacker can thus perform various tasks like changing the password and sending the Trojan program to all of the user’s contacts.Moreover, Trojans is not the only way through which a hacker can cause information disclosure. Since data sent through instant messengers are unencrypted, hackers can sniff and monitor entire instant messaging transmissions. Suppose an employee of an enterprise sends confidential information of the enterprise through the instant messenger; a hacker monitoring the instant messaging session can retrieve the data sent by the enterprise employee. Thus, we must face up to the severity of the problem.2.2 PhishingThe word “Phishing” first appeared in 1996. It is a variant of ‘fishing’, and formed by replacing the ‘f’ in ‘fishing’ with ‘ph’ from phone. It means tricking users of their money through e-mails.Based on the statistics of the Internet Crime Complaint Center, loss due to internet scam was as high as $1.256 million USD in 2004. The Internet Crime Complaint Center has listed the above Nigerian internet scam as one of the ten major internet scams.Based on the latest report of Anti-Phishing Working Group (APWG) [8], there has been a 28% growth of Phishing scams in the past 4 months, mostly in the US and in Asia. Through social engineering and Trojans, it is very difficult for a common user to detect the infection.To avoid exploitation of your compassion, the following should be noted:(1)When you need to enter confidentialinformation, first make sure that theinformation is entered via an entirely secureand official webpage. There are two ways todetermine the security of the webpage:a.The address displayed on the browserbegins with https://, and not http://. Payattention to if the letter ‘s’ exists.b.There is a security lock sign on the lowerright corner of the webpage, and whenyour mouse points to the sign, a securitycertification sign shall appear.(2)Consider installing a browser security softwarelike SpoofStick which can detect fake websites.(3)If you suspect the received e-mail is a Phishinge-mail, do not open attachments attached to theemail. Opening an unknown attachment couldinstall malicious programs onto your computer.(4)Do not click on links attached to your emails. Itis always safer to visit the website through theofficial link or to first confirm the authenticityof the link. Never follow or click on suspiciouslinks in an e-mail. It is advisable to enter theURL at the address bar of the web browser,and not follow the given link.Generally speaking, Phishing [3] [5] is a method that exploits people’s sympathy in the form of aid-seeking e-mails; the e-mail act as bait. These e-mails usually request their readers to visit a link that seemingly links to some charitable organization’s website; but in truth links the readers to a website that will install a Trojan program into the reader’s computer. Therefore, users should not forward unauthenticated charity mails, or click on unfamiliar links in an e-mail. Sometimes, the link could be a very familiar link or an often frequented website, but still, it would be safer if you’d type in the address yourself so as to avoid being linked to a fraudulent website. Phisher deludes people by using similar e-mails mailed by well-known enterprises or banks; these e-mails often asks users to provide personal information, or result in losing their personal rights; they usually contain a counterfeit URL which links to a website where the users can fillin the required information. People are often trapped by phishing due to inattentionBesides, you must also be careful when using a search engine to search for donations and charitable organizations.2.3 Fake WebsitesFake bank websites stealing account numbers and passwords have become increasingly common with the growth of online financial transactions. Hence, when using online banking, we should take precautions like using a secure encrypted customer’s certificate, surf the net following the correct procedure, etc.There are countless kinds of phishing baits, for instance, messages that say data expired, data invalid, please update data, or identity verification intended to steal account ID and matching password. This typeof online scam is difficult for users to identify. As scam methods become finer, e-mails and forged websites created by the impostor resemble their original, and tremendous losses arise from the illegal transactions.The following are methods commonly used by fake websites. First, the scammers create a similar website homepage; then they send out e-mails withenticing messages to attract visitors. They may also use fake links to link internet surfers to their website. Next, the fake website tricks the visitors into entering their personal information, credit card information or online banking account number and passwords. After obtaining a user’s information, the scammers can use the information to drain the bank accounts, shop online or create fake credit cards and other similar crimes. Usually, there will be a quick search option on these fake websites, luring users to enter their account number and password. When a user enters their account number and password, the website will respond with a message stating that the server is under maintenance. Hence, we must observe the following when using online banking:(1)Observe the correct procedure for entering abanking website. Do not use links resultingfrom searches or links on other websites.