第四章_交流绕组

合集下载

第4章 交流绕组—构成

第4章  交流绕组—构成

节距:一个线圈的两个有效边在铁心圆周表面上所跨 的距离称为节距,用符号y1表示,一般以槽数计。
《电机学》第4章 交流绕组的基本理论——绕组构成
14
极距:一个磁极在铁心圆周
表面上所占的范围称为极距 ,用符号τ表示,通常以用槽 数或长度计。
Z
2 p
πD
(槽) (米)
2 p
= y1
(整距) ( 短距) ( 长距)
步骤: ①画槽电动势星形图; ②分相; ③构成线圈; ④构成线圈组; ⑤画绕组展开图。
《电机学》第4章 交流绕组的基本理论——绕组构成
21
《电机学》第4章 交流绕组的基本理论——绕组构成
22
双层叠绕组展开图(y1=7, a=2)。
A
X 《电机学》第4章 交流绕组的基本理论——绕组构成
23
双层叠绕组A相展开图(y1=7, a=2)。
《电机学》第4章 交流绕组的基本理论——绕组构成
12
《电机学》第4章 交流绕组的基本理论——绕组构成
13
线圈:在电机制造过程中,构成交流绕组的基本单 元一般不是导体而是线圈。线圈是串联好的两根导 体或多根导体,相应地称为单匝线圈或多匝线圈 。
y1
(a)单匝线圈 (b) 多匝线圈 (c) 多匝线圈简易画法
1. 交流电机的简单工作原理
导体感应电动势
① 大小 ② 波形 ③ 频率 ④ 三相对称性
导体 交流绕组
同步发电机原理结构示意图
《电机学》第4章 交流绕组的基本理论——绕组构成
3
2. 导体感应电动势
① 大小 ② 波形 ③ 频率 ④ 三相对称性
ec
ec B(θ)lv Bmlv sin θ Bmlv sin ωt Bmlv sin 2πft

第四章 交流绕组理论 _ 习题与解答 _

第四章 交流绕组理论 _ 习题与解答 _


;在电枢绕组中所感应的电势频率为
;如 3 次谐波相电势有效值为 E3,
则线电势有效值为
;同步电机三相电枢绕组中一相单独流过电流时,所产
生的 3 次谐波磁势表达式为
。三相绕组流过对称三相电流
时 3 次谐波磁势幅值为

答:
τ 3
,3f,0,

3
cos
3
π τ
x cosωt ,0
10. ★某三相两极电机中,有一个表达式为δ=F COS(5ωt+ 7θS)的气隙磁势波,这表明:
;
由数学知:相量和总是小于(或等于)其代数和,即 Et( y<τ ) < Et( y=τ ) 及 Eq(q>1) < Eq(q=1) , 故
其比值 即 K y 及 K q 总是小于 1.
4. ★在交流发电机定子槽的导体中感应电动势的频率、波形、大小与哪些因素有关?这些因
素中哪些是由构造决定的,哪些是由运行条件决定的?
绕组串联匝数有关,由构造决定;与频率、每极下磁通量有关,由运行条件决定。
6. ★★试从物理和数学意义上分析,为什么短距和分布绕组能削弱或消除高次谐波电动势?
答: 因谐波电动势 Eφν = 4.44 fν Nk pν kdν Φν ,欲要消除或削弱某次谐波电动势,只需使某次
谐波的短距系数 k pν 或分布系数 kdν 为零(或很小)即可。
τ。
答:ν −1 ν
5. ★三相对称绕组通过三相对称电流,顺时针相序(a-b-c-a),其中 ia = 10 sin ωt ,当 Ia=10A
时,三相基波合成磁势的幅值应位于
;当 Ia =-5A 时,其幅值位于

答:A 相绕组轴线处,B 相绕组轴线处。

第4章 三相异步电动机的基本原理

第4章 三相异步电动机的基本原理

A B C
山东工商学院信电学院
32
三、三相单层绕组
单层绕组的每一个槽内只有一个线圈边,整个绕组 的线圈数等于总槽数的一半。用定子槽数为24,两 极电机的定子绕组为例,说明单层绕组构成。
Q1 24 12 1、计算极距 2 p 2 1 Q1 24 4 2、计算每极每相槽数 q 2m p 2 3 1
29
二、交流绕组的排列和联接 假设给定电机极数2p=4,槽数Q1=24(三相单层叠绕组)
1、极距的计算, 若2p=4,Q1=24,则 τ=6
Q1 24 6 2 p 2 2 2、节距, 单层绕组采用整矩
y 6
3、相带—— 每个极距内属于同相的槽所占有的区域称为 度。 p 360 4、槽距角, 30 “相带”,q=Q1/(2mp);每个相带为60°电角
C
Y
10,11,12 13,14,15 16,17,18
19,20,21 22,23,24 25,26,27 28,29,30 31,32,33 34,35,36
山东工商学院信电学院
38
组成线圈组
山东工商学院信电学院
39
第四节
三相异步电动机的定子磁动势及磁场
一、单相绕组的磁动势——脉振磁动势 (一)、整距线圈的磁动势
山东工商学院信电学院
16
定子冲片和定子线圈
山东工商学院信电学院
17
机座
山东工商学院信电学院
18
2、转子 异步动机的转子由转子铁心、转子绕组和转轴组成。
山东工商学院信电学院
19
笼型转子
山东工商学院信电学院
202)绕线型绕组山东工商学院信电学院21
3、气隙
定子与转子之间的间隙;0.2-2.5mm气隙越大,功率因数 越低。气隙过小,装配困难

第四章-交流绕组的基本问题

第四章-交流绕组的基本问题

第四章《交流电机绕组的基本理论》4.1 交流绕组的基本要求1.交流绕组的基本要求:(1)绕组产生的电动势(磁动势)接近正弦波;(2)三相绕组的基波电动势(磁动势)必须对称;(3)在导体数一定时能获得较大的基波电动势(磁动势)。

