机械原理第四章常用机构解析

合集下载

(完整版)机械原理知识点归纳总结

(完整版)机械原理知识点归纳总结

第一章绪论基本概念:机器、机构、机械、零件、构件、机架、原动件和从动件。

第二章平面机构的结构分析机构运动简图的绘制、运动链成为机构的条件和机构的组成原理是本章学习的重点。

1. 机构运动简图的绘制机构运动简图的绘制是本章的重点,也是一个难点。

为保证机构运动简图与实际机械有完全相同的结构和运动特性,对绘制好的简图需进一步检查与核对(运动副的性质和数目来检查)。

2. 运动链成为机构的条件判断所设计的运动链能否成为机构,是本章的重点。

运动链成为机构的条件是:原动件数目等于运动链的自由度数目。

机构自由度的计算错误会导致对机构运动的可能性和确定性的错误判断,从而影响机械设计工作的正常进行。

机构自由度计算是本章学习的重点。

准确识别复合铰链、局部自由度和虚约束,并做出正确处理。

(1) 复合铰链复合铰链是指两个以上的构件在同一处以转动副相联接时组成的运动副。

正确处理方法:k个在同一处形成复合铰链的构件,其转动副的数目应为(k-1)个。

(2) 局部自由度局部自由度是机构中某些构件所具有的并不影响其他构件的运动的自由度。

局部自由度常发生在为减小高副磨损而增加的滚子处。

正确处理方法:从机构自由度计算公式中将局部自由度减去,也可以将滚子及与滚子相连的构件固结为一体,预先将滚子除去不计,然后再利用公式计算自由度。

(3) 虚约束虚约束是机构中所存在的不产生实际约束效果的重复约束。

正确处理方法:计算自由度时,首先将引入虚约束的构件及其运动副除去不计,然后用自由度公式进行计算。

虚约束都是在一定的几何条件下出现的,这些几何条件有些是暗含的,有些则是明确给定的。

对于暗含的几何条件,需通过直观判断来识别虚约束;对于明确给定的几何条件,则需通过严格的几何证明才能识别。

3. 机构的组成原理与结构分析机构的组成过程和机构的结构分析过程正好相反,前者是研究如何将若干个自由度为零的基本杆组依次联接到原动件和机架上,以组成新的机构,它为设计者进行机构创新设计提供了一条途径;后者是研究如何将现有机构依次拆成基本杆组、原动件及机架,以便对机构进行结构分类。

机械原理第四章常用机构

机械原理第四章常用机构

B
B
AA
C γ
F”
FF”’ C γFα
F
F’
设计:潘存云
DD
当∠BCD最小或最大时,都有可能出现γmin
此位置一定是:主动件与机架共线两处之一。
机构的传动角一般在运动链 最终一个从动件上度量。
B2
A
l1
B1
l l C2γ2
2γ1
设计:潘存云
C1
3
D
l4
死点特性
摇杆为主动件, F 且连杆与曲柄两 γ=0 次共线时,有:
曲柄摇杆机构(crank-rocker)
何为曲柄摇杆机构? 既有曲柄又有摇杆的机构。如下动画中,两个
连架杆中一个是曲柄,一个是摇杆。
曲柄摇杆机构(crank-rocker)
日常生活中常见的雷达、缝纫机等就是有曲柄 摇杆机构构成的。
双曲柄机构(double-crank)
何为双曲柄机构? 两个连架杆都是曲柄的机构。如下动画
正弦机构
曲柄滑块机构的实例
内燃机实例
曲柄滑块机构的实例
往复式抽水机
运动副转化机构的演化
曲柄滑块机构
2
2
1 4
31
2
4
3
1
34
曲柄摇杆机构
曲柄移动导杆机构
三、曲柄摇杆机构的演化
(1)取不同构件为机架,曲柄摇杆机构、 双曲柄、双摇杆可以相互演化
2
1
3
4
曲柄摇杆
2
1
3
4
双曲柄
2
1
3
4
双摇杆
(2)曲柄存在的条件(GRASHOF)
滚子从动件
为减小摩擦磨损,在 从动件端部安装一个 滚轮,把从动件与凸 轮之间的滑动摩擦变 成滚动摩擦,因此摩 擦磨损较小,可用来 传递较大的动力,故 这种形式的从动件应 用很广。

孙恒《机械原理》课件讲义

孙恒《机械原理》课件讲义
学时:课堂教学:5学时,习题课:1学时;实验:机构运动简图测绘,2学时。
机构结构分析的内容及目的 机构的组成 机构运动简图 机构具有确定运动的条件 平面机构自由度的计算 平面机构的组成原理、结构分类 及结构分析
§2-1 机构结构分析的内容及目的
1、研究机构的组成及机构运动简图的画法 ; 2、了解机构具有确定运动的条件; 3、研究机构的组成原理及结构分类。
2)确定机架 3)确定各构件之间的运动副种类
“两两分析相对运动” 4)代表回转副的小圆,其圆心必须与相对运动
回转中心重合。代表移动副的滑块,其导路 方向必须与相对运动方向一致。 5)比例、符号、线条、标号
§2-5 平面机构自由度的计算
1. 平面机构的自由度:机构所具有的独立运动。 2. 平面机构的自由度计算公式
2. 要除去局部自由度( F' ) 局部自由度:某些不影响机构运动的自由度。
3. 要除去虚约束( p' ) 虚约束:在机构运动中,有些约束对机构自由度的影响
是重复的。
3. 要除去虚约束( p' ) 虚约束:在机构运动中,有些约束对机构自由度的影响
是重复的。 •机构中的虚约束常发生在下列情况:
1)如果转动副联接的是两构件上运动 轨迹相重合的点,则该联接将带入 1个虚约束。
本章结束
第二章 机构的结构分析
基本要求:了解机构的组成;搞清运动副、运动链、约 束和自由度等基本概念;能绘制常用机构的 运动简图;能计算平面机构的自由度;对平 面机构组成的基本原理有所了解。
重 点:运动副和运动链的概念;机构运动简图的绘 制;机构具有确定运动的条件及机构自由度 的计算。
难 点:在机构自由度的计算中有关虚约束的识别及 处理问题。

