天线基础知识与原理(NEW)

合集下载

天线基本知识介绍

天线基本知识介绍

天线基本知识介绍天线是将电信号转换为电磁波并将其传输或接收的装置。

它是电磁学的一个分支,用于无线通信、电视和广播接收、雷达以及天体物理学研究等领域。

本文将对天线的基本知识进行介绍。

1.天线的作用和原理:天线的主要作用是将电信号转换为电磁波并将其辐射到空间中,或者将接收到的电磁波转换为电信号。

它的工作原理基于法拉第电磁感应定律和亥姆霍兹理论,即通过电流在导体中产生的磁场和由变化的磁场产生的感应电流来实现电磁波的辐射或接收。

2.天线的分类:天线可以根据其结构、工作频率、功率和应用等方面进行分类。

根据结构,天线可分为线性天线(如偶极子天线)、面型天线(如片极天线、光波导天线)和体型天线(如反射天线、波导天线)。

根据工作频率,天线可分为超高频、高频、甚高频、极高频和微波天线等。

根据功率,天线可分为小功率天线和大功率天线。

根据应用,天线还可细分为通信天线、雷达天线、电视天线、卫星天线和微波天线等。

3.天线参数:天线的性能取决于其设计参数。

常见的天线参数包括增益、方向性、波束宽度、驻波比、频率响应、极化方式和带宽等。

增益是天线辐射功率与等效输入功率之比,方向性衡量天线在一些方向上的辐射能力,波束宽度是主瓣的半功率宽度,驻波比是反射功率与输入功率之比,频率响应表示天线在不同频率下的性能表现,极化方式表示电磁波的电场分量与地面垂直或平行的相对方向,带宽表示天线能够工作的频率范围。

4.天线设计方法:天线的设计是一个综合考虑电磁学原理、工作频率和应用要求的过程。

常见的天线设计方法包括试验法、数值法和半经验法。

试验法通过制作实物天线并进行实际测量来调整参数和优化天线性能。

数值法使用计算机模拟和数值算法来预测和分析天线性能,例如有限元法、谱域法和时域法等。

半经验法结合实验和数值方法,通过经验公式和优化算法来设计天线。

5.天线应用:天线的应用非常广泛,涵盖了通信、广播、雷达、航天、医疗和科学研究等领域。

在通信领域,天线用于无线电通信、移动通信和卫星通信等。

第一章天线基础知识

第一章天线基础知识


1 2 Pr I Rr 2 30 2 2 则 Rr f ( , ) sin d d


0
0

则方向系数与 辐射电阻之间 的联系为
120 f D Rr
2 max

若要提高天线效率,必须尽可能的减小损耗 电阻和提高辐射电阻。通常,超短波和微波 天线的效率很高,能够接近于1。

半功率点波瓣宽度 (HWFN) ,指主瓣最大 值两边场强等于最大值0.707倍的两辐射方向之 间的夹角,又叫3分贝波束宽度。

副瓣电平,指副瓣最大值与主瓣最大值之比,
一般以分贝表示,

前后比,指主瓣最大值与后瓣最大值之比。
30
(4)方向系数
方向图参数能从一定程度上描述天线方向图的 状态,仅能反映方向图中特定方向的辐射强弱程 度,未能反映全空间的分布状态。
理想点源归一化方向函数:
26



(2)方向图
方向图:将方向函数用曲线描绘出来,称为 方向图,就是与天线等距离处,天线辐射场大 小在空间中的相对分布随方向变化的图形。

工程上常采用两个正交平面方向图,自由空 间中两个最重要的平面方向图是E面和H面。E 面即电场强度矢量所在并包含最大辐射方向的 平面,H面即磁场强度矢量所在并包含最大辐 射方向的平面。
z 电流元
H E H E

r
x

y
方向图立体模型
13
E面方向图
H面方向图
E面直角坐标方向图
H面直角坐标方向图 14
(4)中间区

(1)近区与远区之间,感应场与辐射场 相差不大; (2)电场 Er 和 E 不同相,相差接近90 度且振幅不等,一般在平行于传播方向的 平面内形成一旋转矢量,矢量端点的轨迹 为一椭圆; (3)辐射功率占主导地位。

