河北省唐山市2018届高三第一次模拟考试数学(理)试题有答案

合集下载

唐山市2018-2019学年第一学期高三年级一模考试理科数学含答案

唐山市2018-2019学年第一学期高三年级一模考试理科数学含答案

x y (10)已知双曲线 C: - 2=1(b>0),F1,F2 分别为 C 的左、右焦点,过 F2 的直线 l 交 C 的 16 b 左、右支分别于 A,B,且|AF1|=|BF1|,则|AB|= A.4 B.8 C.16 D.32 (11)设函数 f (x)=aex-2sin x,x∈[0,π]有且仅有一个零点,则实数 a 的值为 A. 2e4 C. 2e2
A
(20) (12 分) 为了保障全国第四次经济普查顺利进行, 国家统计局从东部选择江苏, 从中部选择河北、 湖北, 从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基 层的普查小区. 在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记.由于种种情况可能会导致 入户登记不够顺利, 这为正式普查提供了宝贵的试点经验. 在某普查小区, 共有 50 家企事业单位, 150 家个体经营户,普查情况如下表所示: 普查对象类别 顺利 不顺利 合计 企事业单位 40 10 50 100 50 150 个体经营户 140 60 200 合计 (1)写出选择 5 个国家综合试点地区采用的抽样方法; (2)根据列联表判断是否有 90%的把握认为“此普查小区的入户登记是否顺利与普查对象的 类别有关” ; (3)以频率作为概率,某普查小组从该小区随机选择 1 家企事业单位,3 家个体经营户作为普 查对象,入户登记顺利的对象数记为 X,写出 X 的分布列,并求 X 的期望值. 附:K2= n(ad-bc)2 (a+b)(c+d)(a+c)(b+d)
π π π - 4 - π 2
B. 2e
D. 2e
(12) 一个封闭的棱长为 2 的正方体容器, 当水平放置时, 如图, 水面的高度正好为棱长的一半. 若 将该正方体任意旋转,则容器里水面的最大高度为 A.1 B. 2 2 3 C. 3 D. 3

唐山市2018-2019学年度高三年级摸底考试理数学文数学试卷及答案

唐山市2018-2019学年度高三年级摸底考试理数学文数学试卷及答案

唐山市2018—2019学年度高三年级摸底考试理科数学参考答案一.选择题:A 卷:ADBCDDACCB CB B 卷:ADBBD DACAB CB二.填空题:(13)2 (14) 1 2 (15)2 6 (16)(1,3)三.解答题:17.解:(1)由已知可得,2S n =3a n -1,① 所以2S n -1=3a n -1-1 (n ≥2), ②①-②得,2(S n -S n -1)=3a n -3a n -1,化简为a n =3a n -1(n ≥2),即a n a n -1=3(n ≥2), …3分 在①中,令n =1可得,a 1=1, …4分所以数列{a n }是以1为首项,3为公比的等比数列,从而有a n =3n -1.…6分 (2)b n =(n -1)·3n -1,T n =0·30+1·31+2·32+…+(n -1)·3n -1, ③则3T n =0·31+1·32+2·33+…+(n -1)·3n . ④③-④得,-2T n =31+32+33+…+3n -1-(n -1)·3n ,…8分 =3-3n1-3-(n -1)·3n =(3-2n )·3n -32.…10分 所以,T n =(2n -3)·3n +34. …12分 18.解:(1)由茎叶图可知,甲当天生产了10个零件,其中4个一等品,6个二等品;乙当天生产了10个零件,其中5个一等品,5个二等品, 所以,抽取的2个零件等级互不相同的概率P =4×5+6×510×10= 1 2.…5分 (2)X 可取0,1,2,3.…6分 P (X =0)=C 04C 36C 310= 1 6;P (X =1)=C 14C 26C 310= 1 2; P (X =2)=C 24C 16C 310= 3 10; P (X =3)=C 34C 06C 310= 1 30; …10分X 的分布列为∴随机变量X 的期望E (X )=0× 1 6+1× 1 2+2× 3 10+3× 1 30= 6 5. …12分19.解:(1)∵直角三角形ABC 中,AB =BC =2,D 为AC 的中点,∴BD ⊥CD , 又∵PB ⊥CD ,BD ∩PB =B ,∴CD ⊥平面PBD ,∴CD ⊥PD ,又∵AD ⊥BD ,∴PD ⊥BD .又因为BD ∩CD =D ,∴PD ⊥平面BCD . …5分(2)以D 为坐标原点,DA ,DB ,DP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系D -xyz , 则A (2,0,0),B (0,2,0),C (-2,0,0),P (0,0,2),PA →=(2,0,-2),PB →=(0,2,-2),CB →=(2,2,0)设平面PBC 的法向量n =(x ,y ,z ),由PB →·n =0,CB →·n =0得⎩⎪⎨⎪⎧2y -2z =0,2x +2y =0,取n =(1,-1,-1). …9分cos PA →,n =PA →·n |PA →||n |=63,∴直线PA 与平面PBC 所成角的正弦值为63.…12分 20.解:(1)由已知可得,y 1=x 21,y 2=x 22,所以y 1-y 2=x 21-x 22=(x 1+x 2)(x 1-x 2)=2(x 1-x 2),此时,直线l 的斜率k =y 1-y 2x 1-x 2=2.…4分 (2)因为OB ⊥l ,所以k OB =- 1k ,又因为k OB =y 2x 2=x 22x 2=x 2,所以,x 2=- 1k ,…6分 又由(1)可知,x 1+x 2=y 1-y 2x 1-x 2=k ,从而有,x 1=k -x 2=k + 1k ,所以|AB |=1+k 2|x 1-x 2|=1+k 2|k + 2k |,|OB |=x 22+y 22=x 22+x 42=1k 2+1k 4=1+k 2k 2,…9分 因为|AB |=3|OB |,所以1+k 2|k + 2 k |=31+k 2k 2,化简得,|k 3+2k |=3,解得,k =±1,所以,|AB |=1+k 2|k + 2k |=32.…12分 21.解:(1)当a =e 时,f (x )=ln x + 1x ,所以f (x )= 1 x - 1 x 2. …1分 设切点为(x 0,f (x 0)),曲线y =f (x )与y =m 相切,得f(x 0)=0, 解得x 0=1,所以切点为(1,1).…3分 所以m =1. …4分(2)依题意得f (1)≥ e a ,所以1≥ ea ,从而a ≥e .…5分 因为f (x )=x -ln ax 2ln a ,a ≥e ,所以当0<x <ln a 时,f (x )<0,f (x )单调递减;当x >ln a 时,f (x )>0,f (x )单调递增,所以当x =ln a 时,f (x )取得最小值log a (ln a )+ 1ln a .…7分 设g (x )=eln x -x ,x ≥e ,则g (x )= e x -1=e -xx ≤0,所以g (x )在[e ,+∞)单调递减,从而g (x )≤g (e)=0,所以eln x ≤x .…10分 又a ≥e ,所以eln a ≤a ,从而 1 ln a ≥ ea ,当且仅当a =e 时等号成立.因为ln a ≥1,所以log a (ln a )≥0,即log a (ln a )+ 1 ln a ≥ea .综上,满足题设的a 的取值范围为[e ,+∞).…12分 22.解:(1)由ρ2-22ρsin (θ+ π4)-4=0得,ρ2-2ρcos θ-2ρsin θ-4=0.所以x 2+y 2-2x -2y -4=0.曲线C 的直角坐标方程为(x -1)2+(y -1)2=6.…5分(2)将直线l 的参数方程代入x 2+y 2-2x -2y -4=0并整理得,t 2-2(sin α+cos α)t -4=0,t 1+t 2=2(sin α+cos α),t 1t 2=-4<0.||OA |-|OB ||=||t 1|-|t 2||=|t 1+t 2|=|2(sin α+cos α)|=|22sin (α+ π 4)| 因为0≤α<,所以 π 4≤α+ π 4<5π4,从而有-2<22sin (α+ π4)≤22.所以||OA |-|OB ||的取值范围是[0,22].…10分 23.解:(1)由题意得|x +1|>|2x -1|,所以|x +1|2>|2x -1|2,整理可得x 2-2x <0,解得0<x <2,故原不等式的解集为{x |0<x <2}.…5分 (2)由已知可得,a ≥f (x )-x 恒成立,设g (x )=f (x )-x ,则g (x )=⎩⎪⎨⎪⎧-2, x <-1,2x ,-1≤x ≤ 12,-2x +2, x > 12,由g (x )的单调性可知,x = 12时,g (x )取得最大值1,所以a 的取值范围是[1,+∞). …10分唐山市2018—2019学年度高三年级摸底考试文科数学参考答案一.选择题:A卷:ACDBD CBCDA ACB卷:ACDCD CBCDA AB二.填空题:(13)12(14)2 (15)1 (16)(3,2]三.解答题:17.解:(1)设数列{a n}的首项为a1,公差为d(d≠0),则a n=a1+(n-1)d.因为a2,a3,a5成等比数列,所以(a1+2d)2=(a1+d)(a1+4d),化简得,a1d=0,又因为d≠0,所以a1=0,…3分又因为a4=a1+3d=3,所以d=1.所以a n=n-1.…6分(2)b n=n·2n-1,…7分T n=1·20+2·21+3·22+…+n·2n-1,①则2T n=1·21+2·22+3·23+…+n·2n.②①-②得,-T n=1+21+22+…+2n-1-n·2n,…8分=1-2n1-2-n·2n …10分=(1-n)·2n-1.所以,T n=(n-1)·2n+1.…12分18.解:(1)-x甲=110(217+218+222+225+226+227+228+231+233+234)=226.1;-x乙=110(218+219+221+224+224+225+226+228+230+232)=224.7;…4分(2)由抽取的样本可知,应用甲工艺生产的产品为一等品的概率为25,二等品的概率为35,故采用甲工艺生产该零件每天取得的利润:w甲=300×25×30+300×35×20=7200元;…7分应用乙工艺生产的产品为一等品、二等品的概率均为12,故采用乙工艺生产该零件每天取得的利润:w乙=280×12×30+280×12×20=7000元.…10分因为w甲>w乙,所以采用甲工艺生产该零件每天取得的利润更高.…12分19.解:(1)∵直角三角形ABC中,AB=BC=2,D为AC的中点,∴BD⊥CD,又∵PB ⊥CD ,BD ∩PB =B ,∴CD ⊥平面PBD ,又因为PD 平面PBD ,∴PD ⊥CD . …5分(2)∵AD ⊥BD ,∴PD ⊥BD .又∵PD ⊥CD ,BD ∩CD =D ,∴PD ⊥平面BCD .…8分 在直角三角形ABC 中,AB =BC =2,所以PD =AD =2,PB =PC =BC =2.S △ABC =2,S △PBC =3,设A 点到平面PBC 的距离为d ,由V P -ABC =V A -PBC 得,1 3S △ABC ×PD = 13S △PBC ×d ,∴d =S △ABC ×PD S △PBC = 263.即A 点到平面PBC 的距离为 263.…12分 20.解:(1)设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y =kx +m ,x 2=2y 得,x 2-2kx -2m =0,=4k 2+8m ,x 1+x 2=2k ,x 1x 2=-2m ,…2分 因为AB 的中点在x =1上,所以x 1+x 2=2.即2k =2,所以k =1.…4分 (2)O 到直线l 的距离d =|m |2,|CD |=212-m 22, …5分所以|AB |=1+k 2|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=22·1+2m ,…6分因为|AB |=|CD |,所以22·1+2m =212-m 22, 化简得m 2+8m -20=0, 所以m =-10或m =2. …10分 由⎩⎨⎧>0,d <23得- 12<m <26.所以m =2,直线l 的方程为y =x +2.…12分 21.解:(1)f (x )=2(ln x +1).…1分 所以当x ∈(0, 1e )时,f (x )<0,f (x )单调递减;当x ∈( 1e ,+∞)时,f (x )>0,f (x )单调递增.所以x = 1 e 时,f (x )取得最小值f ( 1 e )=1- 2e .…5分 (2)x 2-x + 1x +2ln x -f (x )=x (x -1)-x -1x -2(x -1)ln x=(x -1)(x - 1x -2ln x ),…7分 令g (x )=x - 1 x -2ln x ,则g (x )=1+ 1 x 2- 2 x = (x -1)2x 2≥0,所以g (x )在(0,+∞)上单调递增,又因为g (1)=0,所以当0<x <1时,g (x )<0;当x >1时,g (x )>0,…10分 所以(x -1)(x - 1x -2ln x )≥0,即f (x )≤x 2-x + 1x +2ln x .…12分 22.解:(1)由ρ2-22ρsin (θ+ π 4)-4=0得, ρ2-2ρcos θ-2ρsin θ-4=0. 所以x 2+y 2-2x -2y -4=0.曲线C 的直角坐标方程为(x -1)2+(y -1)2=6. …5分(2)将直线l 的参数方程代入x 2+y 2-2x -2y -4=0并整理得,t 2-2(sin α+cos α)t -4=0,t 1+t 2=2(sin α+cos α),t 1t 2=-4<0.||OA |-|OB ||=||t 1|-|t 2||=|t 1+t 2|=|2(sin α+cos α)|=|22sin (α+ π 4)|因为0≤α<,所以 π 4≤α+ π4<5π4, 从而有-2<22sin (α+ π 4)≤22. 所以||OA |-|OB ||的取值范围是[0,22].…10分 23.解:(1)由题意得|x +1|>|2x -1|,所以|x +1|2>|2x -1|2,整理可得x 2-2x <0,解得0<x <2,故原不等式的解集为{x |0<x <2}. …5分(2)由已知可得,a ≥f (x )-x 恒成立,设g (x )=f (x )-x ,则g (x )=⎩⎪⎨⎪⎧-2, x <-1,2x ,-1≤x ≤ 1 2,-2x +2, x > 12, 由g (x )的单调性可知,x = 12时,g (x )取得最大值1, 所以a 的取值范围是[1,+∞).…10分。

河北省唐山一中2018高三数学试卷

河北省唐山一中2018高三数学试卷

河北省唐山一中2018届高三教学质量监测数学(理)试卷说明: 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分。

