宁波市2017学年第一学期期末考试高一数学
浙江省宁波市10-11学年高一上学期期末试题数学
宁波市2010学年第一学期期末试题高一数学试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.本次考试不得使用计算器. 请考生将所有题目都做在答题卷上.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|13},{1,2}M x Z x N =∈-≤≤=,则M C N 等于 (A ){1,2} (B ){1,0,3}- (C ){0,3} (D ){1,0,1}- 2.函数2()log 2f x x =-的零点是(A )(3,0) (B )3 (C )(4,0) (D )43.函数1(0)()0(0)1(0)x x f x x x x ->⎧⎪==⎨⎪+<⎩,则1[()]2f f 的值是 (A )12 (B )12- (C )32 (D )32- 4.有一个容量为50的样本,其分组以及各组的频数如下:[12.5,15.5),3; [15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11; [24.5,27.5),10;[27.5,30.5),5;[30.5,33.5),4,根据累计频率分布,估计小于30的数据大约占样本总数的(A )5% (B )10% (C )30% (D )92% 5.有下列四个命题:①若事件,A B 是互斥事件,则,A B 是对立事件;②若事件,A B 是对立事件,则,A B 是互斥事件; ③若事件A 是必然事件,则()1P A =;④若事件,A B 是互斥事件,则()1P A B = ;其中正确的命题序号是:(A )①③ (B )②③ (C )①③④ (D )②③④6.如图所示的程序框图输出的结果是(A )5 (B )10 (C )15 (D )207.给出程序框图(如右图),不管输入的N 为何值, 输出的x 都不可能有(A )1 (B )2 (C )4 (D )88.在,A B 两个袋中各装有写着数字1,2,3,4,5,6的 六张卡片,现从,A B 两个袋各取一张 卡片,两张卡片上的数字之和为9的概率是 (A )19 (B )111 (C )29 (D )11369. 设()(0xf x a a =>且1)a ≠,则(A )(1)(0)f a f -> (B )(1)(0)f a f -< (C )(1)(2)f a f +> (D )(1)(2)f a f +<10.某城市出租汽车统一价格:凡上车起步价为6元,行程不超过km 2者均按此价收费;行程超过km 2,超过部分再按1.5元/km 收费(不足1km ,按1km 收费);遇到塞车或等候时,汽车虽没有行驶,仍按6分钟折算km 1计算(不足6分钟,按6分钟计算). 陈先生坐了一趟这种出租车,车费15元,车上仪表显示等候时间为11(第6题) (第7题)分30秒,那么陈先生此趟行程(单位:km )介于 (A )9~11 (B )7~9 (C )5~6 (D )3~5第II 卷(非选择题 共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.某校有老师200人,男学生1200人,女学生1000人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从女学生中抽取的 人数为80人,则n = ▲ .12.已知集合{}{}0,2|,40,log |2>==<<==x y y B x x y y A x ,则=BA ▲ .13.设{}{}6,4,2,7,5,3,1∈∈b a ,则函数x x f ba log )(=是增函数的概率 为 ▲ .14.一枚硬币连续抛掷三次,恰好有两次出现正面的概率是 ▲ . 15.下图是一个算法的框图,则输出n 的值是 ▲ .16.设()f x 为定义在R 上的奇函数,当0x ≥时,b x x f x ++=+22)(1(b 为常数),则(1)f -= ▲ .17.有下列命题:①函数2xy =与2log y x =互为反函数;②函数y =2log 2x y =是同一个函数;③函数2xy =与2xy -=的图象关于x 轴对称;④函数222x xy --=是递增的奇函数.其中正确的是 ▲ .(把你认为正确的命题的序号都填上)(第15题)三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分14分)某地区在高一年级学完《数学必修1》后进行评估测试.现从所有参加测试的全体学生中随机抽取500名学生的试卷进行 统计分析,就学生的成绩制成频率分布直方图(如图). (1)在这500名学生中,成绩不低于80分的有多少人?(2)设成绩不低于60分为合格,求这次评估测试的合格率; (3)估计这次评估测试的平均分.19.(本小题满分14分)已知定义域为R 的函数()f x 是偶函数,当0x ≥时,()1xf x x =+. (1)求()f x 的解析式; (2)证明方程1()2xf x -=在区间(1,2)上有解.20.(本小题满分14分)袋中装有黑球和白球共7个,从中任取1个球是白球的概率为73.现有甲、乙两人从袋中轮流摸取1球,取后不放回:甲先取,乙后取,然后甲再取……,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的.(1)求取球2次终止的概率; (2)求甲取到白球的概率.21.(本小题满分15分)已知函数()23()f x x x m x m R =-+-∈.(第18题)(1)若4m =,求函数)(x f y =在区间]5,1[的值域; (2)若函数)(x f y =在R 上为增函数,求m 的取值范围.22.(本小题满分15分)定义在(0,)+∞上的函数()f x 满足()()()f xy f x f y =+,且当1x >时,()0f x <. (1)求(1)f ;(2)证明()f x 在(0,)+∞上单调递减;(3)若关于x 的不等式(3)(931)(1)x x x f k f f ⋅--+≥恒成立,求实数k 的取值范围.宁波市2010学年第一学期期末试题高一数学答题卷一. 选择题(本大题共10小题,每小题5分,满分50在每小题给出的四个选项中只有一项是正确的.)二.填空题(本大题共4小题,每小题7分,满分28分.)11、 12、 13、14 、 15、 16、 17、三. 解答题(本大题共5小题,满分72分.解题应写出文字说明,证明过程或演算步骤.) 18、(本小题14分)20、(本小题14分)宁波市2010学年第一学期期末试题高一数学参考答案一、选择题 1 2 3 4 5 6 7 8 9 10 B D ADBDCACC二.填空题11.192 12.(1,2) 13.21 14.3815. 6 16.4- 17. ① ④ 三.解答题 18.(本小题14分)(1)成绩不低于80分的有(0.0260.018)10500220+⨯⨯=(人)………(5分) (2)合格率为10.0041096%P =-⨯= ……… (10分)(3)平均分为550.00410650.02010750.03210⨯⨯+⨯⨯+⨯⨯850.02610950.0181078.4+⨯⨯+⨯⨯= ………(14分) 19、(本小题14分)解:(1)当0<x 时0>-x ,∴11)(-=+--=-x xx x x f……… (4分)∵)(x f 是偶函数,∴1)()(-=-=x x x f x f ∴()()0011)(<≥⎪⎪⎩⎪⎪⎨⎧-+=x x x xx x x f ………(8分)(2)令x xx xx f x g ---+=-=11212)()(,()2,1∈x ∵0612132)2(,021121)1(>=-=<-=-=g g∴0)2()1(<⋅g g ∴方程1()2xf x -=在区间(1,2)上有解.………………(14分)20、(本小题14分)解:(1)设袋中原有n 个白球,由题意得737=n .∴n =3. 即袋中原有3个白球. ………( 4分)记“取球两次终止”的事件为A ,则726734)(=⨯⨯=A P .………(8分) (2)因为甲先取,所以甲只有在第1次,第3次,第5次取球, 记“甲取到白球”的事件为B ,“第i 次取出的球是白球”为i A ,(i=1,2,…5) 则)()()()()(531531A P A P A P A A A P B P ++=++=3522345673123456733473=⨯⨯⨯⨯⨯⨯⨯⨯+⨯⨯⨯⨯+=……………(14分) 21、(本小题15分)解:(1)()()443632324)(22<≥⎩⎨⎧-+---=-+-=x x x x x x x x x x f()()()()44634122<≥⎩⎨⎧+----=x x x x …………… ( 6分)∵[]5,1∈x ∴)(x f 在[]3,1上递增,在[]4,3上递减,在[]5,4上递增.∵12)5(,5)4(,6)3(,2)1(====f f f f , ∴)(x f 的值域为[]12,2……( 10分)(2)()()()()m x m x x m x x m x x m x x x f <≥⎩⎨⎧-++----=-+-=323232)(22()()m x m x m m x m m x <≥⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛+--⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛--=22222232222322因为)(x f 在R 上为增函数,所以⎪⎪⎩⎪⎪⎨⎧≥+≤-m m m m 2222得22≤≤-m . ………………(15分)22.(本小题15分)(1)(1)0f =; ………………(5分) (2)由()()()f xy f x f y =+可得()()()y f f y f x x=-, 设120x x >>,1122()()()x f x f x f x -=,121xx >,12()0x f x ∴<,即12()()0f x f x -< 12()()f x f x ∴<,所以()f x 在(0,)+∞上单调递减;…………(10分)(3)因为(3)(931)(1)xxxf k f f ⋅--+≥,所以(3)(931)xxxf k f ⋅≥-+,由(2)得393130x x x x k k ⎧⋅≤-+⎨⋅>⎩(*)恒成立,令30xt =>,则(*)可化为2(1)10t k t -++≥对任意0t >恒成立,且0k >,2(1)40k ∴+-≤ 01k ∴<≤ .……………(15分)七彩教育网 免费提供Word版教学资源七彩教育网全国最新初中、高中试卷、课件、教案等教学资源免费下载。
浙江大学宁波理工学院2017–2018学年1学期 《概率论与数理统计》课程期末考试试卷B
