(完整版)高等代数II期末考试试卷及答案A卷

合集下载

高数A_2_期末综合测试2参考答案

高数A_2_期末综合测试2参考答案

高等数学A 2期末期末综合测试综合测试综合测试((二)参考答案参考答案一、填空填空、、选择题选择题((27%)1.曲面z xy =在点()122,,处的法线方程是122.211x y z −−−==−−. 2. 已知D 是由直线1,10x y x y x +=−==及所围,则(1) 1 .Dy d σ+=∫∫ 3. 若曲线L 是221x y +=在第一象限的部分,则 1 .Lxds =∫4. 设(,)ln ,2y f x y x x=+则22(1,0)1.4f y ∂=−∂5. 设函数322(,)42f x y x x xy y =−+−,则下列说法正确的是【 B 】(A) 点()2,2是(),f x y 的极小值点; (B) 点()0,0是(),f x y 的极大值点;(C) 点()2,2不是(),f x y 的驻点; (D) ()0,0f 不是(),f x y 的极值。

6. 函数22(,)f x y x y =+在点()11,处沿着下列哪个方向的方向导数最大?( A )(A) ()11,; (B) ()21,; (C) ()01,; (D) ()10, 7. 曲线L 为沿22=4x y +顺时针方向一周.则()12Lxdy ydx C −=∫ (A)2π−; (B) 4π; (C) 4π−; (D) 0.8.积分()10,y dy f x y dx =∫( A )(A)()210,x x dx f x y dy ∫∫; (B) ()21,xx dx f x y dy ∫∫; (C) ()10,xdx f x y dy ∫∫; (D) ()210,x dx f x y dy ∫.注意注意::()()110,,(01)y ydy f x y dx dy f x y dx y if y =−≤≤≤∫∫∫9.下列级数中条件收敛的是( B )(A)1211(1)sin n n n ∞+=−∑; (B)1(1)n n ∞=−∑;(C)1)1(1+−∑∞=n n n n; (D))1(1)1(1+−∑∞=n n n n .二、解答题(24分) 1. 设函数()22ln ,yxz x ye=++求()1,0.dz解:22222221,;yyxxz x y z y e e x x y xy x y x∂∂=−=+∂+∂+所以()1,02d d .dz x y =+ 2. 设sin ,,2,uz e v u xy v x y ===−求,.z z x y∂∂∂∂解:sin(2),xyz e x y =− [sin(2)cos(2)],[sin(2)2cos(2)].xy xy z z e y x y x y e x x y x y x y∂∂=−+−=−−−∂∂ 3.设(),xyz f e y = 求2,.z z x x y∂∂∂∂∂解:12;xy z ye f f x ∂′′=+∂21111222122(1)())xy xy xy xy z xy e f ye xe f yf f xe f yf x y ∂′′′′′′′′′′=+++++∂∂212112122sin sin (1)(cos cos 22xy xy xy y yxy e f f xye f y y f yf ′′′′′′′′=++++++ 4. 设方程sin y ze x z e +−=确定隐函数(),z z x y =,求()()0,10,1,.z z x y ∂∂∂∂解法一:由0,1x y ==得,0z =;(,,)sin F sin ,F ,F cos ;y z y z y z x y z F x y z e x z e z e e x z +++=−−=−==−设,则(0,1)(0,1)(0,1)(0,1)(0,1)(0,1)F F sin 0, 1.F cos F cos y zy xy zy z zzzzze x e x zy e x z +++∂∂=−===−=−=−∂−∂−解法二解法二::首先由0,1x y ==得,0z =,对sin y ze x z e +−=两边求全微分得,()sin cos 0y z e dy dz zdx x zdz ++−−=,将0,1,0x y z ===代入,得 []0(0,1)100x y dy dz dz dx dy ==+=⇒=−,所以(0,1)(0,1)0, 1.zzx y∂∂==−∂∂三、计算计算题题(30分)1.求(2d d ,D x y ∫∫ 其中22: 4.D x y +≤解:(2282d d d (2)d .3Dx y πθρρρπ−=−⋅=∫∫∫∫2. 求,zdv Ω∫∫∫其中Ω是球面z =0z =所围成的闭区域。

高等数学a2期末考试题及答案

高等数学a2期末考试题及答案

高等数学a2期末考试题及答案一、选择题(每题5分,共20分)1. 下列函数中,哪一个是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = x^2 - 2x答案:A2. 计算极限lim(x→0) [sin(x)/x] 的值是多少?A. 0B. 1C. 2D. 3答案:B3. 微分方程 y'' - 2y' + y = 0 的通解是?A. y = e^x + e^(-x)B. y = e^(2x) + e^(-2x)C. y = e^x + e^(-x) + xD. y = e^(2x) + e^(-2x) + x答案:A4. 积分∫(0 to 1) x^2 dx 的值是多少?A. 1/3B. 1/2C. 2/3D. 3/4答案:B二、填空题(每题5分,共20分)1. 设函数 f(x) = 3x - 2,求 f'(x) = _______。

