内蒙古通辽市库伦旗九年级数学上学期期末考试试题 新人教版

合集下载

九年级上册通辽数学期末试卷测试卷(含答案解析)

九年级上册通辽数学期末试卷测试卷(含答案解析)

九年级上册通辽数学期末试卷测试卷(含答案解析)一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.平均数B.方差C.中位数D.极差2.已知二次函数y=ax2+bx+c(a<0<b)的图像与x轴只有一个交点,下列结论:①x <0时,y随x增大而增大;②a+b+c<0;③关于x的方程ax2+bx+c+2=0有两个不相等的实数根.其中所有正确结论的序号是()A.①②B.②③C.①③D.①②③3.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:这组数据的中位数和众数分别是A.88,90 B.90,90 C.88,95 D.90,954.已知二次函数y=-x2+2mx+2,当x<-2时,y的值随x的增大而增大,则实数m()A.m=-2 B.m>-2 C.m≥-2 D.m≤-25.关于x的一元二次方程x2+bx-6=0的一个根为2,则b的值为( )A.-2 B.2 C.-1 D.16.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为()A.5πB.10πC.20πD.40π7.已知反比例函数kyx=的图象经过点(m,3m),则此反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限8.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下:若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为()A.86 B.87 C.88 D.899.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为()A.6 B.7 C.8 D.910.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C.AD ABAE AC=D.AC BCAE DE=11.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为()A.14B.13C.12D.2312.如图,在正方形 ABCD 中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:①∠BAE=30°;②射线FE是∠AFC的角平分线;③CF=13 CD;④AF=AB+CF.其中正确结论的个数为()A.1 个B.2 个C.3 个D.4 个二、填空题13.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的解,则此三角形的周长是_____.14.如图,点A、B分别在y轴和x轴正半轴上滑动,且保持线段AB=4,点D坐标为(4,3),点A关于点D的对称点为点C,连接BC,则BC的最小值为_____.15.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0)、B (0,4),则点B 2020的横坐标为_____.16.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____.17.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.18.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .19.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .20.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.21.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).22.如图,点C是以AB为直径的半圆上一个动点(不与点A、B重合),且AC+BC=8,若AB=m(m为整数),则整数m的值为______.23.已知3a=4b≠0,那么ab=_____.24.如图,二次函数y=x(x﹣3)(0≤x≤3)的图象,记为C1,它与x轴交于点O,A1;将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……若P(2020,m)在这个图象连续旋转后的所得图象上,则m=_____.三、解答题25.在Rt△ABC中,AC=BC,∠C=90°,求:(1)cosA;(2)当AB=4时,求BC的长.26.2019年12月17日,我国第一艘国产航母“山东舰”在海南三亚交付海军.如图,“山东舰”在一次试水测试中,航行至M处,观测指挥塔P位于南偏西30方向,在沿正南方向以30海里/小时的速度匀速航行2小时后,到达N处,再观测指挥塔P位于南偏西45 方向,若继续向南航行.求“山东舰”与指挥塔之间的最近距离为多少海里?(结果保留根号)27.如图,AB是⊙O的弦,AB=4,点P在AmB上运动(点P不与点A、B重合),且∠APB=30°,设图中阴影部分的面积为y.(1)⊙O的半径为;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.28.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为AC的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=163,AB=6,求⊙O的半径.29.从﹣1,﹣3,2,4四个数字中任取一个,作为点的横坐标,不放回,再从中取一个数作为点的纵坐标,组成一个点的坐标.请用画树状图或列表的方法列出所有可能的结果,并求该点在第二象限的概率.30.利用一面墙(墙的长度为20m),另三边用长58m的篱笆围成一个面积为200m2的矩形场地.求矩形场地的各边长?31.已知:如图,抛物线y=﹣x2+2x+3交x轴于点A、B,其中点A在点B的左边,交y 轴于点C,点P为抛物线上位于x轴上方的一点.(1)求A、B、C三点的坐标;(2)若△PAB的面积为4,求点P的坐标.32.如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=12AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当35ANAB=且67AMAC=时,求CP的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可. 【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少. 故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.C解析:C 【解析】 【分析】①根据对称轴及增减性进行判断; ②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断. 【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2ba->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大; 故①正确;根据二次函数的系数,可得图像大致如下, 由于对称轴x=2ba-的值未知, ∴当x=1时,y=a+b+c 的值无法判断, 故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点, ∴方程ax 2+bx +c =-2有两个不相等的实数根. 故③正确.【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.3.B解析:B【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,90,90,90,92,95,∴中位数是按从小到大排列后第4个数为:90.众数是在一组数据中,出现次数最多的数据,这组数据中90出现三次,出现的次数最多,故这组数据的众数为90.故选B.4.C解析:C【解析】【分析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线221mx m∵10a=-<,抛物线开口向下,∴当x m<时,y的值随x值的增大而增大,∵当2x<-时,y的值随x值的增大而增大,∴2m≥-,故选:C.【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.5.D解析:D【解析】【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x2+bx-6=0得4+2b-6=0,解得b=1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.B解析:B 【解析】 【分析】利用圆锥面积=Rr 计算. 【详解】Rr =2510,故选:B. 【点睛】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.7.B解析:B 【解析】 【分析】 【详解】解:将点(m ,3m )代入反比例函数ky x=得, k=m•3m=3m 2>0; 故函数在第一、三象限, 故选B .8.C解析:C 【解析】 【分析】利用加权平均数按照比例进一步计算出个人总分即可. 【详解】 根据题意得:92580390288532⨯+⨯+⨯=++(分),∴小莹的个人总分为88分; 故选:C . 【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.9.B【解析】 【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数. 【详解】∵一组数据:4,6,6,6,8,9,12,13, ∴这组数据的中位数是()6821427+÷÷==, 故选:B . 【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.10.D解析:D 【解析】 【分析】先求出∠DAE =∠BAC ,再根据相似三角形的判定方法分析判断即可. 【详解】 ∵∠1=∠2,∴∠1+∠BAE =∠2+∠BAE , ∴∠DAE =∠BAC ,A 、添加∠B =∠D 可利用两角法:有两组角对应相等的两个三角形相似可得△ABC ∽△ADE ,故此选项不合题意;B 、添加∠C =∠E 可利用两角法:有两组角对应相等的两个三角形相似可得△ABC ∽△ADE ,故此选项不合题意; C 、添加AD ABAE AC=可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意; D 、添加AC BCAE DE=不能证明△ABC ∽△ADE ,故此选项符合题意; 故选:D . 【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.11.C解析:C 【解析】 【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为612=12; 故选:C .【点睛】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数, 12.B解析:B【解析】【分析】根据点E 为BC 中点和正方形的性质,得出∠BAE 的正切值,从而判断①,再证明△ABE ∽△ECF ,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE ∽△AEF ,可判断②③,过点E 作AF 的垂线于点G ,再证明△ABE ≌△AGE ,△ECF ≌△EGF ,即可证明④. 【详解】解:∵E 是BC 的中点,∴tan ∠BAE=1=2BE AB , ∴∠BAE ≠30°,故①错误;∵四边形ABCD 是正方形,∴∠B=∠C=90°,AB=BC=CD ,∵AE ⊥EF ,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF ,在△BAE 和△CEF 中,==B C BAE CEF∠∠⎧⎨∠∠⎩, ∴△BAE ∽△CEF ,∴==2AB BE EC CF, ∴BE=CE=2CF , ∵BE=CF=12BC=12CD , 即2CF=12CD , ∴CF=14CD , 故③错误;设CF=a ,则BE=CE=2a ,AB=CD=AD=4a ,DF=3a ,∴AE=,,AF=5a ,∴AE AFBE EF , ∴=AE BE AF EF, 又∵∠B=∠AEF ,∴△ABE ∽△AEF ,∴∠AEB=∠AFE ,∠BAE=∠EAG ,又∵∠AEB=∠EFC ,∴∠AFE=∠EFC ,∴射线FE 是∠AFC 的角平分线,故②正确;过点E 作AF 的垂线于点G ,在△ABE 和△AGE 中,===BAE GAE B AGE AE AE ∠∠⎧⎪∠∠⎨⎪⎩,∴△ABE ≌△AGE (AAS ),∴AG=AB ,GE=BE=CE ,在Rt △EFG 和Rt △EFC 中,==GE CE EF EF ⎧⎨⎩, Rt △EFG ≌Rt △EFC (HL ),∴GF=CF ,∴AB+CF=AG+GF=AF ,故④正确.故选B.【点睛】此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.二、填空题13.14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0解析:14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点睛】本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键.14.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD22345,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.15.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=53,OB=4,∠AOB=90°,∴AB133===,∴OA+AB1+B1C2=53+133+4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:2020102⨯=10100.故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.16.720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019 解析:720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019年全年收入845万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x,则2018的全年收入为:720×(1+x)2019的全年收入为:720×(1+x)2.那么可得方程:720(1+x)2=845.故答案为:720(1+x)2=845.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).17.【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x1x解得x=13,∴阴影部分面积为:S△ABC=12×13×1=16,故答案为:16.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.18.【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,∴圆锥的底面半径为cm,∴底面周长为2π×6=12解析:12π【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,∴圆锥的底面半径为221086-=cm,∴底面周长为2π×6=12πcm,即这张扇形纸板的弧长是12πcm,故答案为:12π.【点睛】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.19.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147.考点:概率公式.20.54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=1解析:54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为54.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.21.>【解析】【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线解析:>【解析】【分析】利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,∴1y >2y .故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧.22.6或7【解析】【分析】因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,根据基本不等式,可得的范围,再根据题意要求AB 为整数及三角形三边关系,即可解析:6或7【解析】【分析】 因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中222AB =AC BC +,且AC+BC=8,即可求得22AB =(AC+BC)2AC BC -⋅,根据基本不等式AC BC=AC+(8-AC)+≥2AB 的范围,再根据题意要求AB 为整数及三角形三边关系,即可得出AB 可能的长度.【详解】 解:∵直径所对圆周角为直角,故ABC 为直角三角形,∴根据勾股定理可得,222AB =AC BC +,即22AB =(AC+BC)2AC BC -⋅,又∵AC+BC=8,根据基本不等式AC BC=AC+(8-AC)+≥∴0<AC BC 16⋅≤,代入22AB =(AC+BC)2AC BC -⋅∴232AB 64≤≤,同时AB 要满足整数的要求,∴AB=6或7或8,但是三角形三边关系要求,任意两边之和大于第三边,故AB ≠8, ∴AB=6或7,故答案为:6或7.【点睛】本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、基本不等式,解题的关键在于找出AB长度的范围.23..【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得=,故答案为:.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此解析:43.【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得a b =43,故答案为:43.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.24.【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然解析:【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然后计算自变量为2020对应的函数值即可.【详解】当y=0时,x(x﹣3)=0,解得x1=0,x2=3,则A1(3,0),∵将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……∴OA1=A1A2=A2A3=…=A673A674=3,∴抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),把P(2020,m)代入得m=﹣(2020﹣2019)(2020﹣2022)=2.故答案为2.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.三、解答题25.(1;(2)【解析】【分析】(1)根据等腰直角三角形的判定得到△ABC为等腰直角三角形,则∠A=45°,然后利用特殊角的三角函数值求解即可;(2)根据∠A的正弦求解即可.【详解】∵AC=BC,∠C=90°,∴∠A=∠B=45°,∴cosA=cos45°=2,∴BC=AB sin A⨯,【点睛】本题考查解直角三角形及等腰直角三角形的判定,熟练掌握特殊角三角函数值是解题关键.26.30【解析】【分析】过P作PH⊥MN于H,构建直角三角形,设PH=x海里,分别在两个直角三角形△PHN和△PHM中利用正切函数表示出NH长和MH长,列方程求解.【详解】过P作PH⊥MN,垂足为H,设PH=x海里,在Rt△PHN ,tan∠PNH=PH NH,∴tan45°=PH NH,∴NH=tan 45x x ,在Rt △PHM 中,tan ∠PMH=PHMH, ∴tan30°=PHMH, ∴MH=3tan 30x x ,∵MN=30×2=60海里, ∴360x x -= , ∴30330x.答:“山东舰”与指挥塔之间的最近距离为30330海里.【点睛】本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,找准线段之间的关系,利用锐角三角函数进行解答.27.(1)4;(2)y=2x +83π-3<34)【解析】 【分析】(1)根据圆周角定理得到△AOB 是等边三角形,求出⊙O 的半径; (2)过点O 作OH ⊥AB ,垂足为H,先求出AH=BH=12AB=2,再利用勾股定理得出OH 的值,进而求解. 【详解】(1)解:(1)∵∠APB=30°, ∴∠AOB=60°,又OA=OB , ∴△AOB 是等边三角形, ∴⊙O 的半径是4;(2)解:过点O 作OH ⊥AB ,垂足为H则∠OHA=∠OHB=90°∵∠APB=30°∴∠AOB=2∠APB=60°∵OA=OB,OH⊥AB∴AH=BH=12AB=2在Rt△AHO中,∠AHO=90°,AO=4,AH=2∴OH22AO AH-3∴y=16×16 π-123+12×4×x=2x+83π-3<34).【点睛】本题考查了圆周角定理,勾股定理、掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键.28.(1)DE与⊙O相切;理由见解析;(2)4.【解析】【分析】(1)连接OD,由D为AC的中点,得到AD CD=,进而得到AD=CD,根据平行线的性质得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到结论;(2)连接BD,根据四边形对角互补得到∠DAB=∠DCE,由AD CD=得到∠DAC=∠DCA =45°,求得△ABD∽△CDE,根据相似三角形的性质即可得到结论.【详解】(1)解:DE与⊙O相切证:连接OD,在⊙O中∵D为AC的中点∴AD CD=∴AD=DC∵AD=DC,点O是AC的中点∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE经过半径OD的外端点D ∴DE与⊙O相切.(2)解:连接BD∵四边形ABCD是⊙O的内接四边形∴∠DAB+∠DCB=180°又∵∠DCE+∠DCB=180°∴∠DAB=∠DCE∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°∵AD CD,∴∠ABD=∠CBD=45°∵AD=DC,∠ADC=90°∴∠DAC=∠DCA=45°∵DE∥AC∴∠DCA=∠CDE=45°在△ABD和△CDE中∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE∴ABCD=ADCE∴6 CD=163AD∴AD=DC=42, CE=163,AB=6,在Rt△ADC中,∠ADC=90°,AD=DC=42,∴AC=22AD DC=8∴⊙O的半径为4.【点睛】本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.29.表见解析,13【解析】【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.【详解】解:列表如下:﹣3﹣124﹣3﹣﹣﹣(﹣1,﹣3)(2,﹣3)(4,﹣3)﹣1(﹣3,﹣1)﹣﹣﹣(2,﹣1)(4,﹣1)2(﹣3,2)(﹣1,2)﹣﹣﹣(4,2)4(﹣3,4)(﹣1,4)(2,4)﹣﹣﹣∴该点在第二象限的概率为412=13.【点睛】本题主要考查了列表法或树状图法求概率,熟练的用列表法或树状图法列出所有的情况数是解题的关键.30.矩形长为25m,宽为8m【解析】【分析】设垂直于墙的一边为x 米,则邻边长为(58-2x ),利用矩形的面积公式列出方程并解答. 【详解】解:设垂直于墙的一边为x 米,得: x(58﹣2x)=200 解得:x 1=25,x 2=4, 当x =4时,58﹣8=50, ∵墙的长度为20m , ∴x =4不符合题意, 当x =25时,58﹣2x =8, ∴矩形的长为25m ,宽为8m , 答:矩形长为25m ,宽为8m . 【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.31.(1)A (﹣1,0),B (3,0),C (0,3);(2)P 点坐标为(1,2),(,2) 【解析】 【分析】(1)当0y =时,可求点A ,点B 坐标,当0x =,可求点C 坐标;(2)设点P 的纵坐标为y ,利用三角形面积公式可求得2y =,代入y =﹣x 2+2x +3即可求得点P 的横坐标,从而求得答案. 【详解】(1)对于抛物线y =﹣x 2+2x +3, 令y=0,得到﹣x 2+2x +3=0, 解得:x 1=﹣1,x 2=3, 则A (﹣1,0),B (3,0), 令0x =,得到y =﹣x 2+2x +3=3, 则C 点坐标为(0,3);故答案为:A (﹣1,0),B (3,0),(0,3); (2)设点P 的纵坐标为y , ∵点P 为抛物线上位于x 轴上方, ∴0y >,∵△PAB 的面积为4,∴()13142y ⨯+⨯=, 解得:2y =,∵点P 为抛物线上的点,将2y=代入y=﹣x2+2x+3得:﹣x2+2x+3=2,整理得x2﹣2x﹣1=0,解得:x1=1﹣2,x2=1+2,∴P点坐标为:(1﹣2,2),(1+2,2).【点睛】本题考查了二次函数的解析式的运用,利用二次函数的性质求解是关键.32.(1)52;(2)①菱形,理由见解析;②AM=209,MN=410;(3)1.【解析】【分析】(1)利用相似三角形的性质求解即可.(2)①根据邻边相等的平行四边形是菱形证明即可.②连接AA′交MN于O.设AM=MA′=x,由MA′∥AB,可得'MAAB=CMCA,由此构建方程求出x,解直角三角形求出OM即可解决问题.(3)如图3中,作NH⊥BC于H.想办法求出NH,CM,利用相似三角形,确定比例关系,构建方程解决问题即可.【详解】解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2222435AC BC+=+=,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴ANAC=AMAB,∵AN=12 AC∴12=5AM,∴AM=52.(2)①如图2中, ∵NA ′∥AC , ∴∠AMN =∠MNA ′,由翻折可知:MA =MA ′,∠AMN =∠NMA ′, ∴∠MNA ′=∠A ′MN , ∴A ′N =A ′M ,∴AM =A ′N ,∵AM ∥A ′N , ∴四边形AMA ′N 是平行四边形, ∵MA =MA ′,∴四边形AMA ′N 是菱形.②连接AA ′交MN 于O .设AM =MA ′=x , ∵MA ′∥AB , ∴'ABC MA C ∽ ∴'MA AB =CMCA , ∴5x =44x -, 解得x =209, ∴AM =209∴CM =169,∴CA =43,∴AA ∵四边形AMA ′N 是菱形,∴AA ′⊥MN ,OM =ON ,OA =OA ′=3,∴OM ,∴MN =2OM .(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴△ABC∽△NBH∴NHAC=BNAB=3BH∴NH4=25=3BH∴NH=85,BH=65,∴CH=BC﹣BH=3﹣65=95,∴AM=67AC=247,∴CM=AC﹣AM=4﹣247=47,∵CM∥NH,∴△CPM∽△HPN∴PCPH=CMNH,∴PC9PC5=4785,∴PC=1.【点睛】本题考查了相似三角形的综合应用,涉及相似三角形的判定与性质、菱形的判定、勾股定理等知识点,综合性较强,难度较大,解题的关键是综合运用上述知识点.。