命题(组)老师签名:____________________ 年 月 日研究所(教研室)教学负责人签名:_______________年 月 日浙江大学宁波理工学院2017–2018学年1学期《概率论与数理统计》课程期末考试试卷B开课单位: ,考试形式:闭卷,允许带_无存储功能计算器_入场 考试日期:__ ___年____月____日,考试所需时间: 120 分钟考生姓名 学号 考生所在学院(系): 专业班级: .22220.050.0250.9750.950.050.025() 1.,() 2.,().,().,(8).,(8)..886083068218827315511753t t χχχχ======一.填空题(每小格3分,共36分):1. 设,A B 是两个随机事件,若()0.3P A =,()0.4P B =,()0.1P AB =.则()⋃=P A B ______________; A 与B 独立吗?答:____________________.2. 设随机变量(,)X Y 在区域{(,):02}x y y x <<<上均匀分布,则(2)P X Y +<= __________,(12)P X X Y >+<= ___________.3.设X 服从1λ=的泊松分布,()F x 是X 的分布函数,则(2)F = ________,()D X = _____.4.设X 的概率密度函数为21,0,()20,0.xe xf x x -⎧≥⎪=⎨⎪<⎩,分布函数为()F x ,则(2)F =___________,(53)P X X >>= ___________. 5.设总体22~(,),,X N μσμσ均未知,19,,X X 是X 的简单随机样本.X 与S 分别是样本均值和样本标准差.若()~(0,1)a X N μσ-,则a =______,若222~(8)bS χσ,则b =________;为检验假设01:6,:6H H μμ=≠,在显著水平为0.05下的拒绝域为____________________,若6.64,0.8x s ==,则应该________(拒绝还是接受)原接受.二.(14分) 设随机变量X 的概率密度函数为0.25,02,()0.5,23,0,.x f x x <<⎧⎪=<<⎨⎪⎩其他 求(1)(0 2.5)P X <<;(2)X 的分布函数()F x ;(3)X 的数学期望()E X 和方差()D X .三.(14分)一盒中有4个红球2个白球,采用放回抽样,每次取一个球,观察其颜色后放回,第2次依然从6个球中取一个,...如此重复进行n 次,n X 表示n 次抽取中取得红球的个数.(1)求2X 的分布律;(2)求2()E X 和2()D X ; (3) 求2X 与4X 的相关系数ρ;(4)利用中心极限定理,求162{120}P X ≤的近似值.四.(12分)设随机变量(,)X Y 的联合密度函数为3,01,(,)0,.x y x f x y <<<⎧=⎨⎩其它. (1) 求(0.4)P X ≤;(2)分别求与X Y 的边缘概率密度函数(),()X Y f x f y ;(3)分析与X Y 是否独立.五.( 12分) 总体X 在[1,2]θ上服从均匀分布,未知参数0.5θ>,.从总体X 中取得简单随机样本1,,nX X ,求(1)θ的矩估计量1ˆθ;(2)θ的极大似然估计量2ˆθ.六. (12分)某商品的月销售额(单位:万元)2~(,)X N μσ,对该商品的销售情况进行9个月的观察,结果记为19,...,X X ,设各月的销售额相互独立服从相同分布,(1) 若23.6,0.36μσ== ,求9个月的销售额超过34.2万元的概率;(2)若μ未知,20.36σ=,样本均值 3.5x =,求μ的置信度为95%的置信区间;(3)若2,μσ均未知,样本方差20.4s =,求2σ的置信度为95%的置信区间.(保留三位小数)。
2020学年宁波九校高一上期末数学试卷答案
宁波市一2020学年第学期期末九校联考 高一数学参考答案一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,有选错的得0分,部分选对的得3分。
三、填空题:本题共4小题,每小题5分,共20分。
13.6 14.1015.3+ 16.(,4)−∞− 四、解答题:本题共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
17.解析:(Ⅰ){|02}A x x =<<,………………………………………………………1分1|,,a B y y x x a ⎧⎫⎛⎫==∈∞⎨⎬ ⎪⎝⎭⎩⎭+表示函数1,,a y x x a ⎛⎫=∈∞ ⎪⎝⎭+的值域,当1a =时,1y x=在(1,)∞+上单调递减,值域{|01}By y =<<, ………………3分{|10}U B y y y =≥≤,或C ,………………………………………………………………4分()[1,2)U AB =C , …………………………………………………………………………5分(Ⅱ)由A B A=知A B ⊆,由()U A B U =C 知B A ⊆,所以(0,2)B A ==,…………………………………………………………………………8分 故0a >,且2(0,)(0,2)a =,即a 分18.解析:(Ⅰ)π()2sin cos()cos 26f x x x x =−+212sin sin cos 22cos sin cos 2112cos 222x x x x x x x x x x ⎫++⎪⎪⎝⎭++=++=π1sin(2)62x =++………………………………………………………………………3分因为π0,2x ⎡⎤∈⎢⎥⎣⎦,所以ππ7π2666x ≤+≤,由πππ2662x ≤+≤得π06x ≤≤, 故单调递增区间为π0,6⎡⎤⎢⎥⎣⎦;………………………………………………………………5分1πsin 2126x ⎛⎫−≤+≤ ⎪⎝⎭, 所以当π6x =时,()f x 取最大值32, 当π2x =时,()f x 取小值0.………………7分(Ⅱ)设π26t x =+,()sin h t t =,π7π,66t ⎡⎤∈⎢⎥⎣⎦,“函数()()g x f x a =−有且仅有一个零点”等价于“直线12y a =−与()y h t =有且只有一个交点”,………… …………………………………………………………………10分数形结合可得11111,2222a a −=≤−<或-,即3,012a a =≤<或.故a 的取值范围为3012a a a ⎧⎫=≤<⎨⎬⎩⎭或.…………………………………………12分19.解析:(Ⅰ)当0k =时,不等式为4(4)0x −−>,(,4)A =−∞;…………2分当0k >时,4(,4)(,)A k k=−∞++∞;………………………………………4分当0k <时,4(,4)A k k=+;…………………………………………………6分(Ⅱ)由(1)知0k <,且465k k−≤+<−,…………………………………………8分即22540640k k k k ⎧++>⎪⎨++≤⎪⎩……………………………………………………………………10分解得k 的取值范围是[35,4)(1,35]−−−−−+…………………………………12分20.解析:(Ⅰ)由题意得23244POQ ππ∠=⨯=,弧长π25π5042l =⨯=;………2分(Ⅱ)以轴心O 为原点,与地面平行的直线为x 轴建立平面直角坐标系,0t =时,游客在点(0,50)M −,初始位置所对应的角为π2−,角速度ω为π6rad /min ,由题意可得ππ50sin 60,01262H t t ⎛⎫=−+≤≤ ⎪⎝⎭;………………………………………………6分(Ⅲ)法1:由4POQ π∠=得乙比甲始终落后π4rad ,故经过t 分钟后,甲乙相对于地面的距离分别为1ππ50sin 6062H t ⎛⎫=−+ ⎪⎝⎭,2π3π50sin 6064H t ⎛⎫=−+ ⎪⎝⎭,012t ≤≤,若都要获得最佳视觉效果,应满足50sin 608562t ππ⎛⎫−+≥ ⎪⎝⎭, 且π3π50sin 608564t ⎛⎫−+≥ ⎪⎝⎭, ………………………………………………………8分化简得1sin 622t ππ⎛⎫−≥ ⎪⎝⎭,π3π1sin 642t ⎛⎫−≥ ⎪⎝⎭,因为012t ≤≤,所以2622t πππ3π−≤−≤,3ππ3π5π4644t −≤−≤,由6626t πππ5π≤−≤,6646t ππ3π5π≤−≤得48t ≤≤,22t 1119≤≤,故解得1182t ≤≤, ……………………………………………………………………11分所以摩天轮旋转一周能有52分钟使甲,乙两位游客都有最佳视觉效果.………12分法2:经过t 分钟后,甲相对于地面的距离为ππ50sin 6062H t ⎛⎫=−+ ⎪⎝⎭,012t ≤≤,若要获得最佳视觉效果,应满足50sin 608562t ππ⎛⎫−+≥ ⎪⎝⎭, ………………………8分化简得1sin 622t ππ⎛⎫−≥ ⎪⎝⎭, 因为012t ≤≤,所以2622t πππ3π−≤−≤,由6626t πππ5π≤−≤,得48t ≤≤, ………………………………………………10分 由乙比甲始终落后32min ,知乙在111922t ≤≤时获得最佳视觉效果,要使甲,乙两位游客都有最佳视觉效果,则1182t ≤≤,……………………………11分所以摩天轮旋转一周能有52分钟使甲,乙两位游客都有最佳视觉效果.…………12分21.解析:(Ⅰ)函数2()ln xf x x−=的定义域为(0,2),任取12(0,2)x x ∈,,且12x x <,21212122()()lnlnx x f x f x x x −−−=−1122122ln 2x x x x x x −=−,…………………………2分 因为1202x x <<<,所以112212022x x x x x x <−<−, 从而21()()0f x f x −<,即21()()f x f x <,因此函数()f x 在定义域(0,2)内单调递减.…………………………………………4分(Ⅱ)设函数1()(1)ln 1xh x f x x −=+=+,定义域为(1,1)−,对于任意的(1,1)x ∈−,1()ln ()1xh x h x x +−==−−+,故()h x 为奇函数,且由()f x 是减函数可知,()h x 也是减函数,由(1)(1)0f a f b +++=,得()()()h a h b h b =−=−,故a b =−. (也可以列方程直接解出a b =−)………………7分 由()()0g a g b +=得442(22)20a b a b m m +++−+=,即442(22)20a a a a m m −−+++−+=,令22a a t −=+,由,(1,1),a b a b ∈−≠得52,2t ⎛⎫∈ ⎪⎝⎭,………………………………9分即220t mt m +−=在52,2⎛⎫⎪⎝⎭内有解,方法1:由220t mt m +−=得222111212111t m t t t t ===−⎛⎫−−− ⎪⎝⎭,当5(2,)2t ∈时,2131611,425t ⎛⎫⎛⎫−−∈−− ⎪ ⎪⎝⎭⎝⎭,所以21254,163111t ⎛⎫∈−− ⎪⎝⎭⎛⎫−− ⎪⎝⎭,综上所述,m 的取值范围是254,163⎛⎫−− ⎪⎝⎭……………………………………………12分方法2:设2()2u t t mt m =+−,(2)34u m =+,525()424u m =+ ①5(2)()02u u <即254163m −<<−;②25(2)0,()02440522u u m m m ⎧>>⎪⎪⎪∆=+≥⎨⎪⎪<−<⎪⎩,无解; ③(2)0,92,4u m =⎧⎪⎨<−<⎪⎩无解;④5()0,295,42u m ⎧=⎪⎪⎨⎪<−<⎪⎩无解.综上所述,m 的取值范围是254,163⎛⎫−− ⎪⎝⎭…………………………………………12分22.解析:(Ⅰ)当0a =时,()||f x x =−,对于x ∀∈R ,()||()f x x f x −=−=,故()f x 为偶函数;…………………………………………………………………2分 当0a ≠时,(0)||0f a =−≠,故()f x 不是奇函数; (1)|1|,(1)|1|f a a f a a =−−−=−+,由于0a ≠,故|1||1|a a −≠+,即(1)(1)f f ≠−, 故()f x 不是偶函数,综上所述,当0a =时,()f x 是偶函数,当0a ≠时,()f x 既不是偶函数又不是奇函数. ………………………………4分(Ⅱ)(i )当11a −≤≤时,()0f x bx +≤在[1,3]x ∈恒成立等价于2(1)0ax b x a +−+≤在[1,3]x ∈恒成立,即11b a x x ⎛⎫≤−++ ⎪⎝⎭恒成立,…………………………………5分若01a ≤≤,则min 110113a x a x ⎡⎤⎛⎫−++=− ⎪⎢⎥⎝⎭⎣⎦,所以1013b a ≤−,故2210113a b a a +≤−+≤,当0a =,1b =时,取到1;…………………………7分若10a −≤<,则min 1112a x a x ⎡⎤⎛⎫−++=− ⎪⎢⎥⎝⎭⎣⎦,所以12b a ≤−,故22214a b a a +≤−+≤,当1a =−,3b =时,取到4;…………………………9分(ii )当12a <≤时,()0f x bx +≤在[1,3]x ∈恒成立等价于10aax b x+−−≤在[1,3]x ∈恒成立,………………………………………………………………………10分①当1x a <≤时,11b a x x ⎛⎫≤−−− ⎪⎝⎭,2min 11a x a x ⎡⎤⎛⎫−−−=− ⎪⎢⎥⎝⎭⎣⎦;②当3a x <≤时,11b a x x ⎛⎫≤−++ ⎪⎝⎭,min 110113a x a x ⎡⎤⎛⎫−++=− ⎪⎢⎥⎝⎭⎣⎦;当12a <≤时,21013a a −≥−,故1013b a ≤−,22104133a b a a +≤−+<−综上所述,2a b +的最大值为4.………………………………………………………12分。