答案:32. 函数 y = ln(x) 的导数是 _______。

答案:1/x3. 计算定积分∫(1 to 2) (x^2 - 3x) dx = _______。

答案:-14. 求函数 y = e^(-x) 的不定积分 _______。

答案:-e^(-x)三、解答题(每题15分,共30分)1. 求函数 y = x^3 - 6x^2 + 11x - 6 的极值点。

答案:首先求导数 y' = 3x^2 - 12x + 11。

令 y' = 0,解得 x = 1 和 x = 11/3。

然后计算二阶导数 y'' = 6x - 12,代入 x = 1 得到y''(1) = -6 < 0,所以 x = 1 是极大值点;代入 x = 11/3 得到y''(11/3) = 2 > 0,所以 x = 11/3 是极小值点。

《高等代数与解析几何(下) 》期末考试试卷(A 卷)

《高等代数与解析几何(下) 》期末考试试卷(A 卷)

6.(10 分) 用非退化线性替换将二次型
化为标准型.
q(x1, x2 , x3 ) = x12 − 2x1x3 + x22 + 2x2 x3 − x32
7.(13 分)设V1 与V2 分别是齐次线性方程组 x1 + x2 + + xn = 0 与 x1 = x2 = = xn
的解空间,证明 K n = V1 ⊕V2 .
5 5 λ+7 5 5 λ+7故特征向量为 Nhomakorabea2 和 3.
………………5 分
⎛ −1⎞ ⎛ −1⎞
当 λ1
=
−2 时,特征向量η1
=
⎜ ⎜
1
⎟ ⎟
,η2
=
⎜ ⎜
0
⎟ ⎟
.
⎜⎝ 0 ⎟⎠
⎜⎝ 1 ⎟⎠
………………2 分
⎛ −1⎞
当 λ2
=
3 时,特征向量η3
=
⎜ ⎜
−1⎟⎟ .
⎜⎝ 1 ⎟⎠
………………2 分
命题共 2 页第 1 页
三.解答题:(共 80 分)
⎛3 5 5⎞
1.(15 分)

A
=
⎜ ⎜ ⎜⎝
5 −5
3 −5
5
⎟ ⎟
,问矩阵
A 是否可以相似于一个对角矩阵,若可
−7 ⎟⎠
以,求一个可逆矩阵T ,使T −1AT 为对角形矩阵.
2.(10 分) 求单叶双曲面 x2 + y2 − z2 = 1上过点(-3,-2,4)的直母线的方程. 9 4 16

阵.
4. n 维线性空间V 的线性变换 A 在某个基下的矩阵为对角矩阵的充要条件是 A

湖北工程学院高等代数(二)期末试题(A)及答案

湖北工程学院高等代数(二)期末试题(A)及答案

得分 阅卷人 三、填空题: 27-29 小题, 每小题 2 分, 共 20 分.
17. 设 dim V1 = 4, dim V2 = 3,dim(V1 ∩ V2) = 2, 则 dim(V1 + V2) =
.
18. 设向量 ξ 在基 ε1, ε2, ε3 下的坐标为 (x1, x2, x3), 则 ξ 在基 ε1 + ε2, ε2, ε3 下的坐
解1二次型的矩阵为a??????a?1?1?1?1?1a?1a??????2分则二次型fx1x2x2是正定?a的所有顺序主子式全大于零即得a0a2?10a?2a120解之得a2
..........................密 ..........................封 ..........................线 ..........................
为 α2 = (−1, 1, 0) , α3 = (−1, 0, 1) . 经过施密特正交化过程后, 求出正交矩阵 T 为
T
=
√1 3
√1 3
√1 3

√1 2
√1 2
0

√1 6

√1 6
√2 6
则二次型 f (x1, x2, x2) 在线性替换 X = T Y 下化为标准型 3y22 + 3y32.· · · · · · · · · · · · · · · · · · ( 8 分 )
9. ×;
10. ×.
二、单项选择题: 11-16 小题, 每小题 3 分, 共 18 分. 11. (B); 12. (B); 13. (B); 14. (B); 15. (B); 16. (B).

(完整word版)高等代数(二)期末考试样卷

(完整word版)高等代数(二)期末考试样卷

《高等代数(二)》期末考试样卷一、选择题(本大题有一项是符合题目要求的)1. 若σ是F 上向量空间V 的一个线性变换,则下列说法∙∙误错的是( )A.)()()(,,βσασβασβα+=+∈∀VB.0)0(=σC.)()(,,ασασαk k F k V =∈∈∀D.0)0(≠σ2.若},,{21s ααα 和},,{21t βββ 是两个等价的线性无关的向量组,则( ) A.t s > B. t s < C. t s = D.以上说法都不对 3.向量空间2F [x]的维数是( )A. 0B. 1C. 2D. 3 4.一个线性变换关于两个基的矩阵是( )A.正定的B.相似的C.合同的D.对称的 5.如果两个向量βα与正交,则下列说法正确的是( ) A. ><βα, > 0 B. ><βα, < 0 C. ><βα, = 0 D. ><βα, ≠ 06.设σ是欧氏空间V 的正交变换, 任意α,β∈V, 下列正确的是( ) A.<α,β > = <σ(α),β> B.<α,β> = <α,σ(β)> C.<α,β> = <σ(α), σ(β)> D. <α,β> = -<σ(α),σ(β)>7.如果n 元齐次线性方程组AX =0的系数矩阵的秩为r,那么它的解空间的 维数为( )A 、n-rB 、nC 、rD 、n+r 8.设21,W W 是向量空间V 的两个子空间,则下列说法正确的是( ) ①21W W +是向量空间V 的子空间 ②21W W +不是向量空间V 的子空间③21W W 是向量空间V 的子空间 ④21W W 不是向量空间V 的子空间 ⑤21W W 是向量空间V 的子空间 ⑥21W W 不一定是向量空间V 的子空间 A. ①③⑤ B. ②④⑥ C. ①③⑥ D. ②④⑤ 9.设σ是数域F 上向量空间V 的线性变换,W 是V 的子空间,如果对于W 中的任意向量ξ,有W ∈)(ξσ,则称W 是σ的 ( )A.非平凡子空间B.核子空间C.不变子空间D.零子空间10.欧氏空间的度量矩阵一定是( )A.正交矩阵B.上三角矩阵C. 下三角矩阵D. 正定矩阵 二、填空题(共10小题,每小题3分,共30分。

