低频磁场屏蔽基础解读
谈无线电低频的屏蔽与接地
谈无线电低频的屏蔽与接地[摘要]电磁屏蔽在低频时,不是十分有效的。
因此,低频要用高导磁率材料进行屏蔽,以便获得较好的屏蔽效果。
如果使用互相具有一定间隔的两个或两个以上的同心磁屏蔽体,则其屏蔽效果就更好了。
屏蔽与接地也是消除低频噪声的有效措施。
【关键词】无线电;低频;屏蔽;接地电磁屏蔽在低频时,不是十分有效的。
因此,低频要用高导磁率材料进行屏蔽,以便获得较好的屏蔽效果。
因为高导磁材料的磁阻很小,能够把磁力线比较多的限制在该屏蔽体内,防止向外部扩散。
为了有效地进行屏蔽,必须用诸如坡莫合金之类对低频磁通密度有高导磁系数的材料;同时,材料要具有一定的厚度,对于一端进去从另一端出来的磁通,其磁阻必须小,以保证磁通尽量多地被束缚住。
如果使用互相具有一定间隔的两个或两个以上的同心磁屏蔽体,则其屏蔽效果就更好了。
屏蔽与接地也是消除低频噪声的有效措施。
1.屏蔽屏蔽是一块金属(屏蔽在这里是指起屏蔽作用的各种形式的物体),它包围或者差不多围所要屏蔽的空间。
屏蔽的意义是减少屏蔽体内外导体之间的杂散电容,其减少的程度取决于屏蔽完全的程度。
虽然静电屏蔽也能减少由瞬变磁场感应而形成的干扰,然而,要使一个区域完全排除低频磁场,必须使用高导磁性的材料包围起来才行。
2.防护与被处理信号的共模电压相连接的屏蔽体叫防护。
用防护和其他隔离装-起,可得到良好的噪声隔离。
放大器由电源供电,这个电源通过一个有三层屏蔽的变压器连接到60Hz电力线上,最靠近原边绕线的屏蔽体和电源中线及放大器的外层屏蔽体相连接。
变压器的中间一层屏蔽体连接到防护上,这个防护相当于一个盒中之盒,完全把放大器和电源封闭起来。
电源被封闭在第三层屏蔽中,它和变压器副边绕阻的中心抽头相连接,并连接到称为“电路公共点”的新的“接点”上。
这个“地”或公共点,实际上只通过杂散参数与大地相连。
用这一特殊结构的三层变压器,可以将原、副边间电容减到低于0.1pF,因此,可有效地把电源和电力线电位隔离开来。
电磁屏蔽基本原理介绍
在电子设备及电子产品中,电磁干扰(Electromagnetic Interference)能量通过传导性耦合和辐射性耦合来进行传输。
为满足电磁兼容性要求,对传导性耦合需采用滤波技术,即采用EMI滤波器件加以抑制;对辐射性耦合则需采用屏蔽技术加以抑制。
在当前电磁频谱日趋密集、单位体积内电磁功率密度急剧增加、高低电平器件或设备大量混合使用等因素而导致设备及系统电磁环境日益恶化的情况下,其重要性就显得更为突出。
屏蔽是通过由金属制成的壳、盒、板等屏蔽体,将电磁波局限于某一区域内的一种方法。
由于辐射源分为近区的电场源、磁场源和远区的平面波,因此屏蔽体的屏蔽性能依据辐射源的不同,在材料选择、结构形状和对孔缝泄漏控制等方面都有所不同。
在设计中要达到所需的屏蔽性能,则需首先确定辐射源,明确频率范围,再根据各个频段的典型泄漏结构,确定控制要素,进而选择恰当的屏蔽材料,设计屏蔽壳体。
屏蔽体对辐射干扰的抑制能力用屏蔽效能SE(Shielding Effectiveness)来衡量,屏蔽效能的定义:没有屏蔽体时,从辐射干扰源传输到空间某一点(P)的场强1(1)和加入屏蔽体后,辐射干扰源传输到空间同一点(P)的场强2(2)之比,用dB(分贝)表示。
图1 屏蔽效能定义示意图屏蔽效能表达式为(dB) 或(dB)工程中,实际的辐射干扰源大致分为两类:类似于对称振子天线的非闭合载流导线辐射源和类似于变压器绕组的闭合载流导线辐射源。
由于电偶极子和磁偶极子是上述两类源的最基本形式,实际的辐射源在空间某点产生的场,均可由若干个基本源的场叠加而成(图2)。
因此通过对电偶极子和磁偶极子所产生的场进行分析,就可得出实际辐射源的远近场及波阻抗和远、近场的场特性,从而为屏蔽分类提供良好的理论依据。
图2 两类基本源在空间所产生的叠加场远近场的划分是根据两类基本源的场随1/r(场点至源点的距离)的变化而确定的,为远近场的分界点,两类源在远近场的场特征及传播特性均有所不同。
低频磁场
低频磁场低频磁场很难屏蔽。