2020-2021学年高一上学期期末考试数学卷及答案
2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。
答案:A={(-∞,1]}。
B={2}。
A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。
答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。
3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。
答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。
答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。
答案:选项A是正确的。
因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。
6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。
答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。
根据题意,πrl=6π,所以l=6/r。
而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。
将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。
我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。
答案:点P的坐标为(1,2)。
因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。
数学2016-2017学年度第一学期期末考试试题
2016-2017学年度第一学期期末考试试题一、细心选一选.(每小题3分,共30分)1.在下列各式的计算中,正确的是 ( ).A .5x 3·(-2x 2)=-10x 5B .4m 2n-5mn 2 = -m 2nC .(-a)3÷(-a) =-a 2D .3a+2b=5ab2.点M 1(a-1,5)和M 2(2,b-1)关于x 轴对称,则a,b 的值分别为( ).A .3,-2B .-3,2C .4,-3D .3,-4 3.下列图案是轴对称图形的有 ( ).A. 1个 B .2个 C .3个 D .4个4.下列说法正确的是( ).A .等腰三角形任意一边的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的一边不可以是另一边的两倍D .等腰三角形的两底角相等5.如图所示,下列图中具有稳定性的是( ).6.下列各组线段中,能组成三角形的是( ).A . a=2,b=3,c=8B .a=7,b=6,c=13C . a=12,b=14,c=18D .a=4,b=5,c=67.下列多项式中,能直接用完全平方公式因式分解的是( ).A. x 2+2xy- y 2B. -x 2+2xy+ y 2C. x 2+xy+ y 2D. 42x -xy+y 28.在△ABC 和△DEF 中,给出下列四组条件:(1) AB=DE, BC=EF, AC=DF(2) AB=DE, ∠B=∠E, BC=EF (3)∠B=∠E , BC=EF, ∠C=∠FDC B A(4) AB=DE, AC=DF, ∠B=∠E 其中能使△ABC ≌△DEF 的条件共有 ( ).A.1组B.2组C.3组D.4组9.已知 a=833, b=1625, c=3219, 则有( ).A .a <b <cB .c <b <aC .c <a <bD .a <c <b10.如图,在直角△ABC 中,∠ACB=90°,∠A 的平分线交BC 于D .过C 点作CG ⊥AB 于G, 交AD 于E, 过D 点作DF ⊥AB 于F.下列结论:(1)∠CED=∠CDE (2)∠ADF=2∠FDB (3)CE=DF (4)△AEC 的面积与△AEG 的面积比等于AC:AG其中正确的结论是( ).A .(1)(3)(4)B .(2)(3)C .(2) (3)(4)D .(1)(2)(3)(4)二、耐心填一填.(每小题3分,共30分)11.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,这个数用科学记数法表示为__________ m. 12. 如果把分式yx x+2中的x 和y 都扩大5倍,那么分式的值 . 13.已知ab=1,m =a +11+b+11 ,则m 2016的值是 . 14.如果一个多边形的边数增加一条,其内角和变为1260°,那么这个多 边形为 边形.15.如图,若△ACD 的周长为19cm , DE为AB 边的垂直平分线,则 AC+BC= cm.16.若(x-1)0-2(3x-6)-2有意义,则x 的取值范围是 .17.如图,在直角△ABC 中,∠BAC=90°,AD ⊥BC 于D ,将AB 边沿AD 折叠, 发现B 的对应点E 正好在AC 的垂 直平分线上,则∠C= .18.如图,在△ABC 中,∠A=50°,点D 、E 分别在AB ,AC 上,EF 平分∠CED ,DF 平分∠BDE ,则 ∠F = .19.已知等腰△ABC ,AB=AC,现将△ABC 折叠,使A 、B 两点重合,折痕所在的直 线与直线AC 的夹角为40°,则∠B 的 度数为 .E DCBAGFEDCBAF EDC BA EDCBA20.如图,在△ABC 中,AB=AC,点D 在AB 上,过点D 作DE ⊥AC 于E ,在BC 上取一点F , 且点F 在DE 的垂直平分线上,连接DF , 若∠C=2∠BFD ,BD=5,CE=11,则BC 的 长为 . 三、用心答一答.(60分) 21.(9分)(1) 分解因式: 8xy+ (2x-y)2(2)先化简,再求值:(a+b)2- b(2a+b)- 4b ,其中a=-2, b=-43;(3)先化简,再求值:(4482+-+x x x -x -21)÷xx x 232-+,其中 x=-222.(6分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长为1,点A 、点B 和点C 在小正方形的顶点上, 请在图1、图2中各画一个四边形,满足以下要求:(1)在图1中画出以A 、B 、C 和D 为顶点的四边形,此四边形为轴 对称图形,并画出一条直线将此四边形分割为两个等腰三角形;(2)在图2中画出以A 、B 、C 和E 为顶点的四边形,此四边形为 轴对称图形,并画出此四边形的对称轴; (3)两个轴对称图形不全等.FEDCB A图1图223.(9分)已知关于x 的方程21++x x - 1-x x = )(+1-)2(x x a的解是正数, 求a 的取值范围.24.(6分) 如图,△ABC 与△ABD 都是等边三角形,点E 、F 分别在BC ,AC 上,BE=CF,AE 与BF 交于点G.(1)求∠AGB 的度数;(2)连接DG,求证:DG=AG+BG.25.(10分)百姓果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完;由于水果畅销,第二次购买时,每千克进价比第一次提高10%,用1452元所购买的数量比第一次多20kg ,以每千克9元出售100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次水果的进价是每千克多少元?(2)该果品店在这次销售中,总体是盈利还是亏损?盈利或亏损了多少元?G F E DC B A26.(10分)(1)已知3x =4y =5z ,求yx y z 5332+-的值.(2)已知6122---x x x =2+x A +3-x B,其中A 、B 为常数, 求2A+5B 的值.(3)已知 x+y+z ≠0,a 、b 、c 均不为0,且zy x+=a, x z y +=b , yx z +=c 求证:a a +1+b b +1+cc +1=127.(10分)如图1,AD//BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E在线段AB 上.(1)求∠ADE 的度数; (2)求证:AB=BC ;(3)如图2,若F 为线段CD 上一点,∠FBC=30°,求DF:FC 的值.D图1E CBA D图2FE CBA。
(完整word版)【市级联考】浙江省宁波市2018-2019学年高一第一学期期末考试数学试题
且 , , ,
,
的零点所在区间为 .
故选:C.
【点睛】
本题考查了函数零点的存在性定理,对数运算,属于基础题.
5.D
【解析】
【分析】
利用诱导公式变形,结合平方关系把根式内部的代数式化为完全平方式,开方得答案.
【详解】
为锐角,
∴
.
故选:D.
【点睛】
本题考查三角函数的化简求值,考查同角三角函数基本关系式及诱导公式的应用,是基础题.
【详解】
由图象知 ,
则周期 ,
即 ,即 ,
即 ,
由五点对应法得 ,即 ,
则 ,
由 , ,
得 , ,
即函数的单调递增区间为 , ,
故答案为: , .
【点睛】
本题主要考查三角函数的图象和性质,根据条件求出的解析式是解决本题的关键.
【详解】
;
;
;
.
故答案为: .
【点睛】
考查分数指数幂的运算,以及对数的定义,对数的运算性质.
12.
【解析】
【分析】
由已知展开两角和的正切求 ,由同角三角函数基本关系式化弦为切求 .
【详解】
由 ,
得 ,
.
故答案为: ; .
【点睛】
本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用及两角和的正切,是基础题.
10.D
【解析】
【分析】
根据条件判断函数的奇偶性,利用奇偶性的性质结合值域得到 ,即可得到结论.
【详解】
,
即函数 是奇函数,得图象关于原点对称,
函数 的值城是 ,
,
则 ,
故选:D.