高等代数(下)期末考试 A 卷解答

高等代数(下)期末考试 A 卷解答

五、证明题 3. (本题13分) 设 A 是欧氏空间V 的一个变换, 并且对任意
V , 有 A (,). V , 1
(1) 证明: A 是 V的一个线性变换.
(2) 当 取何值时, A 是 V的一个正交变换?
(1) 证明:对于 , V , k R, 由于 A ( ) ( ) ( , ) ( ) ( , ) (, ) [ ( , ) ] [ (, ) ] 以及 A ( ) A (), A (k ) k (k , ) k[ ( , ) ] kA ( ),
已知
B

A2

A
E,
其中
A


1 0
3
2

相似,则
B __3________
5. 设 1,2,3 是3维欧氏空间V的一组基,这组基的度量矩阵为
2

1
1 2
2 1
则向量 1 2 的长度


2.
2 1 2
三、判别题(对的打”√”,错的打” ×”, 2×5=10分)
五、证明题 3. (本题13分) 设 A 是欧氏空间V 的一个变换, 并且对任意
V , 有 A (,). V, 1
(2) 当 取何值时, A 是 V的一个正交变换?
(2) 如果A 是 V的一个正交变换,即有 对于任意的 , V ,
(A ( ), ()) ( (,), (,)) (,) (,(,)) ((,),) 2(,)(,)(, ) (,) 2(,)(,) 2(,)(,)(,) (,),
2.
在线性空间
R22

《高等代数2》期末试卷(A)

《高等代数2》期末试卷(A)

第 1 页 共 2 页教育科学系14级小学教育(科学与数学)专业2014—2015学年度春学期期末考试《高等代数Ⅱ》试卷 (A )试卷说明:1.本试卷共2页,4个大题,满分100分,120分钟完卷; 2.试题解答全部书写在本试卷上。

班号: 学号 姓名一、选择题:(每题3分,共15分)1.当λ=( )时,方程组1231231222x x x x x x λ++=⎧⎨++=⎩,有无穷多解。

A 1B 2C 3D 42.若向量组中含有零向量,则此向量组( )A 线性相关B 线性无关C 线性相关或线性无关D 不一定 3.已知A ,B 为同阶正交矩阵,则下列( )是正交阵。

A A B + B A B - C AB D kA 4.对于n 阶实对称矩阵A ,结论( )正确。

A A 一定有n 个不同的特征值 B A 一定有n 个相同的特征值 C 必存在正交矩阵P ,使1P AP -成为对角矩阵 D A 的不同特征值所对应的特征向量不一定是正交的 5.当( )时,0a A b c ⎛⎫=⎪⎝⎭是正交阵。

A 1,2,3a b c === B 1a b c ===C 1,0,1a b c ===-D 1,0a b c ===1.已知向量组)4,3,2,1(1=α,)5,4,3,2(2=α,)6,5,4,3(3=α,)7,6,5,4(4=α,则向量=-+-4321αααα 。

2.若120s ααα+++= ,则向量组12,,,s ααα 必线性 。

3.1+n 个n 维向量构成的向量组一定是线性 的。

4. 数域F 上任一n 维向量空间都与nF 。

(不同构,同构) 5.A 满足022=++I A A ,则A 有特征值______________________。

6. 二次型yz xz xy z y x z y x f ++----=222),,(的矩阵是____________。

7. A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=20001011k k 是正定阵,则k 满足条件__________________。

高等数学A(二)试卷及答案

高等数学A(二)试卷及答案

高等数学A (二)考试试卷一、 填空题(每小题5分,共25分)1. 设2u 1sin ,2xu e x y x y π-=∂∂∂则在(,)处的值为_________。