2.槽距角α:相邻两槽之间的机械角度槽距电角α1:相邻两槽间相距的电角度4.2三相交流绕组1.极距一个极在电机定子圆周上所跨的距离,一般以槽数计每极每相槽数整个电机定子中每相在每个极下所占有的槽数2.线圈组:每相绕组中相邻的线圈串联在一起称为一个线圈组,一个线圈组中的线圈个数为每极每相槽数q4.3交流绕组的电动势1.短距系数短距系数的物理意义:是短距线圈电动势与对应的整距线圈电动势之比分布系数分布系数的物理意义:分布线圈组合成感应电动势比集中线圈组合成电动势所打的折扣绕组系数2.导体电势,匝电势,线圈电势,线圈组电势和相电势的求法(重点)导体电势匝电势线圈电势线圈组电势相电势(附:4.高次谐波感应电动势的危害:(1)使发电机的电动势波形变坏(2)发电机本身损耗增加,温升增高(3)谐波电流串入电网,干扰通信5.削弱感应电动势谐波的方法:(1)使气隙中的磁场分布尽可能接近正弦波(2)采用对称的三相绕组(使线电动势不存在3次谐波及其倍数的奇次谐波)(3)采用短距绕组(4)采用分布绕组(5)采用磁性槽楔、斜槽或分布槽绕组6.采用短距绕组削弱谐波电动势(通常选y1=5/6τ以同时削弱5、7次谐波)7.对称三相绕组线电动势中不存在3及3的倍数次谐波的原因是:三相相电动势中的三次谐波在相位上彼此相差3*120°=360°,即它们是同相位、同大小的。

当三相绕组接成星形时,E AB3=E A3-E B3=0,所以对称三相绕组的线电动势中不存在3次谐波,同理也不存在3的倍数次谐波。

4.4交流绕组的磁动势1.脉振磁动势:空间位置固定不动,但波幅的大小和正负随时间变化的磁动势2.一个线圈所产生的磁动势的基波幅值:一个极相组所产成的磁动势基波幅值:一相绕组产生的磁动势每极基波幅值:第n次谐波磁动势(1)单相绕组磁动势是脉振磁动势,既是时间t的函数又是空间θ角的函数(2)单相绕组磁动势v次谐波的幅值与v成反比,与对应的绕组系数成正比(3)基波、谐波的波幅必在相绕组的轴线上(4)为了改善磁动势波形,可以采用短距和分布绕组来削弱高次谐波3.三相基波合成磁动势:三相基波合成磁动势的性质(重点):(1)三相合成磁动势的基波是一个波幅恒定不变的旋转波(2)当电流在时间上经过多少电角度,旋转磁动势在空间上转过同样数值的电角度(3)旋转磁动势基波旋转电角速度等于交流电流角频率;旋转磁动势的转速n1为同步转速(4)旋转磁动势由超前相电流所在的相绕组轴线转向滞后的相电流所在的相绕组轴线,因此,哪相电流达到最大值,旋转合成磁动势的幅值就在那相绕组的轴线上(5)合成磁动势的旋转方向取决于三相电流相序。

电机答案

电机答案

第四章 交流电机绕组的基本理论4.1 交流绕组与直流绕组的根本区别是什么? 交流绕组:一个线圈组彼此串联直流绕组:一个元件的两端分别与两个换向片相联4.2 何谓相带?在三相电机中为什么常用60°相带绕组而不用120°相带绕组?相带:每个极下属于一相的槽所分的区域叫相带,在三相电机中常用60相带而不用120相带是因为:60相带所分成的电动势大于120相带所分成的相电势。

4.3 双层绕组和单层绕组的最大并联支路数与极对数有什么关系? 双层绕组:max 2a P = 单层绕组:max a P =4.4 试比较单层绕组和双层绕组的优缺点及它们的应用范围?单层绕组:简单,下线方便,同心式端部交叉少,但不能做成短匝,串联匝数N 小(同样槽数),适用于10kW <异步机。

双层绕组:可以通过短距节省端部用铜(叠绕组)或减少线圈但之间的连线(波绕),更重要的是可同时采用分布和短距来改善电动势和磁动势的波形,因此现代交流电机大多采用双层绕组。

4.5 为什么采用短距和分布绕组能削弱谐波电动势?为了消除5次或7次谐波电动势,节距应选择多大?若要同时削弱5次和7次谐波电动势,节距应选择多大?绕组短距后,一个线圈的两个线圈边中的基波和谐波(奇次)电动势都不在相差180,因此,基波和谐波电动势都比整距时减小;对基波,同短距而减小的空间电角度较小,∴基波电动势减小得很少;但对V 次谐波,短距减小的则是一个较大的角度(是基波的V 倍),因此,总体而言,两个线圈中谐波电动势相量和的大小就比整距时的要小得多,因此谐波电动势减小的幅度大于基波电动势减小的幅度∴可改善电动势波形。

绕组分布后,一个线圈组中相邻两个线圈的基波和ν次谐波电动势的相位差分别是1α和1v α(1α槽距角),这时,线圈组的电动势为各串联线圈电动势的相量和,因此一相绕组的基波和谐波电动势都比集中绕组时的小,但由于谐波电动势的相位差较大,因此,总的来说,一相绕组的谐波电动势所减小的幅度要大于基波电动势减小的幅度,使电动势波形得到改善。

《中级电工工艺学》教案 第四章 交流电机的修理

《中级电工工艺学》教案 第四章  交流电机的修理

第四章交流电机的修理1、交流电机的地位:在实际应用中,交流电机约占全部使用电机的85%以上,因此,掌握交流电机的修理工艺及试验方法,对于维修电工来说,有着十分重要的意义。