(2)Online banking certifications are currently themost effective security safeguard measure. (3)Do not easily trust e-mails, phone calls, andshort messages, etc. that asks for your accountnumber and passwords.Phishers often impost a well-known enterprise while sending their e-mails, by changing the sender’s e-mail address to that of the well known enterprise, in order to gain people’s trust. The ‘From’ column of an e-mail is set by the mail software and can be easily changed by the web administrator. Then, the Phisher creates a fake information input website, and send out e-mails containing a link to this fake website to lure e-mail recipients into visiting his fake website.Most Phishers create imitations of well known enterprises websites to lure users into using their fake websites. Even so, a user can easily notice that the URL of the website they’re entering has no relation to the intended enterprise. Hence, Phishers may use different methods to impersonate enterprises and other people. A commonly used method is hiding the URL. This can easily be done with the help of JavaScript.Another way is to exploit the loopholes in an internet browser, for instance, displaying a fake URL in the browser’s address bar. The security loophole causing the address bar of a browser to display a fake URL is a commonly used trick and has often been used in the past. For example, an e-mail in HTML format may hold the URL of a website of a well-known enterprise, but in reality, the link connects to a fake website.The key to successfully use a URL similar to that of the intended website is to trick the visual senses. For example, the sender’s address could be disguised as that of Nikkei BP, and the link set to http://www.nikeibp.co.jp/ which has one k less than the correct URL which is http://www.nikkeibp.co.jp/. The two URLs look very similar, and the difference barely noticeable. Hence people are easily tricked into clicking the link.Besides the above, there are many more scams that exploit the trickery of visual senses. Therefore, you should not easily trust the given sender’s name and a website’s appearance. Never click on unfamiliar and suspicious URLs on a webpage. Also, never enter personal information into a website without careful scrutiny.3. ConclusionsBusiness strategy is the most effective form of defense and also the easiest to carry out. Therefore, they should be the first line of defense, and not last. First, determine if instant messaging is essential in the business; then weigh its pros and cons. Rules and norms must be set on user ends if it is decided that the business cannot do without instant messaging functionality. The end server should be able to support functions like centralized logging and encryption. If not, then strict rules must be drawn, and carried out by the users. Especially, business discussions must not be done over an instant messenger.The paper categorized hacking tricks into three categories: (1) Trojan programs that share files via instant messenger. (2) Phishing (3) Fake Websites. Hacking tricks when successfully carried out could cause considerable loss and damage to users. The first category of hacking tricks can be divided into three types: (1) Hijacking and Impersonation; (2) Denial of Service; (3) Information Disclosure.Acknowledgement:This work was supported by the National Science Council, Taiwan, under contract No. NSC 95-2221-E-029-024.References[1] B. Schneier, “The trojan horse race,”Communications of ACM, Vol. 42, 1999, pp.128.[2] C. L. Schuba, “Analysis of a denial of serviceattack on TCP,” IEEE Security and PrivacyConference, 1997, pp. 208-223.[3] E. Schultz, “Phishing is becoming moresophisticated,” Computer and Security, Vol.24(3), 2005, pp. 184-185.[4]G. Miklau, D. Suciu, “A formal analysis ofinformation disclosure in data exchange,”International Conference on Management ofData, 2004, pp. 575-586.[5]J. Hoyle, “'Phishing' for trouble,” Journal ofthe American Detal Association, Vol. 134(9),2003, pp. 1182-1182.[6]J. Scambray, S. McClure, G. Kurtz, Hackingexposed: network security secrets and solutions,McGraw-Hill, 2001.[7]T. Tsuji and A. Shimizu, “An impersonationattack on one-time password authenticationprotocol OSPA,” to appear in IEICE Trans.Commun, Vol. E86-B, No.7, 2003.[8]Anti-Phishing Working Group,.[9]/region/tw/enterprise/article/icq_threat.html.有关网络环境安全的黑客技术摘要:现在人们往往通过互联网处理事务。