2. 改变二次积分10(,)x I dx f x y dy =⎰⎰的积分次序,则I=_______________。

3. 设平面曲线Γ为下半圆周y =22()x y ds Γ+⎰=___________。

4. 若级数1n n u∞=∑的前n 项部分和是:1122(21)n S n =-+,则n u =______________。

5. 设)2,5,3(-=a ,(2,1,4)b =,(1,1,1)c =,若c b a ⊥+μλ,则λ和μ满足 。

二、 计算题(每小题10分,共70分)1. 求由方程xyz =(,)z z x y =在点(1,0,1)-处的全微分。

(10分)2. 设21()x t f x e dx -=⎰,求10()f x dx ⎰。

(10分) 3. 计算xzdxdydz Ω⎰⎰⎰,其中Ω是由平面0,,1z z y y ===以及抛物柱面2y x =所围成的闭区域。

(10分)4. 计算dy xy ydx x L22+⎰,其中积分路径L 是xoy 平面上由点(2,0)A -顺次通过点(0,2)B 、(2,2)C 到点(2,4)D 的折线段。

(10分) 5. 把函数xx f 431)(+=展为1-x 的幂级数,并确定其收敛域。

6. 求点)3,2,1(-关于平面014=-++z y x 的对称点。

(10分)7. 要建造一个表面积为108平方米的长方形敞口水池,尺寸如何才能容积最大.。

(10分)三、证明题(5分)若0lim =∞→n n na ,且∑∞=+-+11])1[(n n n na a n 收敛于常数A ,试证明级数∑∞=1n n a 收敛。

答案课程名称:高等数学A(二) 试卷编号:5一、填空题。

(每小题5分,共25分)1.22e π,2.101(,)y dy f x y dx ⎰⎰,3.π,4.1(21)(21)n n -+, 5. 076=+μλ二、 计算题。

(完整word版)2010(2)高等代数2试卷A

(完整word版)2010(2)高等代数2试卷A

2010-2011学年第2学期 高等代数II 期末考试试卷(A 卷) 一、选择题(本大题共5小题,每小题3分,共15分)在每小题的选项中,只有一项符合要求,把所选项前的字母填在题中括号内。

1. 设21,V V 是线性空间V 的子空间,则下列集合不是V 的子空间的是( ) (A) 21V V ⋃ (B) 21V V + (C) 21V V ⋂ (D) }0{1⋂V 2. 欧氏空间的度量矩阵一定是( ) (A) 正交矩阵; (B) 正定矩阵; (C) 上三角矩阵; (D) 下三角矩阵. 3. 设A 是3阶方阵,它的特征值分别为0、1、2,则下列矩阵可逆的是( )(A ) 2A ; (B) 2A A +; (C) I A +; (D) 2I A -. 4. 设A 为数域P 上秩为r 的n 阶矩阵,定义n 维列向量空间n P 的线性变换σ: (),n A P σξξξ=∈,则1dim((0))σ-和dim(())n P σ分别为( ) (A) ,r n r -; (B) ,r r ; (C) ,n r r -; (D) ,n r n r --.5. 对于任意一个n 级实对称矩阵A ,则( )(A) A 的特征值的绝对值等于1;(B) A 有n 个不同的特征值;(C) A 的任意n 个线性无关的特征向量两两正交;(D) 存在正交矩阵T ,使1T AT T AT -'=为对角形矩阵.二、填空题(本大题共5小题,每小题4分,满分20分)6. 设123,,εεε是线性空间V 的一组基,112233x x x αεεε=++,则由基123,,εεε到 基231,,εεε的过渡矩阵T = ,而α在基321,,εεε下的坐标是 .7.已知a 是数域P 中的一个固定的数,而1{(,,...,),1,2,...,}n i W a x x x P i n =∈= 是1n P +的一个子空间,则a = ,而dim()W _________.8. 在欧氏空间4R 中,已知(2,1,3,2),(1,2,2,1)αβ==-,则α= ,α与β的夹角为_________.9. 如果1V , 2V 是线性空间V 的两个子空间, 且()1dim 3V =, ()2dim 2V =,()12dim 4V V +=,那么()12dim V V ⋂为________10. 设矩阵A 和B 相似,其中A =20022311x -⎛⎫ ⎪ ⎪ ⎪⎝⎭,B =10002000y -⎛⎫ ⎪ ⎪ ⎪⎝⎭, x =_______,y =______.三、判断题(本大题共5小题,每小题2分,满分10分)11. 设σ为n 维线性空间V 的一个线性变换,则由σ的秩+σ的零度=n ,有1()(0)V V σσ-=⊕.( )12. 设σ是线性空间V 的一个线性变换,12,,...,s ααα线性无关,则向量组12(),(),...,()s σασασα也线性无关.( )13. 线性空间V 中任一非零向量皆为数乘变换K 的特征向量.( )14. 设V 是一个欧氏空间,,V αβ∈,并且(,)0αβ=,则,αβ线性无关.( ) 15. n 维欧氏空间V 上的正交变换在任一组标准正交基下的矩阵皆为正交矩阵.( )四、计算题(本大题共25分)16. (满分8分) 在4P 中,求由1234,,,ηηηη到1234,,,ξξξξ的过渡矩阵,其中1234(1,2,1,0),(1,1,1,1),(1,2,1,1),(1,1,0,1)ηηηη=-=-=-=--1234(2,1,0,1),(0,1,2,2),(2,1,1,2),(1,3,1,2)ξξξξ===-=17. (满分17分)设二次型12341234(,,,)22f x x x x x x x x =+ (1)写出这个二次型的矩阵A ;(2分) (2)求A 的特征值及其线性无关的特征向量;(8分) (3)求一个正交线性替换X =TY ,将1234(,,,)f x x x x 化为标准形. (7分) 五、证明题(本题共30分)18. (满分8分) 设A ,B 都是实对称矩阵,证明:存在正交矩阵T ,使得1T AT B-=的充分必要条件是A ,B 有相同的特征值.19.(满分12分)设σ是数域P 上线性空间V 的线性变换且2σ=σ,证明:(1)1(0){()|};V σασαα-=-∀∈(6分)(2)1(0)().V V σσ-=⊕(6分)20.(满分10分) 已知σ是n 维欧氏空间V 的一个正交变换,证明:σ的不变子空间W 的正交补W ⊥也是σ的不变子空间.。