【点睛】
本题主要考查函数值的计算,根据条件判断函数的奇偶性是解决本题的关键.
浙江省宁波市高一上学期期末数学试卷
浙江省宁波市高一上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)设集合,则等于()A . RB .C .D .2. (2分)(2017·自贡模拟) 已知2sin2α=1+cos2α,则tan(α+ )的值为()A . ﹣3B . 3C . ﹣3或3D . ﹣1或33. (2分)函数的最小正周期为()A .B .C . πD . 2π4. (2分)下列对应关系f中,不是从集合A到集合B的映射的是()A . A={x|1<x<4},B=[1,3),f:求算术平方根B . A=R,B=R,f:取绝对值C . A={正实数},B=R,f:求平方D . A=R,B=R,f:取倒数5. (2分) (2016高一上·渝中期末) 已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π),其部分图象如图,则函数f(x)的解析式为()A .B .C .D .6. (2分)(2017·武汉模拟) 定义在R上的函数f(x)=2|x﹣m|﹣1为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则()A . a<b<cB . a<c<bC . c<a<bD . c<b<a7. (2分)设△ABC的内角A,B,C所对的边分别为a,b,c若cos2 ,则△ABC的形状为()A . 锐角三角形B . 直角三角形C . 钝角三角形D . 不确定8. (2分) (2017高三上·集宁月考) 已知且 ,则的最小值为()A . 8B . 5C . 4D . 69. (2分)已知函数的值域为[−1,1],则函数f(x)的定义域是()A . [ , ]B . [−1,1]C . [ ,2]D . (−∞,]∪[ ,+∞)10. (2分)(2020·邵阳模拟) 已知奇函数在上是增函数,若,则的大小关系为()A .B .C .D .11. (2分)(2017·宁德模拟) 函数y= 的图象大致是()A .B .C .D .12. (2分) (2018高二下·中山月考) 若存在使不等式成立,则实数的范围为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)已知角α的终边经过点P(x,﹣6),且,则x的值为________.14. (1分) (2018高三上·沈阳期末) 已知曲线存在两条斜率为3的切线,且切点的横坐标都大于零,则实数的取值范围为________.15. (1分) (2016高三上·武邑期中) 已知,则 =________.16. (1分)设m,n是两条不同的直线,α,β是两个不重合的平面,给定下列四个命题:①若m⊥n,n⊂α,则m⊥α;②若m⊥α,m⊂β,则α⊥β;③若m⊥α,n⊥α,则m∥n;④若m⊂α,n⊂β,α∥β,则m∥n.其中真命题的序号为________三、解答题 (共6题;共55分)17. (10分) (2017高一上·上饶期末) 已知全集为全体实数R,集合A={x|3≤x≤7},B={x|2<x<10},C={x|x <a}.(1)求(∁RA)∩B;(2)若A∩C≠∅,求a的取值范围.18. (10分) (2017高一上·武清期末) 已知函数(1)求函数f(x)在上的最大值与最小值;(2)已知,x0∈(,),求cos4x0的值.19. (5分)设函数f(x)=cos(2x+)+2cos2x,x∈R.(Ⅰ)求函数f(x)的最小正周期和单调减区间;(Ⅱ)将函数f(x)的图象向右平移个单位长度后得到函数g(x)的图象,求函数g(x)在区间上的最小值.20. (10分)已知函数f(x)=2x2﹣4ax﹣3,(0≤x≤3)(1)当a=1时,作出函数的图象并求函数的最值;(2)求实数a的取值范围,使y=f(x)在区间[0,3]上是单调函数.21. (10分) (2019高一上·翁牛特旗月考) 已知函数f(x),对任意的a ,b∈R ,都有f(a+b)=f(a)+f(b)-1,并且当x<0时,f(x)>1.(1)求证:f(x)是R上的减函数;(2)若f(6)=7,解不等式f(3m2-2m-2)<4.22. (10分)(2020·厦门模拟) 已知函数有两个零点 . (1)求的取值范围;(2)记的极值点为,求证: .参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共55分)17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、。
2017-高中数学必修4期末考试
2017-高中数学必修4期末考试2017年高一数学必修4模块期末考试一、选择题1.若向量OO=(-5,4),OO=(7,9),则与向量OO同向的单位向量坐标是()A.(−13,−13)B.(13,13)C.(−13,13)D.(13,−13)2.下列各式中值等于125的是()A。
5^3 B。
25^2/5 C。
3^5 D。
125^1/33.已知O(O)=OOOO+3OOOO(O∈O),函数y=f(x+φ)的图象关于直线x=0对称,则φ的值可以是()A。
2 B。
3 C。
4 D。
64.在四边形ABCD中,则四边形ABCD OO=O+2O,OO=−4O−O,OO=−5O−3O,的形状是()A。
长方形 B。
平行四边形 C。
菱形 D。
梯形5.如图所示,在△ABC中,AD=DB,F在线段CD上,设OO=O,OO=O,则O+O的最小值为()A。
6+2√2 B。
9/4 C。
9 D。
6+4√26.在△ABC中,OO=O,OO=O.若点D满足OO=(O+3O)/3=2OOOO,则O的坐标为()A。
(2b/3.c/3) B。
(b/3.2c/3) C。
(2c/3.b/3) D。
(c/3.2b/3)7.在△ABC中,tanAsin2B=tanBsin2A,则△ABC一定是()三角形.A。
锐角 B。
直角 C。
等腰 D。
等腰或直角8.将函数f(x)=cos2ωx的图象向右平移4π个单位,得到函数y=g(x)的图象,若y=g(x)在[−4,6]上为减函数,则正实数ω的最大值为()A。
2 B。
1 C。
2/π D。
39.cos555°的值为()A。
6+2√13/2 B。
2-6√13/2 C。
6-2√13/2 D。
-6+2√13/210.满足条件a=4,b=5,A=45°的△ABC的个数是()A。
1 B。
2 C。
无数个 D。
不存在11.已知角α是第四象限角,角α的终边经过点P(4,y),且sinα=5/13,则tanα的值是()A。
2016-2017高一数学必修一期末考试试卷
2016-2017高一数学必修一期末考试试卷2016-2017高一数学必修一期末考试试卷一、选择题(共12小题,共60.0分)1.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的范围是()A.a≥2 B.a≥1 C.a≤1 D.a≤22.若函数f(x)=x-x(a∈R)在区间(1,2)上有零点,则a的值可能是()A.-2 B.0 C.1 D.33.设a=log0.6 0.4,b=log0.6 0.7,c=log1.5 0.6,则a,b,c 的大小关系是()A.a>c>b B.a>b>c C.c>a>b D.c>b>a4.函数f(x)=lg(x^2-4)的定义域为() A.{x|-21} C.{x|x>2}D.{x|-22}5.若直角坐标平面内关于原点对称,则对称点对两点满足条件:①点都在f(x)的图象上;②点与f(x)的一个“兄弟点对”(点对可看作一个“兄弟点对”).已知函数f(x)=2x−1,(x≤0) g(x)=f(x-1)+1,(x>0)的个数为 A.2 B.3 C.4 D.56.已知函数g(x)=2x-1,f(x)=g(ax+b),若关于f(x)=0的方程g(x)=0有5个不等实根,则实数a的值是()A.2 B.4 C.2或4 D.不确定的7.已知a,b都是负实数,则a+2b+a+b的最小值是()A.6B.2(2-1)C.22-1D.2(2+1)8.已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0),g(x)=f(x)-x 的零点按从小到大顺序排列成一个数列,则该数列的通项公式为()A.x n=n-1 B.a n=n(n-1) C.a n=n(n-1)/2 D.x n=2x−29.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0)的图象如图所示,为了得到g(x)的图象,只需将f(x)的图象()A.向左平移1个长度单位 B.向右平移1个长度单位 C.向左平移π/2个长度单位 D.向右平移π/2个长度单位10.f(x)是定义在(-1,1)上的奇函数且单调递减,若f(2-a)+f(4-a^2)<1,则a的取值范围是()A.(3,2) B.(−∞,3)∪(2,+∞) C.(5,3) D.(−∞,5)∪(3,+∞)11.已知集合A={x|x≥0},B={y||y|≤2,y∈Z},则下列结论正确的是() A.A∩B=ϕ B.A∪B=R C.A∩B=Z D.A∪B={y|y≥-2}答案:1.D2.C3.A4.B5.C6.B7.A8.B9.A 10.B 11.D1.合并重复的信息,删除明显有问题的部分:A) ∪ B = (-∞。
浙江省宁波市高三上学期期末数学试题(原卷版)
高三数学试卷
全卷共4页,考试时间120分钟.
一、选择题:本题共8小题,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 ,则 ()
A. B. C. D.
2.设 为虚数单位,且 ,则 ()
A. B. C. D.
3.已知非零向量 满足 ,向量 在向量 方向上的投影向量取最大值时的整数 ;
(2)若小明在解答最后一道多选题时,除发现A,C选项不能同时选择外,没有答题思路,只能随机选择若干选项作答.已知此题正确答案是两选项与三选项的概率均为 ,问:小明应如何作答才能使该题得分的期望最大(写出小明得分的最大期望及作答方式).
22.已知双曲线 中心为坐标原点,右焦点为 ,且过点 .
A. B. C. D.
8.在平行四边形 中,已知 ,将 沿 翻折得四面体 .作一平面分别与 交于点 .若四边形 是边长为 的正方形,则四面体 外接球的表面积为()
A. B. C. D.
二、选择题:本题共4小题,在每小題给出的四个选项中,有多项符合题目要求.
9.数字经济是继农业经济、工业经济之后的主要经济形态.近年来,在国家的大力推动下,我国数字经济规模增长迅猛,《“十四五”数字经济发展规划》更是将数字经济上升到了国家战略的层面.某地区2023年上半年月份 与对应数字经济的生产总值(即GDP) (单位:亿元)如下表所示.
(1)求双曲线 的标准方程;
(2)已知点 ,过点 的直线与双曲线 的左、右两支分别交于点 ,直线 与双曲线 交于另一点 ,设直线 的斜率分别为 .