机械基础第4章

机械基础第4章
杆机构的一种演化形式。
上一页 下一页 返回
4.1 平面四杆机构
• 2.导杆机构 • 导杆机构可以看成是通过改变曲柄滑动机构中固定件的位置演化而来
的。当曲柄滑块机构选取不同构件作为机架时,会得到不同的导杆机 构类型,见表4-4。
上一页
返回
4.2 凸轮机构
• 4.2.1 凸轮机构的类型及特点
• 如图4-18所示,凸轮机构是由凸轮、从动件和机架组成的高副机构。 其中,凸轮是一个具有曲线轮廓或凹槽的构件,主动件凸轮通常作等 速转动或移动,凸轮机构是通过高副接触使从动件移动得到所预期的 运动规律。
第4章 常用机构
• 4.1 平面四杆机构 • 4.2 凸轮机构 • 4.3 间歇机构
返回
4.1 平面四杆机构
• 4.1.1 平面机构概述
• 在同一平面或相互平行平面内运动的机构称为平面连杆机构。平面连 杆机构是由一些刚性构件,用转动副或移动副相互连接而组成,并在 同一平面或相互平行平面内运动的机构。平面连杆机构的构件形状多 种多样,不一定为杆状,但从运动原理看,均可用等效的杆状构件替 代。
运动特点来工作的。
上一页 下一页 返回
4.3 间歇机构
• 4.3.3 不完全齿轮机构
• 不完全齿轮机构是由普通渐开线齿轮演变而成的一种间歇运动机构。 如图4-30所示,将主动轮的轮齿切去一部分,当主动轮连续转动时, 从动轮作间歇转动;从动轮停歇时,主动轮外凸圆弧和从动轮内凹圆 弧相配,将从动轮锁住,使之停止在预定位置上,以保证下次啮合。
4.3 间歇机构
• 4.3.2 槽轮机构
• 1.槽轮机构的组成和工作原理 • 图4-27所示为单圆销外啮合槽轮机构,它由带圆柱销的拨盘、具有径
向槽的槽轮和支撑它们的机架组成。在槽轮机构中,由主动拨盘利用 圆柱销带动从动槽轮转动,完成间歇转动。主动销轮顺时针作等速连 续转动,当圆销未进入径向槽时,槽轮因内凹的锁止弧被销轮外凸的 锁止弧锁住而静止;圆销进入径向槽时,两弧脱开,槽轮在圆销的驱 动下转动;当圆销再次脱离径向槽时,槽轮另一圆弧又被锁住,从而 实现了槽轮的单向间歇运动。

《机械原理》笔记

《机械原理》笔记

《机械原理》*号内容第一章概论第一节本课程的研究内容什么是机器、机构?机器的三特征:1)由一系列的运动单元体所组成。

2)各运动单元体之间都具有确定的相对运动。

3)能转换机械能或完成有用的机械功以代替或减轻人们的劳动。

具有以上1、2两个特征的实体称为机构。

构件——由一个或多个零件连接而成的运动单元体。

零件——机器中的制造单元体。

第二节机构的分析与综合及其方法机构分析:对已知机构的结构和各种特性进行分析。

机构综合:根据工艺要求来确定机构的结构形式、尺寸参数及某些动力学参数。

机构综合的内容: 1.机构的结构综合2.机构的尺度综合3.机构的动力学综合。

机构的结构综合:主要研究机构的组成规律。

机构的尺度综合(或运动学综合):研究已知机构如何按给定的运动要求确定其尺寸参数.概括为四类:(1)刚体导引:当机构的原动件做简单运动时,要求刚体连续地变换其位置。

(2)函数变换:使机构某从动件的运动参数为原动件运动参数的给定函数。

(3)轨迹复演:使连杆上某点的轨迹能近似地与给定曲线复合。

(4)瞬时运动量约束:按构件在某些特定位置时的运动量来设计机构的结构参数。

准点——符合预定条件的几个位置。

只要求几个位置处符合给定条件的机构综合方法称为准点法。

减小结构误差的途径是:合理确定准点的分布。

可按契比谢夫零值公式配置准点。

第三节学习本课的方法1.注意基本理论与基本方法之间的联系2. 用工程观点学习理论与基本方法3.注意加强感性认识和实践性环节第二章机构的结构分析第一节概述构成机构的基本要素——构件运动副运动链运动副:两构件间直接接触且能产生某些相对运动的联接称为运动副。