(完整word版)高等代数2学期06-07A[1].答案doc

(完整word版)高等代数2学期06-07A[1].答案doc

北 京 交 通 大 学2006-2007学年第二学期高等代数(II )期末考试(A 卷)答案一、填空题(每题3分,共30分)1、设W 1和W 2是R n ⨯n 的两个子空间,其中W 1是由全体n 阶实反对称矩阵构成,W 2是由全体n 阶实下三角矩阵构成, 则 W 1+W 2的维数等于2n .2. 设ε1 = (1,0,0), ε2 = (0,1,0), ε3 = (0,0,1), η1 = (0,0,2), η2 =(0,3,0), η3 = (4,0,0) 是线性空间P 3的两组基, 则从基η1, η2, η3到基ε1, ε2, ε3的过渡矩阵是 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡413121。

3、线性空间22⨯R 中,矩阵⎥⎦⎤⎢⎣⎡=5432A 在基⎥⎦⎤⎢⎣⎡=00011E ,⎥⎦⎤⎢⎣⎡=00112E ,⎥⎦⎤⎢⎣⎡=01113E ,⎥⎦⎤⎢⎣⎡=11114E 下的坐标为: ()T5111---.4、设P 3的线性变换T 为:T(x 1, x 2, x 3) = (x 1, x 2, x 1 + x 2),取P 3的一组基:ε1 = (1, 0, 0), ε2 = (0, 1, 0), ε3 = (0, 0, 1),则T 在该基下的矩阵是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111010001. .5、设欧氏空间R 3[x ]的内积为dx x g x f x g x f )()())(),((11⎰+-=则一组基1, x, x 2的度量矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡520320323202. 6、已知三阶矩阵A 满足03E A 2E A E A =-=-=-,则=A 6 .7、已知矩阵A 的初等因子组为λ2,(λ-1)2,则其Jordon 标准形矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1110100 8、欧氏空间V 中两个向量βα,满足βαβα-=+,则α与β的夹角是090.9、3维欧氏空间R 3 (取标准内积)中的向量(2, 3,-1), (1, 1, 0),(0, 1,-1)生成的子空间的正交补空间的维数是 1 .10、设321,,εεε是数域P 上的3维线性空间V 的一组基,f 是V 上的一个线性函数。

高等代数期末考试试卷及答案

高等代数期末考试试卷及答案

高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分)1、线性空间[]Px 的两个子空间的交()()11L x L x -+=2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是4、设3阶方阵A 的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵E A λ-的标准形是5、线性方程组AX B =的最小二乘解所满足的线性方程组是:二、 单项选择题(每小题3分,共15分)1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构:(A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。

2、( )设 是非零线性空间 V 的线性变换,则下列命题正确的是:(A ) 的核是零子空间的充要条件是 是满射; (B ) 的核是V 的充要条件是 是满射; (C ) 的值域是零子空间的充要条件是 是满射; (D ) 的值域是V 的充要条件是 是满射。

3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0;A AB A λλ≠是一个非零常数;()()C A λ是满秩的;()()D A λ是方阵。

4、( )设实二次型f X AX '=(A 为对称阵)经正交变换后化为:2221122...n n y y y λλλ+++, 则其中的12,,...n λλλ是:()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。

《高等数学(二)》期末考试卷A(含答案)

《高等数学(二)》期末考试卷A(含答案)