磁力线可以穿透我们生活中常见的材料或物体(如木材、砖瓦、石块、水泥等材料或人体、墙壁、树木等物体),并基本上不因上述物体或材料的存在而产生畸变或消弱。
为了描述带电导线中的电流在周围空间中产生磁场的大小,物理上引入了磁场强度的概念,它是一个矢量,一般用符号H表示,其单位是安培/米(A/m)。
而单位磁场强度在周围空间感应出磁通密度的大小(通常用磁感应强度B表示)是不同的,它取决于磁场闭合环路中各种介质的导磁能力。
磁感应强度与磁场强度的关系为B=μH=μrμ0H(3-1)式中:μ被称为物质的磁导率;μ0被称为真空磁导率,其值为4π×10-7H/m;μr称为物质的相对磁导率。
不同材料具有不同的磁导率。
根据磁导率的大小,一般可以把材料分为弱磁性材料和强磁性材料两大类。
弱磁性材料包括顺磁性材料和抗磁性材料;强磁性材料常见的为铁磁材料、亚铁磁材料。
抗磁性材料在无外加磁场时对外不显磁性,在外加磁场的作用下会产生一个同外加磁场方向相反的磁场。
抗磁性材料的μr略小于1,这类材料如汞、铜、硫、金、银、锌、铅等。
顺磁性材料在无外加磁场时几乎不显磁性,在外加磁场的作用下材料内的原子运动会产生一个同外加磁场方向相同的磁场。
顺磁性材料的μr略大于1,这类材料如锰、铬、铂、氮等。
铁磁材料在外加磁场时,材料内的原子在被称为“交换耦合”的量子效应下,对外显现出非常强烈的磁性,铁磁材料主要是含铁、镍、钴和稀有金属钆、铽等的材料。
亚铁磁性材料在外磁场作用下的磁性弱于铁磁性材料,但其导电性能较铁磁性材料强,亚铁磁性材料有铁氧体等。
表3-9列出了一些材料的磁化特性。
表3-9 典型材料的磁性能在相同的外加激励(即相同的磁场强度)下,不同材料中磁感应强度不相同,磁场向相对磁导率大的物体集中,相对磁导率较大的材料中的磁感应强度较大。
在实际中主要有两种低频磁场的屏蔽方法,即磁屏蔽方法和涡流屏蔽(也称电磁屏蔽)方法。
低频电磁波的屏蔽
低频电磁波的屏蔽一、前言凡是有电源的地方、有用电设备的地方、几百米内有高压电线的地方、几十米内有地下电缆的地方,甚至只有金属管道和金属梁架的地方,都可能有高达数十以至数百毫高斯的低频电磁干扰。
低频电磁干扰的强度变化常常无规律可循,短时间内就会有相当大的上下波动;低频电磁干扰的来源往往难以确定,这样就更增加了屏蔽设计的难度。
二、低频电磁屏蔽与其它屏蔽的差异比较1、低频电磁场根据电磁波传输的基本原理,在频率很低的时候良导体中的电磁波只存在于导体表面有“趋肤效应”(波从表面进入导电媒质越深,场的幅度就越小,能量就变得越小,这一效应就是趋肤效应)。
高频电路中,传导电流集中到导线表面附近的现象也有这样的问题又称“集肤效应”。
交变电流通过导体时,由于感应作用引起导体截面上电流分布不均匀,愈近导体表面电流密度越大。
这种“趋肤效应”使导体的有效电阻增加。
频率越高,趋肤效应越显著。
当频率很高的电流通过导线时,可以认为电流只在导线表面上很薄的一层中流过,这等效于导线的截面减小,电阻增大。
既然导线的中心部分几乎没有电流通过,就可以把这中心部分除去以节约材料。
因此,在高频电路中可以采用空心导线代替实心导线。
此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。
在工业应用方面,利用趋肤效应可以对金属进行表面淬火。
)、磁滞损耗(放在交变磁场中的铁磁体,因磁滞现象而产生一些功率损耗,从而使铁磁体发热,这种损耗叫磁滞损耗。
铁磁材料在磁化过程中由磁滞现象引起的能量损耗。
磁滞指铁磁材料的磁性状态变化时,磁化强度滞后于磁场强度,它的磁通密度B与磁场强度H之间呈现磁滞回线关系。
经一次循环,每单位体积铁心中的磁滞损耗等于磁滞回线的面积。
这部分能量转化为热能,使设备升温,效率降低,这在交流电机一类设备中是不希望的。
软磁材料的磁滞回线狭窄,其磁滞损耗相对较小。
硅钢片因此而广泛应用于电机、变压器、继电器等设备中。
低频磁场屏蔽基础解读
低频磁场屏蔽基础基本原理当磁场的频率很低(工频或100KHz以下)时,传统的屏蔽方法几乎没有作用。