约束---对构件间运动的限制。

运动副元素—运动副参加接触的部分。

空间运动副和约束的关系。

平面机构中只有Ⅳ级副和Ⅴ级副。

(为什么?)低副---副元素为面接触(如移动副、转动副);高副----副元素为点(线)接触。

运动链---构件由运动副连接而成的系统。

机构—选定机架,给相应的原动件,其余构件作确定运动的运动链。

机械原理 机构

机械原理 机构

机械原理机构
机械原理是研究机械运动规律及其产生的基本原理的学科。

机构是机械装置中的一个基本构件,用于实现机械运动的转换、传递与控制。

机构的基础概念包括驱动件、从动件和连杆等。

其中,驱动件通过外力或动力源产生驱动力,从动件受到驱动力的作用而产生运动,而连杆则是将驱动件与从动件连接起来,传递驱动力与运动。

机械原理中的机构有多种分类方法,常见的有平面机构和空间机构。

平面机构是指机构中的运动仅限于一个平面内的机构,而空间机构则允许运动在不同平面之间转换。

根据结构特征和运动方式,机构还可以分为平动机构、回转机构、滚动机构和曲柄机构等。

机械原理中的机构设计要考虑到多种因素,如结构强度、运动平稳性、工作效率和可靠性等。

在设计过程中,需要进行运动分析和受力分析,确保机构能够正常运行并承受预期的载荷。

同时,还需要考虑制造成本和使用方便性等因素,进行综合权衡,得到合理的机构设计方案。

除了在机械工程中应用,机械原理也被广泛运用于其他领域,如航空航天、汽车工程、机电一体化、机器人技术和精密仪器等。

机械原理为各种机械装置的设计与研究提供了理论基础,推动了机械工程的发展与创新。

机械原理_第4章__凸轮机构及其设计

机械原理_第4章__凸轮机构及其设计

图4.1 内燃机配气凸轮机构
图4.2
绕线机排线凸轮机构
图4.3所示为录音机卷带装置中的凸轮机构。工作时,凸 轮1处于图示最低位置,在弹簧5的作用下,安装于带轮轴上 的摩擦轮3紧靠卷带轮4,从而将磁带卷紧。停止放音时,凸 轮1随按键上移,其轮廓迫使从动件顺时针方向摆动,使摩 擦轮与卷带轮分离,从而停止卷带。
1. 多项式运动规律
多项式运动规律的一般形式为
s = C 0 + C 1δ + C 2 δ 2 + C 3δ 3 + L + C n δ n
式中, δ 为凸轮转角;s为从动件位 为凸轮转角;s C C C C C 移; 0 , 1 , 2 , 3 ,…, n 为待定常数,可利用边 界条件来确定。 常用的有一次(n=1)多项式(即等速运动规律) 常用的有一次(n=1)多项式(即等速运动规律);二次 (n=2)多项式(即等加速等减速运动规律);五次(n=5) (n=2)多项式(即等加速等减速运动规律);五次(n=5) 多项式运动规律。
图4.10 改进等速 运动规律
图4.11 改进等加速等减速 运动规律
【例4.1】 直动从动件凸轮机构。已知:从动件行程 h=20mm,推程运动角 δ t = 150° ,远休止角 δ s = 60°,回程 运动角 δ h = 120° ,近休止角 δ 's = 30° ;从动件推程、回程分 别采用简谐运动规律和摆线运动规律。试写出从动件一 个运动循环的位移、速度和加速度方程。 解:(1) 从动件推程运动方程。 推程段采用简谐运动规律,故将推程运动角 δ t = 150° 5π /6、行程h=20mm代入简谐运动规律推程运 = 动方程式,可推出
● 4.4 凸轮轮廓曲线的设计——解析法 凸轮轮廓曲线的设计——解析法 曲线的设计—— ●4.4.1 滚子直动从动件盘形凸轮机构 ●4.4.2 滚子摆动从动件盘形凸轮机构理论轮廓 曲线方程 ●4.4.3 平底直动从动件盘形凸轮机构 ●4.4.4 滚子直动从动件圆柱凸轮机构 ● 4.5 凸轮机构基本尺寸的确定 ●4.5.1 凸轮机构的压力角和自锁 ●4.5.2 凸轮基圆半径的确定 ●4.5.3 滚子半径的选择 ●4.5.4 平底从动件的平底尺寸的确定 ● 小结

机械原理四连杆机构全解

机械原理四连杆机构全解
曲柄摇杆机构 双曲柄机构
双摇杆机构
一、 曲柄摇杆机构
在铰链四杆机构中,若两个连架杆, 一个为曲柄,另一个为摇杆,则此铰链 四杆机构称为曲柄摇杆机构。
图4-2所示为调整雷达天线俯仰角的 曲柄摇杆机构。曲柄1缓慢地匀速转动, 通过连杆2使摇杆3在一定的角度范围内 摇动,从而调整天线俯仰角的大小。
图4-2 雷达天效的回转力矩, 显然Pt越大越好。而P在垂直于vc方向的 分力Pn=Psin则为无效分力,它不仅无 助于从动件的转动,反而增加了从动件 转动时的摩擦阻力矩。因此,希望Pn越 小越好。由此可知,压力角越小,机 构的传力性能越好,理想情况是=0, 所以压力角是反映机构传力效果好坏的 一个重要参数。一般设计机构时都必须 注意控制最大压力角不超过许用值。
死点会使机构的从动件出现卡死或 运动不确定的现象。可以利用回转机构 的惯性或添加辅助机构来克服。如家用 缝纫机中的脚踏机构,图4-3a。 有时死点来实现工作,如图4-6所示 工件夹紧装置,就是利用连杆BC与摇杆 CD形成的死点,这时工件经杆1、杆2传 给杆3的力,通过杆3的传动中心D。此力 不能驱使杆3转动。故当撤去主动外力F 后,工件依然被可靠地夹紧。
图4-3a所示为缝纫机的踏板机构, 图b为其机构运动简图。摇杆3(原动 件)往复摆动,通过连杆2驱动曲柄1 (从动件)做整周转动,再经过带传 动使机头主轴转动。
图4-3 缝纫机的踏板机构
曲柄摇杆机构的主要特性有。
急回 压力与传动角 死点
1.急回运动
如图4-4所示为一曲柄摇杆机构, 其曲柄AB在转动一周的过程中,有两 次与连杆BC共线。在这两个位置,铰 链中心A与C之间的距离AC1和AC2分别 为最短和最长,因而摇杆CD的位置C1D 和C2D分别为其两个极限位置。摇杆在 两极限位置间的夹角称为摇杆的摆角。

机械原理及机构简介

机械原理及机构简介
(刚体的平面运动=随基点的平动+绕基点的转动) 若已知 VA、 和 aA、 B 大小 方向
VB VA VBA ? √ LAB ? √ AB
n t aB aA aBA aBA