2、交流电机分类:交流电机有同步电机和异步电机两大类。

它们的定子结构完全相同,但转子区别很大。

第一节交流电机的绕组及其展开图一、概述1、三相交流电机的绕组指哪些绕组:三相同步电机定子绕组及三相异步电机的定子绕组和三相异步电机的转子绕组都称为三相交流电机的绕组。

2、电枢绕组指哪些绕组:由于三相电机的定子绕组或直流电机的转子绕组为是能量转换的“枢钮”,所以又称为电枢绕组。

(一)三相交流电机绕组构成的原则交流电机绕组的构成原则有以下三点。

1、三相交流电机的绕组必须是对称分布的。

对称的三相绕组应符合以下的条件①各相绕组的导体数、并联支路数相等,导体的规格一样。

②每相绕组在定子内圆周上均匀地分布,三相绕组在空间位置上各相差一个相同的角度。

2、绕组所建立的磁场在气隙中的分布接近正弦以使电机具有良好的性能3、要有一定的经济指标,即在相同的功率情况下体积小,材料省、紧固耐用。

(二)交流电机绕组的分类交流电机绕组的种类很多1、按相数分:有单相和三相绕组;2、按槽内层数分:⑪单层绕组:同心式、交叉式和链式;⑫双层绕组:有叠绕组和波绕组;3、按每极每相所占的槽数是整数还是分数:又有整数槽和分数槽两种本节仅以三相单层和双层绕组为例说明绕组的排列和连接。

(三)绕组的几个基本术语组元件。

线圈单元可以由一匝或互相绝缘的多匝导体组成,如图4—1所示。

有效部分:线圈单元有两个线圈边,每个线圈边嵌放在槽内直线部分的叫有效部分;端部:槽外部分叫端部。

首端和末端:线圈单元有两个引出线,一个叫首端,另一个叫末端。

2、极对数p 电机的主磁场沿气隙按N 、S 、N 、S ……交替分布,一对磁极形成一个周期。

如果沿气隙有户 个周期,则极对数为声。

图4—2是极对数p=4的电机的磁场分布情况。

(完整word版)电机学第五版课后答案_(汤蕴璆)

(完整word版)电机学第五版课后答案_(汤蕴璆)

第一章 磁路 电机学1-1 磁路的磁阻如何计算?磁阻的单位是什么?答:磁路的磁阻与磁路的几何形状(长度、面积)和材料的1-2 铁心中的磁滞损耗和涡流损耗是怎样产生的,它们各与哪些因素有关?答:磁滞损耗:铁磁材料置于交变磁场中,被反复交变磁化,磁畴间相互摩擦引起的损耗。

经验公式V fB C p nmh h =。

与铁磁材料的磁滞损耗系数、磁场交变的频率、铁心的体积及磁化强度有关;涡流损耗:交变的磁场产生交变的电场,在铁心中形成环流(涡流),通过电阻产生的损耗。

经验公式G B f C p mFe h 23.1≈。

与材料的铁心损耗系数、频率、磁通及铁心重量有关。

1-3 图示铁心线圈,已知线圈的匝数N=1000,铁心厚度为0.025m (铁心由0.35mm 的DR320硅钢片叠成), 叠片系数(即截面中铁的面积与总面积之比)为0.93,不计漏磁,试计算:(1) 中间心柱的磁通为4105.7-⨯Wb ,不计铁心的磁位降时所需的直流励磁电流;(2) 考虑铁心磁位降时,产生同样的磁通量时所需的励磁电流。

解:Θ磁路左右对称∴可以从中间轴线分开,只考虑右半磁路的情况:铁心、气隙截面2422109.293.01025.1025.0m m A A --⨯=⨯⨯⨯==δ(考虑边缘效应时,通长在气隙截面边长上加一个气隙的长度;气隙截面可以不乘系数) 气隙长度m l 41052-⨯==δδ铁心长度铁心、气隙中的磁感应强度(1) 不计铁心中的磁位降:磁势A A l H F F I500105100.146=⨯⋅⨯=⋅==-δδδ(2) 考虑铁心中的磁位降:铁心磁位降A A l H F Fe 15.871045.127002=⨯⨯=⋅=- A A A F F F Fe I 15.58715.87500=+=+=δ1-4 图示铁心线圈,线圈A 为100匝,通入电流1.5A ,线圈B 为50匝,通入电流1A ,铁心截面积均匀,求PQ 两点间的磁位降。

电机学第四章交流电机绕组基本理论第四讲

电机学第四章交流电机绕组基本理论第四讲
F C1
F B1
F A1
F1
+B
F A 1 F B 1 F C 1
+C
θ=120°
θ=120°
t 120
F A1
+B θ=120°
+A θ=0°
F B1
F A 1 F B 1 F C 1
F C1
F1
+C
θ=120°
t 240
2 圆形和椭圆形旋转磁动势
圆形旋转磁动势:对称的三相绕组中流过对称的三相电流时,气隙中的合成磁动势是一个 幅值恒定、转速恒定的旋转磁动势,其波幅的轨迹是一个圆,故这种磁动势称为圆形旋 转磁动势,相应的磁场称为圆形旋转磁场。
2 3
)
fC1
Fm1
cos(t
4 3
)
cos(
4 3
)
t /3
fA1 ( ) 0.5Fm1cos
π/3
fB1( ) 0.5Fm1cos( 120 )
fC1( ) Fm1cos( 240 )
1.1.2 矢量图法求合成磁动势基波 ωt=2π/3时,三相的基波合成磁动势
t 2 / 3 fA1( ) 0.5Fm1cos fB1( ) Fm1cos( 120 ) fC1( ) 0.5Fm1cos( 240 )
C相绕 组轴 线
B相绕 组轴 线
1.2三相绕组的基波合成磁动势性质 如何改变旋转磁动势的转向? 改变电流的相序可以改变旋转磁动势的转向
1.2三相绕组的基波合成磁动势性质 三相绕组合成磁动势基波的特点: 性质:三相对称绕组通入三相对称电流产生的三相合成磁动势基波是一个波幅恒定不变的旋
转磁动势—圆形旋转磁动势
1.1.1 解析法求合成磁动势基波 三角公式积化和差:

交流电机绕组的基本理论1

交流电机绕组的基本理论1
2p
Z为定子槽数 p 为磁极对数
2.线圈节距 y1:线圈两个有效边之间所跨过的槽数。
y1 = τ 整距绕组(单层绕组采用) y1 < τ 短距绕组(双层绕组采用) y1 > τ 长距绕组(端部连线长,一般不采用)
14Leabharlann 3. 每极每相槽数q 每个极下每相占有的槽数。 已知总槽数Z、极对数p和相数m,则
26
在第一个N极下取1、 2、3三个槽作为A相 带,在第一个S极下 取10、11、12三个 槽作为X相带,第二 对极下19、20、21 作为A相带,28、29、 30作为X相带。
27
相带 第一对极
各个相带槽号分布
A
Z
B
X
C
Y
1,2,3
4,5,6
7,8,9 10,11,12 13,14,15 16,17,18
29
联相绕组
• 将属于同一相的2p个线圈组联成一相绕组,并标记首尾端 • 依照电势相加原则进行连接,最大并联支路数amax=2p
a=1
30
由于N极下的极相组A与S极下的极相组X的电动势 方向相反,电流方向也相反,因此应将极相组A和极相 组X 反向串联。
由于每相的极相组数等于极数,所以双层叠绕组的 最大并联支路数等于2p。
链式绕组
19
双层叠绕组
20
单层叠绕组的构成
例:已知一交流电机槽数Z=36,极数2p=4,并联支路 数a=1,绘制三相单层绕组展开图。
1. 绘制槽电动势星形图
q = Z = 36 = 3 2 pm 2× 2× 3
α1
=
p × 3600 Z
=
2 × 3600 36
= 20°
600相带

电机学第四章交流电机绕组的基本理论

电机学第四章交流电机绕组的基本理论
第四章 交流电机绕组的基本理论
1. 三相交流绕组的结构;
2. 三相交流绕组产生的磁势分析;
3. 三相交流绕组产生的感应电势分析; 是交流电机(感应电机和同步电机)的共同问题
4.1 交流绕组的基本要求
一、基本要求:
电气要求: 1、绕组产生的电动势(磁动势)接近正弦波 ---谐波分量少。 2、三相绕组的基波电动势对称 3、一定导体数下,产生尽可能大的基波电动势
从不过分消除基波和用铜考虑, 应选尽可能接近于整距
• 均匀原则:每个极域内的槽数(线圈数)要相等,各 相绕组在每个极域内所占的槽数应相等; • 对称原则:三相绕组的结构完全一样,但在电机的圆 周空间互相错开120电角度。
•电势相加原则:线圈两个圈边的感应电势应该相加; 线圈与线圈之间的连接也应符合这一原则。 • 如线圈的一个边在N极下,另一个应在S极下。
(2)、槽电动势的星形图
槽内导体感应电动势的相量图,亦称为槽电动势星形图。
600相带: 如图
以A相位例,由于 q 3,故A相共有12个槽 相带:每极下每相所占的区域。 A相带: 1、2、3线圈组( )与19、20、21( ) )
X相带:10、11、12 (
) 与28、29、30(
将四个线圈组按照一定的规律连接,即可得到A相绕组。
二、相电动势和线电动势大小
交流绕组合成 相电势:
E E E E
2 1 2 3 2 5
E 1 1 (
交流绕组线电势
星形
E 3 E 1
2 l1
) (
2
E 5 E 1
)
2
El E E
2 l5
3 E E
2 1 2 5
三角形

第四章交流绕组及其电动势和磁动势详解

第四章交流绕组及其电动势和磁动势详解

2 Bav B1
Bav :平均磁密
f f E1 B1 2f B1l Bav l 1 2.22 f1 2 2 2 2
l f 2
E1 2.22 f1
1 :一极下磁通量
整距线圈的感应电动势Ec1 y1 则线圈的一根导体位于N极下最大磁密处时,另一根 导体恰好处于S极下的最大磁密处。所以两导体感应电势瞬时值总 是大小相等,方向相反,设线圈匝数Nc,则整距线圈的电势为
节距 线圈两边所跨定子圆周上的距离,用y1表示,y1应接近极距τ
=整距 Q y1 短距 = 2p 长距
槽距角 相邻两槽间的电角度
p 3600 Q
每极每相槽数
Q : 定子槽数
Q m:相数 p:极对数 q 2 pm 即每一个极下每相所占的槽数
2.1 槽电势星形图和相带划分
11 13 15 17 19 21
A
图4-8
X
单层链式绕组中A相的展开图 (2p=6,Q=36)
这种绕组主要用在q=偶数的小型四极、六极感应电动机中。如q 为奇数,则一个相带内的槽数无法均分为二,必须出现一边多, 一边少的情况。因而线圈的节距不会一样,此时采用交叉式绕组。
交叉式绕组 主要用于q=奇数的小型四极、六极电机中,采用不等距线圈。 三相四极36槽定子,绘制交叉式绕组展开图
E E 2E 4.44 fN E c1 1 1 1 c 1
短距线圈的电动势,节距因数 短距线圈的节距y1<τ,用电角度表示时
y1