考试时间120分钟卷Ⅰ(选择题 共60分)一.选择题(共12小题,每小题5分,计60分。

在每小题给出的四个选项中,有且仅有一个正确的)1-10 17 181、已知复数121,1z i z i =-=+,则12z z i等于 .A 2i .B 2i - .C 2i + .D 2i -+2、设P 和Q 是两个集合,定义集合Q P -={}Q x P x x ∉∈且,|,如果{}1log 2<=x x P ,{}12<-=x x Q ,那么Q P -等于{}{}{}{}32211010<≤<≤<<≤<x x D.x x C.x x B.x x A. 3、下列命题是真命题的是.A 若sin cos x y =,则2x y π+=.B 1,20x x R -∀∈> .C 若向量,//+=0a b a b a b满足,则 .D 若x y <,则 22x y <4、 已知向量为单位向量,且21-=⋅b a ,向量与+的最小值为...A B C D 131245、若函数)12(+=x f y 是偶函数,则函数)(x f y =的图象的对称轴方程是2211-==-== D. x C. x B. xA. x 6、设等比数列{}n a 的公比为q ,则“10<<q ”是“{}n a 是递减数列”的.A 充分不必要条件 .B 必要不充分条件 .C 充要条件 .D 既不充分也不必要条件7、已知函数x x g x x f lg )(,)(2==,若有)()(b g a f =,则b 的取值范围是.A [0,+∞) .B (0,+∞) .C [1,+∞) .D (1,+∞)8、如图,在扇形OAB 中,︒=∠60AOB ,C 为弧.AB 上且与BA ,不重合...的一个动点,且y x +=,若(0)u x y λλ=+>存在最大值,则λ的取值范围为.A )3,1( .B )3,31( .C )1,21( .D )2,21(9、定义行列式运算1234a a a a =3241a a a a -.将函数sin 2()cos 2x f x x=6π个单位,以下是所得函数图象的一个对称中心是 .A ,04π⎛⎫⎪⎝⎭ .B ,02π⎛⎫ ⎪⎝⎭ .C ,03π⎛⎫ ⎪⎝⎭ .D ,012π⎛⎫⎪⎝⎭10、已知数列{}n a 满足:*)(2,111N n a a a a n n n ∈+==+,若,),11)((11λλ-=+-=+b a n b nn 且数列{}n b 是单调递增数列,则实数λ的取值范围是3232<<>>λλλλ D. C. B. A. 11、已知函数()cos xf x x πλ=,存在()f x 的零点)0(,00≠x x ,满足[]222200'()()f x x πλ<-,则λ的取值范围是A.( B.(C.(,)-∞+∞ D.(,)-∞+∞ 12、已知定义在]8,1[上的函数348||,122()1(),2822x x f x x f x ⎧--≤≤⎪⎪=⎨⎪<≤⎪⎩则下列结论中,错误..的是 A .1)6(=f B .函数)(x f 的值域为]4,0[C .将函数)(x f 的极值由大到小排列得到数列*},{N n a n ∈,则}{n a 为等比数列D .对任意的]8,1[∈x ,不等式6)(≤x xf 恒成立卷Ⅱ(非选择题 共90分)二.填空题(共4小题,每小题5分,计20分)13、 已知向量b为单位向量,向量(1,1)a = ,且||a = ,则向量,a b 的夹角为 .14、若函数()sin()(0,0)6f x A x A πωω=->>的图象如图所示,则图中的阴影部分的面积为 .15、已知函数23)(nx mx x f +=的图象在点)2,1(-处的切线恰好与直线03=+y x 平行,若)(x f 在区间]1,[+t t 上单调递减,则实数t 的取值范围是________.16、已知定义在R 上的函数()f x 满足:()[)[)()()222,0,1,22,1,0,x x f x f x f x x x ⎧+∈⎪=+=⎨-∈-⎪⎩且, ()252x g x x +=+,则方程()()f x g x =在区间[]5,1-上的所有实根之和为 .三.解答题(共6小题,计70分)17、(本题12分)已知B A ,是直线0y =与函数2()2coscos()1(0)23xf x x ωπωω=++->图像的两个相邻交点,且.2||π=AB(Ⅰ)求ω的值;(Ⅱ)在锐角ABC ∆中,c b a ,,分别是角A ,B ,C 的对边,若ABC c A f ∆=-=,3,23)( 的面积为33,求a 的值.18、(本题12分)已知数列}{},{n n b a 分别是等差数列与等比数列,满足11=a ,公差0>d ,且22b a =,36b a =,422b a =. (Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设数列}{n c 对任意正整数n 均有12211+=+⋅⋅⋅++n nn a b c b c b c 成立,设}{n c 的前n项和为n S ,求证:20172017e S ≥(e 是自然对数的底).19、(本题12分) 如图,在多面体ABCDEF 中,底面ABCD 是边长为2的的菱形,60BAD ∠= ,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,3BF =,G 和H 分别是CE 和CF 的中点.(Ⅰ)求证:平面//BDGH 平面AEF ; (Ⅱ)求二面角H BD C --的大小.20、(本题12分)如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程; (Ⅱ)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程.21、(本题12分)已知函数21()(21)2ln ()2f x ax a x x a =-++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.请考生在第22、23两题中任选一题作答,如果多选,则按所做的第一题计分.22、(本题10分)选修4—4:坐标系与参数方程在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系, 已知曲线),0(cos 2sin:2>=a a C θθρ过点)4,2(--P 的直线l 的参数方程为:)( 224222为参数t t y tx ⎪⎪⎩⎪⎪⎨⎧+-=+-=,直线l 与曲线C 分别交于N M 、两点. (Ⅰ)写出曲线C 和直线l 的普通方程;(Ⅱ)若PN MN PM 、、成等比数列,求a 的值. 23、(本题10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f . (Ⅰ)求不等式6)(≤x f 的解集;(Ⅱ)若关于x 的不等式1)(-<a x f 的解集非空,求实数a 的取值范围.河北省唐山一中2018届高三教学质量监测数学(理)答案一.选择题(共12小题,每小题5分,计60分。

河北省唐山市2018届高三年级第一次模拟考试(理科)数学(解析版)

河北省唐山市2018届高三年级第一次模拟考试(理科)数学(解析版)

唐山市2017-2018学年度高三年级第一次模拟考试理科数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ()A. B.C. D.【答案】A【解析】,故答案为:A.2. 设集合,,则()A. B. C. D.【答案】C【解析】集合,,故两个集合相等.故答案为:C.3. 已知,且,则()A. B. C. D.【答案】B【解析】已知,,将代入得到.故答案为:B.4. 两个单位向量,的夹角为,则()A. B. C. D.【答案】D【解析】两个单位向量,的夹角为,则代入得到.故答案为:.5. 用两个,一个,一个,可组成不同四位数的个数是()A. B. C. D.【答案】D【解析】根据题意得到有两个1是相同的,故可以组成不同的四个数字为故答案为:D.6. 已知,,,则()A. B. C. D.【答案】D【解析】根据题意得到,,故,,故得到.故答案为:D.7. 如图是根据南宋数学家杨辉的“垛积术”设计的程序框图,该程序所能实现的功能是()A. 求B. 求C. 求D. 求【答案】C【解析】根据题意得到:a=0,s=0,i=1,A=1,s=1,i=2,A=4,s=1+4,i=3,A=9,s=1+4+9,i=4,A=16,s=1+4+9+16,i=5,依次写出s的表达式,发现规律,满足C.故答案为:C.8. 为了得到函数的图象,可以将函数的图象()A. 向左平移个单位长度B. 向右平移个单位长度C. 向右平移个单位长度D. 向左平移个单位长度【答案】A【解析】函数,将函数的图象向做平移个单位长度即可.故答案为:A.9. 某几何体的三视图如图所示,则该几何体的表面积是()A. B. C. D.【答案】A【解析】根据题意得到该几何体是一个三棱柱切下了一个三棱锥,剩下的部分的表面积由一个等腰三角形,两个直角梯形,一个等腰直角三角形,一个长方形构成.面积和为故答案为:A.10. 已知为双曲线:的右焦点,过点向的一条渐近线引垂线,垂足为,交另一条渐近线于点.若,则的离心率是()A. B. C. D.【答案】B【解析】根据题意画出图像,得到由结论焦点到对应渐近线的距离为b得到:AF=b,故OA=a,OF=c,而角AOF 等于角FOB ,又因为三角形AOB为直角三角形,由二倍角公式得到化简得到c=2b,故得到离心率为.故答案为:B.11. 已知函数,则下列关于的表述正确的是()A. 的图象关于轴对称B. ,的最小值为C. 有个零点D. 有无数个极值点【答案】D【解析】A因为函数,故函数不是偶函数,图像也不关于y轴对称;A不正确;B. 假设,使得的最小值为,即有解,在同一坐标系中画出图像,得到的最大值为2,最小值为2,且不是在同一个x处取得的,故得到两个图像无交点,故B是错误的;C ,其中一个零点为0,另外的零点就是两个图像的交点,两者的图像只有一个交点,故选项不正确;D,化一得到,,此时满足的x值有无数个;或者根据排除法也可得到D.故答案为:D.12. 已知,,,是半径为的球面上的点,,,点在上的射影为,则三棱锥体积的最大值是()A. B.C. D.【答案】B【解析】如图,由题意,PA=PB=PC=2,∠ABC=90°,可知P在平面ABC上的射影G为△ABC的外心,即AC中点,则球的球心在PG的延长线上,设PG=h,则OG=2﹣h,∴OB2﹣OG2=PB2﹣PG2,即4﹣(2﹣h)2=4﹣h2,解得h=1.则AG=CG=,过B作BD⊥AC于D,设AD=x,则CD=,再设BD=y,由△BDC∽△ADB,可得,∴y=,,令f(x)=,则f′(x)=由f′(x)=0,可得x=,∴当x=时,f(x)max=,∴△ABD面积的最大值为,则三棱锥P﹣ABD体积的最大值是故答案为:B.二、填空题:本题共4小题,每小题5分,共20分.13. 设,满足约束条件,则的最小值是__________.【答案】-5【解析】根据条件得到可行域是一个封闭的三角形区域,目标函数化为,得到当目标函数过点A (-1.-1)时有最小值,代入得到值为-5.故答案为:-5.14. 的展开式中,二项式系数最大的项的系数是__________.(用数字作答)【答案】-160【解析】的展开式中,二项式系数最大的项是第四项,系数为故答案为:-160.15. 已知为抛物线上异于原点的点,轴,垂足为,过的中点作轴的平行线交抛物线于点,直线交轴于点,则__________.【答案】【解析】如图,设P(t2,t),则Q(t2,0),PQ中点H(t2,).M,∴直线MQ的方程为:令x=0,可得y N=∴则故答案为:.16. 在中,角,,的对边分别为,,,边上的高为,若,则的取值范围是__________.【答案】[2,2]【解析】根据题意得到故范围为[2,2].故答案为:[2,2].三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第(22)、(23)题为选考题,考生根据要求作答.(一)必考题:共60分.17. 已知数列为单调递增数列,为其前项和,.(1)求的通项公式;(2)若,为数列的前项和,证明:.【答案】(1) a n=n (2)见解析【解析】试题分析:(1)根据题干中所得给的式子,再写一项两式做差得到a n+1-a n=1,进而求出通项;(2)根据题意得到的通项,进行裂项求和.解析:(Ⅰ)当n=1时,2S1=2a1=a+1,所以(a1-1)2=0,即a1=1,又{a n}为单调递增数列,所以a n≥1.由2S n=a+n得2S n+1=a+n+1,所以2S n+1-2S n=a-a+1,整理得2a n+1=a-a+1,所以a=(a n+1-1)2.所以a n=a n+1-1,即a n+1-a n=1,所以{a n}是以1为首项,1为公差的等差数列,所以a n=n.(Ⅱ)b n===-所以T n=(-)+(-)+…+[-]=-<.18. 某水产品经销商销售某种鲜鱼,售价为每公斤元,成本为每公斤元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失元.根据以往的销售情况,按,,,,进行分组,得到如图所示的频率分布直方图.(1)求未来连续三天内,该经销商有连续两天该种鲜鱼的日销售量不低于公斤,而另一天日销售量低于公斤的概率;(2)在频率分布直方图的需求量分组中,以各组区间的中点值代表该组的各个值.(i)求日需求量的分布列;(ii)该经销商计划每日进货公斤或公斤,以每日利润的数学期望值为决策依据,他应该选择每日进货公斤还是公斤?【答案】(1)0.192(2)(ⅰ)见解析(ⅱ)该经销商应该选择每日进货400公斤【解析】试题分析:(1)根据频率分布直方图得到不低于350公斤的概率为0.4,有连续两天该种鲜鱼的日销售量不低于公斤,而另一天日销售量低于公斤的概率即分两种情况按照概率相乘计算即可;(2)(i)X可取100,200,300,400,500,根据图得到对应的长方形的概率值,(ii)根据题意求出进货量为300,400时的利润均值,选择较高的即可.解析;’(Ⅰ)由频率分布直方图可知,日销售量不低于350公斤的概率为(0.0025+0.0015)×100=0.4,则未来连续三天内,有连续两天的日销售量不低于350公斤,而另一天日销售量低于350公斤的概率P=0.4×0.4×(1-0.4)+(1-0.4)×0.4×0.4=0.192.(Ⅱ)(ⅰ)X可取100,200,300,400,500,P(X=100)=0.0010×10=0.1;P(X=200)=0.0020×10=0.2;P(X=300)=0.0030×10=0.3;P(X=400)=0.0025×10=0.25;P(X=500)=0.0015×10=0.15;所以X的分布列为:(ⅱ)当每日进货300公斤时,利润Y1可取-100,700,1500,此时Y1的分布列为:此时利润的期望值E(Y1)=-100×0.1+700×0.2+1500×0.7=1180;当每日进货400公斤时,利润Y2可取-400,400,1200,2000,此时Y2的分布列为:此时利润的期望值E(Y2)=-400×0.1+400×0.2+1200×0.3+2000×0.4=1200;因为E(Y1)<E(Y2),所以该经销商应该选择每日进货400公斤.19. 如图,在三棱柱中,平面平面,.(1)证明:;(2)若是正三角形,,求二面角的大小.【答案】(1)见解析(2)【解析】试题分析:(1)要证线线垂直,可以从线面垂直入手,证得AC⊥平面A1B1C,进而得到AC⊥;(2)利用空间坐标系的方法,求得两个面的法向量,通过向量的夹角的计算得到二面角的大小.解析:(Ⅰ)过点B1作A1C的垂线,垂足为O,由平面A1B1C⊥平面AA1C1C,平面A1B1C∩平面AA1C1C=A1C,得B1O⊥平面AA1C1C,又AC平面AA1C1C,得B1O⊥AC.由∠BAC=90°,AB∥A1B1,得A1B1⊥AC.又B1O∩A1B1=B1,得AC⊥平面A1B1C.又CA1平面A1B1C,得AC⊥CA1.(Ⅱ)以C为坐标原点,的方向为x轴正方向,||为单位长,建立空间直角坐标系C-xyz.由已知可得A(1,0,0),A1(0,2,0),B1(0,1,).所以=(1,0,0),=(-1,2,0),==(0,-1,).设n=(x,y,z)是平面A1AB的法向量,则即可取n=(2,,1).设m=(x,y,z)是平面ABC的法向量,则即可取m=(0,,1).则cos〈n,m〉==.又因为二面角A1-AB-C为锐二面角,所以二面角A1-AB-C的大小为.20. 已知椭圆:的左焦点为,上顶点为,长轴长为,为直线:上的动点,,.当时,与重合.(1)若椭圆的方程;(2)若直线交椭圆于,两点,若,求的值.【答案】(1)(2) m=±1【解析】试题分析:(1)根据题意得到由AF⊥BF得k AF·k BF=-1,进而求出椭圆方程;(2)由AP⊥AQ得,|AM|2=|PM|·|QM|,联立直线BM和椭圆得到二次方程,由韦达定理得到|PM|·|QM|的表达式,|AM|2=2+,两式相等即可.解析:(Ⅰ)依题意得A(0,b),F(-c,0),当AB⊥l时,B(-3,b),由AF⊥BF得k AF·k BF=·=-1,又b2+c2=6.解得c=2,b=.所以,椭圆Γ的方程为+=1.(Ⅱ)由(Ⅰ)得A(0,),依题意,显然m≠0,所以k AM=-,又AM⊥BM,所以k BM=,所以直线BM的方程为y=(x-m),设P(x1,y1),Q(x2,y2).y=(x-m)与+=1联立得(2+3m2)x2-6m3x+3m4-12=0,x1+x2=,x1x2=.|PM|·|QM|=(1+)|(x1-m)(x2-m)|=(1+)|x1x2-m(x1+x2)+m2|=(1+)·=,|AM|2=2+m2,由AP⊥AQ得,|AM|2=|PM|·|QM|,所以=1,解得m=±1.学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...21. 已知函数,.(1)设,求的最小值;(2)证明:当时,总存在两条直线与曲线与都相切.【答案】(1) x=-1时,F(x)取得最小值F(-1)=- (2)见解析【解析】试题分析:(1)对函数求导,研究函数的单调性,得到最小值;(2)根据公切线的定义得到(t-1)e t-1-t+a=0有两个根即可,研究这个函数的单调性和图像,得到这个图像和x轴有两个交点.解析:(Ⅰ)F'(x)=(x+1)e x-1,当x<-1时,F'(x)<0,F(x)单调递减;当x>-1时,F'(x)>0,F(x)单调递增,故x=-1时,F(x)取得最小值F(-1)=-.(Ⅱ)因为f'(x)=e x-1,所以f(x)=e x-1在点(t,e t-1)处的切线为y=e t-1x+(1-t)e t-1;因为g'(x)=,所以g(x)=ln x+a在点(m,ln m+a)处的切线为y=x+ln m+a-1,由题意可得则(t-1)e t-1-t+a=0.令h(t)=(t-1)e t-1-t+a,则h'(t)=t e t-1-1由(Ⅰ)得t<-1时,h'(t)单调递减,且h'(t)<0;当t>-1时,h'(t)单调递增,又h'(1)=0,t<1时,h'(t)<0,所以,当t<1时,h'(t)<0,h(t)单调递减;当t>1时,h'(t)>0,h(t)单调递增.由(Ⅰ)得h(a-1)=(a-2)e a-2+1≥-+1>0,又h(3-a)=(2-a)e2-a+2a-3>(2-a)(3-a)+2a-3=(a-)2+>0,h(1)=a-1<0,所以函数y=h(t)在(a-1,1)和(1,3-a)内各有一个零点,故当a<1时,存在两条直线与曲线f(x)与g(x)都相切.点睛:本题考查了导数的综合应用问题,解题时应根据函数的导数判定函数的增减性以及求函数的极值和最值,应用分类讨论法,构造函数等方法来解答问题.对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.(二)选考题:共10分.请考生在(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中,圆:,圆:.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求,的极坐标方程;(2)设曲线:(为参数且),与圆,分别交于,,求的最大值.【答案】(1)ρ=2cosθ;ρ=6cosθ(2)当α=±时,S△ABC2取得最大值3【解析】试题分析:(1)根据极坐标和直角坐标的转化公式得到两个曲线的极坐标方程;(2)S△ABC2=×d×|AB|,根据极径的概念得到|AB|=4cosα,进而求得最值.解析:(Ⅰ)由x=ρcosθ,y=ρsinθ可得,C1:ρ2cos2θ+ρ2sin2θ-2ρcosθ+1=1,所以ρ=2cosθ;C2:ρ2cos2θ+ρ2sin2θ-6ρcosθ+9=9,所以ρ=6cosθ.(Ⅱ)依题意得|AB|=6cosα-2cosα=4cosα,-<α<,C2(3,0)到直线AB的距离d=3|sinα|,所以S△ABC2=×d×|AB|=3|sin2α|,故当α=±时,S△ABC2取得最大值3.23. 选修4-5:不等式选讲设函数的最大值为.(1)求的值;(2)若正实数,满足,求的最小值.【答案】(1) m=1 (2)【解析】试题分析:(1)零点分区间去掉绝对值,得到分段函数的表达式,根据图像即可得到函数最值;(2)将要求的式子两边乘以(b+1)+(a+1),再利用均值不等式求解即可. 解析:(Ⅰ)f(x)=|x+1|-|x|=由f(x)的单调性可知,当x≥1时,f(x)有最大值1.所以m=1.(Ⅱ)由(Ⅰ)可知,a+b=1,+=(+)[(b+1)+(a+1)]=[a2+b2++]≥(a2+b2+2)=(a+b)2=.当且仅当a=b=时取等号.即+的最小值为.。

