题目:傅里叶级数

合集下载

数学本科毕业论文傅里叶级数与傅里叶变换的关系与应用

数学本科毕业论文傅里叶级数与傅里叶变换的关系与应用

本科生毕业论文(申请学士学位)论文题目傅里叶级数与傅里叶变换的关系与应用作者姓名刘军专业名称数学与应用数学指导教师许志才/ 张玲2014年6月学生:(签字)学号:2012220146论文答辩日期:2014年x月xx日指导教师:(签字)目录摘要: 0关键词 0Abstract 01绪论 (1)2傅里叶级数的概念 (1)2.1周期函数 (2)2.2傅里叶级数的定义 (2)3 傅里叶变换的概念及性质 (10)3.1傅里叶变换的概念 (10)3.2傅立叶变换的性质 (11)4傅里叶变换与傅里叶级数之间的区别与联系 (12)5傅里叶级数和傅里叶变换的应用 (12)5.1傅里叶级数的应用 (12)5.2傅里叶变换的应用 (13)参考文献 (14)傅里叶级数与傅里叶变换的关系与应用摘要:傅里叶级数是对周期性现象做数学上的分析,而傅里叶变换则可以看作傅里叶级数的极限形式,它也可以看作是对周期现象进行数学上的分析。

除此之外,傅里叶变换还是处理信号领域的一种很重要的算法。

傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。

很多波形可以作为信号的成分,例如余弦波,方波,锯齿波等等,傅里叶变换作为信号的成分。

在电子类学科,物理学科,信号处理学科等众多领域都有着广泛的应用。

傅里叶级数针对的是周期性函数,傅里叶变换针对的是非周期性函数,它们在本质上都是一种把信号表示成复正选信号的叠加,存在相似的特性。

关键词:傅里叶级数;傅里叶变换;周期性Fourier series And Fourier TransformsAbstract: Fourier series is made mathematical analysis to cyclical phenomenon, and Fourier transform can be seen as the limit form of Fourier series, it also can be regarded as a mathematical analysis of cycle phenomenon. In addition, the Fourier transform is a kind of very important in the field of signal processing algorithms.Fourier transform is a method of signal analysis, it can analyze signal component, also can use these ingredients synthetic signal. Many waveform can be used as a signal of ingredients, such as cosine wave, square wave, sawtooth wave, etc., the Fourier transformas a signal of composition. In electronics disciplines, physics, signal processing disciplines etc many fields have a wide range of applications.Fourier series is for periodic function, Fourier transform for is a periodic function, they are in essence a kind of papers said the signal into a complex signal superposition, similar features.Key words: Fourier series; Fourier Transform; Periodic1绪论傅里叶级数是法国数学家J.-B.-J.傅里叶在研究偏微分方程的边值问题时提出来的,从而极大的推动了偏微分方程理论的发展,在数学物理以及工程中都具有重要的应用。

傅里叶级数

傅里叶级数

Fourier与小波变换发展概况 与小波变换发展概况
1822年Fourier变换 在频域的定位最准确,无任何时域定位能力。 年 变换,在频域的定位最准确 变换 在频域的定位最准确,无任何时域定位能力。 函数,时域定位完全准确, δ 函数,时域定位完全准确,频域无任何定位能力 1946年Gabor变换,STFT,窗函数的大小和形状与时间和频率无关而保持 变换, 年 变换 , 固定不变。不构成正交基。 固定不变。不构成正交基。 1982年Burt提出金字塔式图像压缩编码,子带编码 提出金字塔式图像压缩编码, 年 提出金字塔式图像压缩编码 子带编码(subband coding),多采 多采 样率滤波器组(multirate 样率滤波器组(multirate sampling filter bank). 1910年Harr提出规范正交基。 提出规范正交基。 年 提出规范正交基 1981年Stormberg对Harr系进行改进,证明了小波函数的存在。 系进行改进, 年 对 系进行改进 证明了小波函数的存在。 1984年,Morlet提出了连续小波 年 提出了连续小波 1985年,Meyer,Grossmann,Daubecies提出离散的小波基 年 提出离散的小波基 1986年,Meyer证明了不可能存在时域频域同时具有正则性的正交小波基, 证明了不可能存在时域频域同时具有正则性的正交小波基, 年 证明了不可能存在时域频域同时具有正则性的正交小波基 证明了小波的自正交性。 证明了小波的自正交性。 1987年,Mallat统一了多分辨率分析和小波变换,给出了快速算法。 统一了多分辨率分析和小波变换, 年 统一了多分辨率分析和小波变换 给出了快速算法。
a0 ∞ 下面推到假设: 下面推到假设: + ∑ | an | + | bn | 收敛 2 n =1

成人高考数学复变函数与积分变换考核试卷

成人高考数学复变函数与积分变换考核试卷
C. L{cos(at)} = s/(s²+a²)
D. L{sin(at)} = a/(s²+a²)
()
6.对于傅里叶变换,以下表述正确的是()
A.傅里叶变换是一种积分变换
B.傅里叶变换可以将时域信号转换为频域信号
C.傅里叶变换具有线性性质
D. A、B、C都正确
()
7.以下关于复变函数积分变换的表述,正确的是()
B. f(z)在z=0处的解析延拓与f(z)在z=0处的解析性质有关
C. f(z)在z=0处的解析延拓的收敛域与f(z)在z=0处的解析性质有关
D. A、B、C都正确
()
16.以下关于积分变换的表述,正确的是()
A.积分变换是一种线性变换
B.积分变换可以解决微分方程初值问题
C.积分变换可以简化计算过程
8.拉普拉斯变换可以解决微分方程的初值问题。()
9.在复变函数中,任何连续函数的积分都是路径无关的。()
10. Z变换是复变函数积分变换的一种,常用于控制理论。()
五、主观题(本题共2小题,每题10分,共20分)
1. (10分)请说明复变函数解析的概念,并给出两个解析函数的例子。
2. (10分)请解释傅里叶级数的概念,并说明其在信号处理中的应用。
A.函数在整个复平面上解析
B.函数在一个单连通区域内解析
C.函数在一个多连通区域内解析,但积分路径不包围任何奇点
D.函数在一个多连通区域内解析,积分路径包围了奇点
()
13.以下哪些是复变函数的应用领域?()
A.量子力学
B.电路分析
C.流体力学
D.数论
()
14.关于积分变换的性质,以下哪些是正确的?()

浅析傅立叶级数的性质及其应用-郭海山

浅析傅立叶级数的性质及其应用-郭海山

河南科技学院2014届‎本科毕业论‎文(设计)论文题目:浅析傅立叶‎级数的性质‎及其应用学生姓名:***所在院(系):数学科学学‎院所学专业:数学与应用‎数学导师姓名:张振亮完成时间:2014年‎5月1日浅析傅立叶‎级数的性质‎及其应用摘要傅立叶级数‎理论经历了‎近两百年的‎发展后已经‎成为现代数‎学的核心研‎究领域之一‎。

一方面,它与偏微分‎方程论、复变函数论‎、概率论、代数及拓扑‎等许多数学‎分支都有密‎切关系。

另一方面,它是工程技‎术、经典物理及‎量子力学等‎学科中的重‎要工具,它在热学、光学、电磁学、医学、空气动力学‎、仿生学、生物学等领‎域都有广泛‎的应用。

傅立叶级数‎理论的产生‎是数学发展‎史上的重大‎事件。

它的产生彻‎底平息了关‎于弦振动问‎题的争论,同时引领数‎学分析走向‎严格化。

傅立叶级数‎越来越广泛‎应用在各个‎学科领域中‎,也越来越广‎泛应用到了‎实际社会生‎活的各个领‎域中。

关键词:傅立叶级数‎,运算,性质,应用Analy‎sis The Prope‎rties‎and Appli‎catio‎n 0fFouri‎er Serie‎sAbstr‎actFouri‎er serie‎s theor‎y after‎nearl‎y two hundr‎ed years‎of devel‎opmen‎t has becom‎e one of the core resea‎rch field‎of moder‎n mathe‎matic‎s. On the one hand, there‎are very close‎relat‎ionsh‎ip betwe‎en it with theor‎y of parti‎al diffe‎renti‎al equat‎ions, compl‎ex funct‎ion theor‎y, proba‎bilit‎y theor‎y, algeb‎raic topol‎ogy, and many other‎branc‎hs of mathe‎matic‎s. On the other‎hand, it is an impor‎tant tool in class‎ic physi ‎cs and quant‎um mecha‎nics, engin‎eerin‎g techn‎ology‎, also, it have a wide range‎of appli‎catio‎ns in therm‎odyna‎mics, optic‎s, elect‎romag‎netis‎m, medic‎ine, aerod‎ynami‎cs, bioni‎cs, biolo‎gy and other‎field‎s. The gener‎ation‎of Fouri‎er serie‎s theor‎y is a major‎event‎in the histo ‎ry of the devel‎opmen‎t of mathe‎matic‎s. The appea‎r ance‎of Fouri‎er serie‎s compl‎etely‎settl‎ed the argum‎ent over of strin‎g vibra‎tion probl ‎em, at the same time, lead to the norma‎l izat‎i on of mathe‎matic‎al analy‎sis. Fouri‎er serie‎s is more and more widel‎y used in vario‎us disci‎pline‎s, and is being‎more and more widel‎y appli‎ed to each field‎of the actua‎l socia‎l life.Keywo‎rd:Fouri‎er Serie‎s , Opera‎tion , Prope‎rty , Appli‎catio‎n目录1.引言............................................................错误!未定义书签。