A VA • VB
VBA B
大小
方向
? ?
√ √
2LAB
LAB
aA

aB •
A
BA AB
速度多边形特点 VD d 1)从极点p引出的矢量代表绝对速度 b 2)其他任意两点间的矢量代表其相对速度 3)BCD与bcd相似,且字母绕向顺序也相同,故称 bcd是BCD的速度影象。当已知构件两点的速度,可应 用速度影象原理求出该构件其他点的速度。 VB
VCB
3)加速度分析
n t aC aB aCB aCB
构件数目 运动副数目及类型 运动副之间的相对位置
表达方式:
用简单线条表示构件 规定符号代表运动副 按比例定出运动副的相对位置
一、运动副符号
转动副
移动副
1
1
2
齿轮副
2
2
2
凸轮副
螺旋副
机构运动简图表
球面副
二、构件
不管构件形状如何,简单线条表示,带短剖 面线表示机架。
带运动副元素的构件
三、机构运动简图的绘制
§1 构件及其运动副
一、构件 —— 运动的单元. 二、运动副 —— 两个构件直接接触且具有确定相 对运动的联接。 运动副元素——两构件相互接触的点、线、面。 平面运动副分类:
转动副
移动副
特点:面接触、相对转动或相对移动 低副

齿轮副
凸轮副
特点:点或线接触、沿接触点切线方向相对移动 绕接触点的转动 高副

机械原理-机构组成

机械原理-机构组成

不同机构类型的介绍
平面机构
平面机构是一种简单的机构类型,所有部件都在一个平面上运动,例如滑块机构和曲柄滑块 机构。
曲柄机构
曲柄机构由曲柄和连杆组成,常用于发动机和活塞式机械装置。
齿轮机构
齿轮机构通过齿轮的嵌合和运动传递力和运动,广泛应用于传动系统和时钟机械。
机构运动分析
1
步骤1
确定机构中每个组件的运动类型,例如旋转、平移或摆动。
传送带
平面机构通过滑块和导轨组成 的传送带用于自动运输和分拣 物品。
机构在各行业和领域的工程设计中起到关 键的作用,例如机械运动控制、工业生产 设备和汽车制造。
机构的基本组成
杆件
杆件是机构的基本构件,用 于支撑和阻碍运动,例如梁、 轴和杆。
连接件
连接件用于将杆件连接到一 起,传递力和运动,例如螺 栓、销和键。
ห้องสมุดไป่ตู้
关节
关节是连接杆件的可动连接 点,允许运动和转换能量, 例如铰链、滑块和球形关节。
2
步骤2
使用运动分析方法计算每个关节的运动参数,例如速度、加速度和位移。
3
步骤3
评估机构设计是否满足运动要求,调整各组件以优化机构性能。
常见机构的应用举例
活塞式发动机
曲柄连杆机构将活塞运动转化 为旋转运动,用于内燃机和蒸 汽机。
时钟机械
齿轮机构用于驱动时针、分针 和秒针的运动,保持时钟的精 准度。
机械原理-机构组成
在机械原理中,了解机构的定义、作用及基本组成是至关重要的。机构由杆 件、连接件和关节组成,且有不同类型如平面机构、曲柄机构和齿轮机构。 通过机构运动分析,我们可以了解常见机构的应用举例。
机构的定义和作用
1 定义

机械原理总复习题及解答第四章

机械原理总复习题及解答第四章

机械原理总复习题及解答第四章第4章凸轮机构及其设计4.1填空题4.1.1.设计滚⼦从动件盘形凸轮机构时,滚⼦中⼼的轨迹称为凸轮的廓线;与滚⼦相包络的凸轮廓线称为廓线。