(i)求证: 为定值;
16.已知 成公比为2的等比数列,且 .若 成等比数列,则所有满足条件的 的和为____________.
浙江省宁波市九校2017-2018学年高一上学期期末联考数学试题+Word版含答案
浙江省宁波市九校2017-2018学年高一上学期期末联考数学试题+Word版含答案2017学年宁波市九校联考高一数学试题第一学期选择题部分(共40分)2018.01一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=\{1,2a\}$,$B=\{a,b\}$,若 $A\capB=\{1\}$,则 $AB$ =()。
A。
$\{\frac{1}{2},1,b\}$。
B。
$\{-1,1,b\}$。
C。
$\{1,b\}$。
D。
$\{-1,1\}$改写:已知集合 $A=\{1,2a\}$,$B=\{a,b\}$,且 $A\capB=\{1\}$,则 $AB$ 的元素为 $\{1,b\}$ 或 $\{-1,1\}$。
2.已知向量 $a=3$,$b=2\pi/3$,$c=5\pi/3$,且$b\perp(a+b)$,则 $a$ 与 $b$ 的夹角为()。
A。
$\pi/3$。
B。
$2\pi/3$。
C。
$\pi$。
D。
$2\pi/3$改写:已知向量 $a=3$,$b=2\pi/3$,$c=5\pi/3$,且$b$ 与 $a+b$ 垂直,则 $a$ 与 $b$ 的夹角为 $2\pi/3$。
3.已知 $A$ 是 $\triangle ABC$ 的内角且 $\sin A+2\cos A=-1$,则 $\tan A$ =()。
A。
$-\frac{3}{4}$。
B。
$-\frac{4}{3}$。
C。
$-\frac{1}{3}$。
D。
$-\frac{4}{5}$改写:已知 $\triangle ABC$ 中 $A$ 角的正弦和余弦之和为 $-1$,则 $\tan A$ 等于 $-\frac{4}{3}$。
4.若当 $x\in R$ 时,函数 $f(x)=a$ 始终满足 $-1<f(x)\leq 1$,则函数 $y=\log_a\frac{1}{x}$ 的图象大致为()。
2017级第一学期数学试题
2017级第一学期期末考试数学试卷注意事项:1、考试时间:90分钟2、请首先按要求在试卷的标封处填写姓名、身份证号码。
3、请仔细阅读各种题目的回答要求,在规定的位置填写答案。
4、不要在试卷上乱写乱画,不要在标封区填写无关内容。
一、填空题(10X2=20)(1)不等式|X+2|≧0的解集为 。
(2)已知A={1,2,3,4,5,6},B={2,5,6},则A ∩B= 。
(3)已知全集U={1,2,3,4,5},A={1,2,3},则CuA= 。
(4)已知集合M={a,0},N={1,2},M ∩N={1},则a= 。
(5)设A=(-5,4),B=[1,8],则A ∪B= 。
(6)集合{X|X ≧-2}用区间表示为 。
(7)设A=(-1、3],B=[3、6),求A ∩B= 。
(8)集合{X|-2<X ≦3}用区间表示为 。
(9)不等式|3X|<4的解集用区间表示为 。
(10)△ABC 的每一个内角都是60° △ABC 为等边三角形。
用(⇔⇐⇒,,)填空二、选择题(20X20=40)1、下列对象能组成集合的是( )A 、大于5的自然数B 、一切很大的数C 、班上个子很高的同学D 、班上考试得分很高的同学 2、绝对值等于3 的所有整数组成的集合是( ) A 、3 B 、{3,-3} C 、{3} D 、3,-33、不等式|X+3|≧0的解集为( )A 、∅B 、{-3}C 、(-∞、-3)∪(-3、+∞)D 、R 4、不等式|X+1|<1的解集是( ) A 、[-2、0) B 、(-2、0) C 、(-∞、-2)∪(0、+∞) D 、R5、设x,y 为定数,则x 2=y 2的充要条件是( )A,x=y B,x=-y C,x 3=y 3D,|x |=|y |6、设全集u={0,1,2,3,4,5,6,7},A={2,3,4,5,6}则CuA=( ) A 、{0,2,3,4,5,6,} B 、{2,3,4,5,6} C 、{0,1,7} D 、∅7、不等式|X-1|<3的解集为( )A 、[-2、4]B 、(-2、4)C 、(-∞、-2)∪(4、+∞)D 、R 8、设A=(2、5),B=[3、6),则A ∩B=( ) A 、(2、5) B 、[3、6) C 、(3、5) D 、[3、5) 9、不等式|X+2|>2的解集为( ) A 、∅ B 、(0、+∞) C 、(-∞、-4)∪(0、+∞) D 、R10、 x 2+6x+( )=(x+3)2A 、6B 、8C 、9D 、1011、设全集为R ,若C A =(-1、+∞),则A=( ) A 、[-1、+∞) B 、( -∞、-1] C 、(-∞、-1)D 、(-1、-∞) 12、不等式-2X<10的解集是( ) A 、[-2、5] B 、(5、+∞) C 、(-∞、-2)∪(5、+∞) D 、(-5、+∞)13、下列集合中不是集合{1,2,3}的真子集是( ) A 、{1,2,3} B 、{1、2} C 、{2、3} D 、φ 14、集合{1,2}的子集有( )个。
2022-2023学年浙江省宁波市镇海中学高一上数学期末联考试题含解析
A. 7
B.7
C. 1
D.1
9.若直线 y x m 与曲线 y 1 x2 有两个不同的交点,则实数 m 的取值范围为
A. ( 2, 2)
B. (1, 2)
C. (1, 2]
D.[1, 2)
10.圆(x-1)2+(y-1)2=1 上的点到直线 x-y=2 的距离的最大值是()
A.2
B.1+ 2
C.2+ 2 2
(1)将 2020 年该产品的利润 y (单位:万元)表示为年促销费用 m 的函数;
(2)该厂家 2020 年的促销费用为多少万元时,厂家的利润最大?
19.已知函数
f
(x)
a
2 (a
2x 1
0)
的图象在直线
y
1的下方且无限接近直线
y
1.
(1)判断函数的单调性(写出判断说明即可,无需证明),并求函数解析式;
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分。 11、 ①. ##-0.25 ②.3
【解析】①根据函数解析式,代值求解即可;
②在同一直角坐标系中画出两个函数的图象,即可数形结合求得结果.
【详解】①由题可知:
;
②根据 的解析式,在同一坐标系下绘制 与
的图象如下所示:
数形结合可知,两个函数有 个交点. 故答案为: ; .
A.
6
,
3
B.
12
,
7 12
C.
5 12
, 13 12
D.
3
,
5 6
5.如图,在棱长为 1 的正方体 ABCD A1B1C1D1 中,三棱锥 C1 A1BD 的体积为1
2
C.
D.
浙江省宁波市镇海中学2023-2024学年高三上学期期末考试数学试题
镇海中学2023学年第一学期期末考试高三数学试题说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟,本次考试不得使用计算器,请考生将所有题目都做在答题卷上.一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A =x x 2-5x +6≤0 ,B =x -1≤x <3 ,则A ∩B =A.x -1≤x <3B.x -1≤x ≤3C.x 2≤x <3D.x 2≤x ≤32.函数f x =2x +x 3-9的零点所在区间为A.0,1 B.1,2C.2,3D.3,43.设函数f x =a -1a x -1+b (a >0,a ≠1),则函数f x 的单调性A.与a 有关,且与b 有关 B.与a 无关,且与b 有关C.与a 有关,且与b 无关D.与a 无关,且与b 无关4.已知等差数列a n ,则k =2是a 1+a 11=a k +a 10成立的()条件A.充要B.充分不必要C.必要不充分D.既不充分也不必要5.已知直线a ,m ,n ,l ,且m ,n 为异面直线,m ⊥平面α,n ⊥平面β.若l 满足l ⊥m ,l ⊥n ,则下列说法中正确的是A.l ∥αB.l ⊥βC.若α∩β=a ,则a ∥lD.α⊥β6.已知e 1 ,e 2 是单位向量,且它们的夹角是60°.若a =e 1 +2e 2 ,b =λe 1 -e 2 ,且a =b ,则λ=A.2 B.-2C.2或-3D.3或-27.函数f x =5sin xex+x cos x 在-2π,2π 上的图象大致为AB C D8.设实数x ,y 满足x >32,y >3,不等式k 2x -3 y -3 ≤8x 3+y 3-12x 2-3y 2恒成立,则实数k 的最大值为A.12B.24C.23D.43二、选择题:本题共3小题,每小题6分,共18分。
湖南省长沙市长郡中学2017-2018学年高一上学期期末考试数学试题
湖南省长沙市长郡中学2017-2018学年高一上学期期末考试数学试题长郡中学2017-2018学年度高一第一学期期末考试数学一、选择题:1.设集合$A=\{1,3\}$,集合$B=\{1,2,4,5\}$,则集合$A\cup B=$()。
A。
$\{1,3,1,2,4,5\}$B。
$\{1\}$C。
$\{1,2,3,4,5\}$D。
$\{2,3,4,5\}$2.已知$\tan\alpha=-3$,$\frac{\pi}{2}<\alpha<\pi$,则$\sin\alpha$的值为()。
A。
$\frac{1}{2}$B。
$-\frac{3}{2}$C。
$-\frac{1}{2}$D。
$-\frac{\sqrt{3}}{2}$3.已知$a=4$,$b=3$,且$\vec{a}$与$\vec{b}$不共线,若向量$\vec{a}+k\vec{b}$与$\vec{a}-k\vec{b}$互相垂直,则$k$的值为()。
A。
$\pm\frac{4}{3}$B。
$\pm\frac{3}{4}$C。