天线基本原理及常用天线介绍ppt课件

天线基本原理及常用天线介绍ppt课件
.
3、天线的工作频率范围(带宽)
无论是发射天线还是接收天线,它们总是在一定的 频率范围内工作的,通常,工作在中心频率时天线所能 输送的功率最大,偏离中心频率时它所输送的功率都将 减小,据此可定义天线的频率带宽。
有几种不同的定义: 一种是指天线增益下降三分贝时的频带宽度; 一种是指在规定的驻波比下天线的工作频带宽度。
.
806~960MHz的超宽频天线
现在的一副天线相当于原来的三副天线, 并且具备电调功能,既提高. 了产品性能,又在很大程度上降低了天线的生产成本
3G(1710~2170MHz)频段的超宽频天线
现在的一副天线相当于原来的三副天线, 并且具备电调功能,既提高了. 产品性能,又在很大程度上降低了天线的生产成本
峰值 - 3dB点
Peak - 3dB
10dB 波束宽度 - 10dB点
120° (eg)
峰值
- 10dB点
Peak - 10dB
15° (eg)
Peak
32° (eg)
Peak
Peak - 3dB
俯仰面即. 垂直面方向图
Peak - 10dB
方向图旁瓣显示
上旁瓣抑制 下旁瓣抑制
.
8、方向图在移动组网中的应用
方向图可用来说明天线在空间各个方向上所具有的 发射或接收电磁波的能力。
.
天线的主要技术指标
天线匹配指标
驻波比 隔离度
天线辐射特性指标
与国际接轨的 天性辐射特性
增益
主瓣波束宽度
第一副瓣抑制
前后比
交叉极化比
轴向 ±30
波束效率
3dB 10dB
杂散因子
3dB 10dB
.
≤1.4

天线基础知识

天线基础知识

第一讲天线的基础知识发射电磁波所用的导线,在无线电通信中一般叫做“发射天线”。

高频电磁波在空中流传,如遇着导体,就会发生感觉作用,在导体内产生高频电流,使我们能够用导线接收来自远处的无线电信号。

接收电磁波所用的导线,一般叫做“接收天线”。

任何导线都能够作为发信天线和接收天线。

高频电子设备中每一段导线都可能向外发射电磁波,敏捷的收信机中每一段导线都可能拾取空中的各样电磁波所以需要采纳各种的障蔽举措!免得不该有的“天线”接收到扰乱信号!不一样形状、尺寸的导线在发射和接收某一频次的无线电信号时,效率相差好多,所以要获得理想的通信成效,一定采纳适合的天线才行!天线影响无线电通信成效的主要原由有极化方向、方向特征、阻抗般配、辐射效率和频带宽度等。

天线的输入阻抗输入阻抗是天线馈电端输入电压与输入电流的比值。

天线与馈线的连结,最正确情况是天线输入阻抗是纯电阻且等于馈线的特征阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频次的变化比较缓和。

天线的般配工作就是除去天线输入阻抗中的电抗重量,使电阻重量尽可能地凑近馈线的特征阻抗。

般配的好坏一般用四个参数来权衡即反射系数,行波系数,驻波比和回波消耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。

在我们平时保护中,用的许多的是驻波比和回波消耗。

一般挪动通信天线的输入阻抗为50Ω。

驻波比:它是行波系数的倒数,其值在1到无量大之间。

驻波比为1,表示完整般配;驻波比为无量大表示全反射,完整失配。

在挪动通信系统中,一般要求驻波比小于,但实质应用中VSWR应小于。

过大的驻波比会减小基站的覆盖并造成系统内扰乱加大,影响基站的服务性能。

2.回波消耗:它是反射系数绝对值的倒数,以分贝值表示。

回波消耗的值在0dB3.的到无量大之间,回波消耗越大表示般配越差,回波消耗越大表示般配越好。

4.表示全反射,无量大表示完整般配。

在挪动通信系统中,一般要求回波消耗大于14dB。

(完整word版)天线基本原理

(完整word版)天线基本原理

(完整word版)天线基本原理第⼀讲天线基本原理⼀、天线的基本概念1.天线的作⽤在任何⽆线电通信设备中,总存在⼀个向空间辐射电磁能量和从空间接收电磁能量的装置,这个装置就是天线。

天线的作⽤就是将调制到射频频率的数字信号或模拟信号发射到空间⽆线信道,或从空间⽆线信道接收调制在射频频率上的数字或模拟信号。

2.天线问题的实质从电磁场理论出发,天线问题实质上就是研究天线所产⽣的空间电磁场分布,以及由空间电磁场分布所决定的电特性。

空间任何⼀点的电磁场满⾜电磁场⽅程——麦克斯韦⽅程及其边界条件。

因此,天线问题是时变电磁场问题的⼀种特殊形式。

从信号系统的⾓度出发,天线问题可以理解为考察由⼀个电磁波激励源产⽣的电磁响应特性。

从通信系统的⾓度出发,天线可以理解为信号发射和接收器,收发天线之间的⽆线电信号强度满⾜通道传输⽅程和多径衰落特性。

3.对天线结构的概念理解采⽤不同的模型,对天线可以有不同的理解。

典型的模型⽐如:●开放的电容[思考] 野外电台或电视发射塔,⽆线电视或电台接收机,为什么能构成⼀个天线,其电流回路在什么地⽅?●开放的传输线从传输线理论理解,天线可以看做是将终端开路的传输线终端掰开。