新人教版九年级数学上册期末测试卷及答案【完整】

新人教版九年级数学上册期末测试卷及答案【完整】

新人教版九年级数学上册期末测试卷及答案【完整】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的倒数是()A. B. C. D.2. 下列分解因式正确的是()A. B.C. D.3.若正多边形的一个外角是, 则该正多边形的内角和为()A. B. C. D.4.一组数据: 1.2.2.3, 若添加一个数据2, 则发生变化的统计量是A. 平均数B. 中位数C. 众数D. 方差5.如果分式的值为0, 那么的值为()A. -1B. 1C. -1或1D. 1或06.关于x的方程(为常数)根的情况下, 下列结论中正确的是()A. 两个正根 B. 两个负根C. 一个正根, 一个负根D. 无实数根7.在以下绿色食品、回收、节能、节水四个标志中, 是轴对称图形的是()A. B. C. D.8.如图, A, B是反比例函数y= 在第一象限内的图象上的两点, 且A, B两点的横坐标分别是2和4, 则△OAB的面积是()A. 4B. 3C. 2D. 19.如图, 在矩形ABCD中, 点E是边BC的中点, AE⊥BD, 垂足为F, 则tan∠BDE的值是()A. B. C. D.10.下列所给的汽车标志图案中, 既是轴对称图形, 又是中心对称图形的是()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 化简: =____________.2. 分解因式: =________.3. 已知直角三角形的两边长分别为3.4. 则第三边长为________.4.如图1是一个由1~28的连续整数排成的“数阵”.如图2, 用2×2的方框围住了其中的四个数, 如果围住的这四个数中的某三个数的和是27, 那么这三个数是a, b, c, d中的__________.5. 如图所示, 直线a经过正方形ABCD的顶点A, 分别过正方形的顶点B.D作BF⊥a于点F, DE⊥a于点E, 若DE=8, BF=5, 则EF的长为__________.6. 如图,菱形ABCD顶点A在例函数y= (x>0)的图象上, 函.y= (k>3, x>0)的图象关于直线AC对称, 且经过点B.D两点, 若AB=2, ∠DAB=30°, 则k 的值为______.三、解答题(本大题共6小题, 共72分)1. 解方程:=12. 先化简, 再求值: , 其中.3. 如图, 已知点A(﹣1, 0), B(3, 0), C(0, 1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P, 使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上, 是否存在一点Q, 使∠BQC=∠BAC?若存在, 求出Q点坐标;若不存在, 说明理由.4. 如图, 四边形ABCD内接于⊙O, ∠BAD=90°, 点E在BC的延长线上, 且∠DEC=∠BAC.(1)求证: DE是⊙O的切线;(2)若AC∥DE, 当AB=8, CE=2时, 求AC的长.5. 我国中小学生迎来了新版“教育部统编义务教育语文教科书”, 本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对《三国演义》、《红楼梦》、《西游记》、《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查, 随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍, 请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.5. 某文具店购进一批纪念册, 每本进价为20元, 出于营销考虑, 要求每本纪念册的售价不低于20元且不高于28元, 在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系: 当销售单价为22元时, 销售量为36本;当销售单价为24元时, 销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时, 每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元, 将该纪念册销售单价定为多少元时, 才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、C3、C4、D5、B6、C7、D8、B9、A10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、22.x(x+2)(x﹣2).3.5或4、a, b, d或a, c, d5、136.6+2三、解答题(本大题共6小题, 共72分)1.x=12.3.(1)抛物线的解析式为y=﹣x2+ x+1;(2)点P的坐标为(1, )或(2, 1);(3)存在, 理由略.4.(1)略;(2)AC的长为.5、(1)50;(2)见解析;(3).6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时, 才能使文具店销售该纪念册所获利润最大, 最大利润是192元.。

九年级上册通辽数学期末试卷测试卷(含答案解析)

九年级上册通辽数学期末试卷测试卷(含答案解析)