高等数学基础与应用考核试卷

高等数学基础与应用考核试卷
B. f(x) = x^2
C. f(x) = e^(-x)
D. f(x) = 1/x (x ≠ 0)
8.关于泰勒公式,以下哪些说法是正确的?()
A.它给出了函数在某一点的近似表示
B.它的余项Rn(x)随n的增大而减小
C.它在x远离展开点时仍然有效
D.它可以用来求解微分方程
9.以下哪些条件可以保证一个级数是收敛的?()
12.行列式det(A)表示矩阵A的()。
A.体积
B.面积
C.行数与列数的乘积
D.奇偶性
13.拉格朗日插值多项式的形式是()。
A. L(x) = Σ[ypi(x - xj)/(xi - xj)]
B. L(x) = Σ[yj*pi(x - xi)/(xj - xi)]
C. L(x) = Σ[ypi(xj - x)/(xi - xj)]
D. L(x) = Σ[yj*pi(x - xj)/(xi - xj)]
14.若函数f(x)在区间[a, b]上单调递增,则f(x)在[a, b]上的定积分为()。
A.正数
B.负数
C.零
D.取决于a, b的值
15.假设函数f(x)在点x=a处可导,若f'(a)=0,且f''(a)>0,则f(x)在点x=a处()。
D. f(x) = |sin(x)|
14.在求解线性方程组时,以下哪些方法可以使用?()
A.高斯消元法
B.克莱5.关于向量空间,以下哪些说法是正确的?()
A.它是由一组向量构成的集合
B.它必须包含零向量
C.它必须对向量的加法和标量乘法封闭
D.它的维数等于其基的向量个数
7.矩阵A = \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\)的行列式是______。

数字信号处理作业解答

数字信号处理作业解答

数字信号处理作业解答作业题目1:确定下列信号的周期(1)()sin 0.1n π (2)()cos 0.3n π (3)()cos 0.10.2n π- (4)28j n eπ解:(1)由()()220sin 0.1=sin n n ππ,可知其周期为N =20 (2)由()()2cos 0.3=cos 3n n ππ⎡⎤⎣⎦,可知其周期为N =20(3)由()()220cos 0.10.2=cos 0.2n n ππππ--,其中2π为无理数,可知该信号周期不 存在,为非周期信号(4)28j n eπ周期为N =8作业题目2:图示为一周期为10的随意连续时间周期信号 (1) 写出它的傅里叶级数形式;(2) 该级数式表明f(t)可以分解为哪些信号的叠加?解:(1)()()210jnt nn f t F eπ+∞=-∞=∑(2)该级数式表明f(t)可以分解为频率为210π整数倍的一系列虚指数信号的叠加,也就是: ()()()()()2222101010102221012++++++j t jt jt j t f t F eF eF F eF eππππ----=作业题目3:写出周期信号x(n)的傅里叶级数形式()()()()1cos cos 1nx n n n ππ=+++-解:先确定信号周期为N=12,基波频率为212π, 先将x(n)化为: ()()()()21262212121cos 2cos3j nx n n n eπππ=+++利用欧拉公式:()()()()()()22222121212121222336111122221j n j n j n j n j nx n eeeeeπππππ--=+++++将()()()()22221212121221039,j n j n j n j n eeeeππππ--==带入得x(n)傅里叶级数形式为:()()()()()()222221212121212236910111122221j n j n j j n j n nx n eeeeeπππππ=+++++作业题目4:写出周期信号x(n)的傅里叶级数形式,确定傅里叶系数,并画出频谱图解:信号周期为N=6,其傅里叶级数形式为:()()265jknk k x n a eπ==∑其中傅里叶系数:()()()()26265-0-0161000000616jk n k n jk a x n ex e ππ==⎡⎤=+++++⎢⎥⎣⎦=∑ 因此:()()()()()()()26222226666650234516111111666666jk nk j n j n j n j n j n x n ee e e e e ππππππ===+++++∑ 频谱图:作业题目5:已知某周期信号x(n) 频谱图如下,求该信号x(n)。

全国自考公共课高等数学(工本)模拟试卷2(题后含答案及解析)

全国自考公共课高等数学(工本)模拟试卷2(题后含答案及解析)

全国自考公共课高等数学(工本)模拟试卷2(题后含答案及解析) 题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 综合题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.在空间直角坐标系下,方程2x2+3y2=6表示的图形为( )A.椭圆B.柱面C.旋转抛物面D.球面正确答案:B解析:由题知2x2+3y2=6可化为了,因为柱面公式=1 故方程表示图形为柱面.答案为B.2.设fx(x0,y0)-0,fy(x0,y0)=0,则在点(x0,y0)处函数f(x,y) ( ) A.连续B.一定取得极值C.可能取得极值D.的全微分为零正确答案:C解析:A是错误的.因多元函数在某一点可导,不能保证函数在该点连续.B 也是错误的.由题目的条件只能断定点(x0,y0)是驻点,而驻点是可疑的极值点,它不一定是极值点.C是正确的.因为驻点是可疑的极值点.D是错误的.一般会认为df=f(x0,y0)dx+fy(x0,y0)dy=0。

是正确的,却忘记了这个等式成立的前提是f(x,y)在点(x0,y)处可微.而在多元函数中可导不一定可微.答案为C.3.设积分区域Ω:x2+y2≤R2,0≤z≤1,则三重积分(x2+y2)dxdydz=( )A.B.C.D.正确答案:B解析:用圆柱面坐标0<θ<2π,0<r<R 0<z<1答案为B.4.下列方程中为一阶线性非齐次方程的是( )A.y’=2yB.(y’)2+2xy=exC.2xy’+x2y=-1D.y’=sin正确答案:C解析:本题考查一阶线性非齐次方程的定义.由一阶线性微分方程的定义知,(y’)2+2xy=ex不是一阶线性微分方程;由一阶线性(非)齐次微分方程的定义知y’=2y是齐次微分方程;只有选项C,2xy+x2y=-1是一阶线性非齐次方程.答案为C.5.设正项级数收敛,则下列无穷级数中一定发散的是( )A.B.C.D.正确答案:D解析:由无穷级数的一般项un不是n→∞时的无穷小量,则级数发散来判断,选项D一定发散.答案为D.填空题请在每小题的空格中填上正确答案。

如果看了这篇文章你还不懂傅里叶变换,那就过来掐死我吧

如果看了这篇文章你还不懂傅里叶变换,那就过来掐死我吧

如果看了这篇文章你还不懂傅里叶变换,那就过来掐死我吧这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。

傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。

但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。

老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。

(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。

所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。

至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。

————以上是定场诗————下面进入正题:抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。

但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。

这样的例子太多了,也许几年后你都没有再打开这个页面。

无论如何,耐下心,读下去。

这篇文章要比读课本要轻松、开心得多……一、嘛叫频域从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。

这种以时间作为参照来观察动态世界的方法我们称其为时域分析。

而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。

但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。

先举一个公式上并非很恰当,但意义上再贴切不过的例子:在你的理解中,一段音乐是什么呢?这是我们对音乐最普遍的理解,一个随着时间变化的震动。

但我相信对于乐器小能手们来说,音乐更直观的理解是这样的:好的!下课,同学们再见。

高等数学竞赛选拔考核试卷

高等数学竞赛选拔考核试卷
16.下列关于定积分的换元法的说法正确的是()
A.定积分的换元法可以简化被积函数
B.定积分的换元法需要引入雅可比行列式
C.定积分的换元法只能用于线性换元
D.定积分的换元法可以推广到多变量函数的积分
17.关于向量场的散度和旋度,以下说法正确的是()
A.散度描述了向量场源和汇的性质
B.旋度描述了向量场的旋转性质
A. f(x)在[0,1]上的平均值
B. f(x)在[0,1]上的定积分
C. f(x)在[0,1]上的变上限积分
D. f(x)在[0,1]上的原函数
17.三阶行列式的值为0,则()
A.行列式的三行(或三列)线性相关
B.行列式的三行(或三列)线性无关
C.行列式至少有一行(或一列)为零向量
D.行列式的元素至少有一个为零
A. 1/3
B. 1/6
C. 1/12
D. 1/24
5.设f(x) = x^3 - 6x^2 + 9x + 1,则f(x)的极大值为()
A. 1
B. 3
C. 5
D. 7
6.矩阵A的行列式为0,则()
A. A一定是奇异矩阵
B. A一定可逆
C. A的列向量线性无关
D. A的行向量线性相关
7.若f(x) = (sin x)/x,则f'(π/2)等于()
A.必有极大值
B.必有极小值
C.必有拐点
D.以上都不一定
3.若级数∑(n=1 to ∞) a_n的收敛半径为R,则级数∑(n=1 to ∞) a_n^2的收敛半径是()
A. R
B. R/2
C. 2R
D. √R
4.二重积分∬_D f(x,y) dσ中,区域D为y=x^2,x属于[0,1],则该二重积分的值为()