关佳伟长春大学毕业设计译文
┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊混合动力系统的设计使用一个特定领域的建模环境w . Gao1 Sandeep Neema2 Jeff Gray3 j . Picone1 Porandla1,s . Musunuri1 j . Mathews11当车辆系统中心。
密西西比州,密西西比州密西西比州立大学,397622软件集成系统研究所,TN,37235年纳什维尔范德比尔特大学3部门。
房价和信息。
科学,是伯明翰,阿拉巴马州伯明翰大学,35294文摘最先进的设计工具在汽车工程仍然缺乏电力、先进性和自动化的设计工具用于电子行业。
被广泛接受的汽车动力系统设计工具,如举行PSAT和顾问仍然依赖在手工操作的设计参数优化。
在本文中,我们提出一个新方法合并模型设计、知识工程和基于物理建模,实现大规模的设计优化。
我们的可扩展的领域特定的设计环境是快速吸收新知识的能力作为额外的设计变得可用。
此外,可以使用它自动化设计知识的管理可定制的方式。
引入一个设计过程,可以处理数以百万计的约束在一个竞争的复杂性自动化的方式将允许汽车制造商减少设计时。
1.介绍从原型设计到最终产品制造、现代汽车系统正在经历一个非凡的增长嵌入式软件的部署,新混合动力传动系统不同的配置,和其他相关的技术应用程序。
计算能力和持续进步性能,必须对汽车软件工程保持与创新的新技术和提高需要更好的设计工具。
如今,汽车软件工程被誉为一个驾驶新功能创新的力量,再加上便宜技术解决方案[1、2]。
新设计的复杂性和嵌入式的依赖软件被证明是一个引起关注的汽车制造商。
这导致越来越困难预测各种车辆组件和之间的交互系统。
有效的诊断也成为问题。
作为一个例子,著名的在全球范围内召回2002年春天的宝马745 i是一个相关的软件故障的直接结果与“iDrive”控制系统,控制着超过700通过嵌入式软件内置函数。
这种“阿基里斯跟“综合症也经历了在当代为汽车工程设计工具的对峙建模与仿真工具在电子行业表明,类似的工具在汽车领域缺乏权力,先进性和自动化电子产品设计师[1]。
毕业设计翻译1译文
基于Windows-native的三维塑料注射模具设计系统L. Kong, J.Y.H. Fuh, K.S. Lee, X.L. Liu, L.S. Ling, Y.F. Zhang, A.Y.C. Nee Department of Mechanical Engineering, National University of Singapore,10 Kent Ridge,Crescent,Singapore,119260,Singapore摘要三维实体造型的革命已经达到了设计的主流。
尽管高端三维实体建模系统已经在工程师在大型航空航天,消费电子产品和汽车公司的工作站,多年来,许多小公司现在正在做开关从工作站到PC。
这种转变的一个原因是,灵活性和Windows NT本地/进步让软件开发人员创建,负担得起的和易于使用的应用程序。
高端用户发现,中档的实体建模,如SolidWorks,见过他们的需求。
SolidWorks作为由于Windows原生环境设计的平台,强大的组合功能,使用方便,快速的学习曲线,和负担得起的价格。
Windows本地的三维塑料注射模具设计系统已在一个NT实现通过接口的Visual C + +代码与商业软件SolidWorks 99和API。
系统设计师提供了一个交互式计算机辅助设计环境,既能加快模具的设计过程和促进标准化。
©2003 Elsevier科学有限公司保留所有权利。
1引言在广泛的产品范围中更广泛的使用塑料零件,从消费产品到机械、汽车和飞机,注塑工艺已被确认为一个重要的制造工艺,模具设计过程通常是新产品的开发至关重要的一步。
按常规,模具设计一直是一个很"神化"的艺术,需要多年的经验,才可以相对精通。
由于初期学习这项艺术中比较困难,越来越少的人在这一领域从经验和知识的专家们身上受益。
为了改变目前的状况,其方法之一是使用了计算机辅助设计(CAD)系统。
毕业设计翻译
毕业设计翻译Graduation DesignRecently, I have been working on my graduation design. It is an important milestone in my academic journey and a chance for me to showcase my skills and knowledge in my chosen field.For my graduation design, I have decided to focus on the topic of artificial intelligence in the healthcare industry. Artificial intelligence has been making significant advancements in recent years, and its potential to revolutionize healthcare is undeniable. My goal is to explore how AI can be effectively utilized in different healthcare settings to improve patient outcomes and enhance the overall quality of care.To start my research, I have been reviewing relevant literature on AI in healthcare. This includes articles, research papers, and case studies that highlight the various applications and benefits of AI in the industry. I have also been attending seminars and conferences to stay updated on the latest developments in this field.In addition to my literature review, I will also be conducting interviews with healthcare professionals and experts in AI. Their insights and expertise will provide valuable insights into the current challenges and opportunities in implementing AI in healthcare. I believe that incorporating real-world perspectives and experiences will enrich my research and make it more practical and relevant.After gathering all the necessary data and information, I will beginanalyzing and interpreting my findings. This will involve using statistical methods and data visualization techniques to uncover patterns and trends in the data. I will also be using software tools and programming languages to develop AI algorithms and models that can be used in healthcare settings.Finally, I will present my findings and recommendations in a written report and an oral presentation. These will be evaluated by a panel of professors and experts in the field. I am determined to make my graduation design a success and leave a lasting impact on both my academic community and the healthcare industry.In conclusion, my graduation design is an exciting and challenging project that allows me to delve deep into the world of artificial intelligence in healthcare. I am confident that this research will contribute to our understanding of how AI can be harnessed to improve patient care and transform the healthcare industry. I hope that my work will inspire and motivate others to explore the endless possibilities of AI in their respective fields.。
本科毕业设计(论文)外文翻译译文
本科毕业设计(论文)外文翻译译文学生姓名:院(系):油气资源学院专业班级:物探0502指导教师:完成日期:年月日地震驱动评价与发展:以玻利维亚冲积盆地的研究为例起止页码:1099——1108出版日期:NOVEMBER 2005THE LEADING EDGE出版单位:PanYAmericanYEnergyvBuenosYAiresvYArgentinaJPYBLANGYvYBPYExplorationvYHoustonvYUSAJ.C.YCORDOVAandYE.YMARTINEZvYChacoYS.A.vYSantaYCruzvYBolivia 通过整合多种地球物理地质技术,在玻利维亚冲积盆地,我们可以减少许多与白垩纪储集层勘探有关的地质技术风险。
通过对这些远景区进行成功钻探我们可以验证我们的解释。
这些方法包括盆地模拟,联井及地震叠前同时反演,岩石性质及地震属性解释,A VO/A V A,水平地震同相轴,光谱分解。
联合解释能够得到构造和沉积模式的微笑校正。
迄今为止,在新区有七口井已经进行了成功钻探。