九年级上册通辽数学期末试卷测试卷(含答案解析)一、选择题1.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3-B .3C .3-D .32.如图,在□ABC D 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72 3.已知△ABC ,以AB 为直径作⊙O ,∠C =88°,则点C 在( )A .⊙O 上B .⊙O 外C .⊙O 内4.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( ) A .2011 B .2015 C .2019 D .2020 5.一元二次方程x 2=9的根是( )A .3B .±3C .9D .±96.如图,四边形ABCD 内接于⊙O ,已知∠A =80°,则∠C 的度数是( )A .40°B .80°C .100°D .120°7.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A .10πB .103C .3π D .π8.已知⊙O 的直径为4,点O 到直线l 的距离为2,则直线l 与⊙O 的位置关系是 A .相交 B .相切C .相离D .无法判断9.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位 10.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下:若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( ) A .86B .87C .88D .8911.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度 B .先向左平移2个单位长度,然后向下平移1个单位长度 C .先向右平移2个单位长度,然后向上平移1个单位长度 D .先向右平移2个单位长度,然后向下平移1个单位长度12.已知在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CM 是它的中线,以C 为圆心,5cm 为半径作⊙C ,则点M 与⊙C 的位置关系为( ) A .点M 在⊙C 上B .点M 在⊙C 内C .点M 在⊙C 外D .点M 不在⊙C 内二、填空题13.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm . 14.若53x y x +=,则yx=______. 15.已知小明身高1.8m ,在某一时刻测得他站立在阳光下的影长为0.6m .若当他把手臂竖直举起时,测得影长为0.78m ,则小明举起的手臂超出头顶______m .16.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)17.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________;18.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.19.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.20.如图,直线y=12x ﹣2与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C 的纵坐标为﹣1,点D 在反比例函数y=k x 的图象上,CD 平行于y 轴,S △OCD =52,则k 的值为________.21.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)22.将一枚标有数字1、2、3、4、5、6的均匀正方体骰子抛掷一次,则向上一面数字为奇数的概率等于_____.23.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.24.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A⇒B⇒A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t为_____s时,△BEF是直角三角形.三、解答题25.如图,AC为圆O的直径,弦AD的延长线与过点C的切线交于点B,E为BC中点,AC= 43,BC=4.(1)求证:DE为圆O的切线;(2)求阴影部分面积.26.如图,宾馆大厅的天花板上挂有一盏吊灯AB,某人从C点测得吊灯顶端A的仰角为35︒,吊灯底端B的仰角为30,从C点沿水平方向前进6米到达点D,测得吊灯底端B 的仰角为60︒.请根据以上数据求出吊灯AB的长度.(结果精确到0.1米.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.7023)27.如图,已知二次函数2223(0)y x mx m m =-++>的图象与x 轴交于,A B 两点(点A在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)点B 的坐标为 ,点D 的坐标为 ;(用含有m 的代数式表示) (2)连接,CD BC .①若CB 平分OCD ∠,求二次函数的表达式; ②连接AC ,若CB 平分ACD ∠,求二次函数的表达式.28.如图①,BC 是⊙O 的直径,点A 在⊙O 上,AD ⊥BC 垂足为D ,弧AE =弧AB ,BE 分别交AD 、AC 于点F 、G .(1)判断△FAG 的形状,并说明理由;(2)如图②若点E 与点A 在直径BC 的两侧,BE 、AC 的延长线交于点G ,AD 的延长线交BE 于点F ,其余条件不变(1)中的结论还成立吗?请说明理由. (3)在(2)的条件下,若BG =26,DF =5,求⊙O 的直径BC .29.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF=3m ,沿BD 方向到达点F 处再测得自己得影长FG=4m ,如果小明的身高为1.6m ,求路灯杆AB 的高度.30.(问题呈现)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是ABC的中点,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根据证明过程,分别写出下列步骤的理由:①,②,③;(理解运用)如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是ABC的中点,MD⊥BC于点D,则BD=;(变式探究)如图3,若点M是AC的中点,(问题呈现)中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC是⊙O的直径,点A圆上一定点,点D圆上一动点,且满足∠DAC=45°,若AB=6,⊙O的半径为5,求AD长.31.某小型工厂9月份生产的A、B两种产品数量分别为200件和100件,A、B两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A、B两种产品的生产数量和出厂单价,10月份A产品生产数量的增长率和A产品出厂单价的增长率相等,B产品生产数量的增长率是A产品生产数量的增长率的一半,B产品出厂单价的增长率是A产品出厂单x>),若10月份该工厂的总收价的增长率的2倍,设B产品生产数量的增长率为x(0入增加了4.4x,求x的值.⊥交AB于点P,过点B的直线交OP的延长线于32.如图,AB是⊙O的弦,OP OA点C ,且BC 是⊙O 的切线.(1)判断CBP ∆的形状,并说明理由; (2)若6,2OA OP ==,求CB 的长;(3)设AOP ∆的面积是1,S BCP ∆的面积是2S ,且1225S S =.若⊙O 的半径为6,45BP =tan APO ∠.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据题干可以明确得到p,q 是方程2330x x -=的两根,再利用韦达定理即可求解. 【详解】解:由题可知p,q 是方程2330x x -=的两根, ∴3, 故选B. 【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.2.B解析:B 【解析】 【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题; 【详解】解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC , ∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==,∴13 DH BG BD BD==,∴BG=GH=DH,∴S△ABG=S△AGH=S△ADH,∴S平行四边形ABCD=6 S△AGH,∴S△AGH:ABCDS平行四边形=1:6,∵E、F分别是边BC、CD的中点,∴12EFBD=,∴14EFCBCDDSS=,∴18EFCABCDSS=四边形,∴1176824AGH EFCABCDS SS+=+=四边形=7∶24,故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.3.B解析:B【解析】【分析】根据圆周角定理可知当∠C=90°时,点C在圆上,由由题意∠C=88°,根据三角形外角的性质可知点C在圆外.【详解】解:∵以AB为直径作⊙O,当点C在圆上时,则∠C=90°而由题意∠C=88°,根据三角形外角的性质∴点C在圆外.故选:B.【点睛】本题考查圆周角定理及三角形外角的性质,掌握直径所对的圆周角是90°是本题的解题关键.4.C解析:C 【解析】 【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题. 【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1, ∴a−b+4=0, ∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019. 故选C. 【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.5.B解析:B 【解析】 【分析】两边直接开平方得:3x =±,进而可得答案. 【详解】 解:29x =,两边直接开平方得:3x =±, 则13x =,23x =-. 故选:B . 【点睛】此题主要考查了直接开平方法解一元二次方程,解这类问题一般要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成2(0)x a a =的形式,利用数的开方直接求解.6.C解析:C 【解析】 【分析】根据圆内接四边形的性质得出∠C+∠A=180°,代入求出即可. 【详解】解:∵四边形ABCD 内接于⊙O , ∴∠C+∠A=180°, ∵∠A=80°,∴∠C=100°,故选:C.【点睛】本题考查了圆内接四边形的性质的应用.熟记圆内接四边形对角互补是解决此题的关键. 7.C解析:C【解析】【分析】【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:2210AD CD+=又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为601010π⨯=.故选C.8.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O的直径为4,∴⊙O的半径为2,∵圆心O到直线l的距离是2,∴根据圆心距与半径之间的数量关系可知直线l与⊙O的位置关系是相切.故选:B.【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r,圆心到直线的距离是d,当d=r时,直线和圆相切,当d>r时,直线和圆相离,当d<r时,直线和圆相交.9.C解析:C【解析】根据抛物线顶点的变换规律作出正确的选项.【详解】 抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.10.C解析:C【解析】【分析】利用加权平均数按照比例进一步计算出个人总分即可.【详解】根据题意得:92580390288532⨯+⨯+⨯=++(分), ∴小莹的个人总分为88分;故选:C .【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.11.D解析:D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x 2顶点为(0,0),抛物线y=(x ﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x 2向右平移2个单位,向下平移1个单位得到抛物线y=(x ﹣2)2﹣1的图象. 故选D .点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.12.A解析:A【解析】根据题意可求得CM 的长,再根据点和圆的位置关系判断即可.【详解】如图,∵由勾股定理得2268+,∵CM 是AB 的中线,∴CM=5cm ,∴d=r ,所以点M 在⊙C 上,故选A .【点睛】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.二、填空题13.【解析】【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键.解析:53π 【解析】【分析】 直接利用弧长公式180n R l π=进行计算. 【详解】解:由题意得:605180l π==53π, 故答案是:53π本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键.14.【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵,∴3x+3y=5x,∴2x=3y,∴.故答案为:.【点睛】本题考查比例的解析:2 3【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵53x yx+=,∴3x+3y=5x,∴2x=3y,∴23 yx =.故答案为:2 3 .【点睛】本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换. 15.54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解. 【详解】解:设小明举起的手臂超出头顶xm,根据题意得,,即举起的手臂超出头顶0.54m解析:54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,1.8 1.80.60.78x , 解得x=0.54即举起的手臂超出头顶0.54m.故答案为:0.54.【点睛】本题考查同一时刻物体的高度和影长成比例的投影规律,根据规律列比例式求解是解答此题的关键.,16.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 17.-1<x <2【解析】【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.【详解】由题意得:二次函数y=x2+mx+n 与x 轴的交点坐标为(-1,0),(2,0), 解析:-1<x <2【解析】【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0),∵a=10>,开口向上,∴y<0时,x的取值范围是-1<x<2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.18.【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【解析:3 2【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴112122EM AD ,在Rt△ACB中,AC=4,BC=3,由勾股定理得,5==∵CE为Rt△ACB斜边的中线,∴1155222 CE AB,在△CEM中,551122CM ,即3722CM,∴CM的最大值为3 2 .