4.1.2.盘形凸轮的基圆半径是上距凸轮转动中⼼的最⼩向径。

4.1.3.根据图4.1的??22d d s 运动线图,可判断从动件的推程运动是_____________,从动件的回程运动是______________。

图4.1题4.1.9图4.1.4.在设计滚⼦从动件盘形凸轮轮廓曲线中,若出现时,会发⽣从动件运动失真现象。

此时,可采⽤⽅法避免从动件的运动失真。

4.2判断题4.2.1..偏置直动尖顶从动件盘形凸轮机构中,其推程运动⾓等于凸轮对应推程廓线所对中⼼⾓;其回程运动⾓等于凸轮对应回程廓线所对中⼼⾓。

( )4.2.2.在直动从动件盘形凸轮机构中进⾏合理的偏置,是为了同时减⼩推程压⼒⾓和回程压⼒⾓。

( )4.2.3.当凸轮机构的压⼒⾓的最⼤值超过许⽤值时,就必然出现⾃琐现象。

()4.2.4.凸轮机构中,滚⼦从动件使⽤最多,因为它是三种从动件中的最基本形式。

()4.2.5.直动平底从动件盘形凸轮机构⼯作中,其压⼒⾓始终不变。

()4.2.6.滚⼦从动件盘形凸轮机构中,基圆半径和压⼒⾓应在凸轮的实际廓线上来度量。

()4.2.7.滚⼦从动件盘形凸轮的实际轮廓曲线是理论轮廓曲线的等距曲线。

因此,只要将理论廓线上各点的向径减去滚⼦半径,便可得到实际轮廓曲线上相应点的向径。

()4.2.8.从动件按等加速等减速运动规律运动时,推程的始点、中点及终点存在柔性冲击。

因此,这种运动规律只适⽤于中速重载的凸轮机构中。

()4.2.9.从动件按等加速等减速运动规律运动是指从动件在推程中按等加速运动,⽽在回程中则按等减速运动,且它们的绝对值相等。

()4.2.10.从动件按等速运动规律运动时,推程起始点存在刚性冲击,因此常⽤于低速的凸轮机构中。

()4.2.11.在对⼼直动尖顶从动件盘形凸轮机构中,当从动件按等速运动规律运动时,对应的凸轮廓线是⼀条阿⽶德螺旋线。

机械原理第四章凸轮机构及其设计

机械原理第四章凸轮机构及其设计
图示等加速—等速—等减速组合运动规律
组合运动规律
组合后的从动件运动规律应满足的条件: 1. 满足工作对从动件特殊的运动要求。 2. 各段运动规律的位移、速度和加速度曲线在连接点处其值应分别相等,避免刚性冲击和柔性冲击
,这是运动规律组合时应满足的边界条件。 3. 应使最大速度vmax和最大加速度amax的值尽可能小,以避免过大的动量和惯性力对机构运转造成
摆动从动件盘形凸轮廓线的设计
(1)选取适当的比例尺,作出从动件的位移线图,并将推程和回程区 间位移曲线的横坐标各分成若干等份。与移动从动件不同的是,这 里纵坐标代表从动件的摆角, 单位角度。
移动从动件盘形凸轮廓线的设计
若同时作出这族滚子圆的内、外包络线 h'和 h" 则形成槽凸轮的轮廓曲线。
由上述作图过程可知,在滚子从动件盘形凸 轮机构的设计中,r0指的是理论廓线的基圆半 径。需要指出的是,从动件的滚子与凸轮实 际廓线的接触点是变化的。
移动从动件盘形凸轮廓线的设计
偏置移动滚子从动件盘形凸轮机构具体设计 步骤演示
凸轮廓线设计的基本原理
反转时,凸轮机构的运动: 凸轮固定不动,而让从动件连同导路一起 绕O点以角速度(-ω)转过φ1角 。 此时从动件将一方面随导路一起以角速度 (-ω)转动,同时又在导路中作相对移动 ,运动到图中粉红色虚线所示的位置,从 动件向上移动的距离与前相同。 从动件尖端所占据的位置 B 一定是凸轮轮 廓曲线上的一点。若继续反转从动件,可 得凸轮轮廓曲线上的其它点。
基本概念
偏距 凸轮回转中心至从动件导路的偏置距离 e。
偏距圆 以e为半径作的圆。
基本概念
行程 从动件往复运动的最大位移,用h表示 。
基本概念
推程 从动件背离凸轮轴心运动的行程。

机械原理四连杆机构分析

机械原理四连杆机构分析

图4-6 利用死点夹紧工件的夹具
二、双曲柄机构
两连架杆均为曲柄的铰链四杆机构称 为双曲柄机构。
图4-7 插床双曲柄机构
BD2=l22+l32-2l2l3cosBCD 由此可得
l l l l 2l1l 4 cos cosBCD 2l 2 l3
2 2 2 3 2 1 2 4
当=0和180时,cos=+1和-1, BCD分别最小和最大(见图4-4)。 当BCD为锐角时,传动角=BCD, 是传动角的最小值,也即BCD(min) ;
曲柄摇杆机构 双曲柄机构
双摇杆机构
一、 曲柄摇杆机构
在铰链四杆机构中,若两个连架杆, 一个为曲柄,另一个为摇杆,则此铰链 四杆机构称为曲柄摇杆机构。
图4-2所示为调整雷达天线俯仰角的 曲柄摇杆机构。曲柄1缓慢地匀速转动, 通过连杆2使摇杆3在一定的角度范围内 摇动,从而调整天线俯仰角的大小。
图4-2 雷达天线俯仰角调整机构
第四章 连杆机构
平面连杆机构是将各构件用转动 副或移动副联接而成的平面机构。
最简单的平面连杆机构是由四个 构件组成的,简称平面四杆机构。它 的应用非常广泛,而且是组成多杆机 构的基础。
§4-1 铰链四杆机构的基本形式 和特性
全部用回转副组成的平面四杆机构 称为铰链四杆机构,如图4-1所示。
连杆
机架
连 架 杆
图4-1 铰链四杆机构
图中,机构的固定件4称为机架;与 机架用回转副相联接的杆1和杆3称为连 架杆;不与机架直接联接的杆2称为连杆。 另外,能做整周转动的连架杆,称为曲 柄。仅能在某一角度摆动的连架杆,称 为摇杆。
Байду номын сангаас
对于铰链四杆机构来说,机架和连杆 总是存在的,因此可按照连架杆是曲柄还 是摇杆,将铰链四杆机构分为三种基本型 式:

机械原理凸轮机构

机械原理凸轮机构

O
Ov
1
1
2 3 4 5 6 234 56
速度的变化率(即跃度j)在这些 位置为无穷大——柔性冲击
v
O
2
适应场合:中速轻载
O
2
a a0
O 2
j
3.简谐运动(余弦加速度运动)
当质点在圆周上作匀速运动 时,它在该圆直径上的投影所构 成的运动规律—简谐运动
s
h 2
1
cos
π Φ
φ
特点:有柔性冲击
作平底的内包络线,即为所要设计 的凸轮廓线
4.4 解析法设计平面凸轮轮廓曲线
一、直动滚子从动件盘形凸轮
已知:凸轮以等角速度 逆
y
时针方向转动,凸轮基园半
径ro、滚子半径rr,导路和凸
e
轮轴心间的相对位置及偏距e,
B0 ''
n
从动件的运动规律 s s(。)
1. 理论廓线方程: B(x, y)
s0 O
4.1.2 凸轮机构的分类
1. 按凸轮的形状分类
盘形凸轮 移动凸轮
圆柱凸轮
盘形凸轮:最基本的形式,结构简单,应用最为广泛
移动凸轮:凸轮相对机架做直线运动
圆柱凸轮:空间凸轮机构
2. 按从动件的形状分类
尖端能以任意复杂的凸轮轮廓 保持接触,从而使从动件实现 任意的运动规律。但尖端处极 易磨损,只适用于低速场合。
d
min
s
e
L