●TM mn型波导将天线辐射看做是在4π空间管道中传输的波导,则对应的传输波型是TM型波,但在传输过程中不断遇到波导的不连续性,因此不断激励⾼次模。

由电磁波源和电磁波传输媒质形成电磁波传输的机构波的形成都需要波源和传输媒质。

在⼀盆⽔中形成机械波纹,可以使⽤点激励源产⽣波,并在⽔⾯上传播。

波的传播特性只与媒质特性有关⽽与波源⽆关。

将⼀个⾁包⼦扔出去,这个⾁包⼦可能产⽣不同的结果,或者被狗吃了,或者掉在什么地⽅了,都与扔包⼦的⼈不再有任何关系。

⽽对天线来说,馈点的激励源就是这种波源,天线导体和外界空间就是传输媒质。

不过电磁波的传输媒质可以是真空。

[思考] 电磁波具有波粒⼆象性。

频率越低,波动性越强;频率越⾼,粒⼦性越强。

所以光波主要表现出粒⼦性,⽽长波表现出波动性。

天线的基础知识及应用

天线的基础知识及应用

天线的基础知识及应用1、天线的简介天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播电磁波,一般天线都具有可逆性,即同一种天线既可用作来做发射天线,也可用来作为接收天线。

凡是利用电磁波来传递信息的,都依靠天线来进行工作。

众所周知,天线是无线通信、广播、导航、雷达、测控、微波遥感、天文和电子对抗等各种民用和军用无线电系统必不可少的设备之一。

随着信息时代的到来,我们几乎天天都看得见天线,也正在使用天线带来的各种无线信号,如电视塔上的电视发射天线、移动电话基站塔上的通信天线、无时不在的4G还有正在普及中的5G手机内置天线、大型卫星通信地面站天线、全球定位系统(北斗、GPS 等)接收天线、各种智能穿戴、IOT设备的内置天线等等---天线究竟是一根什么样的“线”,为什么会如此彻底地改变我们的生活?其实,天线之所以牛逼,就是因为电磁波牛逼。

2、天线的历史1987年德国青年学者海因里希·赫兹(Heinrich R. Hertz)的著名实验证实了电磁波的存在,他当时所用的电偶极子谐振器就是最早的发射天线,因此天线发明至今还只有130年左右的历史。

1888年,29岁的亚历山大·波波夫得知德国物理学家赫兹发现电磁波的消息后,这位曾经立志推广电灯的年轻科学家对朋友们说:“我用毕生的精力去安装电灯,对于广阔的俄罗斯来说,只不过照亮了很小的一角:假如我能指挥磁波,那就可以飞越整个世界!”于是,他埋头研究,1896年,终于在相距20m的建筑物之间传送了一份电报,电文就是Heinrich Hertz,无线电天线由此而问世。

无线电开创初期主要使用的是火花式发射机,工作频率主要集中在米波和微波频率。

当今,天线技术已具有成熟科学的许多特征,但它仍然是一个富有活力的技术领域。

主要发展方向是:多功能(一副天线代替多副天线)、智能化(提高信息处理能力)、小型化、集成化以及高性能化(宽频带、高增益、低交叉极化等)。

天线基础知识与原理(NEW)

天线基础知识与原理(NEW)

辐射参数:
--- 按重要性顺序排列 ➢水平面波束宽度 ➢电下倾角度
➢垂直面波束宽度 ➢前后比
➢增益
➢交叉极化比 ➢副瓣抑制
➢ 零点填充
➢ 方向图圆度
辐射参数评估: ➢满足所需求的覆盖要求
水平面和垂直面波束宽度准确,精确的下倾角,高前后比抑 制同频干扰,并满足所需要的增益指标。
➢能有效提升网络的通信质量
32° (eg)
峰值 - 10dB 峰值
峰值 - 10dB
27
第二十七页,共66页。
3、天线原理及指标介绍---波束宽度案例介绍
317.5度
350度
290度
22.5度
317.5度
350度
50度 290度
22.5度 50度
A
65o半功率角
A
90o半功率角
第二十八页,共66页。
3、天线原理及指标介绍---辐射参数
在实际网优工作中,通过天线的选择与调整是简单但 收效最大的方法。强化天线的性能和品质起着四两拨 千斤的作用。
天线 室外馈线
接地装置
馈线卡 馈线过线窗
主馈线(7/8“) 室内超柔馈线
防雷保护器 基站主设备
第三页,共66页。
2、天线类型及各部件材质介绍
常规天线
全向天线
定向单极化天线
定向双极化天线
电调天线
➢能有效提升网络的通信质量
交叉极化比决定极化分集效果,网络升抗多径衰落的标志。良好 的上旁瓣抑制,在城区覆盖中能够减缓同频干扰。
➢对网络性能有影响的辅助指标
零点填充在某些特殊场景可有限度的减少盲点;
方向图圆度是反映全向天线的覆盖均匀性指标。
31
第三十一页,共66页。