故答案为:3 2 .【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点.19.54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C =108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=1解析:54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为54.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.20.【解析】【分析】【详解】试题分析:把x=2代入y=x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y 轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D解析:【解析】【分析】【详解】试题分析:把x=2代入y=12x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D的坐标代入反比例函数的解析式求出k即可.解:∵点C在直线AB上,即在直线y=12x﹣2上,C的横坐标是2,∴代入得:y=12×2﹣2=﹣1,即C(2,﹣1),∴OM=2,∵CD∥y轴,S△OCD=52,∴12CD×OM=52,∴CD=52,∴MD=52﹣1=32,即D的坐标是(2,32),∵D在双曲线y=kx上,∴代入得:k=2×32=3.故答案为3.考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.21.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=12×6π×5=15πcm2.故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.22..【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是=;故答案为:.【点睛】解析:12.【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是36=12;故答案为:12.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.23.【解析】【分析】先在CB上取一点F,使得CF=,再连接PF、AF,然后利用相似三角形的性质和勾股定理求出AF,即可解答.【详解】解:如图:在CB上取一点F,使得CF=,再连接PF、AF,【解析】【分析】先在CB上取一点F,使得CF=12,再连接PF、AF,然后利用相似三角形的性质和勾股定理求出AF,即可解答.【详解】解:如图:在CB上取一点F,使得CF=12,再连接PF、AF,∵∠DCE=90°,DE=4,DP=PE,∴PC=12DE=2,∵14CFCP=,14CPCB=∴CF CP CP CB=又∵∠PCF=∠BCP,∴△PCF∽△BCP,∴14 PF CFPB CP==∴PA+14PB=PA+PF,∵PA+PF≥AF,AF=22221145622 CF AC⎛⎫+=+=⎪⎝⎭∴PA+14PB ≥.145∴PA+14PB的最小值为1452,故答案为1452.【点睛】本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.24.1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到解析:1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=34,此时点E走过的路程是214或274,则运动时间是74s或94s.故答案是t=1或74或94.考点:圆周角定理.三、解答题25.(1)证明见解析;(2)S阴影=43-2π【解析】【分析】(1)根据斜边中线等于斜边一半得到DE=CE,再利用切线的性质得到∠BCO=90°,最后利用等量代换即可证明,(2)根据S阴影=2S△ECO-S扇形COD即可求解.【详解】(1)连接DC、DO.因为AC为圆O直径,所以∠ADC=90°,则∠BDC=90°,因为E为Rt△BDC斜边BC中点,所以DE=CE=BE=12 BC,所以∠DCE=∠EDC,因为OD=OC,所以∠DCO=∠CDO.因为BC为圆O 切线,所以BC⊥AC,即∠BCO=90°,所以∠ODE=∠ODC+∠EDC=∠OCD+∠DCE=∠BCO=90°,所以ED ⊥OD ,所以DE 为圆O 的切线.(2)S 阴影=2S △ECO -S扇形COD =43-2π【点睛】本题主要考查切线的性质和判定及扇形面积的计算,掌握切线的判定定理及扇形的面积公式是解题的关键.26.吊灯AB 的长度约为1.1米.【解析】【分析】延长CD 交AB 的延长线于点E ,构建直角三角形,分别在两个直角三角形△BDE 和△AEC 中利用正弦和正切函数求出AE 长和BE 长,即可求解.【详解】解:延长CD 交AB 的延长线于点E ,则∠AEC =90°,∵∠BDE =60°,∠DCB =30°,∴∠CBD =60°﹣30°=30°,∴∠DCB =∠CBD ,∴BD =CD =6(米)在Rt △BDE 中,sin ∠BDE =BE BD, ∴BE =BD•sin ∠BDE ═6×sin60°=3≈5.19(米), DE =12BD =3(米), 在Rt △AEC 中,tan ∠ACE =AE CE, ∴AE =CE•tan ∠ACE =(6+3)×tan35°≈9×0.70=6.30(米),∴AB =AE ﹣BE≈6.30﹣5.19≈1.1(米),∴吊灯AB 的长度约为1.1米.【点睛】本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,利用锐角三角函数进行解答.27.(1)(3,0)m ,2(,4)m m ;(2)①2231y x =-+,②221595y x x =-++【解析】【分析】(1)令y =0,解关于x 的方程,解方程即可求出x 的值,进而可得点B 的坐标;把抛物线的解析式转化为顶点式,即可得出点D 的坐标;(2)①如图1,过点D 作DH AB ⊥,交BC 于点E ,作DF ⊥y 轴于点F ,则易得点C 的坐标与CF 的长,利用BH 的长和∠B 的正切可求出HE 的长,进而可得DE 的长,由题意和平行线的性质易推得CD DE =,然后可得关于m 的方程,解方程即可求出m 的值,进而可得答案;(3)如图2,过点B 作BK ∥y 轴,过点C 作CK ∥x 轴交BK 于点K ,交DH 于点G ,连接AE ,利用锐角三角函数、抛物线的对称性和等腰三角形的性质可推出1234∠=∠=∠=∠,进而可得AC AE =,然后利用勾股定理可得关于m 的方程,解方程即可求出m ,问题即得解决.【详解】解:(1)令y =0,则22302x mx m -+=+,解得:123,x m x m ==-,∴点B 的坐标为(3,0)m ;∵()2222243y x mx m x m m =-+-++=-,∴点D 的坐标为2(,4)m m ;故答案为:(3,0)m ,2(,4)m m ;(2)①如图1,过点D 作DH AB ⊥于点H ,交BC 于点E ,作DF ⊥y 轴于点F ,则2(0,3)C m ,(,0)A m -,DF=m ,CF =22243m m m -=,∵BC 平分OCD ∠,∴∠BCO =∠BCD ,∵DH ∥OC ,∴∠BCO =∠DEC ,∴∠BCD =∠DEC ,∴CD DE =, ∵23tan 3OC m ABC m OB m∠===,BH =2m , ∴22HE m =,∴222422DE DH HE m m m =-=-=,∵CD DE =,∴22CD DE =,∴2444m m m +=,解得:m =(m =舍去),∴二次函数的关系式为:22313y x x =-++;②如图2,过点B 作BK ∥y 轴,过点C 作CK ∥x 轴交BK 于点K ,交DH 于点G ,连接AE ,∵223tan 1,tan 23DG m BK m m m CG m CK m∠===∠===, ∴tan 1tan 2∠=∠,∴12∠=∠,∵EA=EB ,∴∠3=∠4,又∵23∠∠=,∴1234∠=∠=∠=∠,∵12DCB ∠=∠+∠,34AEC ∠=∠+∠,∴DCB AEC ACE ∠=∠=∠,∴AC AE =,∴2222AC AE EH AH ==+,即2442944m m m m +=+,解得:15m =(15m =-舍去), ∴二次函数的关系式为:2215955y x x =-++.【点睛】本题考查了二次函数的图象与性质、抛物线图象上点的坐标特征、角平分线的性质、等腰三角形的判定和性质、三角形的外角性质、勾股定理、锐角三角函数和一元二次方程的解法等知识,综合性强、难度较大,正确作出辅助线、利用勾股定理构建方程、熟练掌握上述知识是解答的关键.28.(1)△FAG是等腰三角形,理由见解析;(2)成立,理由见解析;(3)BC=523.【解析】【分析】(1)首先根据圆周角定理及垂直的定义得到∠BAD+∠CAD=90°,∠C+∠CAD=90°,从而得到∠BAD=∠C,然后利用等弧对等角等知识得到AF=BF,从而证得FA=FG,判定等腰三角形;(2)成立,同(1)的证明方法即可得答案;(3)由(2)知∠DAC=∠AGB,推出∠BAD=∠ABG,得到F为BG的中点根据直角三角形的性质得到AF=BF=12BG=13,求得AD=AF﹣DF=13﹣5=8,根据勾股定理得到BD=12,AB=ABC=∠ABD,∠BAC=∠ADB=90°可证明△ABC∽△DBA,根据相似三角形的性质即可得到结论.【详解】(1)△FAG等腰三角形;理由如下:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵AE AB=,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(2)成立,理由如下:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵AE AB=,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠AGB=90°,∴∠BAD=∠ABG,∴AF=BF,∵AF=FG,∴BF=GF,即F为BG的中点,∵△BAG为直角三角形,∴AF=BF=12BG=13,∵DF=5,∴AD=AF﹣DF=13﹣5=8,∴在Rt△BDF中,BD12,∴在Rt△BDA中,AB=∵∠ABC=∠ABD,∠BAC=∠ADB=90°,∴△ABC∽△DBA,∴BCBA=ABDB,∴BC=523,∴⊙O的直径BC=523.【点睛】本题考查圆周角定理、相似三角形的判定与性质及勾股定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.29.4m【解析】【分析】由CD∥EF∥AB得可以得到△CDF∽△ABF,△ABG∽△EFG,故CD DFAB BF=,EF FGAB BG=,证DF FGBF BG=,进一步得3437BD BD=++,求出BD,再得1.6312AB=;【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG , ∴CD DF AB BF =,EF FG AB BG=, 又∵CD=EF , ∴DF FG BF BG =, ∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7, ∴3437BD BD =++ ∴BD=9,BF=9+3=12 ∴ 1.6312AB = 解得,AB=6.4m因此,路灯杆AB 的高度6.4m .【点睛】考核知识点:相似三角形的判定和性质.理解相似三角形判定是关键.30.(问题呈现)相等的弧所对的弦相等;同弧所对的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)1;(变式探究)DB =CD +BA ;证明见解析;(实践应用).【解析】【分析】(问题呈现)根据圆的性质即可求解;(理解运用)CD =DB +BA ,即CD =6﹣CD +AB ,即CD =6﹣CD +4,解得:CD =5,即可求解;(变式探究)证明△MAB ≌△MGB (SAS ),则MA =MG ,MC =MG ,又DM ⊥BC ,则DC =DG ,即可求解;(实践应用)已知∠D 1AC =45°,过点D 1作D 1G 1⊥AC 于点G 1,则CG 1′+AB =AG 1,所以AG 1=12(6+8)=7.如图∠D 2AC =45°,同理易得AD 2. 【详解】 (问题呈现)①相等的弧所对的弦相等②同弧所对的圆周角相等③有两组边及其夹角分别对应相等的两个三角形全等故答案为:相等的弧所对的弦相等;同弧所定义的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)CD =DB +BA ,即CD =6﹣CD +AB ,即CD =6﹣CD +4,解得:CD =5,BD=BC﹣CD=6﹣5=1,故答案为:1;(变式探究)DB=CD+BA.证明:在DB上截去BG=BA,连接MA、MB、MC、MG,∵M是弧AC的中点,∴AM=MC,∠MBA=∠MBG.又MB=MB∴△MAB≌△MGB(SAS)∴MA=MG∴MC=MG,又DM⊥BC,∴DC=DG,AB+DC=BG+DG,即DB=CD+BA;(实践应用)如图,BC是圆的直径,所以∠BAC=90°.因为AB=6,圆的半径为5,所以AC=8.已知∠D1AC=45°,过点D1作D1G1⊥AC于点G1,则CG1′+AB=AG1,所以AG1=12(6+8)=7.所以AD1=2.如图∠D2AC=45°,同理易得AD22.所以AD的长为22.【点睛】本题考查全等三角形的判定(SAS)与性质、等腰三角形的性质和圆心角、弦、弧,解题的关键是掌握全等三角形的判定(SAS)与性质、等腰三角形的性质和圆心角、弦、弧.31.5%【解析】【分析】根据题意,列出方程即可求出x的值.【详解】根据题意,得2(12)200(12)(14)100(1)(22001100)(1 4.4)x x x x x +⨯+++⨯+=⨯+⨯+整理,得2200x x-=解这个方程,得15%x=,2x=(不合题意,舍去)所以x的值是5%.【点睛】此题考查的是一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.32.(1)CBP∆是等腰三角形,理由见解析;(2)BC的长为8;(3)3tan2APO∠=.【解析】【分析】(1)首先连接OB,根据等腰三角形的性质由OA=OB得A OBA∠=∠,由点C在过点B的切线上,且OP OA⊥,根据等角的余角相等,易证得∠PBC=∠CPB,即可证得△CBP是等腰三角形;(2)设BC=x,则PC=x,在Rt△OBC中,根据勾股定理得到2226(2)x x+=+,然后解方程即可;(3)作CD⊥BP于D,由等腰三角形三线合一的性质得1252PD BD PB===,由1225SS=,通过证得~AOP CDP∆∆,得出2245AOPPCDS OAS CD∆∆==即可求得CD,然后解直角三角形即可求得.【详解】(1)CBP∆是等腰三角形,理由:连接OB,OA OB=A OBA∴∠=∠⊙O与BC相切与点B,OB BC∴⊥,即90OBC∠=,90OBA PBC∠+∠=OP OA⊥90APO A∴∠+∠=,APO CPB∠=∠90CPB A∴∠+∠=CPB PBC∴∠=∠CB CP∴=CBP∴∆是等腰三角形(2)设BC x=,则PC x=,在Rt OBC∆中,6OB OA==,2OC CP OP x=+=+,222OB BC OC+=,2226(2)x x∴+=+,解得8x=,即BC的长为8;(3)解:作CD BP⊥于D,PC CB=1252PD BD PB∴===90PDC AOP∠=∠=,AOP CPD∠=∠,~AOP CDP∴∆∆,1225SS=,2245AOPPCDS OAS CD∆∆∴==,6OA=,35CD∴=3tan tan2APO CPB∴∠=∠=.【点睛】本题考查了切线的性质、勾股定理、等腰三角形的判定与性质以及三角形相似的判定和性质.此题难度适中,注意掌握辅助线的作法及数形结合思想的应用.。