$\pm\frac{2\sqrt{3}}{3}$D。
$\pm2$4.如果奇函数$f(x)$在区间$[2,8]$上是减函数且最小值为6,则$f(x)$在区间$[-8,-2]$上是()。
A。
增函数且最小值为-6B。
增函数且最大值为-6C。
减函数且最小值为-6D。
减函数且最大值为-65.方程$2x+3x-7=0$的解所在的区间为()。
A。
$(-1,0)$B。
$(0,1)$C。
$(1,2)$D。
$(2,3)$6.$\triangle ABC$中,内角$A,B,C$所对的边分别是$a,b,c$,若$a^2-c^2+b^2=ab$,则$\angle C=$()。
A。
$30^\circ$B。
$60^\circ$C。
$120^\circ$D。
$60^\circ$或$120^\circ$7.$\triangle ABC$中,内角$A,B,C$所对边的长分别为$a,b,c$,若$\frac{\cos A}{\cos B}=\frac{b}{a}$,则$\triangle ABC$为()。
XXX2017-2018学年第一学期高一期末数学试卷
XXX2017-2018学年第一学期高一期末数学试卷XXX2017-2018学年第一学期高一期末数学试卷一、填空题(每题3分,共36分)1、已知全集$U=\mathbb{R}$,集合$A=\{x|y=\pi x\}$,则$C_UA=$ $\{x|x\notin A\}$2、函数$f(x)=x^{-1}$在$(-\infty,0)$内的零点为$x=-1$3、关于$x$的方程$2^x=3$的解集为$\{\log_2 3\}$4、函数$f(x)=\dfrac{1}{x+a}$为奇函数,则实数$a$的值为$0$5、集合$A=\{x|x<a\},B=\{x|x<1\}$,若$A\subseteq B$,则实数$a$的取值范围为$a\leq 1$6、比较两数大小: $2^{e^{5031}}$ $>$ $e^{2^{5031}}$7、函数$y=f(x)$的定义域为$(0,1)$,则函数$y=f(2x)$的定义域为$(0,\dfrac{1}{2})$8、幂函数$y=x^{-2}$的单调递减区间为$(0,+\infty)$9、函数$y=f(x)$过定点$(0,2)$,则函数$y=f(x-2)$过定点$(2,2)$10、不等式$|x|-a\geq 0$ 对任意$x\in[-1,2]$恒成立,则实数$a$的最大值为$a=2$11、若函数$f(x)=\dfrac{x^2-3x+2}{x-2}$,则$f(x)-f(2-x)=\dfrac{4x-10}{x-2}$12、方程$f(x+2018)+f(\dfrac{e-|2-x|}{x-2x-1})-a=0$在$(-\infty,5)$内有两个零点,则实数$a$的取值范围为$a\in(-\infty,4)$二、选择题(每题3分,共12分)13.四个说法中,与“不经冬寒,不知春暖”意义相同的是() C.若知春暖,必经冬寒14、已知实数$x>y$,下列不等式中一定成立的是() B。
高等数学 期末考试试题(含答案)
(2017至2018学年第一学期)一、 单项选择题(15分,每小题3分)1、当∞→x 时,下列函数为无穷小量的是( )(A )x Cosx x - (B )x Sinx(C )121-x (D )x x )11(+2.函数)(x f 在点0x 处连续是函数在该点可导的( ) (A )必要条件 (B )充分条件(C )充要条件 (D )既非充分也非必要条件 3.设)(x f 在),(b a 内单增,则)(x f 在),(b a 内( ) (A )无驻点 (B )无拐点 (C )无极值点 (D )0)(>'x f4.设)(x f 在][b a ,内连续,且0)()(<⋅b f a f ,则至少存在一点),(b a ∈ξ使( )成立。
(A )0=)(ξf (B )0=')(ξf(C )0='')(ξf (D ))()()()(a b f a f b f -⋅'=-ξ 5.广义积分)0(>⎰∞+a dxax p当( )时收敛。
(A )1>p (B)1<p (C)1≥p (D)1≤p二、填空题(15分,每小题3分)1、 若当0→x 时,22~11x ax --,则=a ;2、设由方程22a xy =所确定的隐函数)(x y y =,则=dy ;3、函数)0(82>+=x xx y 在区间 单减;在区间 单增;4、若x xe x f λ-=)(在2=x 处取得极值,则=λ ;5、若dx x f dx x xf a ⎰⎰=10102)()(,则=a ;三、计算下列极限。
(12分,每小题6分)1、xx xx )1(lim +∞→ 2、 200)1(lim xdte xt x ⎰-→四、求下列函数的导数(12分,每小题6分)1、241x y -=,求y ' 2、⎪⎩⎪⎨⎧-=+=tt y t x arctan )1ln(2 ,求22dx y d五、计算下列积分(18分,每小题6分)1、dx xxx ⎰+++21arctan 1 2、dx x x ⎰--223cos cos ππ3、设dt ttx f x ⎰=21sin )(,计算dx x xf ⎰10)(六、讨论函数⎪⎪⎩⎪⎪⎨⎧≤>-=2,22,cos 2)(ππππx x x x x x f 的连续性,若有间断点,指出其类型。
浙江省宁波市2013-2014学年高一第一学期期末考试数学试卷(解析版)
浙江省宁波市2013-2014学年高一第一学期期末考试数学试卷(解析版)一、选择题1(A (B (C (D 【答案】A 【解析】2,即B ={2}A 为正确答案.考点:集合的运算. 2.)60sin(︒-(A (B (C (D【答案】C【解析】试题分析:故C 为正确答案. 考点:三角函数的诱导公式、三角函数值的计算.3(A (B (C (D 【答案】A 【解析】试题分析:所以该. 考点:函数的奇偶性、周期性.4(A (B (C (D 【答案】D【解析】试题分析:(A(B是R上的减函数;(C(D)D为正确答案.考点:函数的单调性.5(A(B(C(D【答案】D【解析】D为正确答案.考点:分段函数求值.6(A(B(C(D【答案】B【解析】试题分析:B为正确答案.考点:函数的单调性和值域的求法.7(A (B(C(D 【答案】B 【解析】 试题分析:根据新定义,可知2,0xB 为正确答案.考点:新定义问题、函数值域的求法.8(A(B(C(D【答案】B 【解析】①;又②,①+考点:向量的加减运算法则. 9(A(B (C(D【答案】A 【解析】试题分析:将函数的图像向左平移个单位,得=;而所得图像关轴对称,即A为正确答案.考点:三角函数的平移变换、奇偶性.10(A(B(C(D【答案】C【解析】根据函数的单调性可求得C为正确答案.考点:三角函数的运算、三角函数的性质.二、填空题11的定义域是.【解析】试题分析:由定义域的求法知,考点:函数定义域的求法. 12【解析】考点:对数函数的运算.13a b ==b【解析】试题分析:因为)b,所以考点:向量的数量积.14【解析】=-2.考点:三角函数之间的关系、诱导公式. 15的值域为 .【解析】试题分析:当时,,在区间上考点:三角函数的值域求法、函数性质.16,则【解析】 试题分析:定义上的奇函数,所,求得;而7考点:函数奇偶性.17.若函数对于上的任意都有的取值范围是 .【解析】考点:函数的单调性.三、解答题18【解析】再根据得,即512(7分)(14分)考点:三角函数之间的关系及运算.19.(1(2【答案】(1(2.【解析】试题分析:(1y轴,从而可求得实数的值;(2)把代入,用换元法设,则2试题解析:(1(4分)(2(8分).(14分)考点:函数的性质、函数定义域及值域的求法.20.已知点是函数,一个周期内图象上的两点,满足(1(2【答案】(1(2【解析】试题分析:(1,;又,有已知条件可知),,进而可得,所以的表达式为)(2)关于x.试题解析:(1(3分)(6分),,(9分) (2即(14分)考点:三角函数的性质、函数的零点、向量的数量积.21为实数). (1; (2c 的最小值,并求出此时向量【答案】(1;(22c2c=【解析】试题分析:(1;(2(1c =-2c=试题解析:(1(4分); (6分)(2(1c =-(9分)2c=(12分)2c = (15分)考点:向量的坐标表示、向量的数量积等运算. 22. (1(2【答案】(1. (2【解析】试题分析:(1(2)由(1试题解析:(1证明如下:(6分)(2(9分)(11分),(13分)(15分)考点:函数的单调性、分段函数求值域问题.第11 页共11 页。
2019-2020学年人教A版浙江省宁波市九校高一第一学期期末数学试卷 含解析