低频磁场一般由马达、发电机、变压器等设备产生。
这些磁场会对利用磁场工作的设备产生影响,如阴极射线管中的电子束是在磁场的控制下进行扫描的,当有外界磁场干扰时,电子束的偏转会发生变化,使图像失真。
低频磁场的屏蔽是使用铁磁性材料将敏感器件包起来。
屏蔽的作用是为磁场提供一条低磁阻的通路,使敏感器件周围的磁力线集中在屏蔽材料中,从而起到屏蔽的作用。
设计中的一个关键是选择一种材料既能提供足够的屏蔽效能,又不至于发生饱和。
当要屏蔽的磁场很强时,一层屏蔽可能满足不了要求,这时可以采用多层屏蔽。
多层屏蔽的原理是先用导磁率较低,不易饱和的材料将磁场衰减到一定的程度,然后再用磁导率很高(通常容易发生饱和)的材料进行进一步衰减。
因此低导磁率的材料应靠近干扰源。
完全的封闭体能够提供最理想的磁屏蔽效果。
但在实践中,不封闭的结构,如五面体或更少面的结构,甚至平板也能提供满足要求的屏蔽效能。
当使用平板时,应使平板体的长度和宽度大于干扰源到敏感源之间的距离。
由于材料的磁阻与屏蔽结构的尺寸有关,因此除了选用合适的材料以外,尽量缩短磁路的长度、增加截面积也能增加磁屏蔽效能。
磁屏蔽材料特性CO—NETIC和NETIC材料是两种特殊的磁屏蔽材料。
CO-NETIC材料具有极高的导磁率,可以有效衰减低频磁场干扰,达到极高磁场屏蔽,NETIC材料有极好的抗磁饱和能力,能在强磁场产生一定衰减。
●Stress Annealed(压力退火处理)的材料在加工完毕后,为了获得最佳的屏蔽效能,要再进行退火处理。
●Perfection Annealed(完全退火处理)的材料只要在加工过程中没有激烈的成型和拉伸,加工完毕后不需要再退火。
●尺寸:压力退火处理的材料:1524mm,762mm,381mm。
完全退火处理的材料:737mm,356mm。
产品规格板材CO-NETIC AA 合金CO-NETIC AA 合金完全退火处理(Perfection Annealed Sheet)*CO-NETIC B 合金压力退火处理板(Stress Annealed Sheet)*NETIC S3-6 合金压力退火处理板(Stress Annealed Sheet)*箔材CO-NETIC AA 箔完全退火处理(Perfection Annealed)NETIC S3-6箔完全退火处理(Perfection Annealed)说明:●所有箔材料是完全退火处理的。
磁场的屏蔽问题.
磁场的屏蔽问题,是一个既具有实际意义又具有理论意义的问题。
根据条件的不同,电磁场的屏蔽可分为静电屏蔽、静磁屏蔽和电磁屏蔽三种情况,这三种情况既具有质的区别,又具有内在的联系,不能混淆。
静电屏蔽在静电平衡状态下,不论是空心导体还是实心导体;不论导体本身带电多少,或者导体是否处于外电场中,必定为等势体,其内部场强为零,这是静电屏蔽的理论基础。
因为封闭导体壳内的电场具有典型意义和实际意义,我们以封闭导体壳内的电场为例对静电屏蔽作一些讨论。
(一)封闭导体壳内部电场不受壳外电荷或电场影响。
如壳内无带电体而壳外有电荷q,则静电感应使壳外壁带电(如图1)。
静电平衡时壳内无电场。
这不是说壳外电荷不在壳内产生电场,根发电场。
由于壳外壁感应出异号电荷,它们与q在壳内空间任一点激发的合场强为零。
因而导体壳内部不会受到壳外电荷q或其他电场的影响。
壳外壁的感应电荷起了自动调节作用。
如果把上述空腔导体外壳接地(图2),则外壳上感应正电荷将沿接地线流入地下。
静电平衡后空腔导体与大地等势,空腔内场强仍然为零。
如果空腔内有电荷,则空腔导体仍与地等势,导体内无电场。
这时因空腔内壁有异号感应电荷,因此空腔内有电场(图3)。
此电场由壳内电荷产生,壳外电荷对壳内电场仍无影响。
由以上讨论可知,封闭导体壳不论接地与否,内部电场不受壳外电荷影响。
(二)接地封闭导体壳外部电场不受壳内电荷的影响。
如果壳内空腔有电荷q,因为静电感应,壳内壁带有等量异号电荷,壳外壁带有等量同号电荷,壳外空间有电场存在(图4),此电场可以说是由壳内电荷q间接产生。
也可以说是由壳外感应电荷直接产生的但如果将外壳接地,则壳外电荷将消失,壳内电荷q与内壁感应电荷在壳外产生电场为零(图5)。