唐山市高三数学第一次模拟考试试题文

唐山市高三数学第一次模拟考试试题文

河北省唐山市2018届高三数学第一次模拟考试试题 文一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2(1)i i-=( ) A .22i - B .22i + C .22i -- D .22i -+ 2.已知命题p :n N ∃∈,32018n>,则p ⌝为( )A .n N ∀∈,32018n ≤B .n N ∀∈,32018n> C .n N ∃∈,32018n ≤ D .n N ∃∈,32018n< 3.设集合2{|0}M x x x =->,1|1N x x ⎧⎫=<⎨⎬⎩⎭,则是( ) A .MN B .N M C .M N = D .M N R =4.某校高中三个年级人数饼图如图所示,按年级用分层抽样的方法抽取一个样本,已知样本中高一年级学生有8人,则样本容量为( )A .24B .30C .32D .355.以角θ的顶点为坐标原点,始边为x 轴的非负半轴,建立平面直角坐标系xOy ,若角θ终边过点(1,2)P -,则sin 2θ=( ) A .35 B .35- C .45 D .45- 6.等腰直角三角形ABC 中,90A =,该三角形分别绕AB ,BC 所在直线旋转,则2个几何体的体积之比为( )A .1:2B .2:1C .1:2D .2:1 7.已知323-=a ,342-=b ,3ln =c ,则( )A .b c a <<B .c b a <<C .a c b <<D .c a b << 8.为了得到函数sin 26y x π⎛⎫=-⎪⎝⎭的图象,可以将函数sin 23y x π⎛⎫=+⎪⎝⎭的图象( ) A .向右平移2π个单位长度 B .向右平移4π个单位长度C .向左平移2π个单位长度D .向左平移4π个单位长度9.如图是根据南宋数学家杨辉的“垛积术”设计的程序框图,该程序所能实现的功能是( )A .求135...(21)n ++++-B .求135...(21)n +++++C .求2222123n +++⋅⋅⋅+ D .求2222123(1)n +++⋅⋅⋅++10.某几何体的三视图如图所示,则该几何体的表面积是( )A .542+.9 C .652+ D .5311.已知P 为抛物线2y x =上异于原点O 的点,PQ x ⊥轴,垂足为Q ,过PQ 的中点作x 轴的平行线交抛物线于点M ,直线QM 交y 轴于点N ,则PQNO=( ) A .23 B .1 C .32D .2 12.已知函数2()2cos f x x x x =-,则下列关于()f x 的表述正确的是( ) A .()f x 的图象关于y 轴对称 B .()f x 的最小值为1- C .()f x 有4个零点 D .()f x 有无数个极值点 二、填空题:本题共4小题,每小题5分,共20分.13.已知(1,1)a =-,(1,2)b =-,则(2)a b a +⋅= .14.设x ,y 满足约束条件0230210x y x y x y -≥⎧⎪+-≤⎨⎪--≤⎩,则23z x y =+的最小值是 .15.已知双曲线C :22111x y m m-=+-(0)m >,则C 的离心率的取值范围是 . 16.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若24ABC c S ∆=,则a bb a+的最大值是 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第(22)、(23)题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知数列{}n a 是以1为首项的等差数列,数列{}n b 是以(1)q q ≠为公比的等比数列. (1)求{}n a 和{}n b 的通项公式;(2)若121n n n S a b a b -=++⋅⋅⋅121n n a b a b -++,求n S .18.某水产品经销商销售某种鲜鱼,售价为每公斤20元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失3元.根据以往的销售情况,按[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.(1)根据频率分布直方图计算该种鲜鱼日需求量的平均数x (同一组中的数据用该组区间中点值代表);(2)该经销商某天购进了300公斤这种鲜鱼,假设当天的需求量为x 公斤(0500)x ≤≤,利润为Y 元.求Y 关于x 的函数关系式,并结合频率分布直方图估计利润Y 不小于700元的概率.19.如图,在三棱柱111ABC A B C -中,平面11A B C ⊥平面11AAC C ,90BAC ∠=.(1)证明:1AC CA ⊥;(2)若11A B C ∆是边长为2的等边三角形,求点1B 到平面ABC 的距离.20.已知椭圆Γ:22221x y a b+=(0)a b >>的左焦点为F ,上顶点为A ,长轴长为26,B 为直线l :3x =-上的动点,(,0)(0)M m m <,AM BM ⊥.当AB l ⊥时,M 与F 重合. (1)若椭圆Γ的方程;(2)若C 为椭圆Γ上一点,满足//AC BM ,60AMC ∠=,求m 的值. 21.已知函数()x x f x e =,11()x g x e x-=-ln x x a --+. (1)求()f x 的最大值;(2)若曲线()y g x =与x 轴相切,求a 的值.(二)选考题:共10分.请考生在(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆1C :22(1)1x y -+=,圆2C :22(3)9x y -+=.以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求1C ,2C 的极坐标方程; (2)设曲线3C :cos sin x t y t αα=⎧⎨=⎩(t 为参数且0t ≠),3C 与圆1C ,2C 分别交于A ,B ,求2ABC S ∆的最大值.23.选修4-5:不等式选讲设函数()1f x x x =+-的最大值为m . (1)求m 的值;(2)若正实数a ,b 满足a b m +=,求2211a b b a +++的最小值.参考答案一.选择题:A 卷:DACCD BDBCA CDB 卷:AACCD DBBCA CD 二.填空题: (13)-4 (14)-5 (15)(1,2) (16)22三.解答题: (17)解:(Ⅰ)设{a n }的公差为d ,{b n }的首项为b 1,则a n =1+(n -1)d ,b n =b 1qn -1.依题意可得⎩⎪⎨⎪⎧1+d =b 1,2d =b 1(q -1),(1+d )b 1q =b 1q 2,解得⎩⎪⎨⎪⎧d =1,b 1=2,q =2,所以a n =n ,b n =2n.…6分(Ⅱ)S n =1×2n+2×2n -1+…+n ×21,① 所以2S n =1×2n +1+2×2n+…+n ×22,②②-①可得,S n =2n +1+(2n +2n -1+…+22)-n ×21=2n +1-2n +4(2n -1-1)2-1=2n +2-2n -4.…12分(18)解:(Ⅰ)-x =50×0.0010×100+150×0.0020×100+250×0.0030×100+350×0.0025×100+450×0.0015×100=265.…4分(Ⅱ)当日需求量不低于300公斤时,利润Y =(20-15)×300=1500元; 当日需求量不足300公斤时,利润Y =(20-15)x -(300-x )×3=8x -900元;故Y =⎩⎨⎧8x -900,0≤x <300,1500,300≤x ≤500.…8分由Y ≥700得,200≤x ≤500, 所以P (Y ≥700)=P (200≤x ≤500)=0.0030×100+0.0025×100+0.0015×100 =0.7.…12分(19)解:(Ⅰ)过点B 1作A 1C 的垂线,垂足为O ,由平面A 1B 1C ⊥平面AA 1C 1C ,平面A 1B 1C ∩平面AA 1C 1C =A 1C , 得B 1O ⊥平面AA 1C 1C ,又AC 平面AA 1C 1C ,得B 1O ⊥AC . 由∠BAC =90°,AB ∥A 1B 1,得A 1B 1⊥AC . 又B 1O ∩A 1B 1=B 1,得AC ⊥平面A 1B 1C . 又CA 1平面A 1B 1C ,得AC ⊥CA 1.…6分(Ⅱ)因为AB ∥A 1B 1,AB 平面ABC ,A 1B 1平面ABC , 所以A 1B 1∥平面ABC ,所以B 1到平面ABC 的距离等于A 1到平面ABC 的距离,设其为d , 由V A 1-ABC =V B -AA 1C 得,13× 1 2×AC ×AB ×d = 1 3× 12×AC ×A 1C ×B 1O , 所以d =B 1O =3.即点B 1到平面ABC 的距离为3.…12分(20)解:(Ⅰ)依题意得A (0,b ),F (-c ,0),当AB ⊥l 时,B (-3,b ), 由AF ⊥BF 得k AF ·k BF = b c · b -3+c =-1,又b 2+c 2=6.解得c =2,b =2.所以,椭圆Γ的方程为x 26+y 22=1.…5分(Ⅱ)由(Ⅰ)得A (0,2),所以k AM =-2m,又AM ⊥BM ,AC ∥BM ,所以k BM =k AC =m2,所以直线AC 的方程为y =m2x +2, …7分y =m2x +2与x 26+y 22=1联立得(2+3m 2)x 2+12mx =0,所以x C =-12m2+3m 2, |AM |=2+m 2,|AC |=2+m22·-12m 2+3m 2(m <0),…10分在直角△AMC 中,由∠AMC =60°得,|AC |=3|AM |,整理得:(3m +2)2=0, 解得m =-63.…12分(21)解:(Ⅰ)f(x )=1-xex ,当x <1时,f (x )>0,f (x )单调递增; 当x >1时,f(x )<0,f (x )单调递减,故x =1时,f (x )取得最大值f (1)= 1e.…4分(Ⅱ)因为g (x )=e x -1+1x 2- 1 x-1,设切点为(t ,0),则g (t )=0,且g (t )=0,即et -1+1t 2- 1 t -1=0,e t -1- 1 t-ln t -t +a =0,所以a = 1 t+ln t +t -e t -1.…7分令h (x )=ex -1+1x 2- 1x-1,由(Ⅰ)得f (x )≤ 1 e ,所以x e x ≤ 1 e,即e x -1≥x ,等号当且仅当x =1时成立,所以h (x )≥x +1x 2- 1 x -1=(x -1)2(x +1)x2≥0,等号当且仅当x =1时成立, 所以当且仅当x =1时,h (x )=0,所以t =1. …11分故a =1.…12分(22)解:(Ⅰ)由x =ρcos θ,y =ρsin θ可得,C 1:ρ2cos 2θ+ρ2sin 2θ-2ρcos θ+1=1,所以ρ=2cos θ; C 2:ρ2cos 2θ+ρ2sin 2θ-6ρcos θ+9=9,所以ρ=6cos θ.…4分(Ⅱ)依题意得|AB |=6cos α-2cos α=4cos α,-2<α<2,C 2(3,0)到直线AB 的距离d =3|sin α|,所以S △ABC 2=12×d ×|AB |=3|sin 2α|, 故当α=±4时,S △ABC 2取得最大值3. …10分(23)解:(Ⅰ)f (x )=|x +1|-|x |=⎩⎪⎨⎪⎧-1,x ≤-1,2x +1,-1<x <1,1,x ≥1,由f (x )的单调性可知,当x ≥1时,f (x )取得最大值1. 所以m =1.…4分(Ⅱ)由(Ⅰ)可知,a +b =1,a 2b +1+b 2a +1= 13(a 2b +1+b2a +1)[(b +1)+(a +1)] = 13[a 2+b 2+a 2(a +1)b +1+b 2(b +1)a +1] ≥ 13(a 2+b 2+2a 2(a +1)b +1·b 2(b +1)a +1) = 13(a +b )2=13. 当且仅当a =b = 12时取等号. 即a 2b +1+b 2a +1的最小值为 13.…10分。

2018年河北省唐山市高考一模数学试卷(理科)【解析版】

2018年河北省唐山市高考一模数学试卷(理科)【解析版】

A.18
B.16
C.12
D.9
6.(5 分)已知 a=3 ,b=2 ,c=ln3,则( )
A.a<c<b
B.a<b<c
C.b<c<a
D.b<a<c
7.(5 分)如图是根据南宋数学家杨辉的“垛积术”设计的程序框图,该程序所
能实现的功能是( )
第 1 页(共 22 页)
A.求 1+3+5+…+(2n﹣1) C.求 12+22+32+…+n2 8.(5 分)为了得到函数
12.(5 分)已知 P,A,B,C 是半径为 2 的球面上的点,PA=PB=PC=2,∠ ABC=90°,点 B 在 AC 上的射影为 D,则三棱锥 P﹣ABD 体积的最大值是 ()
A.
B.
C.
D.
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
13.(5 分)设 x,y 满足约束条件
17.(12 分)已知数列{an}为单调递增数列,Sn 为其前 n 项和,

(1)求{an}的通项公式;
第 3 页(共 22 页)
(2)若
,Tn 为数列{Βιβλιοθήκη n}的前 n 项和,证明:.
18.(12 分)某水产品经销商销售某种鲜鱼,售价为每公斤 20 元,成本为每公 斤 15 元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部 降价处理完,平均每公斤损失 3 元.根据以往的销售情况,按[50,150),[150, 250),[250,350),[350,450),[450,550]进行分组,得到如图所示的频率 分布直方图.
C.
D.
10.(5 分)已知 F 为双曲线 C: ﹣ =1(a>0,b>0)的右焦点.过点 F