2019-2020学年高一第一学期期末数学试卷一、选择题1.已知集合A={x|x>0},集合B={x|﹣1<x≤6},则A∩B=()A.(﹣1,0)B.(0,6] C.(0,6)D.(﹣1,6] 2.函数的值域是()A.(﹣1,1)B.C.D.3.已知x,y∈R,且x>y>0,则()A.B.cos x﹣cos y>0C.D.lnx+lny>04.已知向量,,且.则与的夹角为()A.B.C.D.5.已知半径为2的扇形AOB中,的长为3π,扇形的面积为ω,圆心角AOB的大小为φ弧度,函数h(x)=sin(x+φ),则下列结论正确的是()A.函数h(x)是奇函数B.函数h(x)在区间[﹣2π,0]上是增函数C.函数h(x)图象关于(3π,0)对称D.函数h(x)图象关于直线x=﹣3π对称6.已知a=log72,b=log0.70.2,c=0.70.2,则a,b,c的大小关系为()A.b<c<a B.a<b<c C.c<a<b D.a<c<b7.已知4个函数:①y=x|sin x|;②y=x cos|x|;③;④y=4cos x﹣e|x|的图象如图所示,但是图象顺序被打乱,则按照图象从左到右的顺序,对应的函数序号正确的为()A.①④②③B.③②④①C.①④③②D.③①④②8.在△ABC中,,则△ABC为()A.直角三角形B.三边均不相等的三角形C.等边三角形D.等腰非等边三角形9.若(log22019)x+(log20202)﹣y<(log22019)﹣y+(log20202)x,则()A.x+y<0 B.x+y>0 C.x﹣y<0 D.x﹣y>010.设函数,则方程16f(x)+(x2+x﹣1)=0根的个数为()A.2 B.3 C.4 D.5二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.已知函数,则f(0)=,函数定义域是.12.已知是单位向量,,,,,若,则实数λ=;若A,B,D三点共线,则实数λ=.13.己知函数的最小正周期是3.则a=,f(x)的对称中心为.14.已知a,b∈R,定义运算“⊗”:,设函数f(x)=(2x⊗2)﹣(1⊗log2x),x∈(0,2),则f(1)=,f(x)的值域为.15.已知函数f(x)=(2m﹣9)x a为幂函数,且其图象过点,则函数的单调递增区间为.16.已知,是平面向量,且,若,则的取值范围是.17.函数f(x)=﹣2﹣5x,g(x)=sin x,若,使得f(x1)+f(x2)+…+f(x n﹣1)+g(x n)=g(x1)+g(x2)+…+g(x n﹣1)+f(x n),则正整数n的最大值为.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知向量,其中.(1)若的,求tan x的值;(2)若与垂直,求实数m的取值范围.19.已知集合.C={x|(x﹣m﹣1)(x+m+1)≤0,m∈R}(1)若(∁R A)∩B=∅,求a的取值范围;(2)若A∩C=C,求m的取值范围.20.已知f(x)为偶函数,当x≥0时,f(x)=2lg(x+1).(1)求f(x)的解析式;(2)若对于任意的x∈(﹣∞,0),关于x的不等式lg(kx)<f(x)恒成立,求k 的取值范围.21.已知函数f(x)=sin(2x+),g(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求g(x)的解析式,并说明f(x)的图象怎样经过2次变换得到g(x)的图象;(2)若对于任意的,不等式|f(x)﹣m|<2恒成立,求实数m的取值范围.22.在函数定义域内,若存在区间[m,n],使得函数值域为[m+k,n+k],则称此函数为“k 档类正方形函数”,已知函数f(x)=log3[2k•9x﹣(k﹣1)3x+k+2].(1)当k=0时,求函数y=f(x)的值域;(2)若函数y=f(x)的最大值是1,求实数k的值;(3)当x>0时,是否存在k∈(0,1),使得函数f(x)为“1档类正方形函数”?若存在,求出实数k的取值范围,若不存在,请说明理由.参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x>0},集合B={x|﹣1<x≤6},则A∩B=()A.(﹣1,0)B.(0,6] C.(0,6)D.(﹣1,6] 【分析】进行交集的运算即可.解:∵A={x|x>0},B={x|﹣1<x≤6},∴A∩B=(0,6].故选:B.2.函数的值域是()A.(﹣1,1)B.C.D.【分析】先判断出函数y=tan x在(﹣,)单调递增,分别求出特殊值,再写出函数的值域即可.解:因为函数y=tan x在(﹣,)单调递增,且tan=;tan(﹣)=﹣1,则所求的函数的值域是(﹣1,),故选:C.3.已知x,y∈R,且x>y>0,则()A.B.cos x﹣cos y>0C.D.lnx+lny>0【分析】利用不等式的基本性质、函数的单调性即可判断出结论.解:x>y>0,则﹣>0,cos x﹣cos y>0,lnx+lny>0不一定成立,而﹣<0一定成立.故选:C.4.已知向量,,且.则与的夹角为()A.B.C.D.【分析】分别求出向量的模长,代入向量的数量积即可求解,注意夹角的范围.解:设与的夹角为θ;因为,所以||=1;∴=||×||cosθ=⇒cosθ=;∵θ∈[0,π];∴θ=;故选:A.5.已知半径为2的扇形AOB中,的长为3π,扇形的面积为ω,圆心角AOB的大小为φ弧度,函数h(x)=sin(x+φ),则下列结论正确的是()A.函数h(x)是奇函数B.函数h(x)在区间[﹣2π,0]上是增函数C.函数h(x)图象关于(3π,0)对称D.函数h(x)图象关于直线x=﹣3π对称【分析】先通过扇形的弧长和面积公式表示出ω和φ,并代入函数h(x)的解析式,整理得,再结合余弦函数的图象与性质逐一判断每个选项的正误即可.解:∵扇形弧长=2φ=3π,∴φ=,又∵扇形面积ω=∴h(x)=sin(x+φ)=,对于A选项,函数h(x)为偶函数,即A错误;对于B选项,令,则x∈[6kπ,3π+6kπ],k∈Z,而[﹣2π,0]⊈[6kπ,3π+6kπ],k∈Z,即B错误;对于C选项,令,则,∴函数的对称中心为,即C错误;对于D选项,令,则x=3kπ,k∈Z,∴函数的对称轴为x=3kπ,k∈Z,当k=﹣1时,有x=﹣3π,即D正确.故选:D.6.已知a=log72,b=log0.70.2,c=0.70.2,则a,b,c的大小关系为()A.b<c<a B.a<b<c C.c<a<b D.a<c<b【分析】本题根据对数函数及指数函数来比较大小,解题关键是找到中间值,将a、b、c与中间值进行比较即可得到结果.解:由题意,∵2=<,∴a=log72<log7=;b=log0.70.2>log0.70.7=1,<0.7<c=0.70.2<1,∴a<c<b,故选:D.7.已知4个函数:①y=x|sin x|;②y=x cos|x|;③;④y=4cos x﹣e|x|的图象如图所示,但是图象顺序被打乱,则按照图象从左到右的顺序,对应的函数序号正确的为()A.①④②③B.③②④①C.①④③②D.③①④②【分析】分别判断函数的奇偶性,对称性,利用函数值的特点进行判断即可.解:①y=x|sin x|是奇函数,图象关于原点对称;当x>0时,y≥0恒成立,②y=x cos|x|=x cos x是奇函数,图象关于原点对称;③为非奇非偶函数,图象关于原点和y轴不对称,且y≥0恒成立,④y=4cos x﹣e|x|是偶函数,图象关于y轴对称,则第一个图象为③,第三个图象为④,第四个图象为①,第二个图象为②即对应函数序号为③②④①,故选:B.8.在△ABC中,,则△ABC为()A.直角三角形B.三边均不相等的三角形C.等边三角形D.等腰非等边三角形【分析】直接代入数量积的计算公式第一个条件求出A=C;第二个条件得到B即可求出结论解:因为在△ABC中,A,B,C∈(0,π),∴+=0⇒||cos A﹣||coC=0⇒cos A=cos C⇒A=C;∵•=||×||×cos B=||×||⇒cos B=⇒B=;∴△ABC为等边三角形;故选:C.9.若(log22019)x+(log20202)﹣y<(log22019)﹣y+(log20202)x,则()A.x+y<0 B.x+y>0 C.x﹣y<0 D.x﹣y>0【分析】令f(x)=﹣(log22020)﹣x,然后结合函数的单调性即可判断.解:令f(x)=﹣(log22020)﹣x,则易得f(x)在(﹣∞,+∞)上单调递增,结合已知不等式的特点,考虑构造函数∵(log22019)x+(log20202)﹣y<(log22019)﹣y+(log20202)x,∴(log22019)x﹣(log22020)﹣x<(log22019)﹣y﹣(log22020)y,即f(x)<f(﹣y),所以x<﹣y,故x+y<0.故选:A.10.设函数,则方程16f(x)+(x2+x﹣1)=0根的个数为()A.2 B.3 C.4 D.5【分析】方程16f(x)+(x2+x﹣1)=0根的个数等价于函数f(x)与函数g(x)=﹣的交点个数,画出两个函数的大致图象,观察交点个数即可.解:方程16f(x)+(x2+x﹣1)=0根的个数等价于函数f(x)与函数g(x)=﹣的交点个数,画出两个函数的大致图象,如图所示:,∵,∴在(0,+∞)内有1个交点,∵,∴两个函数在(﹣∞,0]内有3个交点,综上所述,函数f(x)与函数g(x)共有4个交点,所以方程16f(x)+(x2+x﹣1)=0根的个数是4个,故选:C.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.已知函数,则f(0)= 2 ,函数定义域是.【分析】直接在函数解析式中取x=0求得f(0);由对数式的真数大于0,分母中根式内部的代数式大于0联立不等式组求解函数定义域.解:由,得f(0)=;由,解得﹣.∴函数定义域是(﹣,1).故答案为:2,(﹣,1).12.已知是单位向量,,,,,若,则实数λ=;若A,B,D三点共线,则实数λ=﹣.【分析】利用向量垂直和向量平行的性质直接求解.解:∵是单位向量,,,,,,∴=()•()=2λ﹣1=0,解得实数λ=.∵A,B,D三点共线,=,,解得实数λ=﹣.故答案为:.13.己知函数的最小正周期是3.则a=,f(x)的对称中心为(,0),k∈Z .【分析】根据正切的周期求出a,利用整体法求出对称中心即可.解:函数的最小正周期是3,则3=,得a=,所以函数f(x)=2tan(),由,k∈Z,得x=,故对称中心为(,0),k∈Z14.已知a,b∈R,定义运算“⊗”:,设函数f(x)=(2x⊗2)﹣(1⊗log2x),x∈(0,2),则f(1)= 1 ,f(x)的值域为[1,3).【分析】由所给的函数定义求出分段函数f(x)的解析式,进而求出结果.解:由题意f(x)=,,所以f(1)=1,x∈(0,2),f(x)∈[1,3),故答案分别为:1,[1,3)15.已知函数f(x)=(2m﹣9)x a为幂函数,且其图象过点,则函数的单调递增区间为(﹣∞,2).【分析】根据函数f(x)是幂函数求出m的值,再根据f(x)的图象过点,求出a的值;由此得出函数g(x)的解析式,根据复合函数的单调性:同增异减,求出g(x)的单调递增区间.解:函数函数f(x)=(2m﹣9)x a为幂函数,2m﹣9=1,解得m=5,且其图象过点,所以3a=,解得a=,所以函数即函数g(x)=,令x2﹣5x+6>0,解得x<2或x>3;所以函数g(x)的单调递增区间为(﹣∞,2).