基质和区域地质。
Tarija/Chaco盆地的subandean 褶皱和冲断带山麓的中部和南部,部分扩展到玻利维亚的Boomerange地区经历了集中的成功的开采。
许多深大的泥盆纪气田已经被发现,目前正在生产。
另外在山麓发现的规模较小较浅的天然气和凝析气田和大的油田进行价格竞争,如果他们能产出较快的油流而且成本低。
最近发现气田就是这种情况。
接下来,我们赋予Aguja的虚假名字就是为了讲述这些油田的成功例子。
图1 Aguja油田位于玻利维亚中部Chaco盆地的西北角。
基底构造图显示了Isarzama背斜的相对位置。
地层柱状图显示了主要的储集层和源岩。
该油田在Trija和冲积盆地附近的益背斜基底上,该背斜将油田和Ben i盆地分开(图1),圈闭类型是上盘背斜,它存在于连续冲断层上,Aguja有两个主要结构:Aguja中部和Aguja Norte,通过重要的转换压缩断层将较早开发的“Sur”油田分开Yantata Centro结构是一个三路闭合对低角度逆冲断层并伴随有小的摆幅。
毕业设计外文原文加译文
Basic Concepts PrimerTOPIC P.1: Bridge MechanicsBasic Equations of Bridge Mechanicswhere: A =area; cross-sectional areaA w = areaof web c = distance from neutral axisto extreme fiber (or surface) of beamE = modulus of elasticityF = force; axial force f a= axial stress f b= bending stress f v = shear stress I = moment of inertia L = original length M = applied moment S = stressV = vertical shear force due toexternal loadsD L = change in length e = strainBasic Concepts Primer Topic P.1 Bridge MechanicsP.1.1Introduction Mechanics is the branch of physical science that deals with energy and forces andtheir relation to the equilibrium, deformation, or motion of bodies. The bridgeinspector will primarily be concerned with statics, or the branch of mechanicsdealing with solid bodies at rest and with forces in equilibrium.The two most important reasons for a bridge inspector to study bridge mechanicsare:Ø To understand how bridge members functionØ To recognize the impact a defect may have on the load-carrying capacityof a bridge component or elementWhile this section presents the basic principles of bridge mechanics, the referenceslisted in the bibliography should be referred to for a more complete presentation ofthis subject.P.1.2Bridge Design Loadings Bridge design loadings are loads that a bridge is designed to carry or resist and which determine the size and configuration of its members. Bridge members are designed to withstand the loads acting on them in a safe and economical manner. Loads may be concentrated or distributed depending on the way in which they are applied to the structure.A concentrated load, or point load, is applied at a single location or over a very small area. Vehicle loads are considered concentrated loads.A distributed load is applied to all or part of the member, and the amount of load per unit of length is generally constant. The weight of superstructures, bridge decks, wearing surfaces, and bridge parapets produce distributed loads. Secondary loads, such as wind, stream flow, earth cover and ice, are also usually distributed loads.Highway bridge design loads are established by the American Association of State Highway and Transportation Officials (AASHTO). For many decades, the primary bridge design code in the United States was the AASHTO Standard Specifications for Highway Bridges (Specifications), as supplemented by agency criteria as applicable.During the 1990’s AASHTO developed and approved a new bridge design code, entitled AASHTO LRFD Bridge Design Specifications. It is based upon the principles of Load and Resistance Factor Design (LRFD), as described in Topic P.1.7.P.1.1SECTION P: Basic Concepts PrimerTopic P.1: Bridge MechanicsP.1.2Bridge design loadings can be divided into three principal categories:Ø Dead loadsØ Primary live loads Ø Secondary loadsDead LoadsDead loads do not change as a function of time and are considered full-time, permanent loads acting on the structure. They consist of the weight of the materials used to build the bridge (see Figure P.1.1). Dead load includes both the self-weight of structural members and other permanent external loads. They can be broken down into two groups, initial and superimposed.Initial dead loads are loads which are applied before the concrete deck is hardened, including the beam itself and the concrete deck. Initial deck loads must be resisted by the non-composite action of the beam alone. Superimposed dead loads are loads which are applied after the concrete deck has hardened (on a composite bridge), including parapets and any anticipated future deck pavement. Superimposed dead loads are resisted by the beam and the concrete deck acting compositely. Non-composite and composite action are described in Topic P.1.10.Dead load includes both the self-weight of the structural members and other permanent external loads.Example of self-weight: A 6.1 m (20-foot) long beam weighs 0.73 kN per m (50 pounds per linear foot). The total weight of the beam is 4.45 kN (1000 pounds). This weight is called the self-weight of the beam.Example of an external dead load: If a utility such as a water line is permanently attached to the beam in the previous example, then the weight of the water line is an external dead load. The weight of the water line plus the self weight of the beam comprises the total dead load.Total dead load on a structure