河北省唐山市高三上学期第一次摸底考试数学(理)试题+扫描版含答案 - 副本精编版

河北省唐山市高三上学期第一次摸底考试数学(理)试题+扫描版含答案 - 副本精编版

唐山市2018—2019学年度高三年级摸底考试理科数学参考答案一.选择题:A 卷:ADBCD DACCB CB B 卷:ADBBD DACABCB二.填空题: (13)2(14)12(15)2 6 (16)(1,3)三.解答题: 17.解:(1)由已知可得,2S n =3a n -1, ① 所以2S n -1=3a n -1-1 (n ≥2), ② ①-②得,2(S n -S n -1)=3a n -3a n -1,化简为a n =3a n -1(n ≥2),即a na n -1=3(n ≥2), …3分在①中,令n =1可得,a 1=1, …4分 所以数列{a n }是以1为首项,3为公比的等比数列,从而有a n =3n -1. …6分(2)b n =(n -1)·3n -1,T n =0·30+1·31+2·32+…+(n -1)·3n -1, ③则3T n =0·31+1·32+2·33+…+(n -1)·3n. ④③-④得,-2T n =31+32+33+…+3n -1-(n -1)·3n , …8分=3-3n 1-3-(n -1)·3n=(3-2n )·3n -32. …10分 所以,T n =(2n -3)·3n +34. …12分 18.解:(1)由茎叶图可知,甲当天生产了10个零件,其中4个一等品,6个二等品;乙当天生产了10个零件,其中5个一等品,5个二等品, 所以,抽取的2个零件等级互不相同的概率 P =4×5+6×510×10=12. …5分(2)X 可取0,1,2,3. …6分P (X =0)=C 04C 36C 310=16; P (X =1)=C 14C 26C 310=12;P (X =2)=C 24C 16C 310=310; P (X =3)=C 34C 06C 310=130; …10分X 的分布列为∴随机变量X 的期望E (X )=0×16+1×12+2×310+3×130=65. …12分 19.解:(1)∵直角三角形ABC 中,AB =BC =2,D 为AC 的中点, ∴BD ⊥CD ,又∵PB ⊥CD ,BD ∩PB =B , ∴CD ⊥平面PBD , ∴CD ⊥PD , 又∵AD ⊥BD , ∴PD ⊥BD .又因为BD ∩CD =D , ∴PD ⊥平面BCD . …5分(2)以D 为坐标原点,DA ,DB ,DP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系D -xyz ,则A (2,0,0),B (0,2,0),C (-2,0,0),P (0,0,2),PA →=(2,0,-2),PB →=(0,2,-2),CB →=(2,2,0)设平面PBC 的法向量n =(x ,y ,z ),由PB →·n =0,CB →·n =0得⎩⎪⎨⎪⎧2y -2z =0,2x +2y =0,取n =(1,-1,-1).…9分cos 〈PA →,n 〉=PA →·n |PA →||n |=63,∴直线PA 与平面PBC 所成角的正弦值为63. …12分20.解:(1)由已知可得,y 1=x 21,y 2=x 22,所以y 1-y 2=x 21-x 22=(x 1+x 2)(x 1-x 2)=2(x 1-x 2),此时,直线l 的斜率k =y 1-y 2x 1-x 2=2.…4分(2)因为OB ⊥l ,所以k OB =-1k ,又因为k OB =y 2x 2=x 22x 2=x 2,所以,x 2=-1k ,…6分又由(1)可知,x 1+x 2=y 1-y 2x 1-x 2=k ,从而有,x 1=k -x 2=k +1k ,所以|AB |=1+k 2|x 1-x 2|=1+k 2|k + 2k |,|OB |=x 22+y 22=x 22+x 42=1k 2+1k 4=1+k 2k 2,…9分因为|AB |=3|OB |,所以1+k 2|k +2k |=31+k 2k 2,化简得,|k 3+2k |=3, 解得,k =±1,所以,|AB |=1+k 2|k + 2k |=32.…12分21.解:(1)当a =e 时,f (x )=ln x +1x ,所以f '(x )=1x -1x 2.…1分设切点为(x 0,f (x 0)),曲线y =f (x )与y =m 相切,得f '(x 0)=0, 解得x 0=1,所以切点为(1,1). …3分 所以m =1. …4分 (2)依题意得f (1)≥ea ,所以1≥ ea ,从而a ≥e .…5分因为f '(x )=x -ln ax 2ln a ,a ≥e ,所以当0<x <ln a 时,f '(x )<0,f (x )单调递减; 当x >ln a 时,f '(x )>0,f (x )单调递增,所以当x =ln a 时,f (x )取得最小值log a (ln a )+1ln a .…7分设g (x )=eln x -x ,x ≥e , 则g '(x )=ex -1=e -x x ≤0,所以g (x )在[e ,+∞)单调递减, 从而g (x )≤g (e)=0,所以eln x ≤x .…10分又a ≥e ,所以eln a ≤a ,从而1ln a ≥ea ,当且仅当a =e 时等号成立.因为ln a ≥1,所以log a (ln a )≥0, 即log a (ln a )+1ln a ≥ea .综上,满足题设的a 的取值范围为[e ,+∞). …12分22.解:(1)由ρ2-22ρsin (θ+ π4)-4=0得, ρ2-2ρcos θ-2ρsin θ-4=0. 所以x 2+y 2-2x -2y -4=0.曲线C 的直角坐标方程为(x -1)2+(y -1)2=6. …5分(2)将直线l 的参数方程代入x 2+y 2-2x -2y -4=0并整理得, t 2-2(sin α+cos α)t -4=0,t 1+t 2=2(sin α+cos α),t 1t 2=-4<0.||OA |-|OB ||=||t 1|-|t 2||=|t 1+t 2|=|2(sin α+cos α)|=|22sin (α+ π4)|因为0≤α<π,所以π4≤α+π4<5π4,从而有-2<22sin (α+ π4)≤22.所以||OA |-|OB ||的取值范围是[0,22]. …10分23.解:(1)由题意得|x +1|>|2x -1|, 所以|x +1|2>|2x -1|2,整理可得x 2-2x <0,解得0<x <2, 故原不等式的解集为{x |0<x <2}. …5分(2)由已知可得,a ≥f (x )-x 恒成立,设g (x )=f (x )-x ,则g (x )=⎩⎪⎨⎪⎧-2, x <-1,2x ,-1≤x ≤ 12,-2x +2, x > 12,由g (x )的单调性可知,x =12时,g (x )取得最大值1, 所以a 的取值范围是[1,+∞).…10分。

河北省唐山市高三数学第一次模拟考试试题 文

河北省唐山市高三数学第一次模拟考试试题 文

河北省唐山市2018届高三数学第一次模拟考试试题 文一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2(1)i i-=( ) A .22i - B .22i + C .22i -- D .22i -+ 2.已知命题p :n N ∃∈,32018n>,则p ⌝为( )A .n N ∀∈,32018n ≤B .n N ∀∈,32018n> C .n N ∃∈,32018n ≤ D .n N ∃∈,32018n< 3.设集合2{|0}M x x x =->,1|1N x x ⎧⎫=<⎨⎬⎩⎭,则是( ) A .M N Ø B .N M Ø C .M N = D .M N R =4.某校高中三个年级人数饼图如图所示,按年级用分层抽样的方法抽取一个样本,已知样本中高一年级学生有8人,则样本容量为( )A .24B .30C .32D .355.以角θ的顶点为坐标原点,始边为x 轴的非负半轴,建立平面直角坐标系xOy ,若角θ终边过点(1,2)P -,则sin 2θ=( ) A .35 B .35- C .45 D .45- 6.等腰直角三角形ABC 中,90A =,该三角形分别绕AB ,BC 所在直线旋转,则2个几何体的体积之比为( )A . C .1:2 D .2:1 7.已知323-=a ,342-=b ,3ln =c ,则( )A .b c a <<B .c b a <<C .a c b <<D .c a b << 8.为了得到函数sin 26y x π⎛⎫=-⎪⎝⎭的图象,可以将函数sin 23y x π⎛⎫=+⎪⎝⎭的图象( ) A .向右平移2π个单位长度 B .向右平移4π个单位长度C .向左平移2π个单位长度D .向左平移4π个单位长度9.如图是根据南宋数学家杨辉的“垛积术”设计的程序框图,该程序所能实现的功能是( )A .求135...(21)n ++++-B .求135...(21)n +++++C .求2222123n +++⋅⋅⋅+ D .求2222123(1)n +++⋅⋅⋅++10.某几何体的三视图如图所示,则该几何体的表面积是( )A.5+.9 C.6+ D .5311.已知P 为抛物线2y x =上异于原点O 的点,PQ x ⊥轴,垂足为Q ,过PQ 的中点作x 轴的平行线交抛物线于点M ,直线QM 交y 轴于点N ,则PQNO=( ) A .23 B .1 C .32D .2 12.已知函数2()2cos f x x x x =-,则下列关于()f x 的表述正确的是( ) A .()f x 的图象关于y 轴对称 B .()f x 的最小值为1- C .()f x 有4个零点 D .()f x 有无数个极值点 二、填空题:本题共4小题,每小题5分,共20分.13.已知(1,1)a =-,(1,2)b =-,则(2)a b a +⋅= .14.设x ,y 满足约束条件0230210x y x y x y -≥⎧⎪+-≤⎨⎪--≤⎩,则23z x y =+的最小值是 .15.已知双曲线C :22111x y m m-=+-(0)m >,则C 的离心率的取值范围是 . 16.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若24ABC c S ∆=,则a bb a+的最大值是 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第(22)、(23)题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知数列{}n a 是以1为首项的等差数列,数列{}n b 是以(1)q q ≠为公比的等比数列. (1)求{}n a 和{}n b 的通项公式;(2)若121n n n S a b a b -=++⋅⋅⋅121n n a b a b -++,求n S .18.某水产品经销商销售某种鲜鱼,售价为每公斤20元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失3元.根据以往的销售情况,按[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.(1)根据频率分布直方图计算该种鲜鱼日需求量的平均数x (同一组中的数据用该组区间中点值代表);(2)该经销商某天购进了300公斤这种鲜鱼,假设当天的需求量为x 公斤(0500)x ≤≤,利润为Y 元.求Y 关于x 的函数关系式,并结合频率分布直方图估计利润Y 不小于700元的概率.19.如图,在三棱柱111ABC A B C -中,平面11A B C ⊥平面11AAC C ,90BAC ∠=.(1)证明:1AC CA ⊥;(2)若11A B C ∆是边长为2的等边三角形,求点1B 到平面ABC 的距离.20.已知椭圆Γ:22221x y a b+=(0)a b >>的左焦点为F ,上顶点为A ,长轴长为,B 为直线l :3x =-上的动点,(,0)(0)M m m <,AM BM ⊥.当AB l ⊥时,M 与F 重合. (1)若椭圆Γ的方程;(2)若C 为椭圆Γ上一点,满足//AC BM ,60AMC ∠=,求m 的值. 21.已知函数()x x f x e =,11()x g x e x-=-ln x x a --+. (1)求()f x 的最大值;(2)若曲线()y g x =与x 轴相切,求a 的值.(二)选考题:共10分.请考生在(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆1C :22(1)1x y -+=,圆2C :22(3)9x y -+=.以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求1C ,2C 的极坐标方程; (2)设曲线3C :cos sin x t y t αα=⎧⎨=⎩(t 为参数且0t ≠),3C 与圆1C ,2C 分别交于A ,B ,求2ABC S ∆的最大值.23.选修4-5:不等式选讲设函数()1f x x x =+-的最大值为m . (1)求m 的值;(2)若正实数a ,b 满足a b m +=,求2211a b b a +++的最小值.参考答案一.选择题:A 卷:DACCD BDBCA CDB 卷:AACCD DBBCA CD 二.填空题: (13)-4 (14)-5 (15)(1,2) (16)22三.解答题: (17)解:(Ⅰ)设{a n }的公差为d ,{b n }的首项为b 1,则a n =1+(n -1)d ,b n =b 1qn -1.依题意可得⎩⎪⎨⎪⎧1+d =b 1,2d =b 1(q -1),(1+d )b 1q =b 1q 2,解得⎩⎪⎨⎪⎧d =1,b 1=2,q =2,所以a n =n ,b n =2n.…6分(Ⅱ)S n =1×2n+2×2n -1+…+n ×21,① 所以2S n =1×2n +1+2×2n+…+n ×22,②②-①可得,S n =2n +1+(2n +2n -1+…+22)-n ×21=2n +1-2n +4(2n -1-1)2-1=2n +2-2n -4.…12分(18)解:(Ⅰ)-x =50×0.0010×100+150×0.0020×100+250×0.0030×100+350×0.0025×100+450×0.0015×100=265.…4分(Ⅱ)当日需求量不低于300公斤时,利润Y =(20-15)×300=1500元; 当日需求量不足300公斤时,利润Y =(20-15)x -(300-x )×3=8x -900元;故Y =⎩⎨⎧8x -900,0≤x <300,1500,300≤x ≤500.…8分由Y ≥700得,200≤x ≤500, 所以P (Y ≥700)=P (200≤x ≤500)=0.0030×100+0.0025×100+0.0015×100 =0.7.…12分(19)解:(Ⅰ)过点B 1作A 1C 的垂线,垂足为O ,由平面A 1B 1C ⊥平面AA 1C 1C ,平面A 1B 1C ∩平面AA 1C 1C =A 1C , 得B 1O ⊥平面AA 1C 1C ,又AC 平面AA 1C 1C ,得B 1O ⊥AC . 由∠BAC =90°,AB ∥A 1B 1,得A 1B 1⊥AC . 又B 1O ∩A 1B 1=B 1,得AC ⊥平面A 1B 1C . 又CA 1平面A 1B 1C ,得AC ⊥CA 1.…6分(Ⅱ)因为AB ∥A 1B 1,AB 平面ABC ,A 1B 1平面ABC , 所以A 1B 1∥平面ABC ,所以B 1到平面ABC 的距离等于A 1到平面ABC 的距离,设其为d , 由V A 1-ABC =V B -AA 1C 得,13× 1 2×AC ×AB ×d = 1 3× 12×AC ×A 1C ×B 1O , 所以d =B 1O =3.即点B 1到平面ABC 的距离为3.…12分(20)解:(Ⅰ)依题意得A (0,b ),F (-c ,0),当AB ⊥l 时,B (-3,b ), 由AF ⊥BF 得k AF ·k BF = b c · b -3+c =-1,又b 2+c 2=6.解得c =2,b =2.所以,椭圆Γ的方程为x 26+y 22=1.…5分(Ⅱ)由(Ⅰ)得A (0,2),所以k AM =-2m,又AM ⊥BM ,AC ∥BM ,所以k BM =k AC =m2,所以直线AC 的方程为y =m2x +2, …7分y =m2x +2与x 26+y 22=1联立得(2+3m 2)x 2+12mx =0,所以x C =-12m2+3m 2, |AM |=2+m 2,|AC |=2+m22·-12m 2+3m 2(m <0),…10分在直角△AMC 中,由∠AMC =60°得,|AC |=3|AM |,整理得:(3m +2)2=0, 解得m =-63.…12分(21)解:(Ⅰ)f(x )=1-xex ,当x <1时,f (x )>0,f (x )单调递增; 当x >1时,f(x )<0,f (x )单调递减,故x =1时,f (x )取得最大值f (1)= 1e.…4分(Ⅱ)因为g (x )=e x -1+1x 2- 1 x-1,设切点为(t ,0),则g (t )=0,且g (t )=0,即et -1+1t 2- 1 t -1=0,e t -1- 1 t-ln t -t +a =0,所以a = 1 t+ln t +t -e t -1.…7分令h (x )=ex -1+1x 2- 1x-1,由(Ⅰ)得f (x )≤ 1 e ,所以x e x ≤ 1 e ,即e x -1≥x ,等号当且仅当x =1时成立,所以h (x )≥x +1x 2- 1 x -1=(x -1)2(x +1)x2≥0,等号当且仅当x =1时成立, 所以当且仅当x =1时,h (x )=0,所以t =1. …11分故a =1.…12分(22)解:(Ⅰ)由x =ρcos θ,y =ρsin θ可得,C 1:ρ2cos 2θ+ρ2sin 2θ-2ρcos θ+1=1,所以ρ=2cos θ; C 2:ρ2cos 2θ+ρ2sin 2θ-6ρcos θ+9=9,所以ρ=6cos θ.…4分(Ⅱ)依题意得|AB |=6cos α-2cos α=4cos α,-2<α<2,C 2(3,0)到直线AB 的距离d =3|sin α|,所以S △ABC 2=12×d ×|AB |=3|sin 2α|, 故当α=±4时,S △ABC 2取得最大值3. …10分(23)解:(Ⅰ)f (x )=|x +1|-|x |=⎩⎪⎨⎪⎧-1,x ≤-1,2x +1,-1<x <1,1,x ≥1,由f (x )的单调性可知,当x ≥1时,f (x )取得最大值1. 所以m =1.…4分(Ⅱ)由(Ⅰ)可知,a +b =1,a 2b +1+b 2a +1= 13(a 2b +1+b2a +1)[(b +1)+(a +1)] = 13[a 2+b 2+a 2(a +1)b +1+b 2(b +1)a +1] ≥ 13(a 2+b 2+2a 2(a +1)b +1·b 2(b +1)a +1) = 13(a +b )2=13. 当且仅当a =b = 12时取等号. 即a 2b +1+b 2a +1的最小值为 13.…10分。