可见如果要使壳内电荷对壳外电场无影响,必须将外壳接地。
这与第一种情况不同。
这里还须注意:①我们说接地将消除壳外电荷,但并不是说在任何情况壳外壁都一定不带电。
假如壳外有带电体,则壳外壁仍可能带电,而不论壳内是否有电荷(图6)。
低频电磁场的屏蔽分析
低频电磁场的屏蔽分析1对于许多人而言,低频磁场干扰是一种最难对付的干扰,这种干扰是由直流电流或交流电流产生的。
例如,由于炼钢的感应炉中有数万安培的电流,会在周围产生很强的磁场,这个强磁场会使控制系统中的磁敏感器件失灵,最常见的磁敏感设备是彩色CRT显示器。
在磁场的作用下,显示器屏幕上的图象会发生抖动、图象颜色会失真,导致显示质量严重降低,甚至无法使用。
低频磁场往往随距离的衰减很快,因此在很多场合,将磁敏感器件远离磁场源是一个减小磁场干扰的十分有效的措施。
但当空间的限制而无法采取这个措施时,屏蔽是一个十分有效的措施。
但要注意的是,低频磁场屏蔽与与射频屏蔽是完全不同的,射频屏蔽可以用铍铜复合材料、银、锡或铝等材料,但这些材料对磁场没有任何屏蔽作用。
只有高导磁率的铁磁合金能屏蔽磁场。
1.基本原理根据电磁屏蔽的基本原理,低频磁场由于其频率低,趋肤效应很小,吸收损耗很小,并且由于其波阻抗很低,反射损耗也很小,因此单纯靠吸收和反射很难获得需要的屏蔽效能。
对这种低频磁场,要通过使用高导磁率材料提供磁旁路来实现屏蔽,如图1所示。
由于屏蔽材料的导磁率很高,因此为磁场提供了一条磁阻很低的通路,因此空间的磁场会集中在屏蔽材料中,从而使敏感器件免受磁场干扰。
图1 高导磁率材料提供了磁旁路,起到屏蔽作用从这个机理上看,显然屏蔽体分流的磁场分量越多,则屏蔽效能越高。
根据这个原理,我们可以用电路的的计算方法来计算磁屏蔽效果。
用两个并联的电阻分别表示屏蔽材料的磁阻和空间的磁阻,用电路分析的方法来计算磁场的分流,由此可以计算屏蔽效果。
从公式中可以看出,屏蔽材料的导磁率越高、越厚,则屏蔽效能越高。
另外,b越小,屏蔽效能越高,这意味着,屏蔽体距离所保护的空间越近,则效果越好。
低频电磁场的屏蔽分析22.基本概念3.屏蔽材料如前所述,磁屏蔽需要高导磁率材料,满足这种要求的材料是铁镍合金,这种材料具有很高的磁导率。
一种常用的合金的化学成分如表1所示。
屏蔽的机理
屏蔽的机理所谓屏蔽是用导电或导磁体的封闭面将其内外两侧空间进行的电磁性隔离。
因此,从其一侧空间向另一侧空间传输的电磁能量,由于旅行了屏蔽而被抑制到极微量。
这种抑帛效果称为屏蔽效能或屏蔽插入衰减,用分贝表示。
令空间某点在没有屏蔽时的场强为Eo或Ho,设计屏蔽后该点的场强为Ei或Hi,于是屏蔽效能S为S=20lg Eo Ei或S=20lg Ho Hi屏蔽效能是频率和材料电磁参数的函数。
另外,材料的厚度和屏蔽体的连接对屏蔽效能也有显著影响。
屏蔽技术包括:1. 屏蔽2. 屏蔽体连接,包括固定接缝和活动接缝的连接3. 接地4. 隔离滤波,包括电源线、信号线和控制线的滤波器,以及通风、空调和水、气等动力管道的电磁滤波器;5. 信号电缆的电气密封连接6. 屏蔽空间的设备和设施安装。
二、屏蔽的分类根据频率和作用机理不同,屏蔽分下面几种。
1. 直流磁场屏蔽其屏蔽效能取决于屏蔽材料的导磁系数μ。
2. 地磁屏蔽地磁场接近于直流磁场,但实际上它是在20~50Hz 频率范围漂动。
因此,对地磁屏蔽可看成是对叠加有效流场的直流磁场屏蔽。
其屏蔽效能用增量屏蔽系数ЗΔ表示。
ЗΔ取决于增量导磁系数μΔ。
对半径为R 的圆球体单层屏蔽或长度为ι的立方体单层屏蔽,设屏蔽体厚度为t ,则增量屏蔽系数ЗΔ分别为增量导磁系数μΔ是材料磁密或磁感应强度B 的函数。
其最大值等于初始直流导磁系数。
并随磁感应强度B 和直流导磁系数的增加而减小;在磁化饱和时,μΔ等于零。
因此,为了获得最大的ЗΔ,屏蔽体应彩高导磁材料,通过控制剩ЗΔ= 1+ 2 μΔt (圆球体) 3 R ЗΔ= 1+ 1 μΔt (立方体) 2 R余感应B,来抵消外界直流磁场。