2023 年考研数学一真题及答案解析

2023 年考研数学一真题及答案解析

2023年全国硕士研究生招生考试数学一试题一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是最符合题目要求的.1.曲线1ln 1y x e x的斜渐近线为A.y x e B.1y x eC.y xD.1y x e2.若微分方程0y ay by 的解在 , 上有界,则A.0,0a b B.0,0a b C.0,0a b D.0,0a b 3.设函数 y f x 是由2,sin x t t y t t确定,则A. f x 连续, 0f 不存在.B. 0f 存在, f x 在0x 处不连续.C. f x 连续, 0f 不存在.D. 0f 存在, f x 在0x 处不连续.4.已知(1,2,...)n n a b n ,若级数1nn a与1nn b均收敛,则“1nn a绝对收敛”是“1nn b绝对收敛”的A.充分必要条件 B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件5.已知n 阶矩阵,,A B C .满足 ABC O ,E 是n 阶单位矩阵,记矩阵OA BC E ,AB C O E ,E AB ABO 的秩分别为123,,r r r ,则A.123r r r B.132r r r C.312r r r D.213r r r 6.下列矩阵中不能相似于对角矩阵的是A.11022003aB.1112003a aC.11020002aD.11022002a7.已知向量121212212,1,5,03191.若 既可由12, 线性表示,也可由12, 线性表示,则A.33,4k kR B.35,10k k R C.11,2k kR D.15,8k kR 8.设随机变量X 服从参数为1的泊松分布,则E X EXA.1e B.12C.2eD.19.设12,,,n X X X 为来自总体 21,N的简单随机样本,12,,,mY Y Y为来自总体22,2N 的简单随机样本,且两样本相互独立.记1111,,n m i i i i X X Y Y n m221111n i i S X X n ,22111mi i S Y Y m ,则A. 2122~,S F n m S B. 2122~1,1S F n m S C. 21222~,S F n m S D. 21222~1,1S F n m S 10.设12,X X 为来自总体 2,N的简单随机样本,其中(0) 是未知参数.若12ˆa X X为 的无偏估计.则aA.2B.2二、填空题:11~16小题,每小题5分,共30分.11.当0x 时,函数 2ln 1f x ax bx x 与 2cos x g x e x 是等价无穷小,则ab.12.曲面222ln 1z x y x y 在点 0,0,0处的切平面方程为.13.设f x 是周期为2的周期函数,且 1,0,1f x x x ,若01cos 2n n a f x a n x,则21n n a.14.设连续函数 f x 满足: 2f x f x x ,20f x dx ,则 31f x dx.15.已知向量12311010111,,,10111111αααβ,112233k k k γααα,若,(1,2,3)T T i i i γαβα,则222123k k k.16.设随机变量,X Y 相互独立,且1~1,3X B,1~2,2Y B,则 2P X Y .三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.设曲线 0y y x x 经过点 1,2,该曲线上任一点 ,P x y 到y 轴的距离等于该点处的切线在y 轴上的截距.(1)求 y y x .(2)求函数 1x f x y t dt在(0,) 的最大值.18.(本题满分12分)求函数 23,f x y y x y x 的极值.19.(本题满分12分)设空间有界区域 由柱面221x y 和平面0z 和1x z 所围成, 为 的边界曲面的外侧,计算曲面积分2cos 3sin I xzdydz xz ydzdx yz xdxdy.20.(本题满分12分)已知 f x 在 ,a a 上具有二阶连续导数.证明:(1)若 00f ,则存在 ,a a ,使得 21f f a f a a.(2)若f x 在,a a 内取得极值,则存在,a a ,使得212f f a f a a.21.(本题满分12分)已知二次型2221231231213,,2222f x x x x x x x x x x ,22212312323,,2g y y y y y y y y .(1)求可逆变换x y P ,将二次型 123,,f x x x 化成 123,,g y y y .(2)是否存在正交变换x y Q ,将二次型 123,,f x x x 化成 123,,g y y y .设二维随机变量 ,X Y 的概率密度为 22222,1,0,x y x y f x y,其他.(1)求,X Y 的协方差.(2),X Y 是否相互独立?(3)求22+Z X Y ,求Z 的概率密度.23考研数一真题答案速查一、选择题1.考点:渐近线答案:B.1y x e2.考点:常系数线性微分方程答案:C.0,0a b 3.考点:参数方程求导,分段函数求导答案:C. f x 连续,但 0f 不存在.4.考点:数项级数敛散性的判定答案:A.充分必要条件5.考点:矩阵的秩答案:B.132r r r 6.考点:相似对角化答案:D.11022002a 7.考点:向量的线性表示答案:D.15,8k kR 8.考点:常见分布答案:C.2e9.考点:三大抽样分布答案:D.21222~1,1S F n m S 10.考点:估计量的评选标准(无偏性)答案:A.2二、填空题11.考点:等价无穷小答案:212.考点:空间曲面的切平面答案:20x y z 13.考点:傅里叶级数答案:014.考点:定积分的换元法答案:1215.考点:向量内积与线性方程组答案:11916.考点:常见分布答案:13三、解答题17.考点:切线方程、一阶线性微分方程、函数求最值答案:(1)ln 2y x x x ;(2) f x 的最大值为241544f e e.18.考点:多元函数求极值答案: ,f x y 在210,327处取极大值2104,327729f.19.考点:第二类曲面积分(高斯公式)答案:5420.考点:泰勒中值定理的证明答案:(1)在0x 处泰勒展开,用介值定理推论处理余项.(2)在极值点处泰勒展开,用介值定理推论处理余项.21.考点:二次型的配方法、合同与相似答案:(1)111010001P ,x y P (2)不存在正交变换,因为两个二次型的系数矩阵不相似.22.考点:协方差、独立性、随机变量函数的分布答案:(1)0.(2)不独立.(3) 2,01,0,Z z z f z其他.。

计算数学面试题目(3篇)

计算数学面试题目(3篇)

第1篇一、基本概念1. 定义一个集合A,包含元素{1, 2, 3, 4, 5},请计算集合A的子集个数。

2. 请简述等差数列、等比数列、斐波那契数列的定义及其通项公式。

3. 请解释什么是数列的收敛性,并举例说明。

4. 请简述数列极限的定义及其性质。

5. 请解释什么是函数,并举例说明。

6. 请简述函数的连续性、可导性、可微性及其性质。

7. 请解释什么是线性方程组,并举例说明。

8. 请简述线性方程组的求解方法,如高斯消元法、矩阵求逆法等。

9. 请解释什么是矩阵,并举例说明。

10. 请简述矩阵的运算,如加法、减法、乘法、转置等。

二、计算题1. 已知数列{an}的通项公式为an = n^2 - 2n + 1,请计算数列的前10项之和。

2. 已知等差数列的首项为a1,公差为d,求第n项an的值。

3. 已知等比数列的首项为a1,公比为q,求第n项an的值。

4. 已知数列{an}的通项公式为an = 3^n - 2^n,请计算数列的极限。

5. 已知函数f(x) = x^2 - 3x + 2,请求f(2)的值。

6. 已知函数f(x) = 2x + 1,求f(-3)的值。

7. 已知函数f(x) = x^3 - 2x^2 + 3x - 1,求f'(x)的值。

8. 已知线性方程组:x + 2y = 52x - y = 1请用高斯消元法求解方程组。

9. 已知矩阵A = [1 2; 3 4],求矩阵A的转置。

10. 已知矩阵A = [1 2 3; 4 5 6; 7 8 9],求矩阵A的逆矩阵。

三、应用题1. 小明家养了5只鸡和3只鸭,总共重60千克。

已知一只鸡重2千克,一只鸭重3千克,请计算鸡和鸭的重量各是多少。

2. 一个正方形的周长为20厘米,请计算正方形的面积。

3. 一辆汽车以60千米/小时的速度行驶,行驶了3小时,请计算汽车行驶的距离。

4. 一个长方体的长、宽、高分别为2米、3米、4米,请计算长方体的体积。

高等数学习题解答(上海交大)习题11解答

高等数学习题解答(上海交大)习题11解答

第11章 级数1.写出下列级数的前5项:(1) 11(1)3n nn -∞=-∑;(2) 113(21)242n n n ∞=⨯-⨯∑;(3) 21(ln )nn n ∞=∑;(4) 1!nn n n∞=∑解答:(1)23451111133333-+-+-;(2) 1131351357135792242462468246810∙∙∙∙∙∙∙∙∙∙+++++∙∙∙∙∙∙∙∙∙∙;(3) 2345611111(ln 2)(ln 3)(ln 4)(ln 5)(ln 6)+++++; (4)234511212312341234512345∙∙∙∙∙∙∙∙∙∙+++++。

所属章节:第十一章第一节 难度:一级2.写出下列级数的通项: (1)2341357++++;(2)261220-+-;(3)22242462468x x+++⨯⨯⨯⨯⨯⨯解答:(1) 21n n -;(2)1(1)(1)n n n --+;(3)2242nx n∙ 。

所属章节:第十一章第一节难度:一级3.已知级数的部分和S n ,写出该级数,并求和: (1)1n n S n+=;(2)212nn nS -=;解答:(1) 一般项为111121u S +===,111,2,3,1(1)n n n n n u S S n nn n n -+-=-=-==--,故该级数为212(1)n n n∞=--∑,该级数的和为1lim lim1n n n n S n→∞→∞+==;(2) 一般项为1112u S ==,11121211,2,3,222nn n n n nn nu S S n -----=-=-==,故该级数为112nn ∞=∑,该级数的和为21lim lim12nnnn n S →∞→∞-== 。

所属章节:第十一章第一节 难度:一级4.根据定义求出下列级数的和:(1) 1326n n nn ∞=+∑;(2) 11(2)n n n ∞=+∑;(3) 1(1)(2)(3)n nn n n ∞=+++∑;(4) 1n ∞=∑解答:(1) 111113211332()()1162321123n n nn nn n n ∞∞∞===+=+=+=--∑∑∑;(2) 1111111111113()(1)(2)222324354n n n n n n ∞∞===-=-+-+-+=++∑∑;(3) 111123111111[()]()()2(1)(2)(3)2122322334n n nn n n n n n ∞∞===-+-⋅=-++⨯=++++++∑∑;(4) 11n n ∞∞===-∑∑111n ∞==-∑11=-=-所属章节:第十一章第一节难度:一级5.证明下列级数发散:(1) 121n n n ∞=+∑;(2) 12nn n∞=∑;(3)11nn n n ∞=⎛⎫ ⎪+⎝⎭∑;(4) 111n nnn nn n +∞=⎛⎫+ ⎪⎝⎭∑解答:(1) 由于10212nn u n =→≠+,所以级数121n nn ∞=+∑发散;(2) 由于2nnu n=→+∞≠,所以级数12nn n∞=∑发散;(3)由于1()01nn nu n e =→≠+,所以级数11nn n n ∞=⎛⎫ ⎪+⎝⎭∑发散;(4) 由于1111011(1)()(1)n n nn n nnnnnnn u n en nn ++=≥=→≠+++,所以级数111n nnn nn n +∞=⎛⎫+ ⎪⎝⎭∑发散。