may change during the life of the bridge due to additions such as deck overlays, parapets, utility lines, and inspection catwalks.Figure P.1.1 Dead Load on a BridgePrimary Live LoadsLive loads are considered part-time or temporary loads, mostly of short-term duration, acting on the structure. In bridge applications, the primary live loads are moving vehicular loads (see Figure P.1.2).To account for the affects of speed, vibration, and momentum, highway live loads are typically increased for impact. Impact is expressed as a fraction of the liveSECTION P: Basic Concepts PrimerTopic P.1: Bridge MechanicsP.1.3load, and its value is a function of the span length.Standard vehicle live loads have been established by AASHTO for use in bridge design and rating. It is important to note that these standard vehicles do not represent actual vehicles. Rather, they were developed to allow a relatively simple method of analysis based on an approximation of the actual live load.Figure P.1.2 Vehicle Live Load on a BridgeAASHTO Truck LoadingsThere are two basic types of standard truck loadings described in the current AASHTO Specifications . The first type is a single unit vehicle with two axles spaced at 14 feet (4.3 m) and designated as a highway truck or "H" truck (see Figure P.1.3). The weight of the front axle is 20% of the gross vehicle weight, while the weight of the rear axle is 80% of the gross vehicle weight. The "H" designation is followed by the gross tonnage of the particular design vehicle.Example of an H truck loading: H20-35 indicates a 20 ton vehicle with a front axle weighing 4 tons, a rear axle weighing 16 tons, and the two axles spaced 14 feet apart. This standard truck loading was first published in 1935.The second type of standard truck loading is a two unit, three axle vehicle comprised of a highway tractor with a semi-trailer. It is designated as a highway semi-trailer truck or "HS" truck (see Figure P.1.4).The tractor weight and wheel spacing is identical to the H truck loading. The semi-trailer axle weight is equal to the weight of the rear tractor axle, and its spacing from the rear tractor axle can vary from 4.3 to 9.1 m (14 to 30 feet). The "HS" designation is followed by a number indicating the gross weight in tons of the tractor only.SECTION P: Basic Concepts PrimerTopic P.1: Bridge MechanicsP.1.414’-0”(4.3 m)8,000 lbs (35 kN) 32,000 lbs (145 kN)(3.0 m)10’-0”CLEARANCE AND LOAD LANE WIDTH6’-0” (1.8 m)2’-0” (0.6 m)Figure P.1.3 AASHTO H20 Truck14’-0”(4.3 m)8,000 lbs (35 kN) 32,000 lbs (145 kN)(3.0 m)10’-0”CLEARANCE AND LOAD LANE WIDTH6’-0”(1.8 m)2’-0” (0.6 m)32,000 lbs (145 kN)VFigure P.1.4 AASHTO HS20 TruckExample of an HS truck loading: HS20-44 indicates a vehicle with a front tractor axle weighing 4 tons, a rear tractor axle weighing 16 tons, and a semi-trailer axle weighing 16 tons. The tractor portion alone weighs 20 tons, but the gross vehicle weight is 36 tons. This standard truck loading was first published in 1944.In specifications prior to 1944, a standard loading of H15 was used. In 1944, theSECTION P: Basic Concepts Primer Topic P.1: Bridge MechanicsP.1.5H20-44 Loading HS20-44 Loadingpolicy of affixing the publication year of design loadings was adopted. In specifications prior to 1965, the HS20-44 loading was designated as H20-S16-44, with the S16 identifying the gross axle weight of the semi-trailer in tons.The H and HS vehicles do not represent actual vehicles, but can be considered as "umbrella" loads. The wheel spacings, weight distributions, and clearance of the Standard Design Vehicles were developed to give a simpler method of analysis, based on a good approximation of actual live loads.The H and HS vehicle loads are the most common loadings for design, analysis, and rating, but other loading types are used in special cases.AASHTO Lane LoadingsIn addition to the standard truck loadings, a system of equivalent lane loadings was developed in order to provide a simple method of calculating bridge response to a series, or “train”, of trucks. Lane loading consists of a uniform load per linear foot of traffic lane combined with a concentrated load located on the span to produce the most critical situation (see Figure P.1.5).For design and load capacity rating analysis, an investigation of both a truck loading and a lane loading must be made to determine which produces the greatest stress for each particular member. Lane loading will generally govern over truck loading for longer spans. Both the H and HS loadings have corresponding lane loads.