天线基础知识与原理

天线基础知识与原理

天线基础知识与原理天线是将电磁波能量从传输线(如电缆)转移到自由空间(如空气)中的器件。

它是无线通信系统中至关重要的组成部分,用于发送和接收无线信号。

天线的设计和原理对通信系统的性能具有重要影响。

天线的基本原理是通过电流激励器件使其发射或接收电磁波。

当电流通过天线时,会在天线上产生电磁场。

根据电磁场分布的不同,天线可以被分为不同的类型。

例如,一根直立的导体(如铜线)可以作为零度天线或全向天线使用,这意味着它能够在水平方向上发射或接收相同的信号强度。

另一个例子是定向天线,它可以集中发射或接收能量到特定方向。

天线的性能由几个关键参数决定。

其中一个是频率响应,也称为带宽。

天线应该在指定的频率范围内能够有效地工作。

另一个参数是增益,表示天线相对于理想的点源天线的增加或减少的能量。

增益可以用于改善信号传输和接收的效果。

其他重要的参数包括波束宽度、极化方式、输入阻抗等。

天线设计的关键是通过调整天线的几何形状和尺寸来满足特定的需求。

一种常见的天线类型是偶极子天线。

它由两根平行的导体构成,通常以半波长的长度排列。

偶极子天线适用于宽带应用,可以在几个频段上工作。

另一种常见的天线类型是微带天线,它采用薄片状的天线元件,并用绝缘基板支持。

微带天线适用于小型设备和集成电路上的应用,可以在不同的频率范围内工作。

天线的工作原理与物理学中的电磁波理论相关。

根据麦克斯韦方程组,电磁波由电场和磁场组成,并以光速传播。

当电流通过天线时,会产生电场和磁场的变化,并以电磁波的形式辐射出去。

电场和磁场的分布取决于天线的几何形状和电流分布。

天线的电磁辐射主要通过两种机制实现:辐射和导波。

辐射是指电磁波以空间波的形式传播,可以远离天线和传输线。

导波是指电磁波沿着天线和传输线传播,类似于输送能量的导线。

在不同的频率范围内,两种机制的相对重要性会有所不同。

要理解天线的基础知识,还需要了解一些天线的相关概念。

例如,VSWR(电压驻波比)是用于衡量天线和传输线之间匹配的参数,主要影响信号的传输效率。

天线基础知识

天线基础知识

第1章 天线基础知识
z I
y x
图2 基本振子立体方向图
第1章 天线基础知识
在实际中,工程上常常采用两个特定正交 平面方向图。在自由空间中,两个最重要的平面方向 图是E面和H面方向图。E面即电场强度矢量所在并包 含最大辐射方向的平面;H面即磁场强度矢量所在并包 含最大辐射方向的平面。
方向图可用极坐标绘制,角度表示方向,矢径表 示场强大小。这种图形直观性强,但零点或最小值不 易分清。方向图也可用直角坐标绘制,横坐标表示方 向角,纵坐标表示辐射幅值。由于横坐标可按任意标 尺扩展,故图形清晰。如图3所示,对于球坐标系中的 沿z轴放置的电基本振子而言,E面即为包含z轴的任一 平面,例如yOz面,
第1章 天线基础知识
1.1.3 方向图参数 实际天线的方向图要比电基本振子的复杂,通常有
多个波瓣,它可细分为主瓣、副瓣和后瓣,如图5所示。 用来描述方向图的参数通常有:
(1)零功率点波瓣宽度(Beam Widthbetween FirstNulls,BWFN)2θ0E或2θ0H(下标E、H表示E、H面,下 同):指主瓣最大值两边两个零辐射方向之间的夹角。
第1章 天线基础知识
1.1.1 方向函数 天线辐射出去的电磁波虽然是一球面波,但却不是均匀
球面波,因此,任何一个天线的辐射场都具有方向性。 所谓方向性函数,就是在相同距离r的条件下天线
辐射场的相对值与空间方向(俯仰角θ、方位角φ)的 关系f(θ,φ),如图1所示。
第1章 天线基础知识
z
S av
H
第1章 天线基础知识
图6显示了某一时刻,以+z轴为传播方向的 x方向线极化的场强矢量线在空间的分布图。图7和图8 显示了某一时刻,以+z轴为传播方向的右、左旋圆极 化的场强矢量线在空间的分布图。要注意到,固定时 间的场强矢量线在空间的分布旋向与固定位置的场强 矢量线随时间的旋向相反。椭圆极化的旋向定义与圆 极化类似。

