倍半硅氧烷的合成研究进展

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

倍半硅氧烷的合成研究进展

张利利刘安华*曾幸荣

(华南理工大学材料科学与工程学院广州 510640)

摘要通过对倍半硅氧烷的合成原料路线、含水及无水反应体系中的催化机理、反应介质等方面的介绍,阐述了倍半硅氧烷的各种合成方法及产物和过程控制,比较了各催化方式的优缺点,分析了倍半

硅氧烷在发展过程中存在的一些问题,展望了今后的发展趋势。

关键字倍半硅氧烷合成催化模板剂非水体系

Progress in the Synthesis of Silsesquioxanes

Zhang Lili, Liu Anhua*, Zeng Xingrong

(College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640)

Abstract The synthesis methods of silsesquioxanes were reviewed. Especially the factors such as precursors, solutions and catalytic mechanism in different systems were discussed in detail. The advantage of various catalytic actions were compared. The prospects were also forecasted.

Key words Silsesquioxanes, Synthesis, Catalysis, Template reagent, Nonaqueous system

以倍半硅氧烷为前驱体进一步形成多臂状或星型高分子,从而得到SiO2为核的无机/有机纳米杂化材料,并在液晶[1]、催化剂[2]、介电材料[3]、发光材料[4]、耐热阻燃材料[5]、生物医药材料[6]等方面获得了应用。在这类纳米复合材料中,无机相和聚合物间通过化学键结合后均匀分布在材料中,不仅可以改善有机相与无机相之间的相容性,还能在有机无机的界面效应影响下产生新的性能,制备方法简便灵活,易于进行分子结构的设计。然而,国内倍半硅氧烷的合成研究起步较晚,目前还无法制得高纯倍半硅氧烷[7]。本文针对倍半硅氧烷的合成原料和在不同介质中的催化反应机理予以综述,旨在引起人们对倍半硅氧烷合成理论研究的重视。

1 合成倍半硅氧烷的原料路线

1.1 传统原料水解路线

倍半硅氧烷的传统合成方法一般采用氯代硅烷的水解。1946年,Scott[8]从甲基氯硅烷和二甲基氯硅烷的水解缩合产物中首次分离出低聚甲基倍半硅氧烷。之后Frye[9]以HSiCl3为原料,浓硫酸和发烟硫酸为催化剂,在苯溶液中得到T10(4%)、T12(43%)、T14(39%)和T16(14%)。Agaskar [10]根据上述过程中浓硫酸作用的机理提出了以FeCl3催化水解的改进方案,得到更高产率的T8(17.5%)和T10(9.7%)。Feher [11]利用氯硅烷的水解法在水/丙酮介质中以c-C5H9SiCl3和c-C7H14SiCl3合成了几种倍半硅氧烷,产率为7%~29%,需要反应的时间为几天到几周,有时甚至长达一年。运用这种方法,改变反应条件可制得多种完全水解或未完全水解的多面体低聚倍半硅氧烷(POSS)[12,13]。未完全水解的POSS可经“顶角-戴帽”法[14]合成官能化的POSS,完全水解的POSS可改变不同的取代基应用于相应领域[15]。尽管这种合成路线已经出现40多年了,但是POSS的应用却相对较少[16],这主要

张利利女,24岁,博士生,现从事有机硅材料合成与改性研究。*联系人,E-mail: adahliu@

国家自然科学基金(No.29974009)资助项目

2006-05-08收稿,2006-07-19接受

是由于氯硅烷水解来制备低聚倍半硅氧烷是一个耗时的多步反应过程,且一般产率较低(小于30%)。从实验室的角度而言,有时能得到用其它方法不易制备的笼型倍半硅氧烷产物,因而这种方法仍被科研工作者广泛采用。

氯硅烷水解的改进方法是以三取代或四取代硅酸酯为前驱体,经溶胶-凝胶反应制备倍半硅氧烷,过程为常温常压,能耗极低,反应的速度也较快。早在1958年,Sprung等[17]就以苯基三取代硅酸酯为原料制备倍半硅氧烷,随后不少学者也开始了以硅酸酯为前驱体制备倍半硅氧烷的研究[18~21]。其中,最经典的是Hasegawa[22]在(CH

3

)4NOH存在下,以正硅酸乙酯为前驱体,得到(Si8O20)8−季铵盐,产率较高,经过袁长友等[23]改良溶剂及反应后期的温度控制,可达85%以上,且在24h之内即可完成。以((CH3)4N)8Si8O20为基础,烷基二甲基氯硅烷(RSiMe2Cl)[24,25]为烷基化试剂,通过烷基化反应得到顶点为–OSiMe2R的倍半硅氧烷,其中R为活性有机官能团,改变R基,可以接上各类官能团,从而得到以倍半硅氧烷为前驱体的无机/有机纳米杂化材料[26]。

1.2 两性离子模板路线

OMe Si

Me

2

OH

R=

图式1从两性离子先驱体制备倍半硅氧烷

Scheme 1 Synthesis of silsesquioxanes from zwitterionic precusor

Tacke等[27,28]进一步改进了倍半硅氧烷的合成原料,将前驱体与模板剂集为一体,得到了以两性五配位硅为原料的合成路线(如图式1),产率达到43%。方法是将两性离子溶于二氯甲烷中,加入水,室温保持2h后有晶体析出,主要是聚集于水和二氯甲烷两相界面之间,不断移走晶体可以提高收率。两性五配位硅还可以继续回收使用。两性离子作为原料制备倍半硅氧烷,选择性非常强,产物的纯度明显优于前面两类原料所得的产物,而且反应时间短,过程容易控制。

1.3SiO2低温合成路线

前面三类合成倍半硅氧烷的前驱体,其原料合成路线都是石英砂的高温碳热还原和卤化法,需要高热和特别设备,而且与氯化物反应时需要昂贵的防腐材料,这样必定使得这些合成的应用受到限制。因此,寻找低能耗、无污染、低成本的“绿色”替代品,极具挑战性。笔者所在研究室一直致力于开发能够利用SiO2替代现有硅酸酯应用在溶胶-凝胶反应制备纳米杂化材料中的研究。目前已经成功地直接由SiO2合成出环氧基取代倍半硅氧烷[29],基本方法是首先由SiO2低温合成五配位有机硅钾络合物,再与环氧氯丙烷反应除去其中易吸湿的金属离子,得到环氧四配位硅酸酯,该环氧硅酸酯可以替代正硅酸乙酯作为合成倍半硅氧烷的原料(如图式2)。Laine等[30]曾经报道,利用由SiO2合成出的五配位硅与碱之间的平衡得到四配位硅用于倍半硅氧烷的合成,但是他们一直没有解决多余的乙二醇溶剂和金属离子如何除去的问题,故得到的产物仅局限于导电和陶瓷材料方面的应用。由于SiO2占地壳的87%,来源丰富,非碳热法合成硅酸酯的能耗较低,这样不仅可以降低产品

相关文档
最新文档