傅里叶级数课程及习题解

傅里叶级数课程及习题解

第15章 傅里叶级数§15.1 傅里叶级数一 基本内容一、傅里叶级数 在幂级数讨论中1()nn n f x a x ∞==∑,可视为()f x 经函数系21, , ,, ,n x x x线性表出而得.不妨称2{1,,,,,}nx x x 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数.1 三角函数系函数列{}1, cos , sin , cos2, sin2, , cos , sin ,x x x x nx nx 称为三角函数系.其有下面两个重要性质.(1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零.对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:,定义两个函数的内积为(),()()()d bn m n m au x u x u x u x x=⋅⎰,如果0 (),() 0 n m l m nu x u x m n ≠=⎧=⎨≠⎩,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:为正交系.由于1, sin 1sin d 1cos d 0nx nx x nx x ππππ--=⋅=⋅=⎰⎰;sin , sin sin sin d 0 m nmx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;cos , cos cos cos d 0 m n mx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;sin , cos sin cos d 0mx nx mx nx x ππ-=⋅=⎰;2 1, 11d 2x πππ-==⎰,所以三角函数系在[],ππ-上具有正交性,故称为正交系.利用三角函数系构成的级数()01cos sin 2n n n a a nx b nx ∞=++∑称为三角级数,其中011,,,,,,n n a a b a b 为常数2 以2π为周期的傅里叶级数定义1 设函数()f x 在[],ππ-上可积,11(),cos ()cos d k a f x kx f x kx xππππ-==⎰ 0,1,2,k =;11(),sin ()sin d k b f x kx f x kx xππππ-==⎰ 1,2,k =,称为函数()f x 的傅里叶系数,而三角级数()01cos sin 2n n n a a nx b nx ∞=++∑称为()f x 的傅里叶级数,记作()f x ~()01cos sin 2nn n a a nx b nx ∞=++∑.这里之所以不用等号,是因为函数()f x 按定义1所得系数而获得的傅里叶级数并不知其是否收敛于()f x .二、傅里叶级数收敛定理定理1 若以2π为周期的函数()f x 在[,]ππ-上按段光滑,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-++=∑,其中,n n a b 为()f x 的傅里叶系数.定义2 如果()[, ]f x C a b '∈,则称()f x 在[,]a b 上光滑.若[,),(0),(0)x a b f x f x '∀∈++存在;(,],(0)x a b f x ∀∈-,(0)f x '-存在,且至多存在有限个点的左、右极限不相等,则称()f x 在[,]a b 上按段光滑.几何解释如图.按段光滑函数图象是由有限条 光滑曲线段组成,它至多有有限个第一类间断点与角点.推论 如果()f x 是以2π]上按 段光滑,则x R ∀∈,有()01()c o s s i n 2n nn a f x a nx b nx ∞==++∑.定义3 设()f x 在(,]ππ-上有定义,函数() (,] ˆ()(2) (2,2],1,2,f x x f x f x k x k k k πππππππ∈-⎧=⎨-∈-+=±±⎩称()f x 为的周期延拓.二 习题解答1 在指定区间内把下列函数展开为傅里叶级数 (1) (),(i) , (ii) 02f x x x x πππ=-<<<<;解:(i)、()f x =x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得011()d d 0a f x x x x ππππππ--===⎰⎰.当1n ≥时,11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰11sin sin d 0|x nx nx x n n ππππππ--=-=⎰,11sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰1112cos cos d (1)|n x nx nx x n n n ππππππ+---=+=-⎰,所以11sin ()2(1)n n nxf x n ∞+==-∑,(,)x ππ∈-为所求.(ii)、()f x =x ,(0,2)x π∈作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220011()d d 2a f x x x x πππππ===⎰⎰.当1n ≥时,220011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰220011sin sin d 0|x nx nx x n n ππππ=-=⎰,22011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2200112cos cos d |x nx nx x n n n ππππ--=+=⎰,所以1sin ()2n nxf x n π∞==-∑,(0,2)x π∈为所求. (2) 2()(i) (ii) 02f x =x , -π<x <π,<x <π; 解:(i)、()2f x =x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220112()d d 3a f x x x x πππππππ--===⎰⎰.当1n ≥时,2211cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰211sin 2sin d |x nx x nx xn n ππππππ--=-⎰22d(cos )x nx n πππ-=⎰222224cos cos d (1)|nx nx nx x n n n ππππππ--=-=-⎰,2211sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰212cos cos d |x nx x nx xn n ππππππ---=+⎰22d(sin )x nx n πππ-=⎰2222sin sin d 0|x nx nx x n n ππππππ--=-=⎰,所以221sin ()4(1)3nn nxf x n π∞==+-∑,(,)x ππ∈-为所求.解:(ii)()2f x =x (0,2)x π∈其按段光滑,故可展开为傅里叶级数. 由系数公式得222200118()d d 3a f x x x x πππππ===⎰⎰.当1n ≥时,22220011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰2220011sin 2sin d |x nx x nx xn n ππππ=-⎰2202d(cos )x nx n ππ=⎰222220224cos cos d |x nx nx x n n n ππππ=-=⎰,222211sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2220012cos cos d |x nx x nx xn n ππππ-=+⎰22042d(sin )x nx n n πππ=-+⎰2222004224sin sin d |x nx nx x n n n n ππππππ=-+-=-⎰,所以22214cos sin ()43n nx nx f x n n ππ∞=⎛⎫=+- ⎪⎝⎭∑,(0,2)x π∈为所求. (3) 0()(,0,0)0ax x f x a b a b bx x ππ-<≤⎧=≠≠≠⎨<<⎩.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.由系数公式得000111()()d d d 2b a a f x x ax x bx x ππππππππ---==+=⎰⎰⎰.当1n ≥时,02011cos d cos d n a ax nx x bx nx xππππ-=+⎰⎰2[1(1)]n a b n π-=--0011sin d sin d n b ax nx x bx nx xππππ-=+⎰⎰1(1)n a b n ++=-所以21()2()1()cos(21)4(21)n b a b a f x n x n ππ∞=--=+--∑11sin ()(1)n n nxa b n ∞+=++-∑,(,)x ππ∈-为所求.2 设f 是以2π为周期的可积函数,证明对任何实数c ,有2 11()cos d ()cos d ,0,1,2,c n ca f x nx x f x nx x n πππππ+-===⎰⎰,2 11()sin d ()sin d ,1,2,c n cb f x nx x f x nx x n πππππ+-===⎰⎰.证:因为()f x ,sin nx ,cos nx 都是以2π为周期的可积函数,所以令2t x π=+有211()cos d (2)cos (2)d(2)cc f x nx x f t n t t ππππππππ-+=---⎰⎰ c+2 c+2 11()cos d ()cos d f t nt t f x nx x ππππππ==-⎰⎰.从而2 1()cos d c n ca f x nx xππ+=⎰2 11()cos d ()cos d c n cca f x nx x f x nx xππππ+-==⎰⎰c+2 11()cos d ()cos d f x nx x f x nx xππππππ-++⎰⎰1()cos d f x nx xπππ-=⎰.同理可得2 11()sin d ()sin d c n cb f x nx x f x nx xπππππ+-==⎰⎰.3 把函数04()04x f x x ππππ⎧--<≤⎪⎪=⎨⎪≤<⎪⎩展开成傅里叶级数,并由它推出(1)11114357π=-+-+;(2) 111111357111317π=+--+-+;(3)11111157111317=-+-+-+.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得00111()d d d 044a f x x x x πππππππππ---==+=⎰⎰⎰.当1n ≥时,0011cos d cos d 044n a nx x nx x ππππππ--=+=⎰⎰.11sin d sin d 44n b nx x nx xππππππ--=+⎰⎰11211[1(1)]202n n k n n n k+⎧=+⎪=--=⎨⎪=⎩,故11()sin(21),(,0)(0,)21n f x n x x n ππ∞==-∈--∑为所求.(1) 取2x π=,则11114357π=-+-+; (2) 由11114357π=-+-+得111112391521π=-+-+,于是111111341257111317πππ=+=+--+-+;(3) 取3x π=,则111111457111317π⎫=-+-+-+⎪⎝⎭,所以11111157111317=-+-+-+.4 设函数()f x 满足条件()()f x f x π+=-,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=-,所以(2)()()f x f x f x ππ+=-+=,即()f x 是以2π为周期的函数. 于是由系数公式得000111()d ()d ()d a f x x f x x f x xπππππππ--==+⎰⎰⎰11()d ()d f t t f x xπππππ=-+⎰⎰11(2)d ()d f t t f x xππππππ=-++⎰⎰11()d ()d 0f t t f x x πππππ=++=⎰⎰.当1n ≥时,0011()cos d ()cos d n a f x nx x f x nx xππππ-=+⎰⎰11()cos()d ()cos d f t nx n x f x nx xππππππ=+++⎰⎰101(1)()cos d n f x nx x ππ++-=⎰02()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.0011()sin d ()sin d n b f x nx x f x nx xππππ-=+⎰⎰02()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰,故当()()f x f x π+=-时,函数()f x 在(),ππ-内的傅里叶级数的特性是20k a =,20k b =.5 设函数()f x 满足条件:()()f x f x π+=,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=,所以(2)()()f x f x f x ππ+=+=,即()f x 是以2π为周期的函数.于是由系数公式得000111()d ()d ()d a f x x f x x f x xπππππππ--==+⎰⎰⎰0011()d ()d f t t f x x πππππ=-+⎰⎰0011(2)d ()d f t t f x x ππππππ=-++⎰⎰000112()d ()d ()d f t t f x x f x x πππππππ=++=⎰⎰⎰. 当1n ≥时,0011()cos d ()cos d n a f x nx x f x nx xππππ-=+⎰⎰11()cos()d ()cos d f t nx n x f x nx xπππππ=++⎰⎰1(1)()cos d nf x nx xππ+-=⎰02()cos d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰.0011()sin d ()sin d n b f x nx x f x nx xππππ-=+⎰⎰02()sin d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰,故当()()f x f x π+=时,函数()f x 在(),ππ-内的傅里叶级数的特性是210k a -=,210k b -=.6 试证函数系cos , 0,1,2,nx n =和sin , 1,2,nx n =都是[0, ]π上的正交函数系,但他们合起来的却不是[0, ]π上的正交函数系.证:就函数系{1,cos ,cos2,,cos ,}x x nx ,因为n ∀,1,1d x ππ==⎰,2001cos ,cos cos d (cos21)d 22nx nx nx x nx x πππ==+=⎰⎰,又01,cos cos d 0nx nx x π==⎰;,m n ∀,m n ≠时,cos ,cos cos cos d mx nx mx nx xπ=⎰0011cos()d cos()d 022m n x x m n x x ππ=++-=⎰⎰.所以{1,cos ,cos2,,cos ,}x x nx 在[0, ]π上是正交系. 