180
E E E c1 1 1
180 y1 Ec1( N c 1 ) 2 E1 cos 2 E1 sin 90 2 y1 4.44 f sin 90 4.44 fk p1

电工学-第四章(三相交流电)PPT课件

电工学-第四章(三相交流电)PPT课件

.
46
影响触电危险程度的因素
3. 电流作用时间 电流对人体伤害同作用时间密切相关。可
以用电流与时间乘积(又称电击强度)来 表示电流对人体的危害。触电保护器的一 个主要指表就是额定断开时间与电流乘积 〈30mAs。实际产品可以达到3mAs,故 可有效地防止触电事故。
.
47
影响触电危险程度的因素
.
13
§4-2 三相负载的连接方式
三相负载——接在三相电源上的负载。
对称三相负载——各相负载相同的三相负载,如三相电动机、
大功率三相电路等。
不对称三相负载——各相负载不同,如三相照明电路中的负载。 L1 L2 L3 N
Z3
Z2
Z1
M
3~
.
Байду номын сангаас
14
三相负载也有两种接法:
L1
L1
Z
N L2
Z
Z
L2
L3
L3
4. 电流途经
如果电流不经人体脑、心、肺等重要部位, 除了电击强度较大时可能造成内部烧伤外, 一般不会危及生命。但如果电流流经上述 部位,就会造成严重后果。这是由于电击 会使神经系统麻痹而造成心脏停跳,呼吸 停止。例如,电流从一只手到另一只手, 或由手流到脚,就是这种情况。
.
48
影响触电危险程度的因素
拖动作匀速转动。 定子三相绕组切割 转子磁场而感应出 三相交流电动势。
L1 • L2' •
S
• L3'
2. 三相交流电动势的特点 L3
幅值相等 频率相同 相位差 = 120
.
N
L1'
L2
4
三相对称电动势的表达式

第4章 交流电机绕组-1

第4章 交流电机绕组-1
(1)三相合成磁动势的基波是一个幅值恒定不变的旋转波(式4-35);(2)当 某相电流达到最大值,旋转磁动势的幅值就将转到该相绕组的轴线处(P192); (3)旋转磁动势基波旋转电角速度等于交流电流角频率,即旋转磁动势的转速 就是同步转速n1;(4)如果三相电流的正序的,则磁动势波旋转方向是从U相位 置转向V相,然后转到W位置,如果三相电流是负序的,则其旋转方向为由U相到 W相再到V相,因此,如果要改变三相异步电动机旋转磁动势及磁场的旋转方向, 只要改变通入电流的相序即可.(5)三相合成基波磁动势波长等于2τ ,磁极对 数为电动机的极对数p.
第4章交流电机的绕组
电机及电力拖动基础 P136/3-10a=Y,y2
page #
第4章交流电机的绕组
电机及电力拖动基础
P136/3-10a=D,y1
page #
第4章交流电机的绕组
电机及电力拖动基础
page #
1. 2. 3.
Y,y2 Y,d3 D,y3
第4章交流电机的绕组
电机及电力拖动基础
X
C
Y
第4章交流电机的绕组
电机及电力拖动基础
Z =24=6 极距τ = 2p 4
page #
C B X X B CY AZ Z
AY
单层绕组(整距 单层绕组 整距) 整距
第4章交流电机的绕组
电机及电力拖动基础
A相绕组展开图 相绕组展开图
page #
1
3
5
7
9
11 13
15 17
19 21
23
A Z B X C Y A Z B X C Y X A A X
第4章交流电机的绕组
k N1 = k y1 k q1

第四章 交流绕组及其电动势和磁动势

第四章   交流绕组及其电动势和磁动势

·
·
其有效值為
Ec1( Nc 1) 4.44 f 1
若線圈有Nc匝
Ec1 4.44 fNc1
(4-1)
三、短距線圈的電動勢,節距因數
河北科技大學電氣資訊學院
短距線圈的節距y<τ,所對應的角度為
若導線為單匝,其線圈電動勢為:
2、正弦電動勢的頻率 設p=1,故機械角度等於電角度, n f 轉子每分鐘轉n圈,則 60
若極對數為p,則轉子轉一圈 電動勢將變化p個週期,故
pn f 60
在我國因f=50Hz,當p=1時, n=3000r/min,
當p=2時, n=1500r/min
以此類推 3、導體感應電動勢的有效值
河北科技大學電氣資訊學院
所以
2 E1 2
2 f B1 l 2.22 f
二、整距線圈的電動勢 如圖所示,當y1=τ時
E1 2E1 Ec1 E1
河北科技大學電氣資訊學院
,
n v D 2 f 代入E1中 將 60 B1l E1 2 f 2 fB1 l 2 2 2 Bav l B1 l 又因 Bav B1
河北科技大學電氣資訊學院
Q 24 q 4 2 pm 2 3
按電動勢最大原則,將定子繞組分成6個相帶,每個相帶的 槽號如下:
相帶 槽號 A 23,24,1, 2 Z 3,4,5,6 B 7,8,9,10 X C Y
11,12,13 15,16,17 19,20,21 ,14 ,18 ,22
對A相而言,將1-12連在一起組成大圈,2-11 連在一起組成小圈,再將13-24,14-23連在 一起組成另一個線圈,最後將兩個線圈反向 聯接即可。