rb r' Cu
O
4.6 圆柱凸轮机构
一、直动从动件圆柱凸轮机构
O
rm 1
O a)
v1
η η
1
η 2
v2

机械原理-凸轮

机械原理-凸轮
(2)、提出:在确定凸轮机构尺寸时,首先要考虑凸轮机构中的作用力,下面就分析凸轮机构的作用力和尺寸的关系,“凸轮机构的作用力与凸轮机构的压力角”,可用一尖底直动推杆盘形凸轮机构来进行分析。
(3)、上面讲到,凸轮机构的压力角对凸轮机构受力有较大的影响,而且凸轮廓线上不同点处的压力角的大小一般也不相同,那么如何计算凸轮廓线上任一点处的压力角,压力角又取决于哪些因素呢?
(2)基圆半径 的确定。在偏距一定,推杆的运动规律已知的条件下,加大基圆半径 ,可减小压力角 ,从而改善机构的传力特性;凸轮的基圆半径愈小,凸轮尺寸则愈小,凸轮机构愈紧凑。然而,基圆半径的减小受到了压力角的限制,而且在实际设计工作中,还要受到凸轮结构尺寸及强度条件的限制。因此,在实际设计工作中,基圆半径的确定必须从凸轮机构的尺寸、受力、安装、强度等方面予以综合考虑。但仅从机构尺寸紧凑和改善受力的观点来看,基圆半径 确定的原则是:在保证 的条件下,应使基圆半径尽可能小。
至于滚子推杆和平底推杆盘形凸轮机构凸轮轮廓线的设计,可首先将滚子中心或推杆导路的中心线与推杆平底的交点视为尖顶推杆的尖顶,按尖顶推杆凸轮机构的设计方法,求出尖顶推杆的凸轮轮廓线,以此为理论廓线,在理论廓线上的各点作一系列滚子圆或作一系列垂直于各导路的平底,最后做出其包络线,便可求得相应的凸轮工作曲线。
2、在讲述按凸轮形状分类时,应指出:
盘形凸轮、移动凸轮、圆柱凸轮机构的运动特点及其内在联系(即移动凸轮可看作回转轴心在无穷远的盘形凸轮机构,而把移动凸轮卷成一圆筒则为圆柱凸轮)
讲述推杆型式分类时,应说明尖顶推杆虽然容易磨损,在生产实际中很少应用,但可把尖顶作为中心,加一圆滚子,即得到滚子推杆,并由此说明理论廓线与实际廓线的概念,同时说明尖顶推杆凸轮机构的设计是其它形式的凸轮机构的设计基础。

机械原理机构

机械原理机构

机械原理机构机械原理机构是指由零件和连接它们的约束件组成的系统,它们之间通过相对运动来完成特定的功能。

机械原理机构是机械系统的基本组成部分,它们的设计和应用对于机械系统的性能和效率有着重要的影响。

机械原理机构可以分为平面机构和空间机构两大类。

平面机构是指所有零件的运动都在同一平面内进行,而空间机构则是指零件的运动不仅限于一个平面,还包括垂直于该平面的运动。

根据机构的功能和结构特点,可以将机械原理机构分为连杆机构、齿轮机构、凸轮机构等多种类型。

连杆机构是一种由连杆和连接它们的转动副或滑动副组成的机构。

它通过连杆的相对运动来完成转动或平动的功能。

常见的连杆机构包括曲柄滑块机构、摇杆机构等。

曲柄滑块机构是一种最简单的连杆机构,它由曲柄、连杆和滑块组成,通过曲柄的旋转驱动滑块的来回运动,常用于发动机的活塞运动机构中。

齿轮机构是一种利用齿轮传动来完成动力传递和速度变换的机构。

它由齿轮和连接它们的轴组成,通过齿轮的啮合来实现转速的变换和扭矩的传递。

齿轮机构在机械传动系统中有着广泛的应用,例如汽车变速箱、工业机械等。

凸轮机构是一种通过凸轮的轮廓来控制其他零件运动的机构。

凸轮的轮廓决定了其相对于连接件的运动规律,通过凸轮的旋转或者直线运动来驱动其他零件的运动。

凸轮机构常用于自动机械、数控机床等领域,用来实现复杂的运动轨迹和运动规律。

机械原理机构的设计和分析是机械工程领域的重要课题。

通过对机构的运动学和动力学分析,可以确定机构的运动规律和受力情况,为机械系统的设计和优化提供理论依据。

同时,对机械原理机构的研究也促进了机械工程领域的发展,推动了机械系统的创新和进步。

总的来说,机械原理机构是机械系统中的基础组成部分,它们通过相对运动来完成特定的功能,包括转动、平动、速度变换等。

不同类型的机械原理机构在机械系统中有着各自的应用和特点,其设计和分析对于机械系统的性能和效率有着重要的影响。

随着机械工程领域的不断发展,机械原理机构的研究也将不断深入,为机械系统的创新和发展提供更多的可能性。

机械原理四连杆机构

机械原理四连杆机构

播种机排种器
四连杆机构用于播种机排种器,通过调节连杆长度和角 度,实现排种量的精确控制。
工业机械中的应用
数控机床
四连杆机构用于数控机床的进给系统,实现高精度、 高效率的加工。
工业机器人
四连杆机构用于工业机器人的关节部位,实现机器人 的灵活运动和精确控制。
航空航天中的应用
飞机起落架
四连杆机构用于飞机起落架的收放系统,通过调节连 杆长度和角度,实现起落架的快速、稳定收放。
实验方法与步骤
1
3. 设定输入杆的长度和角度,启动实验,观察输 出杆的运动情况,记录相关数据。
2
4. 重复实验,改变输入杆的长度和角度,获取多 组数据。
3
5. 对实验数据进行整理和分析,得出结论。
实验结果与分析
实验结果
通过实验获取了四连杆机构在不同输入条件 下的运动数据,包括角度和速度的变化规律 。
机械原理四连杆机构
汇报人: 2023-12-27
目录
• 四连杆机构的概述 • 四连杆机构的工作原理 • 四连杆机构的类型与特点 • 四连杆机构的优化设计 • 四连杆机构的实验研究 • 四连杆机构的应用实例
01
四连杆机构的概述
定义与特点
定义
四连杆机构是一种由四个杆件相互连接组成的平面连杆机构,通过不同杆件的 相对运动实现特定的运动轨迹。
四连杆机构模型、测角仪、测速仪、数据采 集系统等。
实验方法与步骤
• 实验方法:采用控制变量法,通过改变输入杆的 长度和角度,观察输出杆的运动规律,并记录相 关数据。
实验方Байду номын сангаас与步骤
实验步骤 1. 搭建四连杆机构模型,确保各杆件安装正确,无卡滞现象。