就函数系{sin ,sin 2,,sin ,}x x nx ,因为n ∀,2001sin ,sin sin d (1cos2)d 22nx nx nx x nx x πππ==-=⎰⎰,又,m n ∀,m n ≠时,sin ,sin sin sin d mx nx mx nx xπ=⎰0011cos()d cos()d 022m n x x m n x x ππ=-++-=⎰⎰.所以{sin ,sin 2,,sin ,}x x nx 在[0, ]π上是正交系. 但{1,sin ,cos ,sin 2,cos2,,sin ,cos ,}x x x x nx nx 不是 [0, ]π上的正交系.实因:1,sin sin d 10x x x π==≠⎰.7 求下列函数的傅里叶级数展开式(1)(),022xf x x ππ-=<<; 解:(),02x f x x ππ-=<<其按段光滑,故可展开为傅里叶级数. 由系数公式得2200011()d d 02x a f x x x πππππ-===⎰⎰.当1n ≥时,220011cos d d(sin )22n x xa nx x nx n ππππππ--==⎰⎰22001sin sin d 022|x nx nx x n n πππππ-=+=⎰,220011sin d d(cos )22n xxb nx x nx n ππππππ---==⎰⎰220011cos cos d 22|x nx nx x n n n πππππ-=--=⎰,所以1sin ()n nxf x n ∞==∑,(0,2)x π∈为所求. (2)()f x x ππ-≤≤;解:()f x x ππ-≤≤作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.因为02()02x x f x x x ππ-≤<=⎨⎪≤≤⎪⎩,所以由系数公式得01()d a f x xπππ-=⎰00sin d sin d 22x x x x ππ-==. 当1n ≥时,0sin cos d sin cos d 22n x xa nx x nx x ππ-=+0sin cos d 2x nx x π==.0sin sin d sin sin d 022n x x b nx x nx x ππ-==.所以211()cos 41n f x nxn∞=-,(,)x ππ∈-.而x π=±时,(0)(0)()2f f f πππ±-+±+=±,故211()cos 41n f x nxnππ∞==--,[,]x ππ∈-为所求.(3) 2(), (i) 02, (ii) f x ax bx c x x πππ=++<<-<<;解:(i)由系数公式得2001()d a f x xππ=⎰222018()d 223a ax bx c x b c ππππ=++=++⎰. 当1n ≥时, 2201()cos d n a ax bx c nx xππ=++⎰ 2220011()sin (2)sin d |ax bx c nx ax b nx xn n ππππ=++++⎰24an =, 2201()sin d n b ax bx c nx x ππ=++⎰2220011()cos (2)cos d |ax bx c nx ax b nx xn n ππππ=-++-+⎰42a n n ππ=--,故224()3a f x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a bnx nx x n n ππ∞=++-∈∑为所求.(ii)由系数公式得01()d a f x x πππ-=⎰2212()d 23aax bx c x cππππ-=++=+⎰.当1n ≥时,21()cos d n a ax bx c nx xπππ-=++⎰211()sin (2)sin d |ax bx c nx ax b nx xn n ππππππ--=++++⎰24(1)n an =-,21()sin d n b ax bx c nx xπππ-=++⎰211()cos (2)cos d |ax bx c nx ax b nx xn n ππππππ--=-++-+⎰12(1)n bn -=-,故222()3af x ax bx c cπ=++=+2142(1)cos (1)sin ,(,)nn n a b nx nx x n n ππ∞=+---∈-∑为所求.(4) ()ch , f x x x ππ=-<<;解:由系数公式得01()d a f x x πππ-=⎰12ch d sh x x πππππ-==⎰.当1n ≥时,1ch cos d n a x nx xπππ-=⎰11ch sin sh sin d |x nx x nx xn n ππππππ--=-⎰21sh d(cos )x nx n πππ-=⎰2211sh cos ch cos d |x nx x nx xn n ππππππ--=-⎰222sh 1(1)nna n n ππ=--,所以22sh (1)(1)n n a n ππ=-+. 11ch sin d ch d(cos )n b x nx x x nx ππππππ---==⎰⎰ 11ch cos sh cos d |x nx x nx xn n ππππππ--=-+⎰21sh d(sin )x nx n πππ-=⎰2211sh sin ch sin d |x nx x nx xn n ππππππ--=-+⎰2211sh sin ch sin d |x nx x nx x n n ππππππ--=-+⎰21nb n =,所以0n b =,故21211()ch sh (1)cos 21n n f x x nx n ππ∞=⎡⎤==+-⎢⎥+⎣⎦∑, (,)x ππ∈-为所求.(5) ()sh ,f x x x ππ=-<<.解:由系数公式得01()d a f x x πππ-=⎰1sh d 0x x πππ-==⎰.当1n ≥时,1sh cos d 0n a x nx x πππ-==⎰.11sh sin d sh d(cos )n b x nx x x nx ππππππ---==⎰⎰11sh cos ch cos d |x nx x nx xn n ππππππ--=-+⎰121(1)sh ch d(sin )n x nx n n πππππ+-=-+⎰122211(1)sh ch sin sh sin d |n x nx x nx xn n n ππππππππ+--=-+-⎰1221(1)sh n n b n n ππ+=--,所以122sh (1)(1)n n n xb n π+=-+, 故1212sh ()sh (1)sin (1)n n n f x x nxn ππ∞+===-+∑,(,)x ππ∈-为所求.8 求函数221()(362)12f x x x ππ=-+的傅里叶级数展开式并应用它推出22116n n π∞==∑.解:由224()3a f x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a b nx nx x n n ππ∞=++-∈∑得 221()(362)12f x x x ππ=-+222326πππ=-+211cos n nx n ∞=+∑211cos n nx n ∞==∑,(0,2)x π∈.而2(00)(20)6f f ππ+=-=,故由收敛定理得22211(00)(20)11cos062n n f f n n ππ∞∞==++-===∑∑.9 设()f x 为[],ππ-上光滑函数,()()f f ππ-=.且,n n a b 为()f x 的傅里叶系数,,n n a b ''为()f x 的导函数()f x '的傅里叶系数.证明00,,(1,2,)n n n n a a nb b na n '''===-= .证:因为()f x 为[],ππ-上光滑函数,所以()f x '为[],ππ-上的连续函数,故可积.由系数公式得1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx xπππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.1()sin d n b f x nx xπππ-'=⎰1()sin ()cos d |nnf x nx f x nx x na ππππππ--'=-=-⎰故结论成立.10 证明:若三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中的系数,n n a b 满足关系{}33sup ,n n nn a n b M≤,M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数.证:设0()2a u x =,()cos sin n n n u x a nx b nx =+,1,2,n =.则0n ∀≥,()n u x 在R 上连续,且0()0u x '=,()sin cos nn n u x na nx nb nx '=-+亦在R 上连续. 又x R ∀∈,()sin cos nn n u x n a nx n b nx '≤+ n n n a n b ≤+22M n ≤.而22Mn∑收敛,所以()()cos sin n n n u x nb nx na nx '=-∑∑在R 上一致收敛.故设01()(cos sin )2n n n a s x a nx b nx ∞==++∑,则11()(cos sin )()n n nn n s x na nx nb nx u x ∞∞==''=-+=∑∑且1()(cos sin )n n n s x na nx nb nx ∞='=-+∑在R 上连续.§15. 2 以2l 为周期的函数的展开一 基本内容一、以2l 为周期的函数的傅里叶级数 设()f x 是以2l 为周期的函数,作替换ltx π=,则()lt F t f π⎛⎫= ⎪⎝⎭是以2π为周期的函数,且()f x 在(, )l l -上可积()F t ⇔在(,)ππ-上可积.于是 ()01()c o s s i n2n n n a F t a nt b nt ∞=++∑, 其中 1()cos d ,n a F t nt t πππ-=⎰ 1()sin d n b F t nt tπππ-=⎰.令x t l π=得 ()()lt F t f f x π⎛⎫== ⎪⎝⎭,sin sin ,cos cos n x n xnt nt l l ππ==, 从而01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑. 其中 1()cos ,l n l n x a f x dx l l π-=⎰1()sin l n l n x b f x dx l l π-=⎰.上式就是以2l 为周期的函数()f x 的傅里叶系数.在按段光滑的条件下,亦有01(0)(0)cos sin 22n n n a f x f x n x n x a b l l ππ∞=++-⎛⎫=++ ⎪⎝⎭∑.其只含余弦项,故称为余弦级数.同理,设()f x 是以2l 为周期的奇函数,则()cos f x nx 奇,()sin f x nx 偶.于是 1()cos d 0l n l n xa f x x l l π-==⎰, 012()sin d ()sin d l l n l n x n x b f x x f x xl l l l ππ-==⎰⎰. 从而01()sin 2n n a n x f x a l π∞=+∑其只含正弦项,故称为由此可知,函数(),(0,)f x x l ∈要展开为余弦级数必须作偶延拓.偶延拓() (0,) ()() (,0)f x x l f x f x x l ∈⎧=⎨-∈-⎩函数(),(0,)f x x l ∈要展开为正弦级数必须作奇延拓. 奇延拓() (0,) ()() (,0)f x x l f x f x x l ∈⎧=⎨--∈-⎩.二 习题解答1 求下列周期函数的傅里叶级数展开式(1) ()cos f x x =(周期π);解:函数由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得 22002244cos d cos d a x x x x ππππππ-===⎰⎰.当1n ≥时,222cos cos2d n a x nx x πππ-=⎰204cos cos 2d x nx xππ=⎰22[cos(21)cos(21)]d n x n x xππ=++-⎰220011sin(21)sin(21)(21)(21)||n x n x n n ππππ=++-+-1(1)2(1)2(21)(21)n n n n ππ+-⋅-⋅=++-124(1)(41)n n π+=--. 222cos sin d 0n b x nx x πππ-==⎰.故121241()cos (1)cos 241n n f x x nxn ππ∞+===+--∑,(,)x ∈-∞+∞为所求.(2) ()[]f x x x =-(周期1);解:函数()[]f x x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数. 因12l =,所以由系数公式得()()1112100022[]d 2[]d 2d 1a x x x x x x x x -=-=-==⎰⎰⎰.当1n ≥时,2222()()1121022[]cos2d 2[]cos2d n a x x n x x x x n x xππ-=-=-⎰⎰110012cos2d d(sin2)x n x x x n x n πππ==⎰⎰110011sin2sin2d 0|x n x n x x n n ππππ=-=⎰.()1121022[]sin 2d 2sin 2d n b x x n x x x n x xππ-=-=⎰⎰101d(cos2)x n x n ππ-=⎰110011cos2cos2d |x n x n x x n n ππππ-=+⎰1n π-=. 故1111()[]sin 22n f x x x n xn ππ∞==-=-∑,(,)x ∈-∞+∞为所求. (3) 4()sin f x x =(周期π);解:函数4()sin f x x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得 442200224sin d sin d a x x x x πππππ-==⎰⎰22041cos2d 2x x ππ-⎛⎫= ⎪⎝⎭⎰204311cos2cos4d 828x x x ππ⎛⎫=-+ ⎪⎝⎭⎰34=.当1n ≥时,204311cos2cos4cos2d 828n a x x nx xππ⎛⎫=-+ ⎪⎝⎭⎰11201,2128n n n n ⎧-=⎪⎪=≠≠⎨⎪⎪=⎩. 222cos sin d 0n b x nx x πππ-==⎰.故4311()sin cos2cos4828f x x x x ==-+,(,)x ∈-∞+∞为所求.2222(4) ()sgn(cos )f x x = (周期2π).解:函数()sgn(cos )f x x =,(,)x ππ∈-延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l π=,所以由系数公式得0012sgn(cos )d sgn(cos )d 0a x x x x πππππ-===⎰⎰.当1n ≥时,2sgn(cos )cos d n a x nx x ππ=⎰202224cos d cos d sin 2n nx x nx x n πππππππ=-=⎰⎰4sin 2n n ππ=024(1)21(21)kn kn k k π=⎧⎪=⎨-=-⎪+⎩.2sgn(cos )sin d 0n b x nx x πππ-==⎰.