《高等数学(二)》期末考试试卷考试形式:闭卷考试 考试时间:120分钟一、选择题(单选题,每题4分,共28分)1、0lim =∞→n n u 是∑∞=1n n u 收敛的( B )A .充分而非必要条件 B. 必要而非充分条件C.充要条件D. 既非充分也非必要条件2、若级数∑∞=1n n u 收敛,则下列命题( B )正确(其中∑==ni i n u s 1)A .0lim =∞→s n n B. s n n lim ∞→存在C. s n n lim ∞→ 可能不存在 D. {}为单调数列s n 3、设∑∞=1n n u 与∑∞=1n n v 都是正项级数,且n n v u ≤ ,2,1(=n )则下列命题正确的是( C )A .若∑∞=1n n u 收敛,则∑∞=1n n v 收敛 B. 若∑∞=1n n u 收敛,则∑∞=1n n v 发散C.若∑∞=1n n v 发散,则∑∞=1n n u 发散D.若∑∞=1n n v 收敛,则∑∞=1n n u 收敛4、下列级数中条件收敛的是( B )A .1)1(1+-∑∞=n n n nB. n n n 1)1(1∑∞=-C. 211)1(n n n ∑∞=-D. n n n ∑∞=-1)1( 5、幂级数∑∞=-12)2(n nn x 的收敛区间为( B ) A.(1,3) B.[]3,1 C.[)3,1 D.(]3,16、幂级数∑∞=1!n nn x 的收敛半径为( C )A. 0B. 1C. +∞D. 37、点A (-3,1,2)与B (1,-2,4)间的距离是( A ) A. 29 B. 23 C. 29 D. 23二、填空题(每题4分,共16分)1、球心在点(1,-2,3),半径为3的球面方程为 9)3()2()1(222=-+++-z y x2、方程0222222=-+-++z x z y x 表示的图形是圆心在(1,0,-1),半径为2的球面. .3、二元函数229y x z --=的定义域是{}9:),(22≤+y x y x4、y x y x y x F --=22),(,则)3,1(F = 5 . 5、幂级数1nn x n∞=∑的收敛半径为是 1 .三、计算题1、求函数的一阶偏导数(1))ln(222y x x z += (2)xy e u =223222)ln(2y x x y x x x z +++=∂∂ xy ye xu =∂∂ 2222y x y x y z +=∂∂ xy xe yu =∂∂2、求函数32y x z =,当01.0,02.0,1,2-=∆=∆-==y x y x 的全微分32xy xz =∂∂ 223y x y z =∂∂ 2.0)1,2()1,2(-=∆-+∆-=y f x f dy y x3,y x z 2)31(+=,求x z ∂∂,yz ∂∂ 216(13)y z y x x-∂=+∂)31ln()31(22x x yz y ++=∂∂4、设方程0sin 2=-+xy e y x 确定的一个隐函数,求dxdy 0).2(.cos 2='+-+'y xy y e y y x 22cos x e y y xy y-'=-5、求函数22)(4),(y x y x y x f ---=的极值(1)x f x 24-= y f y 24--=(2)令0,0==y x f f 得:2,2-==y x(3)2,0,2-==-=yy xy xx f f f 故2,0,2-==-=C B A 0,02<<-A AC B 有极大值.8)2,2(f =-=极大y6、计算积分⎰⎰Dxydxdy ,其中D 由3,x y x y ==在第一象限内所围成.161103==⎰⎰⎰⎰D x x ydy xdx xydxdy四、应用题1、建造容积为V 的开顶长方形水池,长、宽、高各应为多少时,才能使表面积最小?(10分) 长为32v x = 宽32v y = 高3221v z =2、把正数a 分成三个正数之和,使它们的乘积为最大,求这三个数.(7分) 3a z y x ===。

(完整word版)高等代数第二学期试题

(完整word版)高等代数第二学期试题

第二学期期末考试《高等代数》试题一、填空:(每空2分,共30分)1、n 元二次型正定的充分必要条件是它的正惯性指数______________。

2、A 为正定矩阵,则A _______。

3、),(21s L αααΛ的维数__________向量组s αααΛ21,的秩。

4、1V ,2V 都是线性空间V 的子空间,则维1V +维2V =______________。

5、和1V +2V 是直和的充要条件为=⋂21V V ___________。

6、数域P 上两个有限维线性空间同构的充要条件是______________。

7、A ,B 是两个线性变换,它们在基n εεεΛ,,21下的矩阵分别为A ,B ,则A+B 在基n εεεΛ,,21下的矩阵为______________。

8、A 是n 维线性空间V 的线性变换,则A 的秩+A 的零度=______________。

9、在欧几里德空间中,α=_______。

><βα,=_______。

10、欧几里德空间的一组标准正交基的度量矩阵为_______。

11、A 为正交矩阵,则A =_______,1-A =_______。

二、判断(每题2分,共10分)1、A 的值域是A 的不变子空间,但A 的核不是A 的不变子空间( )。

2、两个子空间的交还是线性空间V 的子空间( )。

3、线性变换在不同基下所对应的矩阵是相似的( )。

4、线性变换把线性无关的向量变为线性无关的向量( )。

5、度量矩阵是正定矩阵( )。

三、t 取什么值时,二次型3231212322214225x x x x x tx x x x +-+++正定?(10分)四、在4P 中,求向量ξ在基4321,,,εεεε下的坐标,其中=1ε(1,1,1,1),=2ε(1,1,-1,-1),=3ε(1,-1,1,-1)=4ε(1,-1,-1,1),ξ=(1,2,1,1)(10分)五、3P 中,令),4,2(),,(213131321a a a a a a a a a -+-=σ,求σ在基},,{321εεε下的矩阵。

(完整word版)高等代数期末考试题A答案

(完整word版)高等代数期末考试题A答案

高等代数 课程 A 卷试题答案一、填空题(本题共10小题,每小题2分,满分20分. 把正确答案填在题中横线上)1. 8;2. 0;3. 0;4. 92111⎛⎫ ⎪⎝⎭;5. 1或52;6。

1()3A E E A -+=-;7. 2;8。

23a ≠; 9. 6;10。

112-⎛⎫⎪ ⎪⎝⎭。

二、选择题(本题共10小题,每小题2分,满分20分。

每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号(答题框)内)三、计算题(本题共2小题,每小题10分,满分20分.解答应写出文字说明、证明过程或演算步骤)1. 计算n阶行列式a b bb b a bb D b b ab b b ba=。