河北省2018届高三一模数学试卷(含答案)

河北省2018届高三一模数学试卷(含答案)

高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 复数(2)i i +的虚部为2. 设函数2log ,0()4,0x x x f x x >⎧=⎨≤⎩,则((1))f f -= 3. 已知{||1|2,}M x x x R =-≤∈,1{|0,}2x P x x R x -=≥∈+,则M P =4. 抛物线2y x =上一点M 到焦点的距离为1,则点M 的纵坐标为 5. 已知无穷数列{}n a 满足112n n a a +=*()n N ∈,且21a =,记n S 为数列{}n a 的前n 项和, 则lim n n S →∞= 6. 已知,x y R +∈,且21x y +=,则xy 的最大值为7. 已知圆锥的母线10l =,母线与旋转轴的夹角30α︒=,则圆锥的表面积为 8. 若21(2)n x x +*()n N ∈的二项展开式中的第9项是常数项,则n = 9. 已知,A B 分别是函数()2sin f x x ω=(0)ω>在y 轴右侧图像上的第一个最高点和第一 个最低点,且2AOB π∠=,则该函数的最小正周期是10. 将序号分别为1、2、3、4、5的5张参观券全部分给4人,每人至少一张,如果分给同 一人的2张参观券连号,那么不同的分法种数是11. 在平面直角坐标系中,横、纵坐标均为整数的点叫做格点,若函数()y f x =的图像恰好经过k 个格点,则称函数()y f x =为k 阶格点函数,已知函数:①2y x =;②2sin y x =; ③1x y π=-;④cos()3y x π=+;其中为一阶格点函数的序号为 (注:把你认为正确的序号都填上)12. 已知AB 为单位圆O 的一条弦,P 为单位圆O 上的点,若()||f AP AB λλ=-()R λ∈ 的最小值为m ,当点P 在单位圆上运动时,m 的最大值为43,则线段AB 长度为二. 选择题(本大题共4题,每题5分,共20分)13. 下列函数在其定义域内既是奇函数又是增函数的是( )A. tan y x =B. 3x y =C. 13y x = D. lg ||y x = 14. 设,a b R ∈,则“21a b ab +>⎧⎨>⎩”是“1a >且1b >”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要15. 如图,已知椭圆C 的中心为原点O ,(25,0)F -为C 的左焦点,P 为C 上一点,满 足||||OP OF =且||4PF =,则椭圆C 的方程为( )A. 221255x y +=B. 2213010x y += C. 2213616x y += D. 2214525x y +=16. 实数a 、b 满足0ab >且a b ≠,由a 、b 、2a b +、ab 按一定顺序构成的数列( ) A. 可能是等差数列,也可能是等比数列B. 可能是等差数列,但不可能是等比数列C. 不可能是等差数列,但可能是等比数列D. 不可能是等差数列,也不可能是等比数列三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在正三棱柱111ABC A B C -中,1AB =,12BB =,求:(1)异面直线11B C 与1A C 所成角的大小;(2)四棱锥111A B BCC -的体积;18. 在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域,点E 正北55海 里处有一个雷达观测站A ,某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与点A 相距402海里的位置B 处,经过40分钟又测得该船已行驶到点A 北偏东45θ︒+ (其中26sin 26θ=,090θ︒︒<<)且与点A 相距1013海里的位置C 处; (1)求该船的行驶速度;(单位:海里/小时)(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由;19. 已知点1F 、2F 为双曲线222:1y C x b -=(0)b >的左、右焦点,过2F 作垂直于x 轴的 直线,在x 轴上方交双曲线C 于点M ,且1230MF F ︒∠=;(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求 12PP PP ⋅的值;20. 设12()2x x a f x b+-+=+,,a b 为实常数; (1)当1a b ==时,证明:()f x 不是奇函数;(2)若()f x 是奇函数,求a 与b 的值;(3)当()f x 是奇函数时,研究是否存在这样的实数集的子集D ,对任何属于D 的x 、c , 都有2()33f x c c <-+成立?若存在,试找出所有这样的D ;若不存在,说明理由;21. 已知数列{}n a 、{}n b 满足2(2)n n n S a b =+,其中n S 是数列{}n a 的前n 项和; (1)若数列{}n a 是首项为23,公比为13-的等比数列,求数列{}n b 的通项公式; (2)若n b n =,23a =,求证:数列{}n a 满足212n n n a a a +++=,并写出{}n a 通项公式;(3)在(2)的条件下,设n n na cb =,求证:数列{}nc 中的任意一项总可以表示成该数列 其他两项之积;参考答案一. 填空题1. 22. 2-3. [1,1]-4. 345. 46. 187. 75π8. 129. 833 10. 96 11. ②③ 12. 423二. 选择题13. C 14. B 15. C 16. D三. 解答题17.(1)5arccos 10;(2)33; 18.(1)155;(2)357d =<,会进入警戒水域;19.(1)2212y x -=;(2)29; 20.(1)(1)(1)f f -≠-;(2)12a b =⎧⎨=⎩,12a b =-⎧⎨=-⎩;(3)当121()22x x f x +-+=+,D R =; 当121()22x x f x +--=-,(0,)D =+∞,25(,log ]7D =-∞;21.(1)12n b =;(2)1n a n =+;(3)略;。

唐山市2018—2019学年度高三年级第一次模拟考试理科数学试卷与参考答案

唐山市2018—2019学年度高三年级第一次模拟考试理科数学试卷与参考答案

…6 分

…9 分
…12 分
…4 分
…10 分
高三理科数学参考答案第 4 页
当且仅当 a=b=1 时,取“=” . 2 2 (2)∵a +b ≥2ab, ∴2(a2+b2)≥a2+b2+2ab=(a+b) 2=4, ∴a2+b2≥2, ∴(a+b3)(a3+b)=a4+b4+a3b3+ab≥a4+b4+2a2b2=(a2+b2) 2≥4, 当且仅当 a=b=1 时,取“=” .
唐山市 2018—2019 学年度高三年级第一次模拟考试
理科数学参考答案
一.选择题: A 卷:CDBAA B 卷: 二.填空题: (13)-4 (14)7 (15)2π 3 3 (16) 2 CDBAC BC
三.解答题: (17)解: (1)令 n=1,得 a1+ a1=2,( a1+2)( a1-1)=0,得 a1=1, 所以 Sn=n,即 Sn=n2. 当 n≥2 时,an=Sn-Sn-1=2n-1, 当 n=1 时,a1=1 适合上式, 所以 an=2n-1. an+1 2n+1 1 1 - - - (2)bn=(-1)n 1• =(-1)n 1• 2 =(-1)n 1• + n n+1 Sn+n n +n 当 n 为偶数时,Tn=b1+b2+…+bn 1 1 1 1 1 1 1 1 1 1 = + - + + + - + +…- + 1 2 2 3 3 4 4 5 n n+1 1 n =1- = , n+1 n+1 当 n 为奇数时,Tn=b1+b2+…+bn 1 1 1 1 1 1 1 1 1 1 = + - + + + - + +…+ + 1 2 2 3 3 4 4 5 n n+1 n+2 1 =1+ = , n+1 n+1 n ,(n为偶数), n+1 综上所述,Tn= n+2 ,(n为奇数). n+1 另解: Tn=b1+b2+…+bn 1 1 1 1 1 1 1 1 1 1 - = + - + + + - + +…+(-1)n 1• + 1 2 2 3 3 4 4 5 n n+ 1 1 - =1+(-1)n 1• n+1 - n+1+(-1)n 1 = . n+1 (18)解:

2018届河北省模拟试题(一)数学(理)试卷(含答案)

2018届河北省模拟试题(一)数学(理)试卷(含答案)