电机学_(孙旭东_著)_科技出版社_课后答案_电机学习题与题解第四章 交流绕组及其电动势和磁动势

电机学_(孙旭东_著)_科技出版社_课后答案_电机学习题与题解第四章 交流绕组及其电动势和磁动势
旋转磁动势时, iB 的表达式应是怎样的? 解:设 iB = I m cos( ωt − β ) A 相: i A = I m cos ωt B 相: iB = I m cos( ωt − β ) 所以
⇒ f A1 = Fφ1 cos x cos ωt ⇒
f B1 = Fφ 1 cos( x − 90o − α ) cos( ωt − β )
设 i A = I m cos ωt , 则 iB = − I m cos ωt
f A1 = Fφ1 cos x cos ωt
f B1 = − Fφ1 cos( x − 120o ) cos ωt
所以合成磁势
f1 = f A1 + f B1 = Fφ 1 cos x cos ωt − Fφ 1 cos( x − 120o ) cos ωt
4-12 有一三相双层绕组, Q=36,2p=4, f=50Hz, y1 =
齿谐波的绕组因数。若绕组为星形联结,每个线圈有两匝,基波磁通φ1 =0.74Wb,谐 波磁场与基波磁场之比 B5 B1 = 1 25 , B7 B1 = 1 49 , 每相只有一条支路, 试求基波、 5 次和 7 次谐波的相电动势。 解: q =
Nk w1 I φ = 18271A p
相磁动势幅值 Fφ 1 = 0.9
三相磁动势幅值 F1 =
m1 Fφ 1 = 1.5 × 18271A = 27407 A 2
4-21 试分析下列情况下是否会产生旋转磁动势,转向怎样?(1)对称两相绕组内通以对称 两相正序电流时; (2)三相绕组一相(例如 C 相)断线时。 解:(1) 设 i A = I m cos ωt , 则 iB = I m cos( ωt − 90 )
Q 36 = =3 2mp 3 × 4

第四章交流电机绕组的基本理论

第四章交流电机绕组的基本理论
线圈组数 = 线圈个数/ q
《电机学》 第四章 交流电机绕组的基本理论
例:Z=24,2p=4
=Z/2p
q Z 2 pm
1
p 360 0 Z
《电机学》 第四章 交流电机绕组的基本理论
单层绕组和双层绕组: 单层绕组一个槽中只放一个元件边 双层绕组一个槽中放两个元件边。
《电机学》 第四章 交流电机绕组的基本理论
(称60º相带)。A、B、C
三相带中心线依此互差
120º ,X相带中心线与A相
带中心线互差180º ,将X
相带与A相带电动势反向
串联起来得A相电动势。
同理得到B、C相电动势。
A和X相带内的全部导体属于A相,B和Y 相带的全部导体为B相……
各相电动势大于120º相带 时的值。
《电机学》 第四章 交流电机绕组的基本理论
《电机学》 第四章 交流电机绕组的基本理论
2、用槽电动势星形图分相以保证三相感应电动势对称
电角度:
2p=2
一周360º(2π)----机械角度——空间角度 一对极一周360º----电角度 ——空间角度
转子铁心的横截面是一个圆,其几何角度为360º。 从电磁角度看,一对N,S极构成一个磁场周期,即1对极为360º 电角度。
《电机学》 第四章 交流电机绕组的基本理论
2p=4
机械角度=360º 电角度=p×360º=720º
电角度=p×机械角度
两对N,S极构成2个感应电势周期
《电机学》 第四章 交流电机绕组的基本理论
电枢上各槽内导体按正弦规律变化的电动势分别用相量表 示,这些相量构成一个辐射星形图,称槽电势星形图。
13(31)14(32)
15(33)C相 16(34)

第四章 磁动势

第四章 磁动势
1
p
5 产生旋转磁动势的条件: 必须有两个或两个以上的绕组; 绕组的轴线在空间上必须错开(但不能互差0或180 ); 绕组内的电流在时间上必须有相位差(但不能互差0或 180 )。 6 对称m相绕组通过对称m相电流时,所生成的磁动势是一 个圆形旋转磁动势,转速为
n1 60 f1 p
• 单相绕组产生的谐波磁势也是正弦脉振磁势,时间上按 正弦规律脉振。
f F cosx cos t
3、单相绕组的磁动势
结论: 1)单相绕组的磁动势是一种空间位置上固定、幅值随时 间变化的脉振磁动势。 2)单相绕组的基波磁动势幅值的位置与该相绕组的轴线相重合。
3)单相绕组脉振磁动势中的基波磁动势幅值 F1 0.9 N1kW 1 I p v 次谐波磁动势幅值为 N1k wv 1
1 三相绕组的合成基波磁动势
f1 ( , t ) F1 cos(t ) 3 N1k w1 F1 F 1 F1 1.35 I 2 p
F 1 0.9 N1k w1 I p
t 0
f1 ( , t ) F1 cos
iA 2 I cost 2 I I Am

三相绕组的合成基波磁动势的性质及特点: 1 一个空间上正弦分布,幅值大小不变的圆形旋转磁动势 波。 2 合成基波磁动势的幅值是单相基波磁动势幅值的3/2倍。 3 若电流是正序A-B-C的,则磁动势波旋转方向是从A相转 向B相,再转向C相。 如果电流是负序A-C-B的,则磁动势波旋转方向是从A相 转向C相,再转向B相。 因此,如果要改变三相异步电动机磁场的旋转方向,只 要改变定子电流的相序,把定子绕组三个出线端的任意两 个(例如B端和C端)对调即可。 4 旋转磁场的电角速度在数值上等于定子电流的角速度, 其基波磁动势的同步转速 n 60 f1