故14cos(21)()sgn(cos )(1)21nn n x f x x n π∞=+==-+∑,(,)x ∈-∞+∞.2 求函数 01() 1 123 23x x f x x x x ≤≤⎧⎪=<<⎨⎪-≤≤⎩的傅里叶级数并讨论其收敛性.解:函数()f x ,(0,3)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因32l =,所以由系数公式得 31230001222224()d d d (3)d 33333a f x x x x x x x ==++-=⎰⎰⎰⎰. 当1n ≥时,12012222cos d cos d 3333n n x n xa x x x ππ=+⎰⎰3222(3)cos d 33n x x xπ+-⎰21011212d sin sin 33n x n x x n n ππππ⎛⎫=+ ⎪⎝⎭⎰ 3212(3)d sin 3n x x n ππ⎛⎫+- ⎪⎝⎭⎰ 10121214sin sin d sin 333n n x n x n n n ππππππ=-+⎰3322121212sin (3)sin sind 333n n x n xx x n n n ππππππ-+-+⎰12201432sin cos 323n n xn n ππππ=+32221432sin cos 323n n xn n ππππ--2222323cos 232n n n πππ=-2222334cos2cos 223n n n n ππππ-+2222323cos 3n n n πππ=-. 2()sin d 0n b f x nx x πππ-==⎰.故2221231122()cos cos333n n n x f x n n πππ∞=-⎡⎤=++⎢⎥⎣⎦∑,(,)x ∈-∞+∞为所求.3 将函数()2f x xπ=-在[0,]π上展开成余弦级数.解:函数()2f x xπ=-,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得20021d 0222a x x x x πππππ⎛⎫⎛⎫=-=-= ⎪⎪⎝⎭⎝⎭⎰.当1n ≥时,2cos d 2n a x nx x πππ⎛⎫=- ⎪⎝⎭⎰22sin sin d 2x nx nx x n n πππππ⎛⎫=-+ ⎪⎝⎭⎰202cos nxn ππ=-242102n k n n kπ⎧=-⎪=⎨⎪=⎩.0n b =.故2141()cos(21),[0,]2(21)n f x x n x x n πππ∞==-=-∈-∑.4 将函数()cos2xf x =在[0,]π上展开成正弦级数. 解:函数()cos2xf x =,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==.02cos sin d 2n x b nx x ππ=⎰ 0111sin sin d 22n x n x x ππ⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰ 011cos cos 1221122n x n x n n ππ⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=-+⎢⎥+-⎢⎥⎣⎦28(41)nn π=-.故在[0, ]π上218()cos sin 241n x nf x nxn π∞===-∑为所求.5 把函数102()324x x f x x x -<≤⎧=⎨-<<⎩ 在(0, 4)上展开成余弦级数.解:函数()f x ,(0,4)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得4240002211()d (1)d (3)d 0422a f x x x x x x ==-+-=⎰⎰⎰.当1n ≥时,402()cos d 44n n x a f x xπ=⎰240211(1)cos d (3)cos d 2424n x n x x x x x ππ=-+-⎰⎰220022(1)sin sin d 44n x n x x x n n ππππ=-+⎰ 442222(3)sin sind 44n xn xx x n n ππππ--⎰22208cos 4n xn ππ=42228cos 4n xn ππ+ 2282cos 1(1)2n n n ππ⎛⎫=-+- ⎪⎝⎭220421642n k n k n π≠-⎧⎪=⎨=-⎪⎩ 所以102()324x x f x x x -<≤⎧=⎨-<<⎩22181(21)cos (21)2n n xn ππ∞=-=-∑为所求.6 把函数()2()1f x x =-在(0, 1)上展开成余弦级数,并推出222116123π⎛⎫=+++ ⎪⎝⎭. 解:函数()f x ,(0,1)x ∈延拓为以2为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得11200022()d 2(1)d 3a f x x x x ==-=⎰⎰.当1n ≥时,1202(1)cos d n a x n x xπ=-⎰1120022(1)sin (1)sin d x n x x n x xn n ππππ=---⎰11222222(1)cos cos d x n x n x xn n ππππ=--⎰224n π=.0n b =.所以2221141(1)cos ,[0,1]3n x nx x n π∞=-=+∈∑.令0x =得22114113n n π∞==+∑,即22116n n π∞==∑.7 求下列函数的傅里叶级数展开式 (1) ()arcsin(sin )f x x =;解:函数()arcsin(sin )f x x =是以2π为周期的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得 0,0,1,2,n a n ==.02arcsin(sin )sin d n b x nx x ππ=⎰20222sin d ()sin d x nx x x nx x ππππππ=+-⎰⎰22022cos cos d x nx nx xn n ππππ-=+⎰2222()cos cos d x nx nx x n n πππππππ--+-+⎰204cos d nx x n ππ=⎰24sin 2n n ππ=2024(1)21k n kn k n π=⎧⎪=⎨-=-⎪⎩所以214(1)()arcsin(sin )sin(21)(21)nn f x x n x n π∞=-==--∑,x R ∈.(2) ()arcsin(cos )f x x =.解:函数()arcsin(cos )f x x =是以2π为周期的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002arcsin(cos )d 0a x x ππ==⎰,当1n ≥时,2arcsin(cos )cos d n a x nx x ππ=⎰02cos d 2x nx x πππ⎛⎫=- ⎪⎝⎭⎰22sin sin d nx nx xn n ππππ=+⎰202421n k n k n π=⎧⎪=⎨=-⎪⎩.0,1,2,n b n ==.所以2141()arcsin(cos )cos(21)(21)n f x x n x n π∞===--∑,x R ∈.8 试问如何把定义在0,2π⎡⎤⎢⎥⎣⎦上的可积函数()f x 延拓到区间(),ππ-内,使他们的傅里叶级数为如下的形式(1)211cos(21)n n an x∞-=-∑; (2) 211sin(21)n n bn x∞-=-∑.解:(1)先把()f x 延拓到[0,]π上,方法如下:()02()()2f x x x f x x ππππ⎧≤≤⎪⎪=⎨⎪--<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下:()0ˆ()(2)2x x f x f x x ππππ⎧≤≤=⎨-<≤⎩.其图象如下. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()sin d 0n b f x nx x ππ==⎰.2()cos d n a f x nx xππ=⎰20222()cos d ()cos d f x nx x x nx xπππππ=+⎰⎰ 202()[cos cos()]d f x nx n nx xπππ=--⎰204()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.所以211()cos(21)0,2n n f x a n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. (2) 先把()f x 延拓到[0,]π上,方法如下. ()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下.()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨--<≤⎩.由于按段光滑,所以可展开为傅里叶级数,又)x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()cos d 0n a f x nx x ππ==⎰02()sin d n b f x nx xππ=⎰20222()sin d ()sin d f x nx x f x nx xπππππ=+⎰⎰202()[sin sin()]d f x nx n nx xπππ=+-⎰204()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.所以211()sin(21)0,2n n f x b n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑.§15. 3 收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理1 设()f x 在[,]ππ-上可积,则()2222011()d 2n n n a a b f x x πππ∞-=++≤∑⎰,其中,n n a b 为()f x 的傅里叶系数. 推论1 设()f x 在[,]ππ-上可积,则lim ()cos d 0n f x nx x ππ-→∞=⎰, lim ()sin d 0n f x nx x ππ-→∞=⎰.推论2 设()f x 在[,]ππ-上可积,则01lim ()sin d 02n f x n x x π→∞⎛⎫+= ⎪⎝⎭⎰,1lim ()sin d 02n f x n x x π-→∞⎛⎫+= ⎪⎝⎭⎰.定理2 设以2π为周期的函数()f x 在[,]ππ-上可积,则()1()cos sin 2nn k k k a S x a kx b kx ==++∑1sin 12()d 2sin2n tf x t tt πππ-⎛⎫+ ⎪⎝⎭=+⎰,此称为()f x 的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理3 (收敛性定理) 设以2π为周期的函数()f x 在[,]ππ-上按段光滑,则(0)(0)l i m ()022n n f x f x S x →∞-+⎡⎤+-=⎢⎥⎣⎦,定理4 如果()f x 在[,]ππ-上有有限导数,或有有限的两个单侧导数,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.定理5 如果()f x 在[,]ππ-按段单调,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.二 习题解答1 设()f x 以2π为周期且具有二阶连续的导函数,证明()f x 的傅里叶级数在(,)-∞+∞上一致收敛于()f x .证:由题目设知()f x 与()f x '是以2π为周期的函数,且光滑,故 01()(cos sin )2n n n a f x a nx b nx ∞==++∑, 01()(cos sin )2nn n a f x a nx b nx ∞=''''=++∑,且1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx x πππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.1()sin d n b f x nx xπππ-'=⎰1()sin ()cos d |nnf x nx f x nx x na ππππππ--'=-=-⎰于是2222111122n nn n nn a b a b a b n n n n ''⎛⎫⎛⎫''+=+≤+++ ⎪ ⎪⎝⎭⎝⎭22211()2n n a b n ''=++.由贝塞尔不等式得221()n nn a b ∞=''+∑收敛,又211n n∞=∑收敛,从而()12n n n a a b ∞=++∑收敛, 故01(cos sin )2n n n a a nx b nx ∞=++∑在(,)-∞+∞上一致收敛.2 设f 为[],ππ-上可积函数,证明:若f 的傅里叶级数在[,]ππ-上一致收敛于f ,则成立贝塞尔(Parseval)等式()2 2220 11()d 2n n n a f x x a b πππ∞-==++∑⎰, 这里,n n a b 为f 的傅里叶系数.证:设()01cos sin 2mm n n n a S a nx b nx ==++∑,因为()f x 的傅里叶级数在[,]ππ-上一致收敛于()f x ,所以0,0N ε∀>∃>,,[,]()m m N x f x S ππε∍>∀∈-⇒-<“”.于是2(),()m m f x S f x S ε--<.而(),()(),()2(),,m m m m m f x S f x S f x f x f x S S S --=-+()()22 2222200 11()d 222m m n n n n n n a a f x x a b a b ππππππ-==⎡⎤=-+++++⎢⎥⎣⎦∑∑⎰()2 2221()d 2mn n n a f x x a b ππππ-==--+∑⎰.所以m N >时,()222221()d 2mn n n a f x x a b ππππε-=--+<∑⎰,故 ()2222011()d 2n n n a a b f x xπππ∞-=++=∑⎰.3 由于贝塞尔等式对于在[,]ππ-上满足收敛定理条件的函数也成立.请应用这个结果证明下列各式.(1) 22118(21)n n π∞==-∑;(2) 22116n n π∞==∑; (3) 44190n π=∑. 解:(1) 取04()04x f x x ππππ⎧--<<⎪⎪=⎨⎪≤<⎪⎩,由§1习题3得1sin(21)(),(,0)(0,)21n n xf x x n ππ∞=-=∈--∑.由贝塞尔等式得22111d 16(21)n x n ππππ∞-==-∑⎰,即22118(21)n n π∞==-∑. (2) 取(),(,)f x x x ππ=∈-,由§1习题1 (1)得11sin ()2(1),(,)n n nxf x x n ππ∞+==-∈-∑.由贝塞尔等式得21211(1)2d n n x x n πππ+∞-=⎛⎫-= ⎪⎝⎭∑⎰,故22116n n π∞==∑.(3) 取2(),[,]f x x x ππ=∈-,由§1习题1 (2)得2221cos 4(1),(,)3nn xx x n πππ∞==+-∈-∑.由贝塞尔等式得22242111(1)4d 23n n x x n ππππ∞-=⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭∑⎰,故44190n π=∑.4 证明:若,f g 均为[,]ππ-上可积函数,且他们的傅里叶级数在[,]ππ-上分别一致收敛于f 和g ,则。