衡水金卷2018年普通高等学校招生全国统一考试模拟试题(一)理数第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|20A x x x =-≤,{}|1381x B x =<<,{}|2,C x x n n N ==∈,则()A B C =U I ( ) A .{}2B .{}0,2C .{}0,2,4D .{}2,42.设i 是虚数单位,若5()2ii x yi i+=-,x ,y R ∈,则复数x yi +的共轭复数是( ) A .2i -B .2i --C .2i +D .2i -+3.已知等差数列{}n a 的前n 项和是n S ,且456718a a a a +++=,则下列命题正确的是( ) A .5a 是常数B .5S 是常数C .10a 是常数D .10S 是常数4.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是( )A .316B .38C .14D .185.已知点F 为双曲线C :22221x y a b-=(0a >,0b >)的右焦点,点F 到渐近线的距离是点F 到左顶点的距离的一半,则双曲线C 的离心率为( )A.2或5 3B.53C.2D.26.已知函数[]2sin,,0,()1,(0,1],x xf xx xπ⎧∈-⎪=⎨-∈⎪⎩则1()f x dxπ-=⎰()A.2π+B.2πC.22π-+D.24π-7.执行如图程序框图,则输出的S的值为()A2021B2019C.505D.50518.已知函数23()sin cos30)f x x x xωωωω=->的相邻两个零点差的绝对值为4π,则函数()f x的图象()A.可由函数()cos4g x x=的图象向左平移524π个单位而得B.可由函数()cos4g x x=的图象向右平移524π个单位而得C.可由函数()cos2g x x=的图象向右平移724π个单位而得D.可由函数()cos2g x x=的图象向右平移56π个单位而得9.61(23)(1)xx-+的展开式中剔除常数项后的各项系数和为()A.73-B.61-C.55-D.63-10.某几何体的三视图如图所示,其中俯视图为一个正六边形及其三条对角线,则该几何体的外接球的表面积是()A .4πB .8πC .16πD .32π11.设O 为坐标原点,点P 为抛物线C :22(0)y px p =>上异于原点的任意一点,过点P 作斜率为0的直线交y 轴于点M ,点P 是线段MN 的中点,连接ON 并延长交抛物线于点H ,则||||OH ON 的值为( ) A .pB .12C .2D .3212.若函数()y f x =,x M ∈,对于给定的非零实数a ,总存在非零常数T ,使得定义域M 内的任意实数x ,都有()()af x f x T =+恒成立,此时T 为()f x 的类周期,函数()y f x =是M 上的a 级类周期函数,若函数()y f x =是定义在区间[0,)+∞内的2级类周期函数,且2T =,当[0,2)x ∈时,212,01,()2(2),12,x x f x f x x ⎧-≤≤⎪=⎨⎪-<<⎩函数21()2ln 2g x x x x m =-+++,若[]16,8x ∃∈,2(0,)x ∃∈+∞,使21()()0g x f x -≤成立,则实数m 的取值范围是( )A .5(,]2-∞B .13(,]2-∞ C .3(,]2-∞-D .13[,)2+∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量(2sin ,cos )a αα=r ,(1,1)b =-r ,且a b ⊥r r ,则2()a b -=r r .14.已知x ,y 满足约束条件20,20,4180,x y x y x y -≤⎧⎪-≥⎨⎪+-≤⎩则目标函数53z x y =-的最小值为 .15.在等比数列{}n a 中,2412a a a ⋅=,且4a 与72a 的等差中项为17,设(1)nn n b a =-,*n N ∈,则数列{}n b 的前2018项和为 .16.有一个容器,下部是高为5.5cm 的圆柱体,上部是与圆柱共底面且母线长为6cm 的圆锥,现不考虑该容器内壁的厚度,则该容器的最大容积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知ABC ∆的内角A ,B ,C 的对边a ,b ,c 分别满足22c b ==,2cos cos cos 0b A a C c A ++=,又点D 满足1233AD AB AC =+u u u r u u u r u u u r .(1)求a 及角A 的大小;(2)求||AD u u u r的值.18.在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且12BC BB ==,1160A AB A AD ∠=∠=︒.(1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB 所成角的正弦值为7. 19.“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数x (同一组中数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z 服从正态分布2(,)N μσ,利用该正态分布,求Z 落在(14.55,38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X ,求X 的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为142.7511.95σ=≈; ②若2~(,)Z N μσ,则()0.6826P Z μσμσ-<≤+=,(22)0.9544P Z μσμσ-<≤+=.20.已知椭圆C :22221(0)x y a b a b+=>>的离心率为22,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C 的标准方程;(2)若直线l :2y kx =+与椭圆C 相交于A ,B 两点,点D 的坐标为1(0,)2,问直线AD 与BD 的斜率之和AD BD k k +是否为定值?若是,求出该定值,若不是,试说明理由. 21.已知函数()2(1)xf x e a x b =---,其中e 为自然对数的底数. (1)若函数()f x 在区间[]0,1上是单调函数,试求实数a 的取值范围;(2)已知函数2()(1)1xg x e a x bx =----,且(1)0g =,若函数()g x 在区间[]0,1上恰有3个零点,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,圆1C 的参数方程为1cos ,1sin x a y a θθ=-=⎧⎨=-+⎩(θ是参数,a 是大于0的常数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆2C 的极坐标方程为)4πρθ=-.(1)求圆1C 的极坐标方程和圆2C 的直角坐标方程; (2)分别记直线l :12πθ=,R ρ∈与圆1C 、圆2C 的异于原点的交点为A ,B ,若圆1C 与圆2C 外切,试求实数a 的值及线段||AB 的长. 23.选修4-5:不等式选讲 已知函数()|21|f x x =+.(1)求不等式()10|3|f x x ≤--;(2)若正数m ,n 满足2m n mn +=,求证:()(2)16f m f n +-≥.2018年普通高等学校招生全国统一考试模拟试题理数(一)答案一、选择题1-5:BADAB 6-10:DCBAB 11、12:CB二、填空题13.185 14.2- 15.100841312- 16.312256cm π三、解答题17.解:(1)由2cos cos cos 0b A a C c A ++=及正弦定理得2sin cos sin cos cos sin B A A C A C -=+,即2sin cos sin()sin B A A C B -=+=, 在ABC ∆中,sin 0B >, 所以1cos 2A =-, 又(0,)A π∈,所以23A π=. 在ABC ∆中,由余弦定理得222222cos 7a b c bc A b c bc =+-=++=,所以a =(2)由1233AD AB AC =+u u u r u u u r u u u r ,得2212()33AD AB AC =+u u u r u u u r u u u r 4441421()99929=++⨯⨯⨯-=,所以2||3AD =u u u r .18.解:(1)连接1A B ,1A D ,AC ,因为1AB AA AD ==,1160A AB A AD ∠=∠=︒, 所以1A AB ∆和1A AD ∆均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1A O ,则1A O BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥,而1AO AC O =I ,所以BD ⊥平面1A AC , 又1AA ⊂平面1A AC ,所以1BD AA ⊥, 又11//CC AA ,所以1BD CC ⊥.(2)由112A B A D ==,及22BD AB ==,知11A B A D ⊥,于是111222AO A O BD AA ===,从而1A O AO ⊥, 结合1A O BD ⊥,AO BD O =I , 得1A O ⊥底面ABCD , 所以OA 、OB 、OA 两两垂直.如图,以点O 为坐标原点,OA u u u r的方向为x 轴的正方向,建立空间直角坐标系O xyz -,则(1,0,0)A ,(0,1,0)B ,(0,1,0)D -,1(0,0,1)A ,(1,0,0)C -,(0,2,0)DB =u u u r,11(1,0,1)BB AA ==-u u u r u u u r ,11(1,1,0)DC DC ==-u u u u r u u u r, 由11(1,0,1)DD AA ==-u u u u r u u u r ,易求得1(1,1,1)D --. 设111D E DC λ=u u u u r u u u u r ([]0,1λ∈),则(1,1,1)(1,1,0)E E E x y z λ++-=-,即(1,1,1)E λλ---. 设平面1B BD 的一个法向量为(,,)n x y z =r,由10,0,n DB n BB ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r得0,0,y x z =⎧⎨-+=⎩令1x =,得(1,0,1)n =r , 设直线DE 与平面1BDB 所成角为θ,则sin |cos ,|DE n θ=<>u u u r r 227142(1)1λλ==⨯+--+, 解得12λ=或13λ=-(舍去). 所以当E 为11D C 的中点时,直线DE 与平面1BDB 所成角的正弦值为7.19.解:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数x 为:50.1150.2250.3350.25450.1526.5x =⨯+⨯+⨯+⨯+⨯=.(2)①∵Z 服从正态分布2(,)N μσ,且26μ=,11.95σ≈,∴(14.5538.45)(26.511.9526.511.95)0.6826P Z P Z <<=-<<+=, ∴Z 落在(14.55,38.45)内的概率是0.6826. ②根据题意得1~(4,)2X B ,04411(0)()216P X C ===;14411(1)()24P X C ===;24413(2)()28P X C ===;34411(3)()24P X C ===;44411(4)()216P X C ===.∴X 的分布列为∴1()422E X =⨯=. 20.解:(1)由已知可得22222sin 4,c ac a b c π⎧=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得22a =,221b c ==,故所求的椭圆方程为2212x y +=. (2)由221,22,x y y kx ⎧+=⎪⎨⎪=+⎩得22(12)860k x kx +++=,则2226424(12)16240k k k ∆=-+=->,解得k <或k >. 设11(,)A x y ,22(,)B x y ,则122812k x x k +=-+,122612x x k=+, 则1112AD y k x -=,2212BDy k x -=,所以122112121()2AD BDy x y x x x k k x x +-++=12121232()2kx x x x x x ++=6603k k -==,所以AD BD k k +为定值,且定值为0. 21.解:(1)'()2(1)xf x e a =--,当函数()f x 在区间[]0,1上单调递增时,'()2(1)0xf x e a =--≥在区间[]0,1上恒成立,∴min 2(1)()1xa e -≤=(其中[]0,1x ∈),解得32a ≤; 当函数()f x 在区间[]0,1上单调递减时,'()2(1)0xf x e a =--≤在区间[]0,1上恒成立,∴max 2(1)()xa e e -≥=(其中[]0,1x ∈),解得12ea ≥+. 综上所述,实数a 的取值范围是3(,][1,)22e -∞++∞U . (2)'()2(1)()xg x e a x b f x =---=.由(0)(1)0g g ==,知()g x 在区间(0,1)内恰有一个零点, 设该零点为0x ,则()g x 在区间0(0,)x 内不单调, 所以()f x 在区间0(0,)x 内存在零点1x , 同理,()f x 在区间0(,1)x 内存在零点2x , 所以()f x 在区间(0,1)内恰有两个零点. 由(1)知,当32a ≤时,()f x 在区间[]0,1上单调递增,故()f x 在区间(0,1)内至多有一个零点,不合题意. 当12ea ≥+时,()f x 在区间[]0,1上单调递减,故()f x 在区间(0,1)内至多有一个零点,不合题意,所以3122e a <<+. 令'()0f x =,得ln(22)(0,1)x a =-∈,所以函数()f x 在区间[]0,ln(22)a -上单调递减,在区间(ln(22),1]a -内单调递增. 记()f x 的两个零点为1x ,2x 12()x x <,因此1(0,ln(22)]x a ∈-,2(ln(22),1)x a ∈-,必有(0)10f b =->,(1)220f e a b =-+->. 由(1)0g =,得a b e +=,所以1()1()102f a b e =-+=-<,又(0)10f a e =-+>,(1)20f a =->,所以12e a -<<.综上所述,实数a 的取值范围为(1,2)e -.22.解:(1)圆1C :1cos ,1sin x a y a θθ=-+⎧⎨=-+⎩(θ是参数)消去参数θ,得其普通方程为222(1)(1)x y a +++=,将cos x ρθ=,sin y ρθ=代入上式并化简,得圆1C 的极坐标方程为22sin()204a πρθ++-+=.由圆2C 的极坐标方程)4πρθ=-,得22cos 2sin ρρθρθ=+. 将cos x ρθ=,sin y ρθ=,222x y ρ+=代入上式,得圆2C 的直角坐标方程为22(1)(1)2x y -+-=.(2)由(1)知圆1C 的圆心1C (1,1)--,半径1r a =;圆2C 的圆心2(1,1)C ,半径2r =12||C C == ∵圆1C 与圆2C 外切,a =a =即圆1C的极坐标方程为)4πρθ=-+, 将12πθ=代入1C,得sin()124ππρ=-+,得ρ= 将12πθ=代入2C,得cos()124ππρ=-,得ρ=故12||||AB ρρ=-=23.解:(1)此不等式等价于1,221(3)10,x x x ⎧<-⎪⎨⎪--+-≤⎩或13,221(3)10,x x x ⎧-≤≤⎪⎨⎪++-≤⎩或3,21310.x x x >⎧⎨++-≤⎩ 解得8132x -≤<-或132x -≤≤,或34x <≤, 即不等式的解集为8,43⎡⎤-⎢⎥⎣⎦. (2)∵0m >,0n >,2m n mn +=,21(2)2(2)28m n m n m n ++=⋅≤,即28m n +≥, 当且仅当2,2,m n m n mn =⎧⎨+=⎩即4,2m n =⎧⎨=⎩时取等号.∴()(2)|21||41|f m f n m n +-=++-+|(21)(41)|m n ≥+--+|24|m n =+2(2)16m n =+≥, 当且仅当410n -+≤,即14n ≥时取等号, ∴()(2)16f m f n +-≥.。

2019-2019唐山一中高三数学(理)一模试卷19.3.5 (2)

2019-2019唐山一中高三数学(理)一模试卷19.3.5 (2)

唐山市2018—2019学年度高三年级第一次模拟考试理科数学参考答案一.选择题:A 卷:CDBAA CDBAC BCB 卷:CDCAA CDBAB BC二.填空题: (13)-4(14)7(15)2π(16)332三.解答题: (17)解:(1)令n =1,得a 1+a 1=2,(a 1+2)(a 1-1)=0,得a 1=1, 所以S n =n ,即S n =n 2.当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=1适合上式, 所以a n =2n -1. …6分(2)b n =(-1)n -1•a n +1S n +n =(-1)n -1•2n +1n 2+n =(-1)n -1•(1n +1n +1)…8分当n 为偶数时,T n =b 1+b 2+…+b n=(1 1+ 1 2)-( 1 2+ 1 3)+( 1 3+ 1 4)-( 1 4+ 1 5)+…-(1n +1n +1)=1-1n +1=nn +1当n 为奇数时,T n =b 1+b 2+…+b n=(1 1+ 1 2)-( 1 2+ 1 3)+( 1 3+ 1 4)-( 1 4+ 1 5)+…+(1n +1n +1)=1+1n +1=n +2n +1综上所述,T n =⎩⎨⎧nn +1,(n 为偶数),n +2n +1,(n 为奇数). …12分另解:T n =b 1+b 2+…+b n=(1 1+ 1 2)-( 1 2+ 1 3)+( 1 3+ 1 4)-( 1 4+ 1 5)+…+(-1)n -1•(1n +1n +1)=1+(-1)n -1•1n +1=n +1+(-1)n -1n +1…12分(18)解:(1)因为E ,F 分别为AB ,AC 边的中点,所以EF ∥BC , 因为∠ABC =90°,所以EF ⊥BE ,EF ⊥PE , 又因为BE ∩PE =E ,所以EF ⊥平面PBE , 所以BC ⊥平面PBE . …5分 (2)取BE 的中点O ,连接PO ,由(1)知BC ⊥平面PBE ,BC ⊂平面BCFE ,所以平面PBE ⊥平面BCFE , 因为PB =BE =PE ,所以PO ⊥BE ,又因为PO ⊂平面PBE ,平面PBE ∩平面BCFE =BE ,所以PO ⊥平面BCFE . …7分(2)分别以OB ,OP 所在直线为x ,z 轴,过O 且平行BC 的直线为y 轴建立空间直角坐标系,则P (0,0,3) ,C (1,4,0), F (-1,2,0).PC →=(1,4,-3),PF →=(-1,2,-3)设平面PCF 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧PC →·m =0,PF →·m =0,即⎩⎪⎨⎪⎧x +4y -3z =0,-x +2y -3z =0, 则m =(-1,1,3),易知n =(0,1,0)为平面PBE 的一个法向量, cos 〈m ,n 〉=-1⨯0+1⨯1+3⨯0(-1)2+12+(3)2= 15=5 5, 所以平面PBE 与平面PCF 所成锐二面角的余弦值55. …12分 (19)解:(1)当k =1 2时,直线l :y =12(x +4)即x -2y +4=0.此时,直线l 与抛物线C 相切,由⎩⎨⎧x -2y +4=0y 2=2px得y 2-4py +8p =0,由∆=0即16p 2-32p =0,得p =2, 所以C 的方程为y 2=4x . …5分 (2)直线l :y =k (x +4),其中k ≠0,设A (x 1,y 1),B (x 2,y 2),联立⎩⎨⎧y =k (x +4)y 2=4x得:ky 2-4y +16k =0,由∆=16-64k 2>0知:k 2<14.根据韦达定理得:⎩⎪⎨⎪⎧y 1+y 2=4k ,y 1y 2=16, …①又A 为PB 的中点,得:y 1=12y 2, …②由①②得:k 2=29,符合∆>0,所以|AB |=(1+1k 2)[(y 1+y 2)2-4y 1y 2]=4(1+k 2)(1-4k 2)k 2=211. …12分 (20)解:(1)分层抽样.…2分 (2)将列联表中的数据代入公式计算得K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=200(40×50-100×10)2140×60×50×150≈3.175>2.706,所以有90%的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”. …6分 (3)以频率作为概率,从该小区随机选择1家企事业单位作为普查对象,入户登记顺利的概率为 4 5,随机选择1家个体经营户作为普查对象,入户登记顺利的概率为 23. X 可取0,1,2,3,4.P (X =0)=1 5×(1 3)3= 1 135, P (X =1)=4 5×(1 3)3+1 5×C 13×2 3×(1 3)2= 10135,P (X =2)=4 5×C 13× 2 3×(1 3)2+1 5×C 23×( 2 3)2×1 3= 36135,P (X =3)=4 5×C 23×( 2 3)2×1 3+1 5×(2 3)3= 56 135,P (X =4)=4 5×( 2 3)3= 32135.X 的分布列为:E (X )=0× 1 135+1× 10 135+2× 36 135+3× 56 135+4× 32 135=145.…12分(21)解:(1)由f (x )≥0得ax -ln x x ≥0,从而ax ≥ln x x ,即a ≥ln xx 2.…2分设g (x )=ln xx 2,则g '(x )=1-2ln x x 3,(x >0)所以0<x <e 时,g '(x )>0,g (x )单调递增;x >e 时,g '(x )<0,g (x )单调递减,所以当x =e 时,g (x )取得最大值g (e)=12e ,故a 的取值范围是a ≥12e . …6分(2)设y =f (x )的图像与y =a 相切于点(t ,a ),依题意可得⎩⎨⎧f (t )=a ,f '(t )=0.因为f '(x )=a -1-ln xx 2,所以⎩⎨⎧at -ln tt =a ,a -1-ln tt 2=0,消去a 可得t -1-(2t -1)ln t =0. …9分 令h (t )=t -1-(2t -1)ln t ,则h '(t )=1-(2t -1)·1t -2ln t =1t -2ln t -1, 显然h '(t )在(0,+∞)上单调递减,且h '(1)=0,所以0<t <1时,h '(t )>0,h (t )单调递增;t >1时,h '(t )<0,h (t )单调递减, 所以当且仅当t =1时h (t )=0. 故a =1. …12分 (22)解:(1)当α= π 2时,l :x =1;当α≠ π2时,l :y =tan α(x -1). 由ρsin 2θ=4cos θ得,ρ2sin 2θ=4ρcos θ,因为x =ρcos θ,y =ρsin θ,所以曲线C 的直角坐标方程y 2=4x . …5分(2)将直线l 的参数方程代入曲线C 的直角坐标方程得: (sin 2α)t 2-(4cos α)t -4=0,则t 1+t 2=4cos αsin 2α,t 1t 2=-4sin 2α,因为|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4sin 2α=8,所以sin α=22或-22,因为0<α<π,所以sin α=22,故α=π4或3π4. …10分 (23)解:(1)∵a ,b 是正实数,∴a +b ≥2ab , ∴ab ≤1, ∴(a +b )2=a +b +2ab ≤4, ∴a +b ≤2, 当且仅当a =b =1时,取“=”. …5分 (2)∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b ) 2=4, ∴a 2+b 2≥2,∴(a +b 3)(a 3+b )=a 4+b 4+a 3b 3+ab ≥a 4+b 4+2a 2b 2=(a 2+b 2) 2≥4,当且仅当⎩⎨⎧ a =b ,a 2b 2=1,即a =b =1时,取“=”. …10分高中数学公式及常用结论大全1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->-⇔11()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价0)()(21<k f k f ,或0)(1=k f 且22211k k a b k +<-<,或0)(2=k f 且22122k abk k <-<+.9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:()()()()card A B card B C card CA card ABC ---+(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p a bx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.真值表13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件. (2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2ba x +=;两个函数)(a x f y +=与)(xb f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=. (2)函数()y f x =图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=. 24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b fb a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=. (2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==. (5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂(1)m na=(0,,a m n N *>∈,且1n >).(2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)na =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r srsa a a r s Q =>∈.(3)()(0,0,)r r rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log aa a MM N N=-; (3)log log ()na a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验. 37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数.(2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a a m nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+. 39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<. (2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥. 45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=;212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=). 48.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-. 22tan tan 21tan ααα=-.49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+.55. 简单的三角方程的通解sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤.s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤. tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈. tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈. sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈. cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈. tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理 如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.61.a 与b 的数量积(或内积) a ·b =|a ||b |cos θ.a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式 ,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+. (3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=. (5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y . 70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式 22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大;当||y x -最小时,||y x +最小. (2)若和||y x +是定值,则当||y x -最大时, ||xy 最小;当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<;121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=; 80.夹角公式 (1)2121tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式 (1)2121tan 1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数. (2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直直线系方程0Bx Ay λ-+=,λ是参变量. 83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ). 87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线. (2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b +=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y ya b+=.(2)过椭圆22221(0)x y a b a b +=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b +=.(3)椭圆22221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是22222A aB b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y ya b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式 抛物线22(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x px p x CD ++=+++=212122. 101.抛物线px y 22=上的动点可设为P ),2(2y py 或或)2,2(2pt pt P P (,)x y ,其中 22y px =.102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-; (3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>.点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+.(3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =. 105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <. 当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =或1212|||AB x x y y ==-=-A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量. 117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB =⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD 共线且AB CD 、不共线⇔AB tCD =且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+.推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD x AB y AC =+⇔(1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++.121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++;123.设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r(其中θ(090θ<≤oo)为异面直线a b ,所成角,,a b r r分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin||||AB marc AB m β⋅=(m 为平面α的法向量).129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=.131.二面角l αβ--的平面角cos||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=. 133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,。