控制的方法是,用一个高强度的高斯线圈放在屏蔽室中或靠近屏蔽室,进行急剧磁化和交流去磁,以免屏蔽体磁化饱和或出现不希望的剩余感应,使剩余感应达到所期望的数值。
3. 低频磁场屏蔽从狭义角度,是指甚低频(VLF)和极低频(ELF)的磁场屏蔽。
电磁屏蔽的三种不同屏蔽效果分析及原理详解
电磁屏蔽的三种不同屏蔽效果分析及原理详解电磁屏蔽⼀般可分为三种:静电屏蔽、静磁屏蔽和⾼频电磁场屏蔽。
三种屏蔽的⽬的都是防⽌外界的电磁场进⼊到某个需要保护的区域中,原理都是利⽤屏蔽对外场的感应产⽣的效应来抵消外场的影响。
但是由于所要屏蔽的场的特性不同,因⽽对屏蔽壳材料的要求和屏蔽效果也就不相同。
⼀、静电屏蔽静电屏蔽的⽬的是防⽌外界的静电场进⼊需要保护的某个区域。
静电屏蔽依据的原理是:在外界静电场的作⽤下导体表⾯电荷将重新分布,直到导体内部总场强处处为零为⽌。
接地的封闭⾦属壳是⼀种良好的静电屏蔽装置。
如图所⽰,接地的封闭⾦属壳把空间分割成壳内和壳外两个区域,⾦属壳维持在零电位。
根据静电场的唯⼀性定理,可以证明:⾦属壳内的电场仅由壳内的带电体和壳的电位所确定,与壳外的电荷分布⽆关。
当壳外电荷分布变化时,壳层外表⾯上的电荷分布随之变化,以保证壳内电场分布不变。
因此,⾦属壳对内部区域具有屏蔽作⽤。
壳外的电场仅由壳外的带电体和⾦属壳的电位以及⽆限远处的电位所确定,与壳内电荷分布⽆关。
当壳内电荷分布改变时,壳层内表⾯的电荷分布随之变化,以保证壳外电场分布不变。
因此,接地的⾦属壳对外部区域也具有屏蔽作⽤。
在静电屏蔽中,⾦属壳接地是⼗分重要的。
当壳内或壳外区域中的电荷分布变化时,通过接地线,电荷在壳层外表⾯和⼤地之间重新分布,以保证壳层电势恒定。
从物理图像上看,因为在静电平衡时,⾦属内部不存在电场,壳内外的电场线被⾦属隔断,彼此⽆联系,因此,导体壳有隔离壳内外静电相互作⽤的效应。
如果⾦属壳未完全封闭,壳上开有孔或缝,也同样具有静电屏蔽作⽤。
在许多实际应⽤中,静电屏蔽装置常常是⽤⾦属丝编织成的⾦属⽹代替闭合的⾦属壳,即使⼀块⾦属板,⼀根⾦属线,亦有⼀定的静电屏蔽作⽤,只是屏蔽的效果不如⾦属壳。
在外电场的作⽤下,电荷在导体上的重新分布,在10-19秒数量级时间内就可完成,因此对低频变化的电场,导体上的电荷有⾜够长的时间来保证内部场强为零.所以静电屏蔽装置对缓慢变化的电场也有屏蔽作⽤。
低频磁场屏蔽问题简述
科技信息2013年第3期SCIENCE&TECHNOLOGYINFORMATION0引言近几十年来,人们对电磁场认识迅速提高,电磁防护也逐渐成为了科学界和普通民众共同关心的话题。
目前,人们对电磁防护的研究较多的集中在电场方面。
然而,研究发现,以磁场(尤其是低频磁场)为表现形式的电磁辐射所造成的危害也是相当大的。
低频磁场所造成的危害主要表现在以下几个方面:(1)在工业上,低频磁场干扰常用的电子电气设备的正常使用,例如铝电解槽中有数十KA 的电流,会在周围产生强大的磁场,这个磁场会使电流控制系统中的电子设备、工计算机等受到影响;(2)在医学上,研究发现,低频磁场对动物的生理会产生一定的影响。
研究报告表明,人体发生多种肿瘤癌变的概率与所受到的低频磁场辐射密切相关,长期处于低频磁场中工作的人患白血病的概率是普通人的6倍,患淋巴癌的概率是普通人的4倍;(3)低频磁场辐射有可能会造成国家重要经济、政治、军事等相关方面情报的泄漏,与国家安全问题密切相关。
因此研究低频磁场屏蔽问题,并且根据特定的环境提出相对应的解决方法,是非常有必要的。
1低频磁场相关概念磁场屏蔽是电磁屏蔽中的一个难题。
磁场屏蔽通常是指用于减少磁场向指定区域穿透的措施。
磁场可以分为两种,通常我们把频率大于100kHz 的磁场称之为高频磁场,把频率低于100kHz 的磁场称之为低频磁场。
1.1低频磁场屏蔽低频磁场屏蔽是指在磁场频率低于100kHz 时,采用某些屏蔽手段来保证指定区域不受外界低频磁场的干扰。
与高频磁场的屏蔽问题不同的是,在磁场的频率较低时,产生的磁场可能是各种几何构型导体中流过的电流导致的,也可能是周围铁磁材料的磁化引起的,另外加上屏蔽结构、屏蔽材料等原因,低频磁场的屏蔽相对更复杂一些。