信号与系统常见题型解析及模拟题

信号与系统常见题型解析及模拟题

信号与系统常见题型解析及模拟题信号与系统常见题型解析及模拟题1. 引言信号与系统作为电子工程和通信领域中的核心学科,其在现代科技中有着广泛的应用。

信号与系统学习的重点在于掌握信号的生成、传输以及系统的分析与设计。

在学习过程中,了解常见的题型并能够进行解析是十分重要的。

本文将围绕信号与系统常见题型进行解析,并通过模拟题的形式进行具体说明。

2. 时域分析时域分析是信号与系统的基础,通过对信号在时间上的变化进行观察,可以得到信号的重要特征。

常见的时域分析题型包括:信号的幅度、能量和功率的计算、信号的抽样与重构、脉冲响应等。

接下来,我们通过一道模拟题来详细解析。

2.1 “求信号的能量和功率”题目要求:已知连续时间信号$x(t)$的表达式为$x(t)=2+4\cos(2\pit)+\sin(4\pi t)$,求该信号的能量和功率。

解析:信号的能量可以通过计算信号的平方和再对其进行积分得到。

对于信号$x(t)$,其能量的计算公式为:$$E_x=\int_{-\infty}^{\infty}|x(t)|^2dt$$根据题目中给出的表达式,我们可以得到信号$x(t)$的平方为:$$x^2(t)=(2+4\cos(2\pi t)+\sin(4\pi t))^2$$将平方后的信号代入能量计算公式中进行积分,即可得到信号的能量。

另外,信号的功率可以通过计算信号的平方平均值得到。

对于信号$x(t)$,其功率的计算公式为:$$P_x=\lim_{T\rightarrow\infty}\frac{1}{T}\int_{-T/2}^{T/2}|x(t)|^2dt$$根据题目中给出的表达式,我们可以将信号$x(t)$平方后进行时间平均,然后取极限得到功率。