天线基本知识PPT课件

天线基本知识PPT课件

天线的主要电参数
1对单极化天线
方向图 增益 输入阻抗(电压驻波比) 极化 带宽 功率容量 3阶无源互调(PIM)
2 对双极化天线
除具有单极化天线的电参数 外还具有
隔离度
交叉极化比
2021
48
天线的方向图
把天线在空间辐射强度随方位、俯仰角度分布 的曲线图形叫天线方图。
天线方向图通常是一个三维空间的曲面图形。 为了表示方便起见,在工程中常用归一化方向图。
自适应天线是一种控制反馈系统它根据一定的准则采用应天线是一种控制反馈系统它根据一定的准则采用数字信号处理技术形成天线阵列的加权向量通过对接数字信号处理技术形成天线阵列的加权向量通过对接收到的信号进行加权合并在有用信号方向上形成主波收到的信号进行加权合并在有用信号方向上形成主波束而在干扰方向上形成零陷从而提高信号的输出信束而在干扰方向上形成零陷从而提高信号的输出信多波束天线采用多个波束覆盖整个用户区每个波束的多波束天线采用多个波束覆盖整个用户区每个波束的指向固定波束宽度随天线阵元数目的确定而确定系指向固定波束宽度随天线阵元数目的确定而确定系统根据用户的空间位臵选取相应的波束使接收的信号统根据用户的空间位臵选取相应的波束使接收的信号最佳
对无线通信系统也同样是这样。再先进的基站通信设 备,没有好的天线,也无法发挥优良的性能。可见天线是 无线通信系统的重要组成部分。
2021
43
天线的作用
将传输线中的高频电磁能量转成为自由空间的电磁波 ,或反之将自由空间中的电磁波转化为传输线中的高频电 磁能。因此,要了解天线的特性就必然需要了解自由空间 中的电磁波及高频传输线的一些相关的知识。
2021
22
E(r,,)
若天线辐射的电场强度为
把电场强E(r度,,()绝6对0f值(,)) 写成

天线基础知识与原理ppt课件

天线基础知识与原理ppt课件

振子结构相对复杂,加工 难度较大;特别是合金压铸 方式的半波振子。 成本较高。
微带贴片
振子形式简单,易于冷冲压 成型; 易于与微带功率分配网络一 体化设计; 成本相对较低。
交叉极化指标较差; 双极化贴片天线的极化隔 离度较差; 装配精度要求较高
8
2、天线类型及各部件材质介绍---天线振子




筒 振




线

缩 短 套



振 子

线






振 子

线




高性能 一般型 高性能 一般型
7
2、天线类型及各部件材质介绍---天线振子
半波振子VS微带贴片
振子形式
半波振子
优点
缺点
辐射效率高、交叉极化指标 较好; 单元辐射阻抗较易优化; 实现形式多样化,可采用印 制板、金属板冷冲压、锌合金 压铸等多种实现方式。
垂直面 E面
水平面波束宽度 = 360º 垂直面波束宽度= 78º
立体图
15
3、天线原理及指标介绍---方向图
将“轮胎”压扁,信号就越集中,实际使用的天线就是采用一个或者多 个辐射单元来实现的。
16
3、天线原理及指标介绍---辐射参数
辐射参数:
辐射参数评估:
--- 按重要性顺序排列
水平面波束宽度 电下倾角度 垂直面波束宽度 前后比 增益
较好
玻璃钢
2.3 1.2 差 -70℃~+150℃ 240 219 10110 UL94V-0 好 较好 好

天线基本知识点总结

天线基本知识点总结

天线基本知识点总结引言天线作为无线通信系统中的重要组成部分,起着收发电磁波信号的重要作用。

它的性能直接影响到无线通信系统的传输质量和覆盖范围,因此对天线的基本知识进行深入了解对于理解和设计无线通信系统至关重要。

一、天线的基本概念1. 天线的定义天线是指用于传输和接收无线电波的设备,通常由一个或多个导体制成。

它可以将射频信号转换成电磁波,或者将电磁波转换成射频信号,是无线通信系统中不可或缺的组成部分。

2. 天线的主要功能天线主要功能是将射频信号转化为电磁波并进行辐射,或者将接收到的电磁波转化为射频信号。

其次,天线还具有指向性和增益调节的功能。

3. 天线的分类根据使用场景和结构特点,天线可以分为室内天线和室外天线;根据辐射方式,天线可以分为定向天线和非定向天线;根据频段,天线可以分为宽频天线和窄带天线。