1.2屏蔽效能电磁屏蔽效果通常用屏蔽效能来表示,低频磁场的屏蔽效果与此相同。
屏蔽效能SE B 定义为:SE B =B O (r )B S (r )其中,B O (r )表示当屏蔽不存在时,观察点r 处的磁感应强度;B S (r )表示当屏蔽存在时,观察点r 处的磁感应强度。
屏蔽 基础知识
屏蔽基础知识专业制造EMI,SMD铍铜弹片,屏蔽罩 Tue, 10 Apr 2007 18:40:35 GMT+08:00 阅读(190)屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。
具体讲,就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。
因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用,所以屏蔽体具有减弱干扰的功能。
(1)当干扰电磁场的频率较高时,利用低电阻率的金属材料中产生的涡流,形成对外来电磁波的抵消作用,从而达到屏蔽的效果。
(2)当干扰电磁波的频率较低时,要采用高导磁率的材料,从而使磁力线限制在屏蔽体内部,防止扩散到屏蔽的空间去。
(3)在某些场合下,如果要求对高频和低频电磁场都具有良好的屏蔽效果时,往往采用不同的金属材料组成多层屏蔽体。
许多人不了解电磁屏蔽的原理,认为只要用金属做一个箱子,然后将箱子接地,就能够起到电磁屏蔽的作用。
在这种概念指导下结果是失败。
因为,电磁屏蔽与屏蔽体接地与否并没有关系。
真正影响屏蔽体屏蔽效能的只有两个因素:一个是整个屏蔽体表面必须是导电连续的,另一个是不能有直接穿透屏蔽体的导体。
屏蔽体上有很多导电不连续点,最主要的一类是屏蔽体不同部分结合处形成的不导电缝隙。
这些不导电的缝隙就产生了电磁泄漏,如同流体会从容器上的缝隙上泄漏一样。
解决这种泄漏的一个方法是在缝隙处填充导电弹性材料,消除不导电点。
这就像在流体容器的缝隙处填充橡胶的道理一样。
这种弹性导电填充材料就是电磁密封衬垫。
在许多文献中将电磁屏蔽体比喻成液体密封容器,似乎只有当用导电弹性材料将缝隙密封到滴水不漏的程度才能够防止电磁波泄漏。
电磁屏蔽典型应用PPT课件
排斥原干扰磁场,此法不适用于低频磁场屏蔽
一定频率后涡流不再随着频率升高,说明涡流
产生的反磁场已足以排斥原有的干扰磁场,从 而起到屏蔽作用。
Rs/L
频率
12
电磁屏蔽
时变电磁场中,电场和磁场总是同时存在的,通常所说的屏蔽,多指电 磁屏蔽。电磁屏蔽是指同时抑制或削弱电场和磁场。
电磁屏蔽一般也是指高频交变电磁屏蔽(10kHz ~ 40GHz)。 在频率较低(近场区,近场随着骚扰源的性质不同,电场和磁场的大小
有很大差别。
高电压小电流骚扰源以电场为主(电准稳态场-忽略了感应电压),磁 场骚扰较小(有时可忽略)。 低电压高电流骚 扰 源 以 磁 场 骚 扰 为 主(磁准稳态场-忽略了位 移电流),电场骚扰较小。 随着频率增高,电磁辐射能力增加,产生辐射电磁场,并趋向于远场骚 扰。远场骚扰中的电场骚扰和磁场骚扰都不可忽略,因此需要将电场和 磁场同时屏蔽,即电磁屏蔽。
22
趋肤深度举例
相对(电导率,磁导率):铜 (1, 1), 铝 (0.6, 1), 钢 ( 0.16, 200);
吸收损耗与入射电磁场(波)的种类(波阻抗)无关。
23
多次反射修正因子的计算
电磁波在屏蔽体内多次反射,会引起附加的电 磁泄漏,因此要对前面的计算进行修正。
B = 20 lg ( 1 - e -2 t / )
说明: • B为负值,其作用是减小屏蔽效能 • 当趋肤深度与屏蔽体的厚度相当时,可以忽略 • 对于电场波,可以忽略
—对于电场波,反射损耗已很大了,进入屏蔽体的能量已经很小了, 所以可以忽略。
24
综合屏蔽效能 (0.Βιβλιοθήκη mm铝板)屏蔽效能(dB)
250
150 平面波
磁场的屏蔽问题
磁场的屏蔽问题,是一个既具有实际意义又具有理论意义的问题。