* Use two concentrated loads for negative moment in continuous spans (Refer to AASHTO Page 23)Figure P.1.5 AASHTO Lane Loadings.Alternate Military LoadingThe Alternate Military Loading is a single unit vehicle with two axles spaced at 1.2 m (4 feet) and weighing 110 kN (12 tons)each. It has been part of the AASHTO Specifications since 1977. Bridges on interstate highways or other highways which are potential defense routes are designed for either an HS20 loading or an Alternate Military Loading (see Figure P.1.6).SECTION P: Basic Concepts PrimerTopic P.1: Bridge MechanicsP.1.6110 kN (24 k)110 kN (24 k)Figure P.1.6 Alternate Military LoadingLRFD Live LoadsThe AASHTO LRFD design vehicular live load, designated HL-93, is a modified version of the HS-20 highway loadings from the AASHTO StandardSpecifications. Under HS-20 loading as described earlier, the truck or lane load is applied to each loaded lane. Under HL-93 loading, the design truck or tandem, in combination with the lane load, is applied to each loaded lane.The LRFD design truck is exactly the same as the AASHTO HS-20 design truck. The LRFD design tandem, on the other hand, consists of a pair of 110 kN axials spread at 1.2 m (25 kip axles spaced 4 feet) apart. The transverse wheel spacing of all of the trucks is 6 feet.The magnitude of the HL-93 lane load is equal to that of the HS-20 lane load. The lane load is 9 kN per meter (0.64 kips per linear foot) longitudinally and it is distributed uniformly over a 3 m (10 foot) width in the transverse direction. The difference between the HL-93 lane load and the HS-20 lane load is that the HL-93 lane load does not include a point load.Finally, for LRFD live loading, the dynamic load allowance, or impact, is applied to the design truck or tandem but is not applied to the design lane load. It is typically 33 percent of the design vehicle.Permit VehiclesPermit vehicles are overweight vehicles which, in order to travel a state’s highways, must apply for a permit from that state. They are usually heavy trucks (e.g., combination trucks, construction vehicles,or cranes) that have varying axle spacings depending upon the design of the individual truck. To ensure that these vehicles can safely operate on existing highways and bridges, most states require that bridges be designed for a permit vehicle or that the bridge be checked to determine if it can carry a specific type of vehicle. For safe and legal operation, agencies issue permits upon request that identify the required gross weight, number of axles, axle spacing, and maximum axle weights for a designated route (see Figure P.1.7).SECTION P: Basic Concepts PrimerTopic P.1: Bridge MechanicsP.1.7Figure P.1.7 910 kN (204 kip) Permit Vehicle (for Pennsylvania)Secondary LoadsIn addition to dead loads and primary live loads, bridge components are designed to resist secondary loads, which include the following:Ø Earth pressure - a horizontal force acting on earth-retaining substructureunits, such as abutments and retaining wallsØ Buoyancy -the force created due to the tendency of an object to rise whensubmerged in waterØ Wind load on structure - wind pressure on the exposed area of a bridge Ø Wind load on live load -wind effects transferred through the live loadvehicles crossing the bridgeØ Longitudinal force -a force in the direction of the bridge caused bybraking and accelerating of live load vehiclesØ Centrifugal force -an outward force that a live load vehicle exerts on acurved bridgeØ Rib shortening -a force in arches and frames created by a change in thegeometrical configuration due to dead loadØ Shrinkage - applied primarily to concrete structures, this is a multi-directional force due to dimensional changes resulting from the curing processØ Temperature -since materials expand as temperature increases andcontract as temperature decreases, the force caused by these dimensional changes must be consideredØ Earthquake -bridge structures must be built so that motion during anearthquake will not cause a collapseØ Stream flow pressure -a horizontal force acting on bridge componentsconstructed in flowing waterØ Ice pressure - a horizontal force created by static or floating ice jammedagainst bridge componentsØ Impact loading - the dynamic effect of suddenly receiving a live load;this additional force can be up to 30% of the applied primary live load forceØ Sidewalk loading - sidewalk floors and their immediate supports aredesigned for a pedestrian live load not exceeding 4.1 kN per square meter (85 pounds per square foot)Ø Curb loading -curbs are designed to resist a lateral force of not less than7.3 kN per linear meter (500 pounds per linear foot)Ø Railing loading -railings are provided along the edges of structures forprotection of traffic and pedestrians; the maximum transverse load appliedto any one element need not exceed 44.5 kN (10 kips)SECTION P: Basic Concepts PrimerTopic P.1: Bridge MechanicsP.1.8A bridge may be subjected to several of these loads simultaneously. The AASHTO Specifications have established a table of loading groups. For each group, a set of loads is considered with a coefficient to be applied