二、天线的基本参数1. 天线的增益天线的增益是指天线在特定方向上辐射功率与参考天线(一般为同种条件下的理想点源天线)辐射功率之比。

增益值越大,天线的辐射方向性越强,传输距离越远。

2. 天线的方向特性天线的方向特性是指天线在空间中辐射电磁波的方向分布规律。

根据辐射特性,天线可以分为全向天线和定向天线。

全向天线在水平方向上的辐射方向性最小,而定向天线在特定方向上的辐射方向性最大。

3. 天线的频率特性天线的频率特性是指天线在不同频率下的辐射特性和阻抗匹配情况。

由于不同频率下的波长不同,因此同一天线在不同频段下的辐射特性和阻抗情况会有所不同,需要进行频率特性的设计和匹配。

4. 天线的阻抗天线的阻抗是指天线在工作频率下的输入阻抗。

天线的阻抗匹配对于信号的传输和接收至关重要,需要根据工作频率进行设计和调整。

阻抗匹配不佳会导致信号的反射和损耗,影响通信质量。

5. 天线的带宽天线的带宽是指天线在一定范围内能够正常工作的频率范围。

天线的带宽需要根据具体应用场景来选择,以保证在不同频率下的正常工作和性能表现。

三、天线的设计原理1. 天线的辐射原理天线的辐射原理是天线将射频信号转换成电磁波并进行辐射的物理过程。

第1章--天线基础知识

第1章--天线基础知识
f ( , ) f ( ) l sin
第1章 天线基础知识
为了便于比较不同天线的方向性,常采用归一化 方向函数,用F(θ,φ)表示,即
F( , )
f ( , )
E( , )
fmax ( , )
Emax
第1章 天线基础知识
式中,fmax(θ,φ)为方向函数的最大值;Emax为最大辐射方 向上的电场强度;E(θ,φ)为同一距离(θ,φ)方向上的电场强 度。
归一化方向函数F(θ,φ)的最大值为1。因此,电基本 振子的归一化方向函数可写为
F(θ,φ)=|sinθ| 为了分析和对比方便,今后我们定义理想点源是无 方向性天线,它在各个方向上、相同距离处产生的辐射 场的大小是相等的,因此,它的归一化方向函数为
F(θ,φ)=1
第1章 天线基础知识
1.2.2 方向图 天线的方向函数,它与r及I无关。将方向函数用
y
图1―2―3 电基本振子E平面方向图
第1章 天线基础知识
z
x
y |sin 90°|= 1
图1―2―4 电基本振子H平面方向图
第1章 天线基础知识
但是要注意的是,尽管球坐标系中的磁基本振子方 向性和电基本振子一样,但E面和H面的位置恰好互换。
有时还需要讨论辐射的功率密度(坡印廷矢量模值) 与方向之间的关系,因此引进功率方向图(Power Pattern)Φ(θ,φ)。容易得出,它与场强方向图之间的关 系为
第1章 天线基础知识 z
Er
H
Ir
E
lO y
x
图1―1 电基本振子的坐标
第1章 天线基础知识
E Erer E e
H He
式中,E为电场强度,单位为V/m;
H为磁场强度,单位为A/m;

天线工作原理

天线工作原理

天线工作原理天线是一种用于发射和接收电磁波的装置,广泛应用于通讯、雷达、卫星通信等领域。

其工作原理基于电磁感应和辐射原理,通过一系列的物理过程将电能转换为无线电波,或者将无线电波转换为电能。

一、电磁感应原理天线的工作原理的基础是电磁感应。

根据法拉第电磁感应定律,当导体在磁场中运动或磁场的大小改变时,导体内将会产生感应电流。

天线中的导体杆或线圈通过电磁感应产生感应电流,从而将电能转换为无线电波的形式发射出去。

二、辐射原理天线工作的另一个基本原理是辐射。

在天线的助推下,感应电流在天线元件中产生震荡,形成电场和磁场相互作用的辐射场。

这个辐射场便是由天线发射出去的无线电波。

三、天线的构造和类型天线的构造和类型因其应用和频率特性而有所不同。

一般来说,天线包括天线元件(导体杆、线圈等)和连接器。

以下是几种常见的天线类型:1. 线性天线:它们是直线型的,如半波长天线、全波长天线等。

这些天线结构简单,适用于频率较低的场合。

2. 螺线天线:它们是螺旋状的,如螺旋天线、垂直极化螺旋天线等。

螺线天线具有较宽的工作带宽和较高的增益,适用于卫星通信和雷达等场景。

3. 天线阵列:它们由多个天线元件组成,可以通过相位差的控制实现波束形成和方向控制。

天线阵列适用于无线通信和雷达系统中,可以增加系统容量和增强性能。

四、天线的工作原理在通信中的应用天线作为通信系统中的重要组成部分,在无线通信领域有着广泛的应用。

以下是一些常见的应用领域:1. 移动通信:在移动通信系统中,天线用于将无线电波转换为电能进行接收,或者将电能转换为无线电波进行发送。

它们与手机、无线路由器等设备一起工作,使人们能够进行语音和数据通信。

2. 卫星通信:卫星通信系统中的天线用于接收来自地球站的信号,并将信号转发到其他地球站或用户终端。

天线在卫星通信系统中起到了桥梁的作用,使得远距离通信成为可能。

3. 雷达系统:雷达系统利用无线电波探测目标并获取其位置和速度信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交叉极化比
副瓣抑制