第四章_交流电机绕组的基本理论

第四章_交流电机绕组的基本理论
一. 特点: Z ,一般为整距绕 1. 每个槽内只有一个线圈边,其极距 2p 组。 2. 线圈个数=Q1 /2 3. 线圈组个数= Q1 /2q 4. 每相线圈组的个数= p (60°相带时) 5. 每个线圈匝数NC = 每槽导体数 6. 每个线圈组的匝数q NC 7. 每相串联匝数N=每相总的串联匝数/பைடு நூலகம் = p q NC / a = 定子 总导体数/2ma(即每条支路的匝数) 8. 一般用于10KW以下的小型交流电机
三、单相绕组的磁动势 相电流为Iφ 、每相串联匝数N、绕组并联支路数a、则单相 磁动势为: Nk w1 Fm1 0.9 I p
Nkw1 f1 ( x, t ) Fm1 sin t cos x 0.9 I sin t cos x p
单相脉动磁动势的分解
f 1 ( x, t ) Fm1 sin t cos x 1 1
3 f c ( x, t ) Fcm1 sin t cos x Fcm3 sin t cos x Fcm sin t cos x
其中: x 用电角度表示的空间距离。 ④基波磁动势的幅值: 4 2 Fcm1 N c I 0.9 N c I 2 ⑤ν次谐波磁势的幅值: 1 Fcm 0.9 N c I
首 尾
X
N
1 23
S
101112
N
1920 21
S
282930
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
三相双层叠绕组的A相绕组的展开图 (Z = 36 , 2P = 4 , a = 1)
4.4 正弦磁场下交流绕组的感应电动势
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 π f1 = F 1 sin(ωt − x) φ 2 τ
π τ
②图解法 结论:⑴三相对称绕组流过三相对称电流产生的合 成基波磁动势为圆形旋转磁动势; ⑵性质: 3 3 Nkw1 Nkw1 Iφ = 1.35 Iφ ①幅值: F1 = Fφ1 = ×0.9
2 2 p p
②转速: ③转向:从载有超前电流相转到载有滞后电流相; ④某相电流达最大值时,合成磁动势的幅值恰好在 该相绕组的轴线上 。 2、椭圆形旋转磁动势 当其中一个不对称时,便为椭圆形旋转磁动势。
解: (1)电动势的频率 )
f= pn 1× 3000 = = 50Hz 60 60
(2)基波节距因数和基波分布因数 )
Q 60 q= = = 10 2mp 2× 3×1 p • 360 1× 360 α= = =6 Q 60
qα 10× 6 sin sin 2 = 2 = 0.955 kd1 = α 6 qsin 10sin 2 2
-19-20-21- -28-29-30-
X
相绕组线圈的连接图( 图:A相绕组线圈的连接图(一条串联支路) 相绕组线圈的连接图 一条串联支路)
4.1 交流绕组的构成原则和分类
一、构成原则
(1)、合成电动势和合成磁动势的波形要接近于正 弦形、幅值要大;
(2)、对三相绕组,各相的电动势和磁动势要对称, 电阻、电抗要平衡;
(3)、绕组的铜耗要小,用铜量要省; (4)、绝缘要可靠,机械强度、散热条件要好, 制造要方便。
二、分类
按相数 :单相和多相绕组; 按槽内层数: 按槽内层数:单层和双层; 按每极下每相槽数: 按每极下每相槽数:整数槽和分数槽; 按绕法: 按绕法:叠绕组和波绕组。
一、槽电动势星形图和相带划分
现以一台相数 ,极数 ,槽数
的定子来说明槽内导体的感应电动势和属于各相的导 体(槽号)是如何分配的。
1、概念 定子每极每相槽数: 定子每极每相槽数:
式中, Q — 定子槽数; p — 极对数; m — 相数。 相邻两槽间电角度: 此角亦是相邻槽中导体感应电动势的相位差。
同步转速:
3、导体电动势的有效值

代入上式得导体电动势

二、整距线圈的电动势
匝电势 单匝线圈电动势的有效值
线圈有
匝,则线圈电动势为
三、短距线圈的电动势,节距因数 短距线圈的电动势,
短距线圈的节距 节距为 单匝线圈的电动势为 ,用电角度表示时,
据相量图中的几何关系,得单匝线圈电动势的
有效值

为线圈的基波节距因数,表示线圈短距时感应 电动势比整距时应打的折扣,
3π π νπ fc ( x, t ) = Fc1 sinωt cos x + Fc3 sinωt cos x + ⋅ ⋅ ⋅ + Fcν sinωt cos x + ⋅ ⋅ ⋅ τ τ τ
其中: 用电角度表示的空间距离。 ④基波磁动势的幅值:
2 Fc1 = ⋅ Nc I = 0.9Nc I π 2 4
一个极相组的电动势为
式中,

个线圈的总匝数; — 绕组的基波绕组因数。
kw1 的意义:既考虑绕组短距、又考虑绕组分布时,
整个绕组的合成电动势所须的总折扣。
五、相电动势和线电动势
设一相绕组的总串联匝数为 势应 为 ,则一相的电动
EΦ1 = 4.44 fNkw1Φ1
例4-1、有一台三相同步发电机,2P=2,转速 = 、有一台三相同步发电机, = ,转速n= 3000r/min,定子槽数Q=60,绕组为双层、星形联 ,定子槽数 = ,绕组为双层、 结,节距y1=0.8τ,每相总串联匝数 =20,主磁场 节距 ,每相总串联匝数N= , 在气隙中正弦分布,基波磁通量Φ1=1.504Wb. 在气隙中正弦分布,基波磁通量 正弦分布 试求主磁场在定子绕组内感应的: 试求主磁场在定子绕组内感应的: (1)电动势频率; 电动势频率; 电动势频率 (2)基波电动势的节距因数和分布因数, 基波电动势的节距因数和分布因数, 基波电动势的节距因数和分布因数 (3)相电动势和线电动势。 相电动势和线电动势。 相电动势和线电动势
一、整距集中绕组的磁动势 设气隙均匀,通以正弦交流电流,
i = 2I sin ωt
Nc匝,则
∫ Hdl = ∑i
= Nci
每个气隙上的磁动势为:
1 2 fc = Nci = INc sinωt = Fc sinωt 2 2
结论:①波形:矩形波; ②脉动磁动势:空间位置固定、幅值大 小和方向随时间而变化的磁动势。 ③分解:
=f
( +) φ1 ( x,t )
π = F 1 sin(ωt − x) + F 1 sin(ωt + x) φ φ 2 2 τ τ
+f
( −) φ1 ( x,t )
结论:两个磁动势的性质:①圆形旋转磁动势; 结论 ②幅值为单相磁动势幅值的一半; ③转速:
υ = 2 fτ
n1 = 2 fτ 2 pτ =f 60 f (r / s) = (r / m in) p p
4.7 通有三相电流时三相绕组的磁动势
1、圆形旋转磁动势 ①数学法
π f A1 = F 1 sinωt cos x φ τ
π fB1 = F 1 sin(ωt −120°)cos( x −120°) φ τ
fC1 = F 1 sin(ωt + 120°)cos( x + 120°) φ
分解后相加的三相合成磁动势为:
(3)相电动势和线电动势 )
kw1 = kp1kd1 = 0.951× 0.955 = 0.908
EΦ1 = 4.44 fNKw1Φ1 = 4.44×50× 20×0.908×1.504 ≈ 6063V
EL1 = 3EΦ1
= 3 ×6063 = 10500V
4.5感应电动势中的高次谐波
因为磁场波形相对于磁极中心线左右对称, 所以谐波磁场中无偶次谐波,故γ=3,5,7,9, 11…… 一、高次谐波电动势 谐波电动势 ⑴谐波磁场的极对数:pγ =γp p——激波磁场的极对数 ⑵谐波磁场的极距:τγ =τ/γ τ——激波磁场的极距 ⑶谐波磁场的槽距角:dγ =γd
四、分布绕组的电动势,分布因数和绕组因数 分布绕组的电动势,
个线圈的合成电动势 为
式中,
— 外接圆的半径。
把 R 代入上式,得 (图4-5)
式中,