解:观察行列式,每一行只有一个a 而有1n -个b ,于是将第2列,第3列,……,第n 列分别乘以1加到第1列,得(1)...(1)...(1)..................(1)...a nb b b b a n b a b b D a n bb a b a n b b ba+-+-=+-+-[]1 (1)...(1)1 (1)...b b b a b ba nb b a b bba =+-[]1...00...0(1)00...0 000...b b b a b a n b a b a b-=+--- []1(1)()n a n b a b -=+--2. 设111111111A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,123124051B ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,求A AB 23-.解:1111231111111242111111051111323AB A -------⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭05822221322305622221720.2902224292-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=---=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭四、解答题(本题共2小题,第1小题15分、第2小题10分,满分25分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等代数(II )期末考试试卷及答案(A 卷)一、填空题(每小题3分,共15分)1、线性空间的两个子空间的交[]Px ()()11L x L x -+=2、设与是n 维线性空间 V 的两个基,12,,...,n εεε12,,...,n εεε'''由到的过渡矩阵是C ,列向量X 是V12,,...,n εεε12,,...,n εεε'''中向量在基下的坐标,则在基下ξ12,,...,n εεεξ12,,...,n εεε'''的坐标是3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵,则A 与B 的关系是4、设3阶方阵A 的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵的标准形是E A λ-5、线性方程组的最小二乘解所满足的线性方程组是:AX B =二、单项选择题(每小题3分,共15分)1、( )复数域C 作为实数域R 上的线性空间可与下列哪一个线性空间同构:(A )数域P 上所有二级对角矩阵作成的线性空间;(B )数域P 上所有二级对称矩阵作成的线性空间;(C )数域P 上所有二级反对称矩阵作成的线性空间;(D )复数域C 作为复数域C 上的线性空间。

2、( )设A 是非零线性空间 V 的线性变换,则下列命题正确的是: (A )A 的核是零子空间的充要条件是A 是满射;(B )A 的核是V 的充要条件是A 是满射;(C )A 的值域是零子空间的充要条件是A 是满射; (D )A 的值域是V 的充要条件是A 是满射。

3、( )矩阵可逆的充要条件是:λ-()A λ是一个非零常数;()()()()0;A A B A λλ≠是满秩的;是方阵。

()()C A λ()()D A λ4、( )设实二次型(A 为对称阵)经正交变换后化为:f X AX '=, 则其中的是:2221122...n n y y y λλλ+++12,,...n λλλ全是正数;是A 的所有特征值;不确定。

()()1;A B ±()C ()D 5、( )设3阶实对称矩阵A 有三重特征根“”,则A 的若当2-标准形是:()()()200200200020;120;120;002002012A B C ---⎛⎫⎛⎫⎛⎫⎪⎪⎪--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭以上各情形皆有可能。

()D 三、是非题(每小题2分,共10分)(请在你认为对的小题对应的括号内打“√”,否则打“⨯”)1、()设V 1,V 2均是n 维线性空间V 的子空间,且{}120V V = 则。

12VV V =⊕2、( )n 维线性空间的某一线性变换在由特征向量作成的基下的矩阵是一对角矩阵。

3、( )同阶方阵A 与B 相似的充要条件是与E A λ-E B λ- 等价。

4、( )n 维欧氏空间的正交变换在任一基下的矩阵都是正交矩阵。

5、( )欧氏空间的内积是一对称的双线性函数。

四、解答题(每小题10分,共30分)1、在线性空间中,定义线性变换:4P ()()()()4,,,,,,,,,a b c d a b a c b d a b c d P '''=++∀∈A (1)求该线性变换A 在自然基:()()121,0,0,0,0,1,0,0εε''==下的矩阵A ;()()340,0,1,0,0,0,0,1εε''==(2)求矩阵A 的所有特征值和特征向量。

2、(1)求线性空间中从基到基[]3P x ()()()2:1,1,1I x x --的过渡矩阵;()()()2:1,1,1II x x ++(2)求线性空间中向量在基[]3P x ()2123f x x x =-+下的坐标。

()()()2:1,1,1I x x --3、在R 2中,,规定二元函数:()()1212,,,a a b b αβ∀==()11122122,4a b a b a b a b αβ=--+(1)证明:这是R 2的一个内积。

(2)求R 2的一个标准正交基。

五、证明题(每小题10分,共30分)1、设P 3的两个子空间分别为:(){}(){}11231232123123,,0,,,0W x x x x x x W x x x x x x =++==--= 证明:(1);312PW W =+(2)不是直和。