for each particular load. The coefficients used were developed based on the probability of various loads acting simultaneously.P.1.3Material Response to LoadingsEach member of a bridge has a unique purpose and function, which directly affects the selection of material, shape, and size for that member. Certain terms are used to describe the response of a bridge material to loads. A working knowledge of these terms is essential for the bridge inspector.ForceA force is the action that one body exerts on another body. Force has two components: magnitude and direction (see Figure P.1.8). The basic English unit of force is called pound (abbreviated as lb.). The basic metric unit of force is called Newton (N). A common unit of force used among engineers is a kip (K), which is 1000 pounds. In the metric system, the kilonewton (kN), which is 1000 Newtons, is used. Note: 1 kip = 4.4 kilonewton.FyFigure P.1.8 Basic Force ComponentsStressStress is a basic unit of measure used to denote the intensity of an internal force. When a force is applied to a material, an internal stress is developed. Stress is defined as a force per unit of cross-sectional area.The basic English unit of stress is pounds per square inch (abbreviated as psi). However, stress can also be expressed in kips per square inch (ksi) or in any other units of force per unit area. The basic metric unit of stress is Newton per square meter, or Pascal (Pa). An allowable unit stress is generally established for a given material. Note: 1 ksi = 6.9 Pa.)A (Area )F (Force )S (Stress =毕业设计外文译文桥梁力学基本概论《美国桥梁检测手册》译文:桥梁结构的基础方程S=F/A(见1.8节)fa=P/A(见1.14节)ε=△L/L(见1.9节)fb=Mc/I(见1.16节)E=S/ε(见1.11节)fv=V/Aw(见1.18节)桥梁额定承载率=(允许荷载–固定荷载)*车辆总重量/车辆活荷载冲击力式中:A=面积;横截面面积Aw=腹板面积c=中性轴与横梁边缘纤维或外表面之间的距离E=弹性模量F=轴心力;轴向力fa=轴向应力fb=弯曲应力fv=剪切应力I=惯性距L=原长M=作用力距S=应力V=由外荷载引起的垂直剪应力△L=长度变量ε=应变1桥梁主要的基本概论第一章桥梁力学1.1引言结构力学是研究物体的能量、力、能量和力的平衡关系、变形及运动的物理科学的分支。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文)译文题目名称:书籍设计品质与格调院系名称:艺术设计系班 级:ZB 视觉122班学 号:************学生姓名:***指导教师:***2013年 12月中原工学院信息商务学院2014届毕业设计译文Books design quality and styleThe modelling of book binding design is an independent art, are the major factors influence the book binding design books, text and graphics visual degree, layout method, printing material, colour is harmonious, proper use traditional art elements, etc., and as designers create the main body of the book, on the basis of the understanding of these factors, to fully improve their aesthetic and aesthetic effect. In general, visual degree is strong, can attract the attention of readers and more attention, however, due to the high degree of visual books, its text fonts and graphics area is opposite bigger, strong appeal, but will appear stimulate and jumping on the vision, reduces the cultural quality and style of books. If visual degree is relatively low, fonts and images will show experience and artistic accomplishment, to design the book binding design work of high quality and high style.The importance and improve the quality and style of book binding,the modelling of book binding design is an independent art, designers blend in aesthetic ideology, the concept of art books material and books production process, is the books themselves of tacit knowledge and explicit form the overall unity of language art. Book binding design, therefore, designers should not only familiar with books, the paper in the process of production, binding, printing and other processes, and to follow the rule of the plastic arts aesthetic rules and forms, manifests the books that are unique to this kind of cultural carrier of aesthetic and cultural qualities.Book design art of the cultural taste and style is very important, the cultural taste of a book of high and low, influence the readers and audience's aesthetic orientation and acceptance. Book binding design, as a kind of creative image activity, is the art of designers to perception by paper material, words, pictures, medium of language symbols such as the carrier, the images in the form of state, and thus constitutes a real work of art (the book). Books as the product of the artistic activities and objects, not only with artistic creation has a direct relationship, at the same time have a direct relationship with readers and critics. The high grade, high style book binding design, can satisfy the aesthetic needs of readers, cause the audience's aesthetic pleasure, at the same time, it exerts a subtle influence on the reader's aesthetic value orientation and personality. Embodied in the book, therefore, cultural quality and style, directly reflect the aesthetic value of the books and art taste, also reflected in its aesthetic effect and the aesthetic effect. So, book designers should effort to improve the cultural quality and style of the book binding design, increase the effectiveness of books of art