个线圈电动势的代数和;
— 绕组的基波分布因数,
的意义:由于绕组分布在不同的槽内,使得 个分布线圈的合成电动势 合成电动势 小于 个集中线圈的 。
,由此所引起的折扣
二、优点: 优点 ⑴ 嵌线方便 ⑵槽的利用率高 ⑶不能做成短距(电气性能)波形差 三、分类 ⑴同心式绕组——由不同节距的同心线圈组成 ⑵链式绕组——由相同节距的同心线圈组成 ⑶采用不等距的线圈组成,节省铜线
4.4 正弦磁场下交流绕组的感应电动势
一、导体的感应电动势
1、电动势的波形
2、正弦电动势的频率 感应电动势的频率:
4.1 交流绕组 的构成原则和 分类 4.2 三相
第四章 交流绕组
双层绕组
4.3 三相
单层绕组
4.4 正弦磁
场下交流 绕组的感 应电动势
4.5 感应电
动势的高次 谐波
4.6 通有正弦 电流时单相绕组的 磁动势 4.7 通有三相电流时三相绕组的磁动势
河南城建学院
本章主要内容 1.交流绕组的连接规律 交流绕组的连接规律 2.正弦磁场下交流绕组的感应电动势 正弦磁场下交流绕组的感应电动势 3.通有正弦电流时单相绕组的磁动势 通有正弦电流时单相绕组的磁动势 4.通有对称三相电流时的磁动势 通有对称三相电流时的磁动势
4.3三相单层绕组 三相单层绕组 一、特点: 特点: ⑴每个槽内只有一个线圈边 ⑵线圈个数等于Q1/2 ⑶线圈组个数= Q1/2q ⑷每相线圈组的个数= p (60°相带时) ⑸每个线圈匝数Nc=每槽导体数 ⑹每个线圈组的匝数qNc ⑺每相串联匝数N=每相总的串联匝数/a = pqNc / a = 定子总导体数/2ma(即每条支 路的匝数)
4.2 三相双层绕组
的三相交流电机,其定子绕组大多采用 双层绕组。(双层绕组和单层绕组的比较、交流 绕组的模型) 特点: 特点:绕组的线圈数等于槽数。 主要优点: 主要优点: (1)可以选择最有利的节距,并同时采用分布绕组, 以改善电动势和磁动势的波形; (2)所有线圈具有相同的尺寸,便于制造; (3)端部形状排列整齐,有利于散热和增强机械 强度。
同理,B相距离A相
电角度处,C相距离A相
240 电角度处,可按 (图4-1)所划分的相带连成B、C
两相绕组。由此可得到一个三相对称绕组。
相带绕组:每个相带各占 各个相带的槽号分布。表4-1) (
电角度。
二、叠绕组
叠绕组: 叠绕组:绕组嵌线时,相邻得两个串联线圈中, 后一个线圈紧“叠”在前一个线圈上。(图4-2) 极相组的电动势、电流方向与极相组的电动势 电流方向相反。 为避免电动势或电流所形成的磁场互相抵消, 串联时应将极相组和极相组反向串联,即首-首相 连把尾端引出,或尾-尾相连把首端引出。 (图4-3)
⑤ν次谐波磁势的幅值: Fcν = 0.9Nc I ν ⑥基波磁动势的性质:按正弦规律变化的脉 动磁动势。 二、分布绕组的磁势 1.整距分布绕组的磁势(q个)
1
Fq1 = qFc1kq1 = 0.9(qNc I )kq1
2.双层短矩分布绕组的基波磁动势
Fqφ1 = 2Fq1ky1 = 2(0.9qNc Ikq1 )ky1 = 0.9(2qNc )kq1ky1I = 0.9(2qNc )k1I
⑷谐波磁场的转速:nr = ns主磁极的转速 (同步转速) ⑸谐波感应电动势的频率:fγ= pγ* nγ/60 = γp ns/60=γf1 ⑹谐波感应电动势的节距因数kpγ ⑺谐波感应电动势的分布因数kdγ ⑻谐波感应电动势的绕组因数kwγ= kpγ kdγ ⑼谐波电动势(相值) EΦγ = 4.44 fγNkwγΦγ
相关文档
最新文档