人教版九年级上册数学期末考试试卷含答案

人教版九年级上册数学期末考试试卷含答案

人教版九年级上册数学期末考试试题一、单选题1.下列图形,可以看作中心对称图形的是()A .B .C .D .2.已知点P (-3,2)是反比例函数图象上的一点,则该反比例函数的表达式为()A .3y x=B .5y x=-C .6y x=D .6y x=-3.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A .12B .13C .310D .154.抛物线y =(x -2)2+1的顶点坐标是()A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)5.如图,△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于()A .30°B .40°C .50°D .60°6.在平面直角坐标系xOy 中,A 为双曲线6y x=上一点,点B 的坐标为(4,0).若 AOB 的面积为6,则点A 的坐标为()A .(﹣4,32)B .(4,32-)C .(﹣2,3)或(2,﹣3)D .(﹣3,2)或(3,﹣2)7.如图,⊙O 的半径为3,点P 是弦AB 延长线上的一点,连接OP ,若4OP =,30P ∠=︒,则弦AB 的长为().A 5B .23C .25D .28.已知二次函数()20y ax bx c a =++≠的图像如图所示,有下列5个结论:①0abc >;②b a c <+;③420a b c ++>;④23c b >;⑤()()1a b m am b m +>+≠,其中正确的结论有()A .2个B .3个C .4个D .5个9.如图,二次函数y =ax 2+bx+c 与反比例函数y =kx的图象相交于点A(﹣1,y 1)、B(1,y 2)、C(3,y 3)三个点,则不等式ax 2+bx+c >kx的解集是()A .﹣1<x <0或1<x <3B .x <﹣1或1<x <3C .﹣1<x <0或x >3D .﹣1<x <0或0<x <110.如图,直角三角形的直角顶点在坐标原点,∠OAB =30°,若点A 在反比例函数6(0)y x x =>的图象上,则经过点B 的反比例函数ky x=中k 的值是()A .﹣2B .﹣4C .﹣3D .﹣1二、填空题11.若点(),1a 与()2b -,关于原点对称,则b a =_______.12.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.13.正比例函数11y k x =和反比例函数22y k x=交于A 、B 两点.若A 点的坐标为(1,2)则B 点的坐标为_______________.14.如图,弦AB 的长等于⊙O 的半径,那么弦AB 所对的圆周角的度数________.15.如图, ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为⊙O 的直径,CD =6,OA 交BC 于点E ,则AD 的长度是___.16.如图所示,△ABC 是⊙O 的内接三角形,若∠BAC 与∠BOC 互补,则∠BOC 的度数为_____.17.如图所示,在平面直角坐标系中,A (4,0),B (0,2),AC 由AB 绕点A 顺时针旋转90°而得,则AC 所在直线的解析式是_____.三、解答题18.为了提高足球基本功,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次.(1)请用树状图列举出三次传球的所有可能情况;(2)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?19.如图,在平面直角坐标系xOy 中,正比例函数2y x =与反比例函数ky x=的图象交于A ,B 两点,A 点的横坐标为2,AC ⊥x 轴于点C ,连接BC(1)求反比例函数的解析式;(2)若点P 是反比例函数ky x=图象上的一点,且满足△OPC 与△ABC 的面积相等,请直接写出点P 的坐标.20.如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.21.某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个,设每个定价增加x元.(1)商店若想获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(2)用含x的代数式表示商店获得的利润W元,并计算商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少元?22.如图,一次函数y=﹣x+4的图象与反比例kyx(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)①在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;②在x轴上找一点M,使|MA﹣MB|的值为最大,直接写出M点的坐标.23.如图,抛物线L:y=12x2﹣54x﹣3与x轴正半轴交于点A,与y轴交于点B.(1)求直线AB的解析式及抛物线顶点坐标;(2)如图1,点P为第四象限抛物线上一动点,过点P作PC⊥x轴,垂足为C,PC交AB于点D ,求PD+35AD 的最大值,并求出此时点P 的坐标;(3)如图2,将抛物线L :y =12x 2﹣54x ﹣3向右平移得到抛物线L′,直线AB 与抛物线L′交于M ,N 两点,若点A 是线段MN 的中点,求抛物线L′的解析式.24.如图,在Rt ABC 中,∠ABC =90°,P 是斜边AC 上一个动点,以BP 为直径作⊙O 交BC 于点D ,与AC 的另一个交点E ,连接DE 、DP .点F 为线段CP 上一点,连接DF ,∠FDP =∠DEP .(1)求证:DF 是⊙O 的切线;(2)当 DP EP =时,求证AB =AP ;(3)当AB =15,BC =20时,是否存在点P ,使得 BDE 是以BD 为腰的等腰三角形,若存在,求出所有符合条件的CP 的长;若不存在,请说明理由.25.解方程:2320x x --=.26.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,//OC BD ,交AD 于点E ,连结BC .(1)求证:AE =ED ;(2)若AB =6,∠CBD =30°,求图中阴影部分的面积.参考答案1.B 2.D 3.A 4.A 5.C 6.C 7.C 8.A 9.A 10.A 11.1212.22()1y x =-+13.(1,2)--14.30°或150°15.16.120°17.y =2x ﹣818.(1)见解析;(2)球回到乙脚下的概率大【详解】(1)根据题意画出树状图如下:由树形图可知三次传球有8种等可能结果;(2)由(1)可知三次传球后,球回到甲脚下的概率=28=14;传到乙脚下的概率=38,所以球回到乙脚下的概率大.【点睛】考点:列表法与树状图法.19.(1)8y x=;(2)(2)()1,8P 或()1,8P --.【分析】(1).首先求出点A 的坐标,然后将点A 的坐标代入反比例函数解析式求出解析式;(2).首先求出△ABC 的面积,然后根据面积相等求出点P 的坐标.【详解】解(1).将x=2代入y=2x 中,得y=4.∴点A 坐标为(2,4)∵点A 在反比例函数y=kx的图象上,∴k=2×4=8∴反比例函数的解析式为y=8x (2).()2,4,A B 关于原点对称,()2,4,B ∴--()()114228,22ABC A B S AC x x ∴=-=⨯⨯+= 设8,,P x x ⎛⎫⎪⎝⎭188,2OPC P S OC y x∴=== 1,x ∴=±经检验:1x =±是原方程的解且符合题意,∴P(1,8)或P(-1,-8)20.(1)证明详见解析;(2)163.【分析】(1)过点D 作DF ⊥BC 于点F ,根据角平分线的性质得到AD=DF .根据切线的判定定理即可得到结论;(2)根据切线的性质得到AB=FB .根据和勾股定理列方程即可得到结论.【详解】(1)证明:过点D 作DF ⊥BC 于点F ,∵∠BAD=90°,BD 平分∠ABC ,∴AD=DF .∵AD 是⊙D 的半径,DF ⊥BC ,∴BC 是⊙D 的切线;(2)解:∵∠BAC=90°.∴AB 与⊙D 相切,∵BC 是⊙D 的切线,∴AB=FB .∵AB=5,BC=13,∴CF=13-5=8,AC=12.在Rt △DFC 中,设DF=DE=r ,则()226412r r +=-,解得:r=103.∴CE=163.【点睛】题目主要考查切线的判定、圆周角定理、角平分线的性质定理,勾股定理解三角形,一元二次方程的应用等,理解题意,综合运用这些知识点是解题关键.21.(1)每个定价为70元,应进货200个;(2)W =﹣10(x ﹣15)2+6250,每个定价为65元时获得最大利润,可获得的最大利润是6250元【分析】(1)总利润=每个的利润×销售量,销售量为(400﹣10x )个,列方程求解,根据题意取舍;(2)利用函数的性质求最值.【详解】解:(1)根据题意得:(50﹣40+x )(400﹣10x )=6000,解得:x 1=10,x 2=20,当x =10时,400﹣10x =400﹣100=300,当x =20时,400﹣10x =400﹣200=200,要使进货量较少,则每个定价为50+20=70元,应进货200个.答:每个定价为70元,应进货200个.(2)根据题意得:W =(50﹣40+x )(400﹣10x )=﹣10x 2+300x+4000=﹣10(x ﹣15)2+6250,当x =15时,y 有最大值为6250.所以每个定价为65元时获得最大利润,可获得的最大利润是6250元.【点睛】一元二次方程和二次函数在实际生活中的应用是本题的考点,根据每个小家电利润×销售的个数=总利润列出方程是解题的关键.22.(1)3y x=,B(3,1);(2)①P(52,0);②M(4,0)【分析】(1)利用待定系数法即可解决问题;(2)作点B 关于x 轴的对称点D ,连接AD ,交x 轴于点P ,此时PA+PB 的值最小;(3)直线y =﹣x+4与x 轴的交点即为M 点,此时|MA ﹣MB|的值为最大,令y =0,求得x 的值,即可求得M 的坐标.【详解】解:(1)把点A (1,a )代入一次函数y =﹣x+4,得a =3,∴A (1,3),把点A (1,3)代入反比例y =kx,得k =3,∴反比例函数的表达式y =3x,联立43y x y x =-+⎧⎪⎨=⎪⎩,解得:13x y =⎧⎨=⎩或31x y =⎧⎨=⎩,故B (3,1).(2)①作点B 关于x 轴的对称点D ,连接AD ,交x 轴于点P ,此时PA+PB 的值最小∴D (3,﹣1)设直线AD 的解析式为y =mx+n ,则331m n m n +=⎧⎨+=-⎩,解得25m n =-⎧⎨=⎩,∴直线AD 的解析式为y =﹣2x+5,令y =0,则x =52,∴P 点坐标为(52,0);②直线y =﹣x+4与x 轴的交点即为M 点,此时|MA ﹣MB|的值为最大,令y =0,则x =4,∴M 点的坐标为(4,0).【点睛】本题考查反比例函数的性质、一次函数的性质等知识,解题的关键是熟练掌握待定系数法解决问题,学会利用轴对称解决最短问题.23.(1)AB 解析式为y=34x-3,抛物线顶点坐标为125)2(413-,;(2)点P 的坐标为125)2(413-,,PD+35AD 的最大值为12132;(3)21133242y x x =-+.【分析】(1)先求出点A ,点B 坐标,利用待定系数法可求解析式,通过配方法可求顶点坐标;(2)CD=ADsin ∠BAO=35AD ,则PD+35AD=PD+DC=PC 为最大,即可求解;(3)设点M (x 1,y 1),点N (x 2,y 2),则x 1+x 2=2(m+34),而点A 是MN 的中点,故x 1+x 2=8,进而求解.【详解】解:(1)∵抛物线L :y =12x 2﹣54x ﹣3与x 轴正半轴交于点A ,与y 轴交于点B ,令0y =,则21530,24x x --=解得:123,4,2x x =-=令0,x =则3,y =-∴点A (4,0),点B (0,-3),设直线AB 解析式为:y=kx-3,∴0=4k-3,∴k=34,∴直线AB 解析式为:y=34x-3①,∵y =12x 2﹣54x ﹣3=2152412132x --)(,∴抛物线顶点坐标为125)2(413-;(2)∵点A (4,0),点B (0,-3),∴OA=4,OB=3,∴5==,则sin ∠BAO=35OBAB =,则CD=ADsin ∠BAO=35AD ,则PD+35AD=PD+DC=PC 为最大,当点P 为抛物线顶点时,PC 最大,故点P 的坐标为125)2(413-,则PD+35AD 的最大值=PC 为最大,最大值为12132;(3)设平移后的抛物线L'解析式为21121()232y x m =--②,联立①②并整理得:223252()0416x m x m -++-=,设点M (x 1,y 1),点N (x 2,y 2),∵直线AB 与抛物线L'交于M ,N 两点,∴x 1,x 2是方程223252(0416x m x m -++-=的两根,∴x 1+x 2=2(3)4m +,∵点A 是MN 的中点,∴x 1+x 2=8,∴32()84m +=,∴m=134,∴平移后的抛物线L'解析式为221131211133()2432242y x x =--=-+.24.(1)见解析(2)见解析(3)存在,252或10【分析】(1)利用圆周角定理证明∠FDP=∠DBP ,∠DBP+∠OPD=90°,再证明OD ⊥DF ,即可证明结论;(2)先证明∠CBP=∠EBP ,易证∠C=∠ABE ,由∠APB=∠CBP+∠C ,∠ABP=∠EBP+∠ABE ,得出∠APB=∠ABP ,即可得出结论;(3)先证明△DCP ∽△BCA ,利用相似三角形的性质得到CP =54CD ,再分当BD =BE ,BD =ED 两种情况讨论,即可求解.(1)证明:连接OD ,∵ DPDP =,∴∠DBP =∠DEP ,∵∠FDP =∠DEP ,∴∠FDP=∠DBP ,∵BP 是⊙O 的直径,∴∠BDP=90°,∴∠DBP+∠OPD=90°,∵OD=OP ,∴∠OPD=∠ODP ,∴∠FDP+∠ODP=90°,∴OD ⊥DF ,∴DF是⊙O的切线;(2)证明:连接BE,如图所示:∵DP EP=,∴∠CBP=∠EBP,∵∠ABE+∠A=90°,∠C+∠A=90°,∴∠C=∠ABE,∵∠APB=∠CBP+∠C,∠ABP=∠EBP+∠ABE,∴∠APB=∠ABP,∴AP=AB;(3)解:由AB=15,BC=20,由勾股定理得:AC25,∵12AB•BC=12AC•BE,即12×15×20=12×25×BE,∴BE=12,∵BP是直径,∴∠PDB=90°,∵∠ABC=90°,∴PD∥AB,∴△DCP∽△BCA,∴CPAC=CDBC,∴CP=AC CDBC⋅=2520CD=54CD,△BDE是等腰三角形,分两种情况:①当BD =BE 时,BD =BE =12,∴CD =BC ﹣BD =20﹣12=8,∴CP =54CD =54×8=10;②当BD =ED 时,可知点D 是Rt △CBE 斜边的中线,∴CD =12BC =10,∴CP =54CD =54×10=252;综上所述,△BDE 是等腰三角形,符合条件的CP 的长为252或10.25.123x =-,21x =【分析】选用因式分解法求解.【详解】(32)(1)0x x +-= ,123x ∴=-,21x =.26.(1)证明见解析;(2)3π.【分析】(1)先根据圆的性质可得OA OB =,再根据三角形的中位线定理即可得证;(2)如图(见解析),先根据垂径定理、圆周角定理可得90,30ADB ABC CBD ∠=︒∠=∠=︒,从而可得60,30ABD BAD ∠=︒∠=︒,再根据直角三角形的性质、三角形的面积公式可得AOD S = 120AOD ∠=︒,最后根据图中阴影部分的面积等于扇形OAD 面积减去AOD △面积即可得.【详解】(1)∵AB 是O 的直径,∴OA OB =,即点O 是AB 的中点,∵//OC BD ,∴OE 是ABD △的中位线,∴点E 是AD 的中点,∴AE ED =;(2)如图,连接OD ,∵AB 是O 的直径,6AB =,90ADB ∴∠=︒,132OA OD AB ===,∵//OC BD ,90AEO ADB ∴∠=∠=︒,即OC AD ⊥,又OC 是O 的半径,AC CD ∴=,30ABC CBD ∴∠=∠=︒,60ABD ABC CBD ∴∠=∠+∠=︒,9030BAD ABD ∠=︒-∠=︒,在Rt ABD △中,13,2BD AB AD ====,OD 是Rt ABD △的斜边AB 上的中线,111222AOD Rt ABD S S BD AD ∴==⨯⋅= ,又60ABD ∠=︒ ,2120AOD ABD ∴∠=∠=︒,则图中阴影部分的面积为212033360AOD OAD S S ππ⨯-== 扇形.。