故答案为:(﹣∞,2).16.已知,是平面向量,且,若,则的取值范围是[3,+∞).【分析】先根据()•=+•=6得到×cosθ=3;进而表示出即可求解解:设()与的夹角为θ;∵()•=+•=6=×||×cosθ;∴×cosθ=3;∴0<cosθ≤1=≥3;故答案为:[3,+∞)17.函数f(x)=﹣2﹣5x,g(x)=sin x,若,使得f(x1)+f(x2)+…+f(x n﹣1)+g(x n)=g(x1)+g(x2)+…+g(x n﹣1)+f(x n),则正整数n的最大值为 6 .【分析】由题意可得g(x)﹣f(x)=sin x+5x+2,由正弦函数和一次函数的单调性可得g(x)﹣f(x)﹣2=sin x+5x的范围是[0,1+],将已知等式整理变形,结合不等式的性质,可得所求最大值n.解:函数f(x)=﹣2﹣5x,g(x)=sin x,可得g(x)﹣f(x)=sin x+5x+2,由x∈[0,],可得y=sin x,y=5x递增,则g(x)﹣f(x)﹣2=sin x+5x的范围是[0,1+],f(x1)+f(x2)+…+f(x n﹣1)+g(x n)=g(x1)+g(x2)+…+g(x n﹣1)+f(x n),即为[g(x1)﹣f(x1)]+[g(x2)﹣f(x2)]+…+[g(x n﹣1)﹣f(x n﹣1)]=g(x n)﹣f (x n),即为(sin x1+5x1)+(sin x2+5x2)+…+(sin x n﹣1+5x n﹣1)+2(n﹣1)=sin x n+5x n+2,即(sin x1+5x1)+(sin x2+5x2)+…+(sin x n﹣1+5x n﹣1)+2(n﹣2)=sin x n+5x n,由sin x n+5x n∈[0,1+],可得2(n﹣2)≤1+,即n≤+,而+∈(6,7),可得n的最大值为6,故答案为:6.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知向量,其中.(1)若的,求tan x的值;(2)若与垂直,求实数m的取值范围.【分析】(1)根据平面向量的数量积列方程求出tan x的值,再根据x的范围确定tan x 的值;(2)根据平面向量的数量积和模长公式求出m的解析式,再求m的取值范围.解:(1)因为,即,所以,所以2tan2x﹣5tan x+2=0,解得tan x=2或.因为,所以tan x∈[0,1],即.(2)因为与垂直,所以,所以m2=1+sin2x,因为,所以,解得m的取值范围是.19.已知集合.C={x|(x﹣m﹣1)(x+m+1)≤0,m∈R}(1)若(∁R A)∩B=∅,求a的取值范围;(2)若A∩C=C,求m的取值范围.【分析】(1)可以求出A={x|﹣3≤x≤1},从而得出∁R A=(﹣∞,﹣3)∪(1,+∞),根据(∁R A)∩B=∅可讨论B是否为空集:B=∅时,a﹣1≥2a+1;B≠∅时,,解出a的范围即可;(2)根据A∩C=C即可得出C⊆A,然后可讨论m+1与﹣(m+1)的大小关系,从而得出集合C,根据C⊆A即可得出m的范围.解:(1)A={x|(x+3)(1﹣x)≥0}={x|﹣3≤x≤1},B=(a﹣1,2a+1),∴∁R A=(﹣∞,﹣3)∪(1,+∞),且(∁R A)∩B=∅,∴①B=∅时,a﹣1≥2a+1,解得a≤﹣2;②B≠∅时,,解得﹣2<a≤0,∴a的取值范围为(﹣∞,0];(2)∵A∩C=C,∴C⊆A,∴①m+1>﹣(m+1),即m>﹣1时,C=(﹣(m+1),m+1),∴,解得﹣1<m≤0;②m+1<﹣(m+1),即m<﹣1时,C=(m+1,﹣(m+1)),∴,解得﹣2≤m<﹣1;③m+1=﹣(m+1),即m=﹣1时,C={0},满足C⊆A,∴综上得,m的取值范围为[﹣2,0].20.已知f(x)为偶函数,当x≥0时,f(x)=2lg(x+1).(1)求f(x)的解析式;(2)若对于任意的x∈(﹣∞,0),关于x的不等式lg(kx)<f(x)恒成立,求k 的取值范围.【分析】(1)设x<0,则﹣x>0,f(x)=f(﹣x)=2lg(﹣x+1),再求出f(x)的解析式;(2)当x<0时,因为kx>0,所以k<0,结合分离参数法求出k的范围.解:(1)设x<0,则﹣x>0,f(x)=f(﹣x)=2lg(﹣x+1),所以,(2)当x<0时,因为kx>0,所以k<0,所以lg(kx)<2lg(﹣x+1),即lg(kx)<lg(﹣x+1)2,即kx<(﹣x+1)2.因为x<0,所以恒成立,因为x<0时,最大值为﹣4,所以﹣4<k,所以﹣4<k<0.21.已知函数f(x)=sin(2x+),g(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求g(x)的解析式,并说明f(x)的图象怎样经过2次变换得到g(x)的图象;(2)若对于任意的,不等式|f(x)﹣m|<2恒成立,求实数m的取值范围.【分析】(1)现根据图象求出g(x)的解析式;再结合图象变化规律说明f(x)的图象怎样经过2次变换得到g(x)的图象;(2)先结合正弦函数的性质求出f(x)的范围;再结合恒成立问题即可求解.解:(1)由图得,因为为函数递增区间上的零点,所以,即.因为,所以,即,图象变换:将函数f(x)=sin(2x+)的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变)得到y=sin(x+),再将所得图象向左平移个单位长度得到的图象;(2)因为,所以,所以当时,f(x)取最小值,当时,f(x)取最大值1,因为|f(x)﹣m|<2恒成立,即﹣2+m<f(x)<2+m恒成立,所以,即.22.在函数定义域内,若存在区间[m,n],使得函数值域为[m+k,n+k],则称此函数为“k 档类正方形函数”,已知函数f(x)=log3[2k•9x﹣(k﹣1)3x+k+2].(1)当k=0时,求函数y=f(x)的值域;(2)若函数y=f(x)的最大值是1,求实数k的值;(3)当x>0时,是否存在k∈(0,1),使得函数f(x)为“1档类正方形函数”?若存在,求出实数k的取值范围,若不存在,请说明理由.【分析】本题第(1)题根据指数函数的性质和对数函数想性质可得到函数y=f(x)的值域;第(2)题利用换元法设t=3x,t>0,然后对参数k进行分类讨论,分k≥0和k <0两种情况进行讨论函数g(t)的最大值,根据最大值取得的情况计算出k的取值;第(3)题继续利用换元法设t=3x,t>0,设真数为g(t)=2k•t2﹣(k﹣1)t+k+2.根据二次函数的性质可得f(x)在(1,+∞)上为增函数,则f(x)min=f(m)=m+1,f (x)max=f(n)=n+1,将问题转化为方程在(0,+∞)上有两个不同实根进行思考,再次利用换元法转化为一元二次方程,根据△>0,及韦达定理可计算出实数k的取值范围.解:(1)由题意,当k=0时,,∵3x+2>2.∴,∴函数y=f(x)的值域为(log32,+∞).(2)由题意,设t=3x,t>0,则,①若k≥0,则函数g(t)=2k•t2﹣(t﹣1)t+k+2无最大值,即f(t)无最大值,不合题意;②若k<0,则g(t)=2k•t2﹣(k﹣1)t+k+2最大值在时取到,且,∴,解得k=1,或.由k<0,可得.(3)由题意,因为0<k<1时,设t=3x(t>1).设真数为g(t)=2k•t2﹣(k﹣1)t+k+2.此时对称轴,∴当t>1时,g(t)为增函数,且g(t)>g(1)=2k+3>0,即f(x)在(1,+∞)上为增函数.∴f(x)min=f(m)=m+1,f(x)max=f(n)=n+1,即方程在(0,+∞)上有两个不同实根,即2k•9x﹣(k﹣1)3x+k+2=3x﹣1,设t=3x(t>1).∴2k•t2﹣(k﹣1)t+k+2=3t.即方程2k•t2﹣(k+2)t+k+2=0有两个大于l的不等实根,∵0<k<1,∴,解得,由0<k<1,得,即存在m,n,使得函数f(x)为“1档类正方形函数”,且.。
2016-2017学年高一数学1练习:1.3.2 全集与补集 含解析
3.2全集与补集1。
已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A。
{x|x≥0}B。
{x|x≤1}C.{x|0≤x≤1}D。
{x|0〈x〈1}解析:由题意知,A∪B={x|x≤0,或x≥1},所以∁U(A∪B)={x|0<x<1}.答案:D2。
设集合P={x|x〉4},Q={x|-2〈x<2},则()A。
P⊆Q B。
Q⊆PC。
P⊇(∁R Q) D.Q⊆(∁R P)解析:∵Q={x|-2〈x<2},且∁R P={x|x≤4},∴Q⊆(∁R P)。
答案:D3.已知全集U=R,A={x|x<1,或x>3},B={x|x<m},且(∁U A)∩B=⌀,则实数m的取值范围是()A.m≤1B.m<1C。
m≥3 D.m>3解析:∁U A={x|1≤x≤3},用数轴表示∁U A,B,如图所示,由数轴得,要使(∁U A)∩B=⌀成立,需有m≤1.所以m的取值范围为m≤1。
答案:A4已知全集U=R,集合A={1,2,3,4,5},B={x|x≥2},则图中阴影部分所表示的集合为()A.{0,1,2}B.{1,2}C。
{1} D.{0,1}解析:图中阴影部分所表示的集合为A∩(∁U B)。
因为B={x|x≥2},所以∁U B={x|x〈2}。
又因为A={1,2,3,4,5},所以A∩(∁U B)={1}。
答案:C5.已知集合P={x|x2+2ax+a<0},若2∉P,则实数a的取值范围是()A.a>—45B。
a≥-45C.a〈-45D。
a≤-45解析:由2∉P,知2∈∁R P,即2∈{x|x2+2ax+a≥0},因此2满足不等式x2+2ax+a≥0,.即22+4a+a≥0,解得a≥—45答案:B6。
设全集为U,集合A,B是U的子集,定义集合A与集合B的运算,A*B={x|x∈A,或x∈B,且x∉A∩B},则(A*B)*A等于()A。