零点填充 方向图圆度
对网络性能有影响的辅助指标
零点填充在某些特殊场景可有限度的减少盲点; 方向图圆度是反映全向天线的覆盖均匀性指标。
32
3、天线原理及指标介绍---前后比
定义:是指天线的前向辐射功率和后向辐射功率之比。
后向功率
前向功率
前后比(dB) = 10 log
前向功率 后向功率
常 规 套 筒 振 子 缩 短 套 筒 振 子
移 动 通 信 天 线 类 型
全 向 天 线
高性能
一般型
定 向 天 线
半 波 振 子 微 带 贴 片
高性能
一般型
2、天线类型及各部件材质介绍---天线振子
常规套筒振子VS缩短套筒振子
常规套筒振子 缩短套筒振子
铜材和铝材区 别不大
增益 方向图圆度 批次一致性 交调指标 相对成本
振子形式简单,易于冷冲压
难度较大;特别是合金压铸 方式的半波振子。 成本较高。
交叉极化指标较差; 双极化贴片天线的极化隔
成型; 易于与微带功率分配网络一 体化设计; 成本相对较低。
离度较差; 装配精度要求较高
2、天线类型及各部件材质介绍---天线振子
半波对称振子是天线设计普遍采用的一种振子形式,可以有多 种改进形式: 实现方式
,可靠性较差。
设计指标优秀且一致性较好
成本相对较高
锌(铝)合金压铸
成品可靠性高 结构形状的时间稳定性好
2、天线类型及各部件材质介绍---天线振子
比较好的65度振子
比较差的65度振子
2、天线类型及各部件材质介绍---天线振子
比较好的90度振子
比较差的90度振子
2、天线类型及各部件材质介绍---馈电网络 空气微带线馈电网络
相对较高 ±0.8° 好 较好 1.0
增益约低0.2~0.3dB ±1.5° 差 较差 0.65
2、天线类型及各部件材质介绍---天线振子
半波振子VS微带贴片
振子形式
半波振子
优点
辐射效率高、交叉极化指标
缺点
振子结构相对复杂,加工
较好; 单元辐射阻抗较易优化; 实现形式多样化,可采用印 制板、金属板冷冲压、锌合金 压铸等多种实现方式。 微带贴片
2、天线类型及各部件材质介绍---天线内部结构
同一款基站天线有多种设计方案来实现。
反射板
振子
设计方案涉及到天线的以下四部分:
1、辐射单元(振子) 2、反射板(底板)
3、功率分配网络(馈电网络)
4、封装防护(天线罩)
馈电网络
2、天线类型及各部件材质介绍---天线振子
高性能与一般型产品材质工艺对比——天线振子
印制板
优点
可以保证较高的尺寸精度; 阻抗匹配可灵活设计; 常用于军工产品。
缺点
CDMA800/GSM900频段使
用成本高; CDMA800/GSM900频段使 用结构稳定性较差。
2、天线类型及各部件材质介绍---天线振子
实现方式 金属板冷冲压 优点
加工和材料成本相对较低;
缺点
指标较差且一致性较差; 结构形状的时间稳定性较差
天线罩对比 天线罩以对天线主体的封装防护为目的,主要为了减缓温度、湿度、 盐雾、雨淋、摄冰、大风、老化、等各种因素对天线性能的影响,国内外 基站天线的天线外罩目前普遍使用的材料为PVC和玻璃钢。
玻璃钢
PVC
2、天线类型及各部件材质介绍---天线罩
*天线罩材料选择PVC,PVC材料与玻璃钢材料关键参数对照表如下: 关键参数
,典型值约为25dB
目的是尽可能减少后向辐射功率
33
3、天线原理及指标介绍---前后比案例介绍
后瓣过强
300度 180度 300度 272.5度 270度 180度
272.5度
270度
240度 240度
207.5度 207.5度
前后比较差
天线后瓣较大
前后比较好
天线后瓣较小
3、天线原理及指标介与调整
是简单但收效最大的方法。强化天线的性能 和品质起着四两拨千斤的作用。
天线 接地装置 主馈线(7/8“)
室内超柔馈线
室外馈线 馈线卡 防雷保护器 基站主设备
馈线过线窗
2、天线类型及各部件材质介绍
常规天线
全向天线 定向单极化天线 定向双极化天线
电调天线
单宽频电调天线 多频电调天线
天线基础知识与原理
1 1
目 录
一 二
天线基本知识及原理
天线的波束成型简介
2
目 录

天线基本知识及原理
1、天馈系统简介 2、天线类型及各部件材质介绍 3、天线原理及指标介绍
3
1、天馈系统简介
天线调节支架 抱杆 接头密封件 绝缘密封胶带,PVC绝缘胶带
基站天线在整个网络建设中占经费比例不 到3%,但它对网络性能的影响却超过60%。
成本系数 抗拉强度(MPa) 抗腐蚀等级
1060
1 ≥75 最佳
3A21
1.1 ≥110 差
5052
1.2 ≥195 良好
备注
/ / /
从最佳性价比角度考虑,底板铝材规格应首选抗腐蚀性好的5系列 板材。但在集采成本压力下,国内厂家很少选用5系列板材。
2、天线类型及各部件材质介绍---底板
*底板技术要求及工艺说明 指标名称
交叉极化比
副瓣抑制