内蒙古通辽市2020年新人教版九年级上期末数学试卷含答案解析

内蒙古通辽市2020年新人教版九年级上期末数学试卷含答案解析

2020-2021学年内蒙古通辽市九年级(上)期末数学试卷一、选择题.(请将唯一正确的答案的选项填涂在答题卡上,3分&#215;10)1.﹣6的相反数是()A.6 B.﹣6 C.﹣D.2.通辽市元旦白天气温是﹣3℃,到午夜下降了14℃,那么午夜的气温是() A.17℃ B.﹣17℃C.﹣11℃D.11℃3.下列成语所描述的事件是随机事件的是()A.水中捞月 B.空中楼阁 C.守株待兔 D.瓮中捉鳖4.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.5.方程x2=x的解为()A.x=﹣1或x=0 B.x=0 C.x=1 D.x=1或x=06.已知两圆的半径分别为一元二次方程x2﹣7x+12=0的二根,圆心距为1,则两圆位置关系为()A.内切 B.外切 C.相交 D.相离7.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.2020B.25°C.30°D.40°8.下列事件是必然事件的是()A.有两边及一角对应相等的两三角形全等B.若a2=b2则有a=bC.方程x2﹣x+1=0有两个不等实根D.圆的切线垂直于过切点的半径9.某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当﹣1<x<5时,y<0.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(请将正确答案填在答题卡相应题号后.每小题3分,共21分)11.6月5日是世界环境日,其主题是“海洋存亡,匹夫有责”,目前全球海洋总面积约为36100万平方公里.用科学记数法表示为平方公里.12.某产品出现次品的概率为0.05,任意抽取这种产品600件,那么大约有件是次品.13.若n(n≠0)是关于x的方程x2+mx+3n=0的一个根,则m+n的值是.14.已知点P(﹣2,3)关于原点的对称点为M(a,b),则a+b=.15.如图,已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是.16.从下面的4张牌中,任意抽取两张.其点数和是奇数的概率是.17.将除去零以外的自然数按以下规律排列(提示:观察第一列的奇数行的数的规律和第一行的偶数列的数的规律)判断2020所在的位置是.三.解答题(本题共9小题,共69分.请将正确答案写在答题卡相应位置上)18.解方程:x(x﹣2)+x﹣2=0.19.求抛物线y=x2﹣x﹣2与x轴的交点坐标.2020图所示的网格图中,每小格都是边长为1的正方形,△ABC的三个顶点都在格点上,在建立直角坐标系后,点C的坐标(﹣1,2).(1)画出△ABC绕点D(0,5)逆时针旋转90°后的△A1B1C1;并标出A1,B1,C1的坐标.(2)画出△ABC关于原点O的中心对称图形△A2B2C2,并标出A2,B2,C2的坐标.21.已知抛物线的顶点坐标是(﹣1,4),且过点(1,0),求该抛物线的解析式.22.在一个口袋里装着白、红、黑三种颜色的小球(除颜色外形状大小完全相同),其中白球3个、红球2个、黑球1个.(1)随机从袋中取出一个球,求取出的球是黑球的概率;(2)若取出的第一只球是红球,不将它放回袋里,从袋中余下的球中再随机地取出1个,这时取出的球是黑球的概率是多少?(3)若取出一个球,将它放回袋中,从袋中再随机地取出一个球,两次取出的球都是白球的概率是多少?(用列表法或树状图计算)23.如图,四边形ABCD内接于⊙O,AD∥BC,求证:AB=CD.24.某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出2020克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?25.如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D 在以AE为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)已知∠B=30°,CD=4,求线段AB的长.26.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.。

九年级上册通辽数学期末试卷测试卷(含答案解析)

九年级上册通辽数学期末试卷测试卷(含答案解析)