and aesthetic value.In the 1960 s, "post-modern" design style are all the rage. "Post-modern" design pays attention to individual character freedom and emotional catharsis, its artistic style emphasized manufacturing contradictions, poking fun at the game. Design in our country are also affected, book design for visual impact, devotion to commercial value, many designers attempt against tradition, law, the concept of the aesthetic, focus on books external tension and layout have strong contrast, inan effort to give the reader caused strong visual appeal. , in other words, in order to more easy to cause the reader's reading interest and desire for purchase, many booksellers will books designed to be exaggerated and individual character, pursuit of bright and beautiful color and special editions.And the books of a high quality, high style, reflect and permeated with a kind of scholarliness. "Word, namely the book contains the beauty of neutralization, quiet and deep cultural connotation. Different from irregular, no order, the art, the aesthetic characteristics of post-modern art, "word, pay attention to in the books of this particular medium build atmosphere of leaves, the thinking characteristics of Chinese traditional culture and the inside of the form into the design concept.Factors that affect the overall quality and style of the book binding, basically has the following aspects,text and graphic visual c: visual c refers to the visual strength in the pages of text and pictures. books page visual strength degree affect the reading of books,too stiff, reduces the visual interest. Therefore, the proper visual degree can reflect the cultural quality of books and style.The quality of printed materials: books is a kind of "information of sculpture", the fine printing materials can fully reflect the quality and style of the book, high-grade paper materials and the advanced printing technology, ontology of "intellectual" more books, books can play the calm delicate beauty.Layout methods: appropriate layout of books, books of the ontology can be visual language and art style of perfect and meticulous, enrich the aestheticconnotation of book design. Book binding design style, appropriate layout styles more can reflect the practical value of books and aesthetic effect, especially pay attention to the actual situation and the space arrangement method, can let the books appear gentle quiet. Pay attention to space, which is emphasizing pays attention to the design elements of blank space, pay attention to the layout space left after the formation of the "negative space" the beauty of the blank and visual tension.The use of traditional artistic elements: book design is a kind of art creation, Chinese calligraphy, seal cutting, painting and other art elements used in book binding design process, will be the spirit of Chinese traditional art design perfectly combined with books, makes the books become a kind of rich Chinese culture connotation of design work, show a kind of high quality and high style. The use of traditional artistic elements, especially the use of calligraphy, seal cutting font, can make the books form has a unique artistic personality and cultural identity, greatly enhance the cultural quality of the books. Calligraphy, seal cutting) is the core of Chinese traditional culture, has the unique aesthetic form of Chinese traditional culture and artistic features, with a strong visual appeal and meaning boundless visual appeal to force. Calligraphy font is different from general standard print, it into the person's ideological cultivation, moral pursuit, is a kind of word load by static form of life. Utilizing calligraphy font in the book binding design, can give readers a unique visual attention, the process of reading, is also a form of humanlife dialogue, and into the book binding design works of calligraphy element, is permeated with profound cultural connotation and implication of beauty.Colorific harmony with: color is a very important visual communication field design elements, is a kind of important visual language in the process of book binding design, it can build different emotional atmosphere, so the colour is applied proper or not is very important. Therefore, in the book binding design, especially in the books cover design, colour should be grasped of brightness, purity, hue contrast and harmony, if colour is too much, or color contrast is too strong, although this book covers can get strong visual result, have the effect of synthetic-aperture, but appear impetuous publicity; Can reflect Oriental aesthetic and harmonious color is inside collect, calm personality, peculiar to embody high books in soft and elegant style.书籍设计品质与格调摘要:书籍装帧设计是一门独立的造型艺术,影响书籍装帧设计的因素主要有书籍文字与图形的视觉度、编排方法、印刷材质、色彩是否和谐、传统艺术元素是否恰当运用等方面,而作为创造主体的书籍装帧设计师,在了解这些因素的基础上,要充分提高自己的审美和审美功效。