根据条件的不同,电磁场的屏蔽可分为静电屏蔽、静磁屏蔽和电磁屏蔽三种情况,这三种情况既具有质的区别,又具有内在的联系,不能混淆。
静电屏蔽在静电平衡状态下,不论是空心导体还是实心导体;不论导体本身带电多少,或者导体是否处于外电场中,必定为等势体,其内部场强为零,这是静电屏蔽的理论基础。
因为封闭导体壳内的电场具有典型意义和实际意义,我们以封闭导体壳内的电场为例对静电屏蔽作一些讨论。
(一)封闭导体壳内部电场不受壳外电荷或电场影响。
如壳内无带电体而壳外有电荷q,则静电感应使壳外壁带电(如图1)。
静电平衡时壳内无电场。
这不是说壳外电荷不在壳内产生电场,根发电场。
由于壳外壁感应出异号电荷,它们与q在壳内空间任一点激发的合场强为零。
因而导体壳内部不会受到壳外电荷q或其他电场的影响。
壳外壁的感应电荷起了自动调节作用。
如果把上述空腔导体外壳接地(图2),则外壳上感应正电荷将沿接地线流入地下。
静电平衡后空腔导体与大地等势,空腔内场强仍然为零。
如果空腔内有电荷,则空腔导体仍与地等势,导体内无电场。
这时因空腔内壁有异号感应电荷,因此空腔内有电场(图3)。
此电场由壳内电荷产生,壳外电荷对壳内电场仍无影响。
由以上讨论可知,封闭导体壳不论接地与否,内部电场不受壳外电荷影响。
(二)接地封闭导体壳外部电场不受壳内电荷的影响。
如果壳内空腔有电荷q,因为静电感应,壳内壁带有等量异号电荷,壳外壁带有等量同号电荷,壳外空间有电场存在(图4),此电场可以说是由壳内电荷q间接产生。
也可以说是由壳外感应电荷直接产生的但如果将外壳接地,则壳外电荷将消失,壳内电荷q与内壁感应电荷在壳外产生电场为零(图5)。
可见如果要使壳内电荷对壳外电场无影响,必须将外壳接地。
这与第一种情况不同。
这里还须注意:①我们说接地将消除壳外电荷,但并不是说在任何情况壳外壁都一定不带电。
假如壳外有带电体,则壳外壁仍可能带电,而不论壳内是否有电荷(图6)。
屏蔽 基础知识
屏蔽基础知识专业制造EMI,SMD铍铜弹片,屏蔽罩Tue, 10 Apr 2007 18:40:35 GMT+08:00阅读(190)屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。
具体讲,就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。
因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用,所以屏蔽体具有减弱干扰的功能。
(1)当干扰电磁场的频率较高时,利用低电阻率的金属材料中产生的涡流,形成对外来电磁波的抵消作用,从而达到屏蔽的效果。
(2)当干扰电磁波的频率较低时,要采用高导磁率的材料,从而使磁力线限制在屏蔽体内部,防止扩散到屏蔽的空间去。
(3)在某些场合下,如果要求对高频和低频电磁场都具有良好的屏蔽效果时,往往采用不同的金属材料组成多层屏蔽体。
许多人不了解电磁屏蔽的原理,认为只要用金属做一个箱子,然后将箱子接地,就能够起到电磁屏蔽的作用。
在这种概念指导下结果是失败。
因为,电磁屏蔽与屏蔽体接地与否并没有关系。
真正影响屏蔽体屏蔽效能的只有两个因素:一个是整个屏蔽体表面必须是导电连续的,另一个是不能有直接穿透屏蔽体的导体。
屏蔽体上有很多导电不连续点,最主要的一类是屏蔽体不同部分结合处形成的不导电缝隙。
这些不导电的缝隙就产生了电磁泄漏,如同流体会从容器上的缝隙上泄漏一样。
解决这种泄漏的一个方法是在缝隙处填充导电弹性材料,消除不导电点。
这就像在流体容器的缝隙处填充橡胶的道理一样。
这种弹性导电填充材料就是电磁密封衬垫。
在许多文献中将电磁屏蔽体比喻成液体密封容器,似乎只有当用导电弹性材料将缝隙密封到滴水不漏的程度才能够防止电磁波泄漏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低频磁场屏蔽基础
基本原理
当磁场的频率很低(工频或100KHz以下)时,传统的屏蔽方法几乎没有作用。
低频磁场一般由马达、发电机、变压器等设备产生。