机械原理_瞬心法解析法机构运动分析

机械原理_瞬心法解析法机构运动分析

机械原理_瞬心法解析法机构运动分析瞬心法和解析法是机构运动分析中常用的两种方法。

瞬心法通过分析机构中各个零件的位置和速度,来确定机构的运动学性质。

解析法则通过解析机构的运动方程,得到机构的运动规律。

下面将详细介绍这两种方法并进行比较。

瞬心法是一种基于几何关系的方法,通过寻找机构中每个零件的瞬时转动中心,来确定机构的运动学性质。

瞬心是一个虚拟的点,表示零件在每一瞬时的转动中心。

具体的步骤如下:1.找到机构中的每个可动零件,并确定它们之间的连接关系。

2.将机构定位到其中一时刻,确定每个零件的位置和方向。

3.通过观察每个零件的几何关系,找到这个零件的瞬时转动中心。

4.重复步骤2和3,直到得到整个机构在一个周期内的瞬时转动中心。

5.根据瞬时转动中心的运动轨迹,分析机构的运动学性质。

解析法是一种基于运动方程的方法,通过解析机构的运动方程,来得到机构的运动规律。

具体的步骤如下:1.根据机构的几何形状和运动特点,建立机构的运动方程。

2.利用运动方程,解析得到机构的位置和速度的表达式。

3.分析机构的运动学性质,如速度、加速度等。

4.根据运动方程,得到机构的运动规律。

瞬心法和解析法的主要区别在于求解的方式不同。

瞬心法是通过观察几何关系,寻找零件的瞬时转动中心,从而确定机构的运动性质;而解析法则是通过建立和解析机构的运动方程,得到机构的位置、速度等表达式,从而确定机构的运动规律。

瞬心法的优点是简单直观,通过观察几何关系能够快速确定机构的运动性质。

它适用于对于机构零件的位置和速度感兴趣的情况。

另外,瞬心法也适用于对于机构的部分运动情况进行分析的情况。

解析法的优点是能够得到机构的运动规律的具体数学表达式,进一步分析机构的运动性质。

它适用于需要对机构的整个运动过程进行深入分析的情况,或者对机构的动力学特性感兴趣的情况。

虽然瞬心法和解析法有各自的优点和适用范围,但在实际应用中,常常结合使用。

比如,可以先通过瞬心法快速确定机构的运动特征,然后再用解析法进一步分析和求解,得到更详细的运动规律。

机械原理机构

机械原理机构

机械原理机构机械原理机构是指由若干个零部件组成的装置,用于实现特定的运动转换或力学功能。

机械原理机构广泛应用于各种机械设备和工程结构中,是现代机械工程领域的重要组成部分。

在机械原理机构中,零部件之间通过连接件相互连接,形成一个整体,通过相对运动实现特定的功能。

机械原理机构的设计和应用对于提高机械设备的性能和效率具有重要意义。

机械原理机构可以按照其功能和结构特点进行分类。

按照功能特点,机械原理机构可分为传动机构、连杆机构、减速机构、变速机构等。

传动机构用于传递运动和力,常见的有齿轮传动、带传动、链传动等;连杆机构由若干个连杆组成,用于实现直线运动或转动运动;减速机构用于降低运动速度,增加输出力矩;变速机构用于调节运动速度和输出力矩。