零点填充 方向图圆度
对网络性能有影响的辅助指标
零点填充在某些特殊场景可有限度的减少盲点; 方向图圆度是反映全向天线的覆盖均匀性指标。
30
3、天线原理及指标介绍---电下倾角度
定义:通过电子调节
的方式优化下倾角。
31
3、天线原理及指标介绍---辐射参数
辐射参数:
--- 按重要性顺序排列
辐射参数:
--- 按重要性顺序排列
水平面波束宽度
辐射参数评估:
满足所需求的覆盖要求
水平面和垂直面波束宽度准确,精确的下倾角,高 前后比抑制同频干扰,并满足所需要的增益指标。
电下倾角度
垂直面波束宽度 前后比 增益
能有效提升网络的通信质量
交叉极化比决定极化分集效果,提升抗多径衰落的 能力。良好的上旁瓣抑制,在城区覆盖中能够减缓 同频干扰。
3、天线原理及指标介绍---方向图
天线方向图测试---辐射性能测试
远场测量微波暗室及其系统 40米×20米 ×20米 ;
128探头近场测量微波暗室及其系统
3、天线原理及指标介绍---辐射参数
辐射参数:
--- 按重要性顺序排列
水平面波束宽度
辐射参数评估:
满足所需求的覆盖要求
水平面和垂直面波束宽度准确,精确的下倾角,高 前后比抑制同频干扰,并满足所需要的增益指标。
辐射参数:
--- 按重要性顺序排列
水平面波束宽度
辐射参数评估:
满足所需求的覆盖要求
水平面和垂直面波束宽度准确,精确的下倾角,高 前后比抑制同频干扰,并满足所需要的增益指标。
电下倾角度
垂直面波束宽度 前后比 增益
能有效提升网络的通信质量
交叉极化比决定极化分集效果,网络升抗多径衰落 的标志。良好的上旁瓣抑制,在城区覆盖中能够减 缓同频干扰。
传输线
能量转换-导行波和自由 空间波的转换;
定向辐射(接收)-具有 一定的方向性。
终端张角传输线
对称振子
3、天线原理及指标介绍---方向图
方向图象一个“汽车轮胎”
水平面 H面
垂直面 E面
立体图
水平面波束宽度 = 360º 垂直面波束宽度= 78º
3、天线原理及指标介绍---方向图
将“轮胎”压扁,信号就越集中,实际使用的天线就是采用一个或者多 个辐射单元来实现的。
峰值 - 3dB 15° (eg) 峰值 32° (eg) 峰值 - 10dB 峰值
峰值 - 3dB
峰值 - 10dB
28
3、天线原理及指标介绍---波束宽度案例介绍
350度 317.5度
350度 22.5度 317.5度
22.5度
50度 290度
50度
290度
A
65o半功率角
A
90o半功率角
3、天线原理及指标介绍---辐射参数
交叉极化比
副瓣抑制

零点填充 方向图圆度
对网络性能有影响的辅助指标
零点填充在某些特殊场景可有限度的减少盲点; 方向图圆度是反映全向天线的覆盖均匀性指标。
27
3、天线原理及指标介绍---垂直面波束宽度
定义:在垂直方向图上,在最大辐射方向的两侧,辐射功率下降3dB
的两个方向的夹角。
垂直面波束宽度
优点: 成本低,损耗小,设计自由度较大; 缺点: 指标稳定性差,寄生辐射大,一致性差,性能受底板变形影响大。 近年来,随着价格竞争加剧,不少厂家采用空气微带线网络。
2、天线类型及各部件材质介绍---馈电网络 同轴电缆馈电网络
优点: 稳定性好,指标一致性好,没有寄生辐射;
缺点: 设计自由度小,成本较高,损失较大,焊点多。 Katherin一直采用这种设计,comba的高端天线也采用这种设计。
2、天线类型及各部件材质介绍---馈电网络
同轴电缆网 络
空气微带线网 络
成本(系数)
损耗 寄生辐射
较高(2.0)
一般 没有
低(1.0)
小 有,较大
指标稳定性
指标受底板影响 可靠性 可生产性

没有影响 高 焊点多

影响较大 差 较好
2、天线类型及各部件材质介绍---底板
底板的技术要求及工艺说明 *底板铝材规格应首选抗腐蚀性好的5系列板材 目前导电性能优良的有色金属中铝合金的性价比最高,海内外天 线厂家普遍采用铝合金作为定向天线的底板,在具体规格选择方面, 国内天线厂家主要使用1、3和5系列,下表以1060、3A21及5052作为各 系列代表对比优缺点: 关键参数
相关文档
最新文档