唐山市2018-2019学年度高三年级第一次模拟考试理科数学答案

唐山市2018-2019学年度高三年级第一次模拟考试理科数学答案

唐山市2018—2019学年度高三年级第一次模拟考试理科数学参考答案一.选择题:A 卷:CDBAA CDBAC BCB 卷:CDCAA CDBABBC二.填空题: (13)-4(14)7(15)2π(16)332三.解答题: (17)解:(1)令n =1,得a 1+a 1=2,(a 1+2)(a 1-1)=0,得a 1=1, 所以S n =n ,即S n =n 2.当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=1适合上式, 所以a n =2n -1. …6分(2)b n =(-1)n -1•a n +1S n +n =(-1)n -1•2n +1n 2+n=(-1)n -1•(1n +1n +1)…8分当n 为偶数时,T n =b 1+b 2+…+b n=(1 1+ 1 2)-( 1 2+ 1 3)+( 1 3+ 1 4)-( 1 4+ 1 5)+…-(1n +1n +1)=1-1n +1=nn +1当n 为奇数时,T n =b 1+b 2+…+b n=(1 1+ 1 2)-( 1 2+ 1 3)+( 1 3+ 1 4)-( 1 4+ 1 5)+…+(1n +1n +1)=1+1n +1=n +2n +1综上所述,T n =错误! …12分 另解:T n =b 1+b 2+…+b n=(1 1+ 1 2)-(1 2+ 1 3)+( 1 3+ 1 4)-( 1 4+ 1 5)+…+(-1)n -1•(1n +1n +1)=1+(-1)n -1•1n +1=n +1+(-1)n -1n +1…12分(18)解:(1)因为E ,F 分别为AB ,AC 边的中点, 所以EF ∥BC , 因为∠ABC =90°,所以EF ⊥BE ,EF ⊥PE , 又因为BE ∩PE =E , 所以EF ⊥平面PBE , 所以BC ⊥平面PBE . …5分 (2)取BE 的中点O ,连接PO ,由(1)知BC ⊥平面PBE ,BC ⊂平面BCFE , 所以平面PBE ⊥平面BCFE ,因为PB =BE =PE ,所以PO ⊥BE ,又因为PO ⊂平面PBE ,平面PBE ∩平面BCFE =BE , 所以PO ⊥平面BCFE . …7分 分别以OB ,OP 所在直线为x ,z 轴,过O 且平行BC 的直线为y 轴建立空间直角坐标系,则P (0,0,3) ,C (1,4,0), F (-1,2,0).PC →=(1,4,-3),PF →=(-1,2,-3)设平面PCF 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧PC →·m =0,PF →·m =0,即⎩⎪⎨⎪⎧x +4y -3z =0,-x +2y -3z =0,则m =(-1,1,3),易知n =(0,1,0)为平面PBE 的一个法向量, cos 〈m ,n 〉=-1⨯0+1⨯1+3⨯0(-1)2+12+(3) 2=1 5=55, 所以平面PBE 与平面PCF 所成锐二面角的余弦值55.…12分(19)解:(1)当k =1 2时,直线l :y = 12(x +4)即x -2y +4=0.此时,直线l 与抛物线C 相切,由⎩⎨⎧x -2y +4=0y 2=2px得y 2-4py +8p =0,由∆=0即16p 2-32p =0,得p =2, 所以C 的方程为y 2=4x . …5分(2)直线l :y =k (x +4),其中k ≠0,设A (x 1,y 1),B (x 2,y 2),联立⎩⎨⎧y =k (x +4)y 2=4x得:ky 2-4y +16k =0,由∆=16-64k 2>0知:k 2<14.根据韦达定理得:⎩⎪⎨⎪⎧y 1+y 2=4 k ,y 1y 2=16, …① 又A 为PB 的中点,得:y 1=12y 2,…②由①②得:k 2=29,符合∆>0,所以|AB |=(1+1k 2)[(y 1+y 2)2-4y 1y 2]=4(1+k 2)(1-4k 2)k 2=211. …12分 (20)解:(1)分层抽样.…2分 (2)将列联表中的数据代入公式计算得K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=200(40×50-100×10)2140×60×50×150≈3.175>2.706,所以有90%的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”. …6分 (3)以频率作为概率,从该小区随机选择1家企事业单位作为普查对象,入户登记顺利的概率为 4 5,随机选择1家个体经营户作为普查对象,入户登记顺利的概率为 23.X 可取0,1,2,3,4.P (X =0)=1 5×(1 3)3= 1135,P (X =1)=4 5×(1 3)3+1 5×C 13×2 3×(1 3)2= 10135, P (X =2)=4 5×C 13× 2 3×(1 3)2+1 5×C 23×(2 3)2×1 3= 36 135, P (X =3)=4 5×C 23×( 2 3)2×1 3+1 5×(2 3)3= 56 135, P (X =4)=4 5×( 2 3)3= 32 135.X E (X )=0× 1 135+1× 10 135+2× 36 135+3× 56 135+4× 32 135=145.…12分(21)解:(1)由f (x )≥0得ax -ln xx≥0,从而ax ≥ln x x ,即a ≥ln xx2.…2分设g (x )=ln xx 2,则g '(x )=1-2ln x x 3,(x >0)所以0<x <e 时,g '(x )>0,g (x )单调递增; x >e 时,g '(x )<0,g (x )单调递减,所以当x =e 时,g (x )取得最大值g (e)=12e,故a 的取值范围是a ≥12e.…6分(2)设y =f (x )的图像与y =a 相切于点(t ,a ),依题意可得⎩⎨⎧f (t )=a ,f '(t )=0.因为f '(x )=a -1-ln xx 2,所以⎩⎨⎧at -ln tt=a ,a -1-ln tt2=0,消去a 可得t -1-(2t -1)ln t =0. …9分令h (t )=t -1-(2t -1)ln t ,则h '(t )=1-(2t -1)·1t -2ln t =1t-2ln t -1,显然h '(t )在(0,+∞)上单调递减,且h '(1)=0, 所以0<t <1时,h '(t )>0,h (t )单调递增; t >1时,h '(t )<0,h (t )单调递减, 所以当且仅当t =1时h (t )=0. 故a =1. …12分(22)解:(1)当α= π2时,l :x =1;当α≠ π2时,l :y =tan α(x -1).由ρsin 2θ=4cos θ得,ρ2sin 2θ=4ρcos θ, 因为x =ρcos θ,y =ρsin θ,所以曲线C 的直角坐标方程y 2=4x . …5分(2)将直线l 的参数方程代入曲线C 的直角坐标方程得: (sin 2α)t 2-(4cos α)t -4=0,则t 1+t 2=4cos αsin 2α,t 1t 2=-4sin 2α,因为|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4sin 2α=8,所以sin α=22或-22,因为0<α<π,所以sin α=22,故α= π4或3π4.…10分(23)解:(1)∵a ,b 是正实数,∴a +b ≥2ab , ∴ab ≤1,∴(a +b )2=a +b +2ab ≤4, ∴a +b ≤2,当且仅当a =b =1时,取“=”. …5分(2)∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b ) 2=4, ∴a 2+b 2≥2,∴(a +b 3)(a 3+b )=a 4+b 4+a 3b 3+ab ≥a 4+b 4+2a 2b 2=(a 2+b 2) 2≥4,当且仅当⎩⎨⎧ a =b ,a 2b 2=1,即a =b =1时,取“=”.…10分。

河北省唐山市2018届高三第一次模拟考试数学(理)试题(图片版)

河北省唐山市2018届高三第一次模拟考试数学(理)试题(图片版)

唐山市2017—2018学年度高三年级第一次模拟考试理科数学参考答案一.选择题:A 卷:DCBDADCCAB DB B 卷:ACBDDDCAAB DB 二.填空题:(13)-5(14)-160 (15) 3 2 (16)[2,22] 三.解答题:(17)解:(Ⅰ)当n =1时,2S 1=2a 1=a 21+1,所以(a 1-1)2=0,即a 1=1,又{a n }为单调递增数列,所以a n ≥1.…2分 由2S n =a 2n +n 得2S n +1=a 2 n +1+n +1,所以2S n +1-2S n =a 2 n +1-a 2n +1,整理得2a n +1=a 2 n +1-a 2n +1,所以a 2n =(a n +1-1)2.所以a n =a n +1-1,即a n +1-a n =1,所以{a n }是以1为首项,1为公差的等差数列,所以a n =n .…6分 (Ⅱ)b n =a n +22n +1·a n ·a n +1=n +22n +1·n ·(n +1)=12n ·n -12n +1·(n +1)…9分 所以T n =(121·1-122·2)+(122·2-123·3)+…+[12n ·n -12n +1·(n +1)] =121·1-12n +1·(n +1)< 1 2. …12分(18)解:(Ⅰ)由频率分布直方图可知,日销售量不低于350公斤的概率为(0.0025+0.0015)×100=0.4,则未来连续三天内,有连续两天的日销售量不低于350公斤,而另一天日销售量低于350公斤的概率P =0.4×0.4×(1-0.4)+(1-0.4)×0.4×0.4=0.192. …3分(Ⅱ)(ⅰ)X 可取100,200,300,400,500,P (X =100)=0.0010×10=0.1; P (X =200)=0.0020×10=0.2;P (X =300)=0.0030×10=0.3; P (X =400)=0.0025×10=0.25;P (X =500)=0.0015×10=0.15;所以X…6分 (ⅱ)当每日进货300公斤时,利润Y 1可取-100,700,1500,此时Y 1的分布列为:此时利润的期望值E (Y 1)180;…8分当每日进货400公斤时,利润Y 2可取-400,400,1200,2000,此时Y 2的分布列为:此时利润的期望值E (Y 2×0.4=1200; …10分 因为E (Y 1)<E (Y 2),所以该经销商应该选择每日进货400公斤. …12分(19)解:(Ⅰ)过点B 1作A 1C 的垂线,垂足为O ,由平面A 1B 1C ⊥平面AA 1C 1C ,平面A 1B 1C ∩平面AA 1C 1C =A 1C ,得B 1O ⊥平面AA 1C 1C ,又AC ⊂平面AA 1C 1C ,得B 1O ⊥AC .由∠BAC =90°,AB ∥A 1B 1,得A 1B 1⊥AC .又B 1O ∩A 1B 1=B 1,得AC ⊥平面A 1B 1C .又CA 1⊂平面A 1B 1C ,得AC ⊥CA 1. …4分(Ⅱ)以C 为坐标原点,CA →的方向为x 轴正方向,|CA →|为单位长,建立空间直角坐标系C -xyz .由已知可得A (1,0,0),A 1(0,2,0),B 1(0,1,3).所以CA →=(1,0,0),AA 1→=(-1,2,0),AB →=A 1B 1→=(0,-1,3). …6分设n =(x ,y ,z )是平面A 1AB 的法向量,则⎩⎪⎨⎪⎧n ·AA 1→=0,n ·AB →=0,即⎩⎨⎧-x +2y =0,-y +3z =0. 可取n =(23,3,1). …8分设m =(x ,y ,z )是平面ABC 的法向 量,则⎩⎪⎨⎪⎧m ·AB →=0,m ·CA →=0,即⎩⎨⎧-y +3z =0,x =0. 可取m =(0,3,1). …10分则cos 〈n ,m 〉=n ·m |n ||m |= 1 2. 又因为二面角A 1-AB -C 为锐二面角,所以二面角A 1-AB -C 的大小为 π 3. …12分(20)解:(Ⅰ)依题意得A (0,b ),F (-c ,0),当AB ⊥l 时,B (-3,b ),由AF ⊥BF 得k AF ·k BF = b c · b -3+c=-1,又b 2+c 2=6. 解得c =2,b =2.所以,椭圆Γ的方程为x 26+y 22=1. …4分 (Ⅱ)由(Ⅰ)得A (0,2),依题意,显然m ≠0,所以k AM =-2m , 又AM ⊥BM ,所以k BM =m 2,所以直线BM 的方程为y =m 2(x -m ), 设P (x 1,y 1),Q (x 2,y 2).y =m 2(x -m )与x 26+y 22=1联立得(2+3m 2)x 2-6m 3x +3m 4-12=0, x 1+x 2=6m 32+3m 2,x 1x 2=3m 4-122+3m 2. …7分 |PM |·|QM |=(1+m 22)|(x 1-m )(x 2-m )| =(1+m 22)|x 1x 2-m (x 1+x 2)+m 2| =(1+m 22)·|2m 2-12|2+3m 21=(2+m 2)|m 2-6|2+3m 2, |AM |2=2+m 2,…9分 由AP ⊥AQ 得,|AM |2=|PM |·|QM |,所以|m 2-6|2+3m 2=1,解得m =±1. …12分(21)解:(Ⅰ)F '(x )=(x +1)e x -1,当x <-1时,F '(x )<0,F (x )单调递减;当x >-1时,F '(x )>0,F (x )单调递增, 故x =-1时,F (x )取得最小值F (-1)=-1e 2. …4分 (Ⅱ)因为f '(x )=e x -1,所以f (x )=e x -1在点(t ,e t -1)处的切线为y =e t -1x +(1-t )e t -1; …5分因为g '(x )= 1 x, 所以g (x )=ln x +a 在点(m ,ln m +a )处的切线为y = 1 mx +ln m +a -1, …6分 由题意可得⎩⎪⎨⎪⎧e t -1= 1 m ,(1-t )e t -1=ln m +a -1,则(t -1)e t -1-t +a =0. …7分令h (t )=(t -1)e t -1-t +a ,则h '(t )=t e t -1-1由(Ⅰ)得t <-1时,h '(t )单调递减,且h '(t )<0;当t >-1时,h '(t )单调递增,又h '(1)=0,t <1时,h '(t )<0,所以,当t <1时,h '(t )<0,h (t )单调递减;当t >1时,h '(t )>0,h (t )单调递增. …9分由(Ⅰ)得h (a -1)=(a -2)e a -2+1≥- 1 e+1>0, …10分 又h (3-a )=(2-a )e 2-a +2a -3>(2-a )(3-a )+2a -3=(a -32)2+34>0, …11分 h (1)=a -1<0,所以函数y =h (t )在(a -1,1)和(1,3-a )内各有一个零点, 故当a <1时,存在两条直线与曲线f (x )与g (x )都相切. …12分 (22)解:(Ⅰ)由x =ρcos θ,y =ρsin θ可得,C 1:ρ2cos 2θ+ρ2sin 2θ-2ρcos θ+1=1,所以ρ=2cos θ;C 2:ρ2cos 2θ+ρ2sin 2θ-6ρcos θ+9=9,所以ρ=6cos θ.…4分 (Ⅱ)依题意得|AB |=6cos α-2cos α=4cos α,- π 2<α< π 2, C 2(3,0)到直线AB 的距离d =3|sin α|,所以S △ABC 2= 1 2×d ×|AB |=3|sin 2α|, 故当α=± π 4时,S △ABC 2取得最大值3. …10分(23)解:(Ⅰ)f (x )=|x +1|-|x |=⎩⎪⎨⎪⎧-1,x ≤-1,2x +1,-1<x <1,1, x ≥1, 由f (x )的单调性可知,当x ≥1时,f (x )有最大值1.所以m =1.…4分(Ⅱ)由(Ⅰ)可知,a +b =1,a 2b +1+b 2a +1= 1 3(a 2b +1+b 2a +1)[(b +1)+(a +1)]= 1 3[a 2+b 2+a 2(a +1)b +1+b 2(b +1)a +1]≥ 1 3(a 2+b 2+2a 2(a +1)b +1·b 2(b +1)a +1)= 13(a +b )2= 1 3.当且仅当a =b = 12时取等号.即a 2b +1+b 2a +1的最小值为 13. …10分。