九年级上册通辽数学期末试卷测试卷(含答案解析)一、选择题1.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O 的位置关系是( )A .点P 在O 上B .点P 在O 外C .点P 在O 内D .无法确定2.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:33.如图,点A ,B ,C 在⊙O 上,∠A=36°,∠C=28°,则∠B=( )A .100°B .72°C .64°D .36°4.如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(14,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB ⊥AC 交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .14-≤b ≤1B .54-≤b ≤1C .94-≤b ≤12D .94-≤b ≤1 5.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,AB AD=2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC =B .2EC AC = C .12DE BC =D .2AC AE= 6.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是( )A .23B .1.15C .11.5D .12.5 7.已知⊙O 的直径为4,点O 到直线l 的距离为2,则直线l 与⊙O 的位置关系是 A .相交 B .相切 C .相离 D .无法判断8.抛物线2(1)2y x =-+的顶点坐标是( ) A .(﹣1,2) B .(﹣1,﹣2) C .(1,﹣2)D .(1,2) 9.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .众数C .平均数D .中位数10.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根 11.用配方法解方程2250x x --=时,原方程应变形为( ) A .2(1)6x -=B .2(1)6x +=C .2(1)9x +=D .2(1)9x -= 12.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x二、填空题13.若53x y x +=,则y x=______. 14.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.15.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.16.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.17.如图,O 半径为2,正方形ABCD 内接于O ,点E 在ADC 上运动,连接BE ,作AF ⊥BE ,垂足为F ,连接CF .则CF 长的最小值为________.18.若m 是关于x 的方程x 2-2x-3=0的解,则代数式4m-2m 2+2的值是______.19.把函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.20.已知关于x 的一元二次方程(m ﹣1)x 2+x+1=0有实数根,则m 的取值范围是 .21.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.22.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________. 23.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.24.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________ 三、解答题25.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,D 、E 分别是边BC 、AC 上的两个动点,且DE =4,P 是DE 的中点,连接PA ,PB ,则PA +14PB 的最小值为_____.26.已知二次函数y=-x2+bx+c(b,c为常数)的图象经过点(2,3),(3,0).(1)则b=,c=;(2)该二次函数图象与y轴的交点坐标为,顶点坐标为;(3)在所给坐标系中画出该二次函数的图象;(4)根据图象,当-3<x<2时,y的取值范围是.27.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与边BC交于点D,与边AC交于点E,连接AD,且AD平分∠BAC.(1)试判断BC与⊙O的位置关系,并说明理由;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).28.如图,已知二次函数y=ax2+4ax+c(a≠0)的图象交x轴于A、B两点(A在B的左侧),交y轴于点C.一次函数y=﹣12x+b的图象经过点A,与y轴交于点D(0,﹣3),与这个二次函数的图象的另一个交点为E,且AD:DE=3:2.(1)求这个二次函数的表达式;(2)若点M 为x 轴上一点,求MD +55MA 的最小值.29.如图,二次函数22y ax ax c =-+ (a < 0) 与 x 轴交于 A 、C 两点,与 y 轴交于点 B ,P 为 抛物线的顶点,连接 AB ,已知 OA :OC=1:3.(1)求 A 、C 两点坐标;(2)过点 B 作 BD ∥x 轴交抛物线于 D ,过点 P 作 PE ∥AB 交 x 轴于 E ,连接 DE , ①求 E 坐标;②若 tan ∠BPM=25,求抛物线的解析式.30.已知二次函数y =ax 2+bx ﹣16的图象经过点(﹣2,﹣40)和点(6,8).(1)求这个二次函数图象与x 轴的交点坐标;(2)当y >0时,直接写出自变量x 的取值范围.31.如图,E 是正方形ABCD 的CD 边上的一点,BF ⊥AE 于F ,(1)求证:△ADE ∽△BFA ;(2)若正方形ABCD 的边长为2,E 为CD 的中点,求△BFA 的面积,32.如图,O 的半径为23AB 是O 的直径,F 是O 上一点,连接FO 、FB .C 为劣弧BF 的中点,过点C 作CD AB ⊥,垂足为D ,CD 交FB 于点E ,//CG FB ,交AB 的延长线于点G .(1)求证:CG 是O 的切线; (2)连接BC ,若//BC OF ,如图2.①求CE 的长; ②图中阴影部分的面积等于_________.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断.【详解】解:∵()8,6P -,∴228610+= , ∵O 的直径为10,∴r=5,∵OP>5,∴点P 在O 外.故选:B.【点睛】本题考查点和直线的位置关系,当d>r 时点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断. 2.D解析:D【解析】【分析】根据两角对应相等证明△CAD∽△CBA,由对应边成比例得出线段之间的倍数关系即可求解.【详解】解:∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA,∴12 CD CACA CB,∴CA=2CD,CB=2CA,∴CB=4CD,∴BD=3CD,∴13 CDBD.故选:D.【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键.3.C解析:C【解析】【分析】【详解】试题分析:设AC和OB交于点D,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:∠O=2∠A=72°,根据∠C=28°可得:∠ODC=80°,则∠ADB=80°,则∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本题选C.4.B解析:B【解析】【分析】延长NM交y轴于P点,则MN⊥y轴.连接CN.证明△PAB∽△NCA,得出PB PA NA NC,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,代入整理得到y=3x﹣x2=﹣(x﹣32)2+94,根据二次函数的性质以及14≤x≤3,求出y的最大与最小值,进而求出b的取值范围. 【详解】 解:如图,延长NM 交y 轴于P点,则MN ⊥y 轴.连接CN .在△PAB 与△NCA 中,9090APB CNA PAB NCA CAN ∠∠︒⎧⎨∠∠︒-∠⎩==== , ∴△PAB ∽△NCA ,∴PB PA NA NC=, 设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y , ∴31y x x =-, ∴y =3x ﹣x 2=﹣(x ﹣32)2+94, ∵﹣1<0,14≤x≤3, ∴x =32时,y 有最大值94,此时b =1﹣94=﹣54, x =3时,y 有最小值0,此时b =1,∴b 的取值范围是﹣54≤b≤1. 故选:B .【点睛】本题考查了相似三角形的判定与性质,二次函数的性质,得出y 与x 之间的函数解析式是解题的关键.5.D解析:D【解析】【分析】只要证明AC AB AE AD=,即可解决问题. 【详解】解:A.12AE EC = ,可得AE :AC=1:1,与已知2AB AD =不成比例,故不能判定 B. 2EC AC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2AB AD =,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定;12DE BC = D. 2AC AB AE AD==,可得DE//BC , 故选D.【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.C解析:C【解析】【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C .【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..7.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O 的直径为4,∴⊙O 的半径为2,∵圆心O 到直线l 的距离是2,∴根据圆心距与半径之间的数量关系可知直线l 与⊙O 的位置关系是相切.故选:B .【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r ,圆心到直线的距离是d ,当d =r 时,直线和圆相切,当d >r 时,直线和圆相离,当d <r 时,直线和圆相交.8.D解析:D【解析】【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).故选D .9.D解析:D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D .【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.10.A解析:A【解析】【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根,1+8﹣c =0,解得c =9,∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.11.A解析:A【解析】【分析】方程常数项移到右边,两边加上1变形即可得到结果.【详解】方程移项得:x 2−2x =5,配方得:x 2−2x +1=6,即(x−1)2=6.故选:A .【点睛】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.12.A解析:A【解析】【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线23y x =先向左平移1个单位得到解析式:()231y x =+,再向上平移2个单位得到抛物线的解析式为:()2312y x =++.故选:A .【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减. 二、填空题13.【解析】【分析】将已知比例式变形化成等积式,整理出x 与y 的倍数关系,再化成比例式即可得.【详解】解:∵,∴3x+3y=5x,∴2x=3y,∴.故答案为:.【点睛】本题考查比例的 解析:23【解析】【分析】将已知比例式变形化成等积式,整理出x 与y 的倍数关系,再化成比例式即可得.【详解】 解:∵53x y x +=, ∴3x+3y=5x,∴2x=3y, ∴23y x =. 故答案为:23. 【点睛】本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换.14.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.15.【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,解析:4 9【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是49,故答案为:49.【点睛】此题考查几何概率,解题关键在于掌握运算法则.16.【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P的轨迹是以AB为弦,圆周角为120°的圆弧2【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,AB===PAB PBC∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P的轨迹是以AB为弦,圆周角为120°的圆弧上,如图所示,当点C、O、P在同一直线上时,CP最小,构建圆,利用勾股定理,即可得解.【详解】 ∵90ACB ∠=︒,3AC =,3BC =, ∴()22223323AB AC BC =+=+=∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴()2222237OC OB BC =+=+= ∴72CP OC OP =-=-故答案为72-.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.17.【解析】【分析】先求得正方形的边长,取AB 的中点G ,连接GF ,CG ,当点C 、F 、G 在同一直线上时,根据两点之间线段最短,则CF 有最小值,此时即可求得这个值.【详解】如图,连接OA 、OD ,取51【解析】【分析】先求得正方形的边长,取AB 的中点G ,连接GF ,CG ,当点C 、F 、G 在同一直线上时,根据两点之间线段最短,则CF 有最小值,此时即可求得这个值.【详解】如图,连接OA 、OD ,取AB 的中点G ,连接GF ,CG ,∵ABCD 是圆内接正方形,2OA OD ==, ∴90AOD ∠=︒,∴()222222AD OA OD =+==, ∵AF ⊥BE ,∴90AFB ∠=︒,∴112GF AB ==, 2222125CG BG BC =+=+=,当点C 、F 、G 在同一直线上时,CF 有最小值,如下图:51,51.【点睛】本题主要考查了正方形的性质,勾股定理,直角三角形斜边上的中线的性质,根据两点之间线段最短确定CF 的最小值是解决本题的关键.18.-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2解析:-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2-2x-3=0的解,∴m2-2m-3=0,∴m2-2m=3,∴4m-2m2+2= -2(m2-2m)+2= -2×3+2= -4.故答案为:-4.【点睛】本题考查了利用一元二次方程的解的含义在代数式求值中的应用,明确一元二次方程的解的含义并将要求的代数式正确变形是解题的关键.19.y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达解析:y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达式是y=2(x﹣3)2﹣2,故答案为y=2(x﹣3)2﹣2.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.20.m≤且m≠1.【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=即1-4(-1)(m-1)≥0解得m≥,又一元二次方程所以m-1≠0综上m≥且m≠1.解析:m≤54且m≠1. 【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=240b ac -≥即1-4(-1)(m-1)≥0解得m≥34,又一元二次方程所以m-1≠0综上m≥34且m≠1. 21.2【解析】【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3, =-5∴-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠解析:2【解析】【分析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12cx xa•=是解答本题的关键.22.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.23.240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000c解析:240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x ,解得x =24000,24000cm =240m .故答案为240m .【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.24.【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图解析:18b -<<【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.【详解】解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0), 由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线n 过点B (4,0)与新图象有三个交点, 当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,当直线处于直线m 的位置:联立y=-2x+b 与y=x 2-4x 并整理:x 2-2x-b=0,则△=4+4b=0,解得:b=-1;当直线过点B 时,将点B 的坐标代入直线表达式得:0=-8+b ,解得:b=8,故-1<b <8;故答案为:-1<b <8.【点睛】本题考查的是二次函数综合运用,涉及到函数与x 轴交点、几何变换、一次函数基本知识等内容,本题的关键是确定点A、B两个临界点,进而求解.三、解答题25.1452【解析】【分析】连接PC,则PC=12DE=2, 在CB上截取CM=0.25,得出△CPM∽△CBP,即可得出结果.【详解】解:连接PC,则PC=12DE=2,∴P在以C为圆心,2为半径的圆弧上运动,在CB上截取CM=0.25,连接MP,∴0.25121,2444 CM CPCP CB====,∴CM CP CP CB=,∵∠MCP=∠PCB, ∴△CPM∽△CBP,∴PM=14 PB,∴PA+14PB=PA+PM,∴当P、M、A共线时,PA+14PB最小,即221450.25+6=2.【点睛】本题考查了最短路径问题,相似三角形的判定与性质,正确做出辅助线是解题的关键. 26.(1)b=2,c=3;(2)(0,3),(1,4)(3)见解析;(4)-12<y≤4【解析】【分析】(1)将点(2,3),(3,0)的坐标直接代入y=-x2+bx+c即可;(2)由(1)可得解析式,将二次函数的解析式华为顶点式即可;(3)根据二次函数的定点、对称轴及所过的点画出图象即可;(4)直接由图象可得出y 的取值范围.【详解】(1)解:把点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 得3=-4+2b+c 0=-9+3b+c ⎧⎨⎩,解得23b c =⎧⎨=⎩, 故答案为:b=2,c=3;(2)解:令x=0,c=3, 二次函数图像与y 轴的交点坐标为则(0,3),二次函数解析式为y=y =-x 2+2x +3=-(x-1)²+4,则顶点坐标为(1,4).(3)解:如图所示…(4)解:根据图像,当-3<x <2时,y 的取值范围是:-12<y ≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象与性质.27.(1)BC 与⊙O 相切,理由见解析;(2)23π. 【解析】试题分析:(1)连接OD ,推出OD BC ⊥,根据切线的判定推出即可;(2)连接,DE OE ,求出阴影部分的面积=扇形EOD 的面积,求出扇形的面积即可. 试题解析:(1)BC 与O 相切,理由:连接OD ,∵AD 平分∠BAC ,∴∠BAD =∠DAC ,∵AO =DO ,∴∠BAD =∠ADO ,∴∠CAD =∠ADO ,//AC OD ∴,90ACD ∠=,∴OD ⊥BC ,∴BC 与O 相切;(2)连接OE ,ED ,60BAC OE OA ∠==,,∴△OAE 为等边三角形,60AOE ∴∠=,30ADE ,∴∠= 又1302OAD BAC ∠=∠=, ADE OAD ∴∠=∠,//ED AO ∴,AED AOD S S ∴=,∴阴影部分的面积=S 扇形ODE 60π42π.3603⨯⨯== 28.(1)25552443y x x =--+;(2125. 【解析】【分析】(1)先把D 点坐标代入y =﹣12x +b 中求得b ,则一次函数解析式为y =﹣12x ﹣3,于是可确定A (﹣6,0),作EF ⊥x 轴于F ,如图,利用平行线分线段成比例求出OF =4,接着利用一次函数解析式确定E 点坐标为(4,﹣5),然后利用待定系数法求抛物线解析式; (2)作MH ⊥AD 于H ,作D 点关于x 轴的对称点D ′,如图,则D ′(0,3),利用勾股定理得到AD =Rt △AMH ∽Rt △ADO ,利用相似比得到MHAM ,加上MD =MD ′,MDMA =MD ′+MH ,利用两点之间线段最短得到当点M 、H 、D ′共线时,MD的值最小,然后证明Rt △DHD ′∽Rt △DOA ,利用相似比求出D ′H 即可. 【详解】解:(1)把D (0,﹣3)代入y =﹣12x +b 得b =﹣3, ∴一次函数解析式为y =﹣12x ﹣3, 当y =0时,﹣12x ﹣3=0,解得x =﹣6,则A (﹣6,0), 作EF ⊥x 轴于F ,如图,∵OD ∥EF , ∴AO OF =AD DE =32, ∴OF =23OA =4, ∴E 点的横坐标为4, 当x =4时,y =﹣12x ﹣3=﹣5, ∴E 点坐标为(4,﹣5),把A (﹣6,0),E (4,﹣5)代入y =ax 2+4ax +c 得3624016165a a c a a c -+=⎧⎨++=-⎩,解得52453a c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线解析式为25552443y x x =--+; (2)作MH ⊥AD 于H ,作D 点关于x 轴的对称点D ′,如图,则D ′(0,3),在Rt △OAD 中,AD∵∠MAH =∠DAO ,∴Rt △AMH ∽Rt △ADO , ∴AM AD =MH OD ,即35=3MH , ∴MH =5AM , ∵MD =MD ′, ∴MD +5MA =MD ′+MH , 当点M 、H 、D ′共线时,MD +5MA =MD ′+MH =D ′H ,此时MD +5MA 的值最小, ∵∠D ′DH =∠ADO ,∴Rt △DHD ′∽Rt △DOA ,∴D H OA '=DD DA ',即6D H '=35,解得D ′H =1255, ∴MD +5MA 的最小值为1255.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质、相似三角形的判定与性质及数形结合能力.29.(1)A (-1,0),C (3,0);(2)① E (-13,0);②原函数解析式为:2515522y x x =-++. 【解析】【分析】(1)由二次函数的解析式可求出对称轴为x=1,过点P 作PE ⊥x 轴于点E,所以设A (-m ,0),C (3m ,0),结合对称轴即可求出结果;(2) ①过点P 作PM ⊥x 轴于点M ,连接PE ,DE ,先证明△ABO △EPM 得到AO EM OB PM =,找出OE=a c-,再根据A (-1,0)代入解析式得:3a+c=0,c=-3a ,即可求出OE 的长,则坐标即可找到;②设PM 交BD 于点N ;根据点P (1,c-a ),BN ‖AC ,PM ⊥x 轴表示出PN=-a ,再由tan ∠BPM=25PN BN =求出a ,结合(1)知道c ,即可知道函数解析式. 【详解】 (1)∵二次函数为:22y ax ax c =-+(a<0), ∴对称轴为2122b a x a a-=-=-=, 过点P 作PM ⊥x 轴于点M ,则M (1,0),M 为AC 中点,又OA :OC=1:3,设A (-m ,0),C (3m ,0),∴231m m -+=, 解得:m=1, ∴A (-1,0),C (3,0),(2)①做图如下:∵PE ∥AB ,∴∠BAO=∠PEM ,又∠AOB=∠EMP ,∴△ABO△EPM , ∴AO EM OB PM= , 由(1)知:A (-1,0),C (3,0),M (1,0),B (0,c ),P (1,c-a ), ∴11OE c c a +=-,∴OE=a c-, 将A (-1,0)代入解析式得:3a+c=0,∴c=-3a ,∴133a a OE c a =-== , ∴E (-13,0); ②设PM 交BD 于点N ;∵22y ax ax c =-+(a<0), ∴x=1时,y=c-a ,即点P (1,c-a ),∵BN ‖AC ,PM ⊥x 轴∴NM= BO=c ,BN=OM=1,∴PN=-a ,∵tan ∠BPM=25, ∴tan ∠BPM=25BN PN =, ∴PN=52, 即a=-52, 由(1)知c=-3a ,∴c=152; ∴原函数解析式为:2515522y x x =-++. 【点睛】 此题考查了抛物线与x 轴的交点;二次函数的性质,待定系数法求二次函数解析式.30.(1)交点坐标为(2,0)和(8,0);(2)2<x <8【解析】【分析】(1)把点(﹣2,﹣40)和点(6,8)代入二次函数解析式得到关于a 和b 的方程组,解方程组求得a 和b 的值,可确定出二次函数解析式,令y =0,解方程即可;(2)当y >0时,即二次函数图象在x 轴上方的部分对应的x 的取值范围,据此即可得结论.【详解】(1)由题意,把点(﹣2,﹣40)和点(6,8)代入二次函数解析式,得404216836616a b a b -=--⎧⎨=+-⎩, 解得:110a b =-⎧⎨=⎩, 所以这个二次函数的解析式为:21016y x x +=--,当y =0时,210160x x +--=,解之得:1228x x =,=,∴这个二次函数图象与x 轴的交点坐标为(2,0)和(8,0);(2)当y >0时,直接写出自变量x 的取值范围是2<x <8.【点睛】本题考查待定系数法求解析式、二次函数图象与x 轴的交点,解题的关键是熟练掌握待定系数法求解析式.31.(1)见详解;(2)45 【解析】【分析】(1)根据两角相等的两个三角形相似,即可证明△ADE ∽△BFA ;(2)利用三角形的面积比等于相似比的平方,即可解答.【详解】(1)证明:∵BF ⊥AE 于点F ,四边形ABCD 为正方形,∴△ADE 和△BFA 均为直角三角形,∵DC ∥AB ,∴∠DEA=∠FAB ,∴△ADE ∽△BFA ;(2)解:∵AD=2,E 为CD 的中点,∴DE=1,∴,∴AE AB =, ∵△ADE ∽△BFA ,∴24()55BFA ADE S S ∆∆==, ∵S △ADE =12×1×2=1, ∴S △BFA =45S △ADE =45. 【点睛】本题主要考查三角形相似的性质与判定,熟记相似三角形的判定是解决第(1)小题的关键;第(2)小题中,利用相似三角形的面积比是相似比的平方是解决此题的关键.32.(1)见解析;(2)①2CE =,②2S π=阴.【解析】【分析】(1)连接OC ,利用等腰三角形三线合一的性质证得OC ⊥BF ,再根据CG ∥FB 即可证得结论;(2)①根据已知条件易证得OBC 是等边三角形,利用三角函数可求得CD 的长,根据三角形重心的性质即可求得答案;②易证得OBC FBC S S =,利用扇形的面积公式即可求得答案. 【详解】(1)连接CO .C 是BF 的中点,BOC FOC ∴∠=∠.又OF OB =,OC BF ∴⊥.//CG FB ,OC CG ∴⊥.CG ∴是O 的切线.(2)①//OF CB ,∴FOC OCB ∠=∠.OC OB =,BOC FOC ∠=∠60AOF COF BOC ∴∠=∠=∠=︒.∴OBC 是等边三角形.CD OB ⊥,OC BF ⊥,又O 的半径为23,在Rt OCD 中,3sin sin 60233CD OC COD OC ∠==︒=⨯=, ∵BF ⊥OC ,CD ⊥OB ,BF 与CD 相交于E ,点E 是等边三角形OBC 的垂心,也是重心和内心,∴223CE CD ==. ②∵AF ∥BC , ∴OBC FBC S S =∴()260232360OBC S S ππ⨯⨯===阴扇形.【点睛】要题考查了等腰三角形的性质,等边三角形的判定和性质,三角函数的知识,扇形的面积公式,根据三角形重心的性质求得CE 的长是解题的关键.。