12W W +2、设A 是数域P 上线性空间V 的线性变换,证明()12,,...,r W L ααα= 是A 的不变子空间的兖要条件是()1,2,...,i Wi r α∈=A3、已知是n 级正定矩阵,证明:A E -(1)A 是正定矩阵;(2)23nA E +>答案一、填空题(每小题3分,共15分)1、线性空间的两个子空间的交[]Px ()()11L x L x -+= {}02、设与是n 维线性空间 V 的两个基,12,,...,n εεε12,,...,n εεε'''由到的过渡矩阵是C ,列向量X 是V12,,...,n εεε12,,...,n εεε'''中向量在基下的坐标,则在基下ξ12,,...,n εεεξ12,,...,n εεε'''的坐标是1C X-3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵,则A 与B 的关系是 相似关系4、设3阶方阵A 的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵的标准形是E A λ-()10000001λλλ⎛⎫⎪ ⎪ ⎪+⎝⎭5、线性方程组的最小二乘解所满足的线性方程组是:AX B =A AX A B''=二、单项选择题(每小题3分,共15分)2、( A )复数域C 作为实数域R 上的线性空间可与下列哪一个线性空间同构:(A )数域P 上所有二级对角矩阵作成的线性空间;(B )数域P 上所有二级对称矩阵作成的线性空间;(C )数域P 上所有二级反对称矩阵作成的线性空间;(D )复数域C 作为复数域C 上的线性空间。

2、( D )设A 是非零线性空间 V 的线性变换,则下列命题正确的是: (A )A 的核是零子空间的充要条件是A 是满射;(B )A 的核是V 的充要条件是A 是满射;(C )A 的值域是零子空间的充要条件是A 是满射; (D )A 的值域是V 的充要条件是A 是满射。

3、( B )矩阵可逆的充要条件是:λ-()A λ是一个非零常数;()()()()0;A A B A λλ≠是满秩的;是方阵。

()()C A λ()()D A λ4、( C )设实二次型(A 为对称阵)经正交变换后化为:f X AX '=, 则其中的是:2221122...n n y y y λλλ+++12,,...n λλλ全是正数;是A 的所有特征值;不确定。

()()1;A B ±()C ()D 5、( A )设3阶实对称矩阵A 有三重特征根“”,则A 的若当2-标准形是:()()()200200200020;120;120;002002012A B C ---⎛⎫⎛⎫⎛⎫⎪⎪⎪--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭以上各情形皆有可能。

()D 三、是非题(每小题2分,共10分)(请在你认为对的小题对应的括号内打“√”,否则打“⨯”)1、(×)设V 1,V 2均是n 维线性空间V 的子空间,且{}120V V = 则。

12VV V =⊕2、( √ )n 维线性空间的某一线性变换在由特征向量作成的基下的矩阵是一对角矩阵。

3、( √ )同阶方阵A 与B 相似的充要条件是与E A λ-E Bλ- 等价。

4、( × )n 维欧氏空间的正交变换在任一基下的矩阵都是正交矩阵。

5、( √ )欧氏空间的内积是一对称的双线性函数。

四、解答题(每小题10分,共30分)1、在线性空间中,定义线性变换:4P ()()()()4,,,,,,,,,a b c d a b a c b d a b c d P '''=++∀∈A (1)求该线性变换A 在自然基:()()121,0,0,0,0,1,0,0εε''==下的矩阵A ;()()340,0,1,0,0,0,0,1εε''==(2)求矩阵A 的所有特征值和特征向量。

解:(1)线性变换A 在自然基下的矩阵是(5分)1000010010100101A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(2)因为()41E A λλ-=-所以矩阵A 的所有特征值是12341λλλλ====解齐次线性方程组()0E A X -= 得矩阵A 的所有特征向量:,其中不全为零。

(5分)()()120,0,1,00,0,0,1k k ''+12,k k 2、(1)求线性空间中从基到基[]3P x ()()()2:1,1,1I x x --的过渡矩阵;()()()2:1,1,1II x x ++(2)求线性空间中向量在基[]3P x ()2123f x x x =-+下的坐标。

()()()2:1,1,1I x x --解:(1)因为()()()()221111,1,11,,012001x x x x -⎛⎫⎪--=- ⎪⎪⎝⎭()()()()221111,1,11,,012001x x x x ⎛⎫ ⎪++= ⎪⎪⎝⎭所以()()()()()()1221111111,1,11,1,1012012001001x x x x --⎛⎫⎛⎫ ⎪ ⎪++=--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭()()()21111111,1,1012012001001x x ⎛⎫⎛⎫ ⎪⎪=-- ⎪⎪ ⎪⎪⎝⎭⎝⎭即所求的过渡矩阵为 (5分)124014001⎛⎫ ⎪ ⎪ ⎪⎝⎭(2)因为()()()()221111,,1,1,1012001x x x x ⎛⎫ ⎪=-- ⎪⎪⎝⎭故()()2211231,,23f x x x x x ⎛⎫⎪=-+=- ⎪ ⎪⎝⎭()()()()()2211111,1,10122241310013x x x x ⎛⎫⎛⎫⎪⎪=---=+-+- ⎪⎪ ⎪⎪⎝⎭⎝⎭所以在基下的坐标是: (5分)()f x ()()()2:1,1,1I x x --243⎛⎫ ⎪ ⎪ ⎪⎝⎭3、在R 2中,,规定二元函数:()()1212,,,a a b b αβ∀==()11122122,4a b a b a b a b αβ=--+(3)证明:这是R 2的一个内积。

(4)求R 2的一个标准正交基。

(1)证明:()11122122,4a b a b a b a b αβ=--+()()()21241,1,1014001x x ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭()112211,14ba ab-⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭因为是正定矩阵,1114-⎛⎫⎪-⎝⎭所以这个二元函数是R2的一个内积。

相关文档
最新文档