推荐-唐山市2018—2018年度高三摸底考试数学试题(理)精品

推荐-唐山市2018—2018年度高三摸底考试数学试题(理)精品

最小值分别是
()
A.3 和 5
B.5 和 5
C. 3 和 3
D.4 和 3
6.已知函数 f (x), g( x) 均在( a, b)内可导,在 [ a, b] 上连续,且 f (x ) g ( x), f (a ) g( a) ,
则在 ( a, b)上有
A . f(x) 与 g(x) 大小关系不确定 C. f(x) =g(x)
A . 3:1
B. 3:1
C. 3 : 2
D. 2 : 3
4.在数列 an 中, a1 15,3an 1 3an 2(n N*), 则该数列中相邻两项的乘积是负数的是
A . a21 a22
B . a22 a23
C. a23 a24
()
D. a24 a25
5.已知 |AB|=4 , M 是 AB 的中点,点 P 在平面内运动且保持 |PA|+|PB|=6,则 |PM|的最大值和
2
D.0
12.已知复数 z1
2 i, z2
1
2i ,则复数
z1 在复平面内对应的点位于 z22
()
A .第一象限
B .第二象限
C.第三象限
D .第四象限
第Ⅱ卷 (非选择题 共 90 分)
二、填空题 (本大题共 4 小题,每小题 4 分,共 16 分。把答案填写在题中横线上。 )
13.利用简单的随机抽样从含有 60 个个体的总体中抽取容量为 15 的样本,则总体中每个个
唐山市 2018 ~ 2018学年度高三年级摸底考试
数学试卷(理科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共
150 分,考试时间 120 分钟。
第Ⅰ卷 (选择题,共 60 分)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

唐山市2017-2018学年度高三年级第一次模拟考试理科数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2(1)i i-=( ) A .22i -+B .22i + C .22i -- D .22i -2.设集合2{|0}M x x x =->,1|1N x x ⎧⎫=<⎨⎬⎩⎭,则( ) A .M N ØB .N M ØC .M N =D .M N R = 3.已知1tan 2α=-,且(0,)απ∈,则sin 2α=( ) A .45B .45-C .35D .35- 4.两个单位向量a ,b 的夹角为120,则2a b += ( )A .2B .3C 5.用两个1,一个2,一个0,可组成不同四位数的个数是( ) A .18 B .16 C .12D .9 6.已知233a -=,432b -=,ln 3c =,则( )A .a c b <<B .a b c <<C .b c a <<D .b a c <<7. 如图是根据南宋数学家杨辉的“垛积术”设计的程序框图,该程序所能实现的功能是( )A .求135...(21)n ++++-B .求135...(21)n +++++C .求2222123n +++⋅⋅⋅+D .求2222123(1)n +++⋅⋅⋅++8.为了得到函数5sin 6y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数sin y x =的图象( ) A .向左平移6π个单位长度 B .向右平移3π个单位长度 C .向右平移6π个单位长度 D .向左平移3π个单位长度 9. 某几何体的三视图如图所示,则该几何体的表面积是( )A .5+.9C .6+.5310.已知F 为双曲线C :22221x y a b-=(0,0)a b >>的右焦点,过点F 向C 的一条渐近线引垂线,垂足为A ,交另一条渐近线于点B .若OF FB =,则C 的离心率是( )A .2.3C .2 11. 已知函数2()2cos f x x x x =-,则下列关于()f x 的表述正确的是( ) A .()f x 的图象关于y 轴对称 B .0x R ∃∈,()f x 的最小值为1- C .()f x 有4个零点 D .()f x 有无数个极值点12.已知P ,A ,B ,C 是半径为2的球面上的点,2PA PB PC ===,90ABC ∠=,点B 在AC 上的射影为D ,则三棱锥P ABD -体积的最大值是( )AC .12D 二、填空题:本题共4小题,每小题5分,共20分.13. 设x ,y 满足约束条件0230210x y x y x y -≥⎧⎪+-≤⎨⎪--≤⎩,则23z x y =+的最小值是.14.6(21)x -的展开式中,二项式系数最大的项的系数是.(用数字作答)15. 已知P 为抛物线2y x =上异于原点O 的点,PQ x ⊥轴,垂足为Q ,过PQ 的中点作x 轴的平行线交抛物线于点M ,直线QM 交y 轴于点N ,则PQ NO=.16.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,AB 边上的高为h ,若2c h =,则a bb a+的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第(22)、(23)题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知数列{}n a 为单调递增数列,n S 为其前n 项和,22n n S a n =+. (1)求{}n a 的通项公式; (2)若2112n n n n n a b a a +++=⋅⋅,nT 为数列{}n b 的前n 项和,证明:12n T <. 18.某水产品经销商销售某种鲜鱼,售价为每公斤20元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失3元.根据以往的销售情况,按[50,150),[150,250),[250,350),[350,450),[450,550]进行分组,得到如图所示的频率分布直方图.(1)求未来连续三天内,该经销商有连续两天该种鲜鱼的日销售量不低于350公斤,而另一天日销售量低于350公斤的概率;(2)在频率分布直方图的需求量分组中,以各组区间的中点值代表该组的各个值. (i )求日需求量X 的分布列;(ii )该经销商计划每日进货300公斤或400公斤,以每日利润Y 的数学期望值为决策依据,他应该选择每日进货300公斤还是400公斤?19.如图,在三棱柱111ABC A B C -中,平面11A B C ⊥平面11AAC C ,90BAC ∠=.(1)证明:1AC CA ⊥;(2)若11A BC ∆是正三角形,22AB AC ==,求二面角1A AB C --的大小.20.已知椭圆Γ:22221x y a b+=(0)a b >>的左焦点为F ,上顶点为A ,长轴长为B 为直线l :3x =-上的动点,(,0)M m ,AM BM ⊥.当AB l ⊥时,M 与F 重合. (1)若椭圆Γ的方程;(2)若直线BM 交椭圆Γ于P ,Q 两点,若AP AQ ⊥,求m 的值. 21.已知函数1()x f x e-=,()ln g x x a =+.(1)设()()F x xf x =,求()F x 的最小值;(2)证明:当1a <时,总存在两条直线与曲线()y f x =与()y g x =都相切.(二)选考题:共10分.请考生在(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆1C :22(1)1x y -+=,圆2C :22(3)9x y -+=.以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求1C ,2C 的极坐标方程; (2)设曲线3C :cos sin x t y t αα=⎧⎨=⎩(t 为参数且0t ≠),3C 与圆1C ,2C 分别交于A ,B ,求2ABC S ∆的最大值.23.选修4-5:不等式选讲设函数()1f x x x =+-的最大值为m . (1)求m 的值;(2)若正实数a ,b 满足a b m +=,求2211a b b a +++的最小值.唐山市2017—2018学年度高三年级第一次模拟考试理科数学参考答案一.选择题:A 卷:DCBDA DCCAB DB B 卷:ACBDD DCAAB DB 二.填空题: (13)-5 (14)-160(15)32(16)[2,22]三.解答题: (17)解:(Ⅰ)当n =1时,2S 1=2a 1=a 21+1,所以(a 1-1)2=0,即a 1=1, 又{a n }为单调递增数列,所以a n ≥1.…2分由2S n =a 2n +n 得2S n +1=a 2n +1+n +1,所以2S n +1-2S n =a 2n +1-a 2n +1, 整理得2a n +1=a 2n +1-a 2n +1,所以a 2n =(a n +1-1)2. 所以a n =a n +1-1,即a n +1-a n =1,所以{a n }是以1为首项,1为公差的等差数列,所以a n =n .…6分(Ⅱ)b n =a n +22n +1²a n ²a n +1=n +22n +1²n ²(n +1)=12n ²n -12n +1²(n +1)…9分所以T n =(121²1-122²2)+(122²2-123²3)+…+[12n ²n -12n +1²(n +1)]=121²1-12n +1²(n +1)<12.…12分(18)解:(Ⅰ)由频率分布直方图可知,日销售量不低于350公斤的概率为(0.0025+0.0015)³100=0.4,则未来连续三天内,有连续两天的日销售量不低于350公斤,而另一天日销售量低于350公斤的概率P =0.4³0.4³(1-0.4)+(1-0.4)³0.4³0.4=0.192. …3分 (Ⅱ)(ⅰ)X 可取100,200,300,400,500,P (X =100)=0.0010³10=0.1; P (X =200)=0.0020³10=0.2; P (X =300)=0.0030³10=0.3; P (X =400)=0.0025³10=0.25;P (X =500)=0.0015³10=0.15;所以X 的分布列为:…6分(ⅱ)当每日进货300公斤时,利润Y 1可取-100,700,1500, 此时Y 1的分布列为:此时利润的期望值E (Y 1)=-; …8分 当每日进货400公斤时,利润Y 2可取-400,400,1200,2000,此时Y 2的分布列为:此时利润的期望值E (Y 2)0.4 =1200;…10分因为E (Y 1)<E (Y 2),所以该经销商应该选择每日进货400公斤.…12分(19)解:(Ⅰ)过点B 1作A 1C 的垂线,垂足为O ,由平面A 1B 1C ⊥平面AA 1C 1C ,平面A 1B 1C ∩平面AA 1C 1C =A 1C , 得B 1O ⊥平面AA 1C 1C ,又AC 平面AA 1C 1C ,得B 1O ⊥AC . 由∠BAC =90°,AB ∥A 1B 1,得A 1B 1⊥AC . 又B 1O ∩A 1B 1=B 1,得AC ⊥平面A 1B 1C . 又CA 1 平面A 1B 1C ,得AC ⊥CA 1.…4分(Ⅱ)以C 为坐标原点,CA →的方向为x 轴正方向,|CA →|为单位长,建立空间直角坐标系C -xyz . 由已知可得A (1,0,0),A 1(0,2,0),B 1(0,1,3).所以CA →=(1,0,0),AA 1→=(-1,2,0),AB →=A 1B 1→=(0,-1,3). …6分 设n =(x ,y ,z )是平面A 1AB 的法向量,则⎩⎨⎧n ²AA 1→=0,n ²AB →=0,即⎩⎨⎧-x +2y =0,-y +3z=0. 可取n =(23,3,1). …8分 设m =(x ,y ,z )是平面ABC 的法向量,则1⎩⎨⎧m ²AB →=0,m ²CA →=0,即⎩⎨⎧-y +3z =0,x =0. 可取m =(0,3,1).…10分则cos n ,m =n ²m |n ||m |=12.又因为二面角A 1-AB -C 为锐二面角, 所以二面角A 1-AB -C 的大小为3.…12分(20)解:(Ⅰ)依题意得A (0,b ),F (-c ,0),当AB ⊥l 时,B (-3,b ), 由AF ⊥BF 得k AF ²k BF = b c ² b -3+c =-1,又b 2+c 2=6.解得c =2,b =2.所以,椭圆Γ的方程为x 26+y 22=1.…4分(Ⅱ)由(Ⅰ)得A (0,2),依题意,显然m ≠0,所以k AM =-2m,又AM ⊥BM ,所以k BM =m2,所以直线BM 的方程为y =m2(x -m ), 设P (x 1,y 1),Q (x 2,y 2).y =m2(x -m )与x 26+y 22=1联立得(2+3m 2)x 2-6m 3x +3m 4-12=0,x 1+x 2=6m 32+3m 2,x 1x 2=3m 4-122+3m2.…7分|PM |²|QM |=(1+m 22)|(x 1-m )(x 2-m )|=(1+m 22)|x 1x 2-m (x 1+x 2)+m 2|=(1+m 22)²|2m 2-12|2+3m 2=(2+m 2)|m 2-6|2+3m2, |AM |2=2+m 2,…9分由AP ⊥AQ 得,|AM |2=|PM |²|QM |, 所以|m 2-6|2+3m 2=1,解得m =±1.…12分(21)解:(Ⅰ)F (x )=(x +1)ex -1,当x <-1时,F (x )<0,F (x )单调递减; 当x >-1时,F (x )>0,F (x )单调递增, 故x =-1时,F (x )取得最小值F (-1)=-1e 2.…4分(Ⅱ)因为f (x )=e x -1,所以f (x )=ex -1在点(t ,e t -1)处的切线为y =et -1x +(1-t )e t -1;…5分因为g (x )=1x,所以g (x )=ln x +a 在点(m ,ln m +a )处的切线为y =1mx +ln m +a -1, …6分由题意可得⎩⎪⎨⎪⎧e t -1=1m ,(1-t )e t -1=ln m +a -1,则(t -1)e t -1-t +a =0.…7分令h (t )=(t -1)et -1-t +a ,则h (t )=t et -1-1由(Ⅰ)得t <-1时,h (t )单调递减,且h (t )<0;当t >-1时,h (t )单调递增,又h (1)=0,t <1时,h (t )<0, 所以,当t <1时,h (t )<0,h (t )单调递减; 当t >1时,h (t )>0,h (t )单调递增. …9分由(Ⅰ)得h (a -1)=(a -2)e a -2+1≥-1e+1>0,…10分又h (3-a )=(2-a )e2-a+2a -3>(2-a )(3-a )+2a -3=(a -32)2+34>0, …11分h (1)=a -1<0,所以函数y =h (t )在(a -1,1)和(1,3-a )内各有一个零点,故当a <1时,存在两条直线与曲线f (x )与g (x )都相切.…12分(22)解:(Ⅰ)由x =ρcos θ,y =ρsin θ可得,C 1:ρ2cos 2θ+ρ2sin 2θ-2ρcos θ+1=1,所以ρ=2cos θ; C 2:ρ2cos 2θ+ρ2sin 2θ-6ρcos θ+9=9,所以ρ=6cos θ.…4分(Ⅱ)依题意得|AB |=6cos α-2cos α=4cos α,-2<α<2, C 2(3,0)到直线AB 的距离d =3|sin α|,所以S △ABC 2=12³d ³|AB |=3|sin 2α|,故当α=±4时,S △ABC 2取得最大值3.…10分(23)解:(Ⅰ)f (x )=|x +1|-|x |=⎩⎪⎨⎪⎧-1,x ≤-1,2x +1,-1<x <1,1,x ≥1,由f (x )的单调性可知,当x ≥1时,f (x )有最大值1. 所以m =1.…4分(Ⅱ)由(Ⅰ)可知,a +b =1,a 2b +1+b 2a +1=13(a 2b +1+b2a +1)[(b +1)+(a +1)] =13[a 2+b 2+a 2(a +1)b +1+b 2(b +1)a +1] ≥13(a 2+b 2+2a 2(a +1)b +1²b 2(b +1)a +1) =13(a +b )2 =13. 当且仅当a =b =12时取等号.即a 2b +1+b 2a +1的最小值为13. …10分。

相关文档
最新文档