这些磁场会对利用磁场工作的设备产生影响,如阴极射线管中的电子束是在磁场的控制下进行扫描的,当有外界磁场干扰时,电子束的偏转会发生变化,使图像失真。
低频磁场的屏蔽是使用铁磁性材料将敏感器件包起来。
屏蔽的作用是为磁场提供一条低磁阻的通路,使敏感器件周围的磁力线集中在屏蔽材料中,从而起到屏蔽的作用。
设计中的一个关键是选择一种材料既能提供足够的屏蔽效能,又不至于发生饱和。
当要屏蔽的磁场很强时,一层屏蔽可能满足不了要求,这时可以采用多层屏蔽。
多层屏蔽的原理是先用导磁率较低,不易饱和的材料将磁场衰减到一定的程度,然后再用磁导率很高(通常容易发生饱和)的材料进行进一步衰减。
因此低导磁率的材料应靠近干扰源。
完全的封闭体能够提供最理想的磁屏蔽效果。
但在实践中,不封闭的结构,如五面体或更少面的结构,甚至平板也能提供满足要求的屏蔽效能。
当使用平板时,应使平板体的长度和宽度大于干扰源到敏感源之间的距离。
由于材料的磁阻与屏蔽结构的尺寸有关,因此除了选用合适的材料以外,尽量缩短磁路的长度、增加截面积也能增加磁屏蔽效能。
磁屏蔽材料特性
CO—NETIC和NETIC材料是两种特殊的磁屏蔽材料。
CO-NETIC材料具有极高的导磁率,可以有效衰减低频磁场干扰,达到极高磁场屏蔽,NETIC材料有极好的抗磁饱和能力,能在强磁场产生一定衰减。
●Stress Annealed(压力退火处理)的材料在加工完毕后,为了获得最佳的屏蔽效能,要再进行退火处理。
●Perfection Annealed(完全退火处理)的材料只要在加工过程中没有激烈的成型和拉伸,加工完毕后不需要再退火。
●尺寸:压力退火处理的材料:1524mm,762mm,381mm。
完全退火处理的材料:737mm,356mm。
产品规格
板材
CO-NETIC AA 合金
CO-NETIC AA 合金
完全退火处理(Perfection Annealed Sheet)*
CO-NETIC B 合金
压力退火处理板(Stress Annealed Sheet)*
NETIC S3-6 合金
压力退火处理板(Stress Annealed Sheet)*
箔材
CO-NETIC AA 箔
完全退火处理(Perfection Annealed)
NETIC S3-6箔
完全退火处理(Perfection Annealed)
说明:
●所有箔材料是完全退火处理的。
●每卷的长度有三种:25英尺,50英尺,100英尺。
●可以带背胶,胶的温度范围是一18℃~93℃。
使用事项
●材料的选用
CO—NETIC AA材料主要用于低场强的场合。
NETICS3—6材料由于具高磁饱和强度特性,主要用于强磁场的场合。
当联合使用构成多层屏蔽时,NETIC材料靠近干扰源,CO—NETIC 材料靠近被保护的器件。
●焊接方法
亚弧焊是理想的焊接方法,因为亚弧焊过程中不使用填充料,可以保持导磁的连续性。
当使用填充料时,应使用母料的材料。
在许多场合,使用点焊可以降低成本,并提供较好的效果。
为了保持较好的磁通路,点焊的密度应尽量大。
●C0一NETIC材料的退火处理
为了获得最佳的磁屏蔽效果,加工完成后应进行退火处理。
退火的温度和冷却速率必须严格控制才能获得最佳的磁屏蔽效能。
炉内的气体是一个关键的因素。
理想的气体是纯、干躁氢气。
退火的最佳温度是112l℃,保持4个小时。
然后以每小时222℃的速率冷却,直到600℃。
600℃以后,冷却速率可以加快。
达到315℃时,就可以将材料暴露在普通大气中。
当材料较薄时,为了防止变形,可以使用1065℃的温度。
●NETIC材料的退火
NETIC材料的最佳退火温度是843℃,时间和温度的控制要求低于CO—NETIC材料。
●CO—NETIC材料的涂覆处理
CO—NETIC材料由于含镍量很高,具有很好的抗腐蚀特性。
在氢气中退火后,呈现光亮的表面,因此一般不需要涂覆处理。
必须进行涂覆处理时,可以按普通的程序进行。
●NETIC材料的喷漆处理
为了保护材料的表面不被氧化,可以使用以下的处理步骤:
(1)清除表面的油污
(2)对表面进行磷化处理
(3)锌磷酸盐处理
(4)使用适当的漆喷涂。