按照结构特点,机械原理机构可分为平面机构和空间机构。

平面机构中的零部件运动都在同一平面内,空间机构中的零部件运动在不同的平面内,具有更复杂的运动特性。

机械原理机构的设计和分析需要掌握一定的理论知识和计算方法。

在设计机械原理机构时,需要根据具体的工程要求和运动功能,选择合适的机构类型和零部件。

在分析机械原理机构时,需要利用运动学、动力学等理论知识,对机构的运动特性、力学特性进行分析和计算。

同时,还需要考虑机械原理机构的工作可靠性、寿命和维护等方面的问题,确保机构在实际工程中能够稳定可靠地工作。

机械原理机构的应用涉及到各个领域,包括机械制造、航空航天、汽车工程、船舶工程、建筑工程等。

在机械制造领域,机械原理机构广泛应用于各种机械设备和工具中,如车床、磨床、铣床、钻床等。

在航空航天领域,机械原理机构用于飞行器的机翼、襟翼、螺旋桨等部件,实现飞行器的姿态控制和动力传递。

在汽车工程领域,机械原理机构应用于汽车的传动系统、转向系统、悬挂系统等,保证汽车的正常运行和安全性能。

在船舶工程和建筑工程领域,机械原理机构也发挥着重要作用,用于船舶的推进系统、舵机系统,以及建筑物的升降系统、起重系统等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DD
当∠BCD最小或最大时,都有可能出现γmin
此位置一定是:主动件与机架共线两处之一。
机构的传动角一般在运动链 最终一个从动件上度量。
B2
A
l1
B1
l l C2γ2
2γ1
设计:潘存云
C1
3
D
l4
上午8时19分
杨拴强 制作
死点特性
摇杆为主动件, F 且连杆与曲柄两 γ=0 次共线时,有:
γ=0 此时机构不能运动.
t1 (180 ) / V1 C1C2 t1 C1C2 /(180 )
上午8时19分
杨拴强 制作
上午8时19分
杨拴强 制作
2.压力角和传动角
压力角α:从动件驱动力F与力作用点绝对速
度之间所夹锐角。
传动角γ :压力角的余角即连杆与从动件间
所夹的锐角。
F”
F
C
切向分力: F’= Fcosα =Fsinγ
上午8时19分
杨拴强 制作
5.1平面连杆机构
平面连杆机构定义:所有构件均作平行于某 一平面的运动,且构件之间只有低副连接。
1、铰链四杆机构的组成
机架——固定不动构件 连架杆——与机架以运动副相连的杆 曲柄——能做整周转动 摇杆——摆动一定角度 连杆——不直接与机架相连的杆
上午8时19分
2
1
3
4
杨拴强 制作
1
3
4
2
1
3
4
(b)不满足格拉肖夫判别式时,以任何杆为机架,皆为
双摇杆机构
上午8时19分
杨拴强 制作
三、平面四杆机构的基本特性
急回特性 在曲柄摇杆机构中,当曲柄与连杆两次共线时,
摇杆位于两个极限位置,简称极位。此两处曲
柄之间的夹角θ 称为极位夹角。
上午8时19分
杨拴强 制作
1、急回特性
当曲柄以ω逆时针转过180°+θ时,摇杆 从C1D位置摆到C2D。
分类
ห้องสมุดไป่ตู้
上午8时19分
杨拴强 制作
凸轮机构的分类
按照凸轮的形状分类 盘形凸轮 移动凸轮 圆柱凸轮
上午8时19分
杨拴强 制作
盘形凸轮
这种凸轮是一个绕固 定轴转动并且具有变 化向径的盘形零件, 如。当其绕固定轴转 动时,可推动从动件 在垂直于凸轮转轴的 平面内运动。它是凸 轮的最基本型式,结 构简单,应用最广。
上午8时19分
杨拴强 制作
曲柄摇杆机构(crank-rocker)
日常生活中常见的雷达、缝纫机等就是有曲柄 摇杆机构构成的。
上午8时19分
杨拴强 制作
双曲柄机构(double-crank)
何为双曲柄机构? 两个连架杆都是曲柄的机构。如下动画
上午8时19分
杨拴强 制作
双摇杆机构(double-rocker)
第五章 常用机构
杨拴强 福建江夏学院工业工程系
杨拴强 福建江夏学院
本章主要内容
5.1平面连杆机构 5.2凸轮机构 5.3棘轮机构 5.4轮槽机构 5.5典型机构动画演示
上午8时19分
杨拴强 制作
本章重点知识
平面四杆机构的演化机构 曲柄存在的条件 曲柄连杆机构的特性 凸轮机构的特点 棘轮机构的组成与原理 轮槽机构的组成与原理
B
F’
法向分力: F”= Fcosγ =Fsinα
A
D
γ↑ F’↑→对传动有利。
上午8时19分
杨拴强 制作
γ 出现的位置: min
为了保证机构良好的传力性能
当∠BCD≤90°时, γ=∠BCD
当∠BCD>90°时, γ=180°- ∠BCD
B
B
AA
C γ
F”
FF”’ C γFα
F
F’
设计:潘存云
正弦机构
杨拴强
制作
曲柄滑块机构的实例
内燃机实例
上午8时19分
杨拴强 制作
曲柄滑块机构的实例
往复式抽水机
上午8时19分
杨拴强 制作
运动副转化机构的演化
曲柄滑块机构
2
2
1 4
31
2
4
3
1
34
曲柄摇杆机构
曲柄移动导杆机构
上午8时19分
杨拴强 制作
三、曲柄摇杆机构的演化
(1)取不同构件为机架,曲柄摇杆机构、 双曲柄、双摇杆可以相互演化
上午8时19分
杨拴强 制作
移动凸轮
当盘形凸轮的转轴位 于无穷远处时,就演 化成了图示的移动凸 轮(或楔形凸轮)。 凸轮呈板状,它相对 于机架作直线移动。
上午8时19分
杨拴强 制作
圆柱凸轮
如果将移动凸轮卷成 圆柱体即演化成圆柱 凸轮。图示为自动机 床的进刀机构。在这 种凸轮机构中凸轮与 从动件之间的相对运 动是空间运动,故属 于空间凸轮机构。
2
1
3
4
曲柄摇杆
上午8时19分
2
1
3
4
2
1
3
4
双曲柄
双摇杆
杨拴强 制作
(2)曲柄存在的条件(GRASHOF)
(a)最短杆+最长杆≤其他两杆长度之和——格拉肖夫判别式
以最短杆的相邻杆为机架时——必为曲柄摇杆机构 以最短杆为机架时——必为双曲柄机构 以最短杆的对面杆为机架时——必为双摇杆机构
2
1
3
4
2
一、铰链四杆机构的基本形式
(1)曲柄摇杆机构(crank-rocker) (2)双曲柄机构(double-crank) (3)双摇杆机构(double-rocker)
上午8时19分
杨拴强 制作
曲柄摇杆机构(crank-rocker)
何为曲柄摇杆机构? 既有曲柄又有摇杆的机构。如下动画中,两个连 架杆中一个是曲柄,一个是摇杆。
F γ=0
称此位置为: “死点”
避免措施: 两组机构错开排列,如火车轮机构; 靠飞轮的惯性(如内燃机、缝纫机等)。
上午8时19分
杨拴强 制作
思考题
在现实生活中,那里用到了平面四杆机构 的这些特性?
这些特性的好处和坏处是什么?
上午8时19分
杨拴强 制作
5.2 凸轮机构的应用和分类
杨拴强 福建江夏学院工业工程系
Knowledge Points
凸轮机构的组成 凸轮机构的分类 凸轮机构的优点、缺点
上午8时19分
杨拴强 制作
凸轮机构的组成
凸轮是具有曲线轮廓 或凹槽的构件
凸轮机构一般由凸轮、 从动件和机架三个构 件组成。
上午8时19分
杨拴强 制作
凸轮机构的分类
按照凸轮的形状分类 按照从动件的型式分类 按照凸轮与从动件维持高副接触的方法
何为双摇杆机构? 在一个机构中,两个连架杆都是摇杆。如下动画中
所示。
上午8时19分
杨拴强 制作
铰链四杆机构的演化
设计:潘存云
设计:潘存云
曲柄摇杆机构
曲柄滑块机构
设计:潘存云
设计:潘存云
设计:潘存云
↓∞ 偏心曲柄滑块机构
s =l sin φ
φ
l
→∞
设计:潘存云
对心曲柄滑块机构
上午8时19分
双滑块机构
上午8时19分
杨拴强 制作
凸轮机构的分类
按照从动件的型式分类 尖底从动件 滚子从动件 平底从动件
上午8时19分
杨拴强 制作
相关文档
最新文档