通过上述的计算步骤,我们可以求得信号$x(t)$的能量和功率。

3. 频域分析频域分析是信号与系统中的重要工具,通过将信号在频域上进行分析,可以得到信号的频率特征和频率响应。

常见的频域分析题型包括:傅里叶级数展开、傅里叶变换和滤波器设计等。

B站会员考试部分答案

B站会员考试部分答案

B站会员问答部分答案(不全)建议民娜还是自食其力自力更生自己度娘比较好,因为题目重复率比较低= =。

红色字体为度娘结果,正确率大概有90%以上~蓝色字体为内存搜索结果,正确率应该有80%~那些搜不到不确定乱猜的窝就删了OTZ。

#2 让人们献灵魂给路西法的是哪款游戏缘之空女装山脉妹汁男装山脉#4 宅男们向往的日本动漫圣地是那里?秋夜远秋叶源秋月园秋叶原#5 光的微粒说是谁提出?牛顿麦克斯韦爱因斯坦安培#6 《穷神》中红叶是什么罩杯?AA罩杯 A罩杯 B罩杯 AAA罩杯#7 游戏《洛克人》系列的主角X身着什么颜色的装甲?白色黑色红色蓝色#8 <<月姬>>中公主的全名是?琥珀希耶尔原野秋叶爱尔奎特布伦史塔德#9 下列不属于生化反应的是有氧呼吸第二阶段 ATP分解光合作用有氧呼吸第一阶段#10 古剑奇谭的男主角叫什么?千里屠苏百里屠荔百米屠苏百里屠苏#11 西比拉系统的真面目其实是什么?老虚的工口硬盘由许多免罪体质者的大脑组成的系统巨大的魔方式随机数生成器外星人在地球安插的监视装置#13 物语系列中忍野忍所拥有的妖刀名号是?村正罪歌心渡村雨#15 动漫《K》中青之王所带领的组织“Scepter4”的全名是?东京法务局男公关部东京法务局户籍科第四分室东京城管小分队东京拼图斯托卡马刺身黑暗料理结社#18 以下哪种属于纯净物氧气和臭氧纯净的空气纯净的河水冰水混合物#19 下面哪一部作品不算在“钉宫四萌”中?绯弹的亚里亚旋风管家零之使魔灼眼的夏娜#20 以下哪一个游戏不是网游?WOW EVE LOL DND (可度娘到)#24 《钢之炼金术师》中爱德华·艾尔利克的配音是谁朴璐美小野大辅福山润杉田智和#26 动画《黑执事》中男主角夏尔号称什么?年轻的贤君孤独的少爷恶魔的眷顾女王的番犬#29 《蜡笔小新》中主人公小新的姓氏是什么?小山风间吉永野原#32 在「我的朋友很少」中,花泽香菜负责那个角色的配音?三日月夜空羽濑川小鸠柏崎星奈高山玛丽亚#33 银魂中本体是眼镜的人物是?志村妙坂田银时山崎退志村新八#34 下面哪一部是新条真由的作品隔壁班的霸王我的淘气小霸王霸王爱人我的霸王我的爱#38 《魔法少女小圆》中,晓美焰的特殊能力是?偷内裤掉头操纵时间自我再生#40 如果节操掉了怎么办不要了踩两脚捡起来当没看见#41 海贼王的作者是?尾田荣次郎尾田荣大郎尾田荣三郎尾田荣一郎#47 大家喜欢叫御坂美琴什么?枪姐刀姐炮姐剑姐#48 傅里叶级数是傅里叶在研究哪种物理现象时提出的?电磁波量子力学机械振动热传导#49 半导体二极管(硅管)的导通电压是多少0.9-1.1V 0.1-0.3V 0.6-0.8V 0.3-0.5V#51 索尼的第一部游戏主机PlayStation是在哪一年推出的?1993年 1995年 1997年 1994年#52 名言是“真相只有一个”,被戏称为“死神小学生”的是?黑崎一护金田一江户川柯南夜神月#53 sega游戏的初音形象标配的内裤样式是?蓝白内裤红白内裤纯白内裤小熊内裤#54 “春哥纯爷们,铁血真汉子”中,“春哥”的全名是?曾轶可李宇春龚琳娜刘著#55 战地2里美军狙击手的初始主武器是什么M99 M82A1 M24 M21#57 凶真的配音是?宫真守野宫守真野宫野真受宫野真守#59 一部动漫名称:《XXXX的忧郁》,XXXX应为?热宫夏日凉宫秋月凉宫春日热宫冬月#60 720P高清宽屏画质分辨率是多少?640*320 1080*720 1920*1080 1280*720#61 下列不属于基本粒子的是光子电子重子夸克#66 一般来讲“俺妹”指的是哪部动画妹汁空腹黑妹妹控兄记妹妹公主我的妹妹不可能那么可爱#67 在漫画Gay界,被统称为“三松组合”的是松本ひで吉,松智洋,松月滉松风水莲,松本夏实,松沢夏树松崎司,松武,松本いなき松本手鞠,松本大洋,松本零士#68 《阿甘正传》中的阿甘在脱离腿上的支架前听到了什么?站起来,你可以的!全世界都在呢喃你的名字跑,跑啊!给你三百元,脱下它。

用傅里叶变换求积分

用傅里叶变换求积分

用傅里叶变换求积分文章题目:深入探讨傅里叶变换在积分计算中的应用引言:积分是数学中的基本概念之一,广泛应用于各个领域,包括物理学、工程学、经济学等。

为了提高积分计算的效率和准确度,傅里叶变换被引入其中。

傅里叶变换是一种将函数从时域转换到频域的数学工具,它的应用不仅限于信号处理和频谱分析,还可以用于求解积分。

本文将深入探讨如何利用傅里叶变换求积分,并分析其优势和适用范围。

一、傅里叶变换的基本原理及公式推导1.1 傅里叶级数与傅里叶变换的关系傅里叶级数是将周期函数分解为一系列正弦和余弦函数的和,而傅里叶变换则是将非周期函数分解为一系列复指数函数的积分。

通过引入虚数单位i和指数函数的欧拉公式,我们可以推导出傅里叶变换的基本公式。

1.2 傅里叶变换的定义与逆变换傅里叶变换将函数从时域转换到频域,通过对函数在整个实数轴上进行积分,得到对应的频域表示。

而傅里叶反变换则将频域的表示转换回时域。

二、傅里叶变换在积分计算中的应用2.1 傅里叶变换求解定积分傅里叶变换的一个重要应用是用于求解一类特殊的定积分。

对于具有对称性质的函数,我们可以利用傅里叶变换将其转化为频域上的计算问题,进而简化计算过程。

2.2 傅里叶变换求解广义积分广义积分是一类无界函数的积分,常规的积分计算方法往往无法适用。

而傅里叶变换提供了一种有效的工具来求解广义积分,通过将函数在频域上的表示进行计算,再进行反变换得到最终结果。

三、傅里叶变换求积分的优势和适用范围3.1 提高计算效率传统的积分计算方法可能需要进行复杂的代数运算或数值计算,而傅里叶变换通过将函数转换到频域上,简化了计算过程,提高了计算效率。

3.2 处理周期性信号对于周期性信号的积分计算,傅里叶变换可以更加灵活地处理,因为傅里叶变换天然适用于周期函数的分析和变换。

3.3 分析频域特性傅里叶变换将函数从时域转换到频域,可以直观地展示频域上的特性,并为后续的频谱分析提供了基础。

结论:傅里叶变换在求解积分问题中作为一种有力工具,具有提高计算效率、处理周期性信号和分析频域特性等优势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

c osktdt
0,
2 E0 (1k 2 )
,
k 1,3,5 k 2,4,6
bk
1
/
/
0 E0 sin t sin ktdt
, E0
2
0 ,
k 1 k 1
E(t)
E0
E0 2
sin t
2E0
1
k1 1 (2k )2
cos 2kt
E(t)
E0
E0 2
s in t
2E0
1
k1 1 (2k )2
1768年:生于法国奥塞尔。 1807年:推导出著名的热传导方程,
提出任何周期信号都可用 正弦函数的级数表示。 1822年:出版专著《热的解析理论》, 提出任一函数都可以展成三 角函数的无穷级数。 1830年:卒于巴黎。
周期函数的傅里叶级数
若函数 f x 以 2l 为周期,即
f x 2l f x
cos 2kt
E(t)
E0
E0 2
s in t
2E0
1
k1 1 (2k )2
cos 2kt
A
E0
E0
2
2 E0
3
0 2
2 E0
15
4
2 E0
35
6
频率
整流后,产生直流信号, 除基频信号外,主要是偶倍频信号。
Fourier 级数的应用
全波整流信号
E(t) E0 | sin t | ( t )
狄利克雷( Dirichlet )定理 若函数 f (x) 满足条件 1) 在每个周期内连续或只有有限个第一类间断点; 2) 在每个周期内只有有限个极值点,
则 f (x) 的傅里叶级数收敛 , 且有
a0
2
k 1
ak
cos
k
l
x
bk
sin
k
l
x
f x,
x为连续点
f
x
f
x ,
x为间断点
2
Fourier 级数的应用
例1、半波整流 E(t) E0 sint
E(t)
2
o
2 3 t
0
( / t 0)
E(t) E0 sint (0 t /)
E(t)
a0 2
k 1
(ak
cos kt
bk
sin kt)
a0
1
/
0
/
E0
s in tdt
2E0
ak
1
/
0
/
E0
sin t
ak
1 l
l l
f
x cos k x dx
l

bk
1 l
l l
f
x sin k x dx
l
由公式 ② 确定的 a0, ak , bk 称为函数
f ( x) 的傅里叶系数 ; 以 f ( x) 的傅里
叶系数为系数的三角级数 ① 称为 f ( x)
的傅里叶级数 .
Fourier 级数的收敛性
内容小结
周期为 2l 的函数的傅里叶级数为
f
(x)
a0 2
(ak
k 1
cos
k
l
x bk
sin
k
l
x)
( x 间断点)
其中
a0
1 l l l
f
x dx
ak
1 l
l
k
f ( x) cos
l
l
xd x
bk
1 l
l
k
f ( x) sin xd x
l
l
(k 1,2, )
f x 展开为级数
f
x
a0 2
k 1
ak
cos
k
l
x
bk
sin
k
l
x
三角函数系
1, cosπx , cos2πx , coskx ,
l
l
l
sin πx , sin 2πx , sin kx ,
l
l
l
三角函数系的正交性
nm
mn
l n x m x
cos cos dx 0
l
l
l
l sin n x sin m x dx 0
数学物理方法 Mathematical Methods for Physics
数理方法是链接数学和物理的桥梁
“数学是数学,物理是物理,但物理可 以通过数学的抽象而受益,而数学则可 以通过物理的见识而受益。”
——莫尔斯
§5.1 傅里叶级数 The Fourier series
傅里叶(J. B. J. Fourier)
2 2
E(t)
2E0
4E0
k 1
cos 2kt
4k 2 1
A E0
E0
2
2 E0
3
E(t)
2 E0
15
2 E0
35
0 2-/2 4o /26
频率 t
A
2 E0
4 E0
3
4 E0
15
4 E0
35
o 2 4 频率
无基频信号,主要是偶倍频信号。
参考文献: 【1】同济大学数学系,《高等数学》,第六版下册 【2】吴崇试,《数学物理方法》,北京大学出版社 【3】胡广书,《现代信号处理教程》,清华大学出版社
l
l
l
l cos n x cos n x dx l
l
l
l
l sin n x sin n x dx l
l
l
l
l cos n x sin m x dx 0
l
l
l
l
11dx 2l
l
注意:积分区间是一个周期
f
x
a0 2
k 1
ak
cos
k
l
x
bk
sin
k
l
x

a0
1 l l l
f
x dx
相关文档
最新文档