【初三数学】通辽市九年级数学上期末考试单元测试卷(含答案)

【初三数学】通辽市九年级数学上期末考试单元测试卷(含答案)

九年级上册数学期末考试试题(含答案)一、选择题(3×12=36)1.点P(﹣2,4)关于坐标原点对称的点的坐标为()A.(4,﹣2)B.(﹣4,2)C.(2,4)D.(2,﹣4)2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.半径为6的圆中,120°的圆心角所对的弧长是()A.4πB.5πC.6πD.8π4.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.5.如图,△ABC与△DEF是位似图形,位似比为2:3,已知DF=4,则AC的长为()A.B.C.D.6.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=122°,则∠C的度数为()A.22°B.26°C.28°D.30°7.将一个正方形纸片放在平面直角坐标系中,已知A(﹣1,0),B(﹣1,1),C(0,1),若绕点D(0,0)顺时针旋转这个正方形,旋转角为135°,则旋转后点B的坐标B′为()A.(1,1)B.(2,0)C.(,0)D.(1,﹣1)8.已知函数y=(x﹣1)2,下列结论正确的是()A.当x>0时,y随x的增大而减小B.当x<0时,y随x的增大而增大C.当x<1时,y随x的增大而减小D.当x<﹣1时,y随x的增大而增大9.若抛物线y=2x2﹣3x﹣k与x轴没有交点,则k的取值范围为()A.k≤﹣B.k<﹣C.k≥﹣且k≠0D.k>﹣且k≠0 10.如图,四边形ABCD是⊙O内接四边形,若∠BAC=30°,∠CBD=80°,则∠BCD 的度数为()A.50°B.60°C.70°D.80°11.已知抛物线y=x2+2x+4的顶点为P,与y轴的交点为Q,则PQ的长度为()A.B.2C.D.12.已知直线y=n与二次函数y=(x﹣2)2﹣1的图象交于点B,点C,二次函数图象的顶点为A,当△ABC是等腰直角三角形时,则n的值为()A.1B.C.2﹣D.2+二、填空题(3×6=18)13.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.14.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E,若DE=4,BC=AE=6,则EC的长为.15.如图,A,B,C是⊙O上的三点,且OA=AB=BC=2,则AC的长为.16.把二次函数y=x2﹣4x+3的图象沿y轴向下平移1个单位长度,再沿x轴向左平移3个单位长度后,此时抛物线相应的函数表达式是.17.正方形ABCD的边长AB=2,E是AB的中点,F是BC的中点,AF分别与DE,BD相交于点M,N,则MN的长为.18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上.(1)∠ACB的大小为(度)(2)在如图所示的网格中,以A为中心,取旋转角等于∠BAC,把△ABC逆时针旋转,请用无刻度的直尺,画出旋转后的△ABC,并简要说明旋转后点C和点B的对应点点C′和点B′的位置是如何而找到的(不要求证明)三、解答题(66分)19.(8分)解方程:x2﹣5x﹣6=0.20.(8分)泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从A、B两个景点中任意选择一个游玩,下午从C、D、E三个景点中任意选择一个游玩.用列表或画树状图的方法列出所有等可能的结果,并求小明恰好选中景点B和C的概率.21.(10分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,(Ⅰ)求证:△AFE∽△CFD;(Ⅱ)若AB=4,AD=3,求CF的长.22.(10分)如图,AB是⊙O的直径,CD切⊙O于点C,AD交⊙O于点E,AC平分∠BAD,连接BE.(Ⅰ)求证:AD⊥ED;(Ⅱ)若CD=4,AE=2,求⊙O的半径.23.(10分)某网商经销一种畅销玩具,每件进价为18元,每月销量y(件)与销售单价x(元)之间的函数关系如图中线段AB所示(Ⅰ)写出毎月销量y(件)与销售单价x(元)之间的函数关系式(含x的取值范围);(Ⅱ)当销售单价为多少元时,该网商毎月经销这种玩具能够获得最大销售利润?最大销售利润是多少?(销售利润=售价﹣进价)24.(10分)【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.25.(10分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD =4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.2018-2019学年天津市河西区九年级(上)期末数学试卷参考答案与试题解析一、选择题(3&#215;12=36)1.【分析】根据关于原点对称,则两点的横、纵坐标都是互为相反数,可得答案.【解答】解:点P(﹣2,4)关于坐标原点对称的点的坐标为(2,﹣4),故选:D.【点评】本题考查了关于原点对称的点的坐标,关于原点对称,则两点的横、纵坐标都是互为相反数.2.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形.故本选项错误;B、不是中心对称图形.故本选项错误;C、不是中心对称图形.故本选项错误;D、是中心对称图形.故本选项正确.故选:D.【点评】本题考查了中心对称图形的概念,关键是根据中心对称图形是要寻找对称中心,旋转180度后与原图重合解答.3.【分析】根据弧长的公式l=进行解答.【解答】解:根据弧长的公式l=,得到:l==4π.故选:A.【点评】本题考查了弧长的计算,熟记弧长公式即可解答该题,属于基础题.4.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.5.【分析】位似图形就是特殊的相似图形位似比等于相似比.利用相似三角形的性质即可求解.【解答】解:∵△ABC与△DEF是位似图形,位似比为2:3,∴AC:DF=2:3,∴AC:4=2:3,则AC=.故选:C.【点评】本题主要考查位似的定义.解题的关键是掌握位似图形是相似图形的特殊形式,位似比等于相似比的特点.6.【分析】连接OD,如图,根据切线的性质得∠ODC=90°,即可求得∠ODA=32°,再利用等腰三角形的性质得∠A=32°,然后根据三角形内角和定理计算即可.【解答】解:连接OD,如图,∵CD与⊙O相切于点D,∴OD⊥CD,∴∠ODC=90°,∴∠ODA=∠CDA﹣90°=122°﹣90°=32°,∵OA=OD,∴∠A=∠ODA=32°,∴∠C=180°﹣∠ADC+∠A=180°﹣122°﹣32°=26°.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.7.【分析】作出图形,解直角三角形求出BD=,根据旋转变换的性质可得点B′在x轴的正半轴上,且DB′=DB=,即可得解.【解答】解:如图,∵A(﹣1,0),B(﹣1,1),C(0,1),D(0,0),∴BD=,∵正方形ABCD绕点D顺时针旋转135°,∴点B′在x轴的正半轴上,且DB′=DB=,所以,点B′的坐标是(,0).故选:C.【点评】本题考查了坐标与图形的变化﹣旋转,根据点B的坐标求出BD=,再根据旋转变换只改变图形的位置,不改变图形的形状与大小确定出点B′在x轴的正半轴上是解题的关键.8.【分析】直接利用二次函数的增减性进而分析得出答案.【解答】解:函数y=(x﹣1)2,对称轴为直线x=1,开口方向上,故当x<1时,y随x的增大而减小.故选:C.【点评】此题主要考查了二次函数的性质,正确把握二次函数的增减性是解题关键.9.【分析】由于抛物线y=2x2﹣3x﹣k与x轴没有交点,所以b2﹣4ac<0,所以(﹣3)2﹣4×2•(﹣k)=9+8k<0,所以k<﹣.【解答】解:∵抛物线y=2x2﹣3x﹣k与x轴没有交点,∴b2﹣4ac<0,(﹣3)2﹣4×2•(﹣k)=9+8k<0,k<﹣.故选:B.【点评】本题考查了抛物线与x轴的交点问题,熟知b2﹣4ac<0抛物线与x轴没有交点是解题的关键.10.【分析】根据圆周角定理求出∠BAD,根据圆内接四边形的性质计算,得到答案.【解答】解:由圆周角定理得,∠CAD=∠CBD=80°,∴∠BAD=80°+30°=110°,∵四边形ABCD是⊙O内接四边形,∴∠BCD=180°﹣∠BAD=70°,故选:C.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.11.【分析】二次函数y=(x﹣h)2+k的顶点坐标为(h,k),所以易知y=x2+2x+4=(x+1)2+3 的顶点为(﹣1,3),将x=0把代入y=x2+2x+4,得y=4,因此抛物线与y轴的交点为(0,4),最后根据根据两点坐标由求出PQ长度.【解答】解:∵y=x2+2x+4=(x+1)2+3抛物线的顶点为(﹣1,3),将x=0把代入y=x2+2x+4,得y=4,∴抛物线与y轴的交点为(0,4),∴PQ=故选:A.【点评】本题考查了二次函数的顶点坐标和y轴交点坐标,正确理解二次函数y=(x﹣h)2+k的顶点坐标(h,k)是解题的关键.12.【分析】设B(x1,n)、C(x2,n).因为△ABC是等腰直角三角形,作AD⊥BC,x2|=所以AD=BC,即BC=2AD,AD=n﹣(﹣1)=n+1,即:BC=|x1﹣==,所以=2(n+1),容易求出n=1.【解答】解:设B(x1,n)、C(x2,n),作AD⊥BC,垂足为D连接AB,AC,∵y=(x﹣2)2﹣1,∴顶点A(2,﹣1),AD=n﹣(﹣1)=n+1∵直线y=n与二次函数y=(x﹣2)2﹣1的图象交于点B、C,∴(x﹣2)2﹣1=n,化简,得x2﹣4x+2﹣2n=0x1+x2=4,x1x2=2﹣2nx2|===∴BC=|x1﹣∵点B、C关于对称轴直线AD对称,∴D为线段BC的中点,∵△ABC是等腰直角三角形,∴AD=BC即BC=2AD=2(n+1),∴(2+2n)=(n+1)2,化简,得n2=1,∴n=1或﹣1,n=﹣1时直线y=n经过点A,不符合题意舍去,所以n=1.故选:A.【点评】本题考查了二次函数图象的性质以及根与系数的关系,正确理解二次函数的图象性质和根与系数的关系是解题的关键.二、填空题(3&#215;6=18)13.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共6个球,有5个红球,∴从袋子中随机摸出一个球,它是红球的概率为.故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.【分析】根据平行线判定△ADE∽△ABC,从而可得对应边成比例,即,利用已知数据即可求出EC的长.【解答】解:∵DE∥BC∴△ADE∽△ABC∴而DE=4,BC=AE=6∴=解得EC=3故答案为3.【点评】本题考查的是相似三角形的判定与性质,根据性质得到对应边成比例是解决本题的关键.15.【分析】依据A,B,C是⊙O上的三点,且OA=AB=BC=2,即可得到四边形ABCO 是菱形,△ABO和△BCO都是等边三角形,再根据勾股定理即可得到AD的长,进而得出AC的长.【解答】解:∵A,B,C是⊙O上的三点,且OA=AB=BC=2,∴OA=AB=BC=OC=OB=2,∴四边形ABCO是菱形,△ABO和△BCO都是等边三角形,∴AC⊥OB,∠BAD=30°,BD=BO=1,AC=2AD,∴Rt△ABD中,AD=,∴AC=2AD=2,故答案为:2.【点评】本题主要考查了等边三角形的判定与性质,等边三角形是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.16.【分析】首先将原式转化为顶点式,进而利用二次函数平移规律进而求出即可.【解答】解:∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线y=x2﹣4x+3沿y轴向下平移1个单位长度,再沿x轴向左平移3个单位长度后,得到抛物线解析是:y=(x﹣2+3)2﹣1﹣1=(x+1)2﹣2.故答案为:y=(x+1)2﹣2.【点评】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.17.【分析】根据△BNF∽△DNA,可求出AN的长;再根据△AME∽△ABF,求出AM的长,利用MN=AN﹣AM即可解决.【解答】解:∵BF∥AD∴△BNF∽△DNA∴而BF=BC=1,AF=∴AN=又∵△DAE≌△ABF(SAS)∴∠AED=∠BFA∴△AME∽△ABF∴即:∴AM=∴MN=AN﹣AM=﹣=故答案为.【点评】本题考查的是相似三角形的判定与性质,根据对应边成比例即可利用已知线段求出未知线段的长度.18.【分析】(1)利用勾股定理的逆定理即可解决问题.(2)如图,延长AC到格点B′,使得AB′=AB=5,延长BC到格点E,连接AE,取格点F,连接FB′交AE于点C′,△AB′C′即为所求.【解答】解:(1)∵AC=3,BC=4,AB=5,∴AB2=AC2+BC2,∴∠ACB=90°,故答案为90.(2)如图,延长AC到格点B′,使得AB′=AB=5,延长BC到格点E,连接AE,取格点F,连接FB′交AE于点C′,△AB′C′即为所求.【点评】本题考查作图﹣旋转变换,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(66分)19.【分析】把方程左边进行因式分解得到(x﹣6)(x+1)=0,则方程就可化为两个一元一次方程x﹣6=0,或x+1=0,解两个一元一次方程即可.【解答】解:x2﹣5x﹣6=0,∴(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,∴x1=6,x2=﹣1.【点评】本题考查了运用因式分解法解一元二次方程ax2+bx+c=0(a≠0)的方法:先把方程化为一般式,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.20.【分析】通过列表展示所有6种等可能的结果数,找出小名恰好选中B和C这两处的结果数,然后根据概率公式求解.【解答】解:列表如下:由表可知共有6种等可能的结果数,其中小明恰好选中景点B和C的结果有1种,所以小明恰好选中景点B和C的概率为.【点评】此题主要考查了列表法与树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(Ⅰ)根据矩形对边平行,有AE∥DC,可知△AFE∽△CFD;(Ⅱ)根据相似三角形的性质可得,再利用已知线段的长代入即可求出CF的长.【解答】(Ⅰ)证明:∵四边形ABCD是矩形,∴AE∥DC∴∠FAE=∠FCD,∠FEA=∠FDC∴△AFE∽△CFD故△AFE∽△CFD得证.(Ⅱ)解:由(1)知△AFE∽△CFD,∴而E是边AB的中点,且AB=4,AD=3∴AE=2,AC=5∴==而AC=5∴AF=,CF=故CF的长为.【点评】本题考查的是相似三角形的判定与性质,根据对应边成比例即可利用已知线段求出未知线段的长度.22.【分析】(Ⅰ)连接OC,易证OC⊥DC,由OA=OC,得出∠OAC=∠OCA,则可证明∠OCA=∠DAC,证得OC∥AD,根据平行线的性质即可证明;(Ⅱ)根据圆周角定理证得∠AEB=90°,根据垂径定理证得EF=BF,进而证得四边形EFCD是矩形,从而证得BE=8,然后根据勾股定理求得AB,即可求得半径.【解答】(Ⅰ)证明:连接OC,交BE于F,由DC是切线得OC⊥DC;又∵OA=OC,∴∠OAC=∠OCA,∵∠DAC=∠OAC.∴∠OCA=∠DAC,∴OC∥AD,∴∠D=∠OCD=90°即AD⊥ED.(Ⅱ)解:∵AB是⊙O的直径,∴∠AEB=90°,∵∠D=90°,∴∠AEB=∠D,∴BE∥CD,∵OC⊥CD,∴OC⊥BE,∴EF=BF,∵OC∥ED,∴四边形EFCD是矩形,∴EF=CD=4,∴BE=8,∴AB===2∴⊙O的半径为.【点评】本题考查了圆的切线的性质,圆周角定理,垂径定理以及勾股定理的应用.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.23.【分析】(1)根据函数图象中的数据可以求得线段AB对应的函数解析式;(2)利用(1)所求可以得到利润和售价之间的函数关系式,然后根据二次函数的性质即可解答本题.【解答】解:(1)设AB段对应的函数解析式为y=kx+b,,解得:,即AB段对应的函数解析式为y=﹣20x+1000(20≤x≤50);故答案为:y=﹣20x+1000(20≤x≤50);(2)设销售利润为w元,w=(x﹣18)(﹣20x+1000)=﹣20x2+1360x﹣18000=﹣20(x﹣34)2+5120,∵20≤x≤50,∴当x=34时,w取得最大值,此时w=5120,答:当销售单价为34元时,该网商每月经销这种玩具能够获得最大销售利润,最大销售利润是5120元;【点评】本题考查二次函数的应用、一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想解答.24.【分析】(1)思路一、先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;思路二、同思路一的方法即可得出结论;(2)同(1)的思路一的方法即可得出结论.【解答】解:(1)思路一、如图1,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=2,AP'=CP=3,在Rt△PBP'中,BP=BP'=2,∴∠BPP'=45°,根据勾股定理得,PP'=BP=2,∵AP=1,∴AP2+PP'2=1+8=9,∵AP'2=32=9,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°;(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=1,AP'=CP=,在Rt△PBP'中,BP=BP'=1,∴∠BPP'=45°,根据勾股定理得,PP'=BP=,∵AP=3,∴AP2+PP'2=9+2=11,∵AP'2=()2=11,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.【点评】此题是四边形综合题,主要考查了正方形的性质,旋转的性质,直角三角形的性质和判定,勾股定理,正确作出辅助线是解本题的关键.25.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣t2+ t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),∵直线GH平分矩形的面积,∴点P是GH和BD的中点,∴DP=PB,由平移知,PQ∥OB∴PQ是△ODB的中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的人教版九年级数学上册期末考试试题(含答案)一、选择题(每小题3分,共24分)1.下列根式中,能与合并的二次根式为()A.B.C.D.2.甲、乙两地的实际距离是20千米,在比例尺为1:500000的地图上甲乙两地的距离()A.40cm B.400cm C.0.4cm D.4cm3.点(5,﹣2)关于x轴的对称点是()A.(5,﹣2)B.(5,2)C.(﹣5,2)D.(﹣5.﹣2)4.一元二次方程x2﹣2x+m=0没有实数根,则m应满足的条件是()A.m>1B.m=1C.m<1D.m≤15.随机掷一枚质地均匀的硬币一次,正面朝上的概率是()A.1B.C.D.06.如图,△ABC的顶点是正方形网格的格点,则sin A是()A.B.C.D.7.某药品经过两次降价,每瓶零售价由156元降为118元.已知两次降价的百分率相同每次降价的百分率为x,根据题意列方程得()A.156(1+x)2=118B.156(1﹣x2)=118C.156(1﹣2x)=118D.156(1﹣x)2=1188.如图,已知点A(12,0),O为坐标原点,P是线段OA上任一点(不含端点O、A),二次函数y1的图象过P、O两点,二次函数y2的图象过P、A两点,它们的开口均向下,顶点分别为B、C,射线OB与射线AC相交于点D.则当OD=AD=9时,这两个二次函数的最大值之和等于()A.8B.3C.2D.6二、填空题(每小题3分,共18分)9.﹣=.10.已知=,则的值为.11.关于x的方程x2﹣kx+2=0有一个根是1,则k的值为.12.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若=,AE=4,则EC等于.13.如图,在平面直角坐标系中,已知正方形ABCD,点A(2,0),B(0,4),那么点C的坐标是.14.在平面直角坐标系中,某二次函数图象的顶点坐标为(2,﹣1),此函数图象与x轴相交于P、Q两点,且PQ=6,若此函数图象通过(1,a)、(3,b)、(﹣1,c)、(﹣3,d)四点,则a、b、c、d中为正值的是(选填“a”、“b”“c”或“d”)三、解答题(本大题10小题,共78分)15.计算:(+)×16.计算:tan60°﹣cos45°•sin45°+sin30°.17.解方程(1)x2﹣x=0(2)x2﹣2x﹣3=018.张明和王华两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.请用树状图(或列表)的方法,求王华胜出的概率.19.“会如”海鲜商场经销一种成本为每千克40元的海产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,针对这种海产品的销售情况,解答下列问题:(1)当销售单价定位55元时,计算:月销售量=千克,月销售利润=元;(不要求写出过程,直接写出计算结果即可)(2)若该商场想使每月销售利润达到8000元,销售单价应定为多少元?20.如图,在一滑梯侧面示意图中,BD∥AF,BC⊥AF于点C,DE⊥AF于点E.BC=1.8cm,BD=0.5m,∠A=45°,∠F=29°.(1)求滑道DF的长(结果精确到0.1m).(2)求踏梯AB底端A与滑道DF底端F的距离AF(结果精确到0.1m).参考数据:sin29°=0.48,cos29°=0.87,tan29°=0.55.21.方格纸中每个小正方形的边长都是单位1,△OAB在平面直角坐标系中的位置如图所示,解答问题:(1)请按要求对△OAB作变换:以点O为位似中心,位似比为2:1,将△ABC在位似中心的异侧进行放大得到△OA′B′.(2)写出点A′的坐标;(3)△OA′B'的面积为.22.感知:如图1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC =(用含a的代数式表示)23.已知:在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点.若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的异侧作正方形PQMN,记正方形PQMN与矩形EDBF的公共部分的面积为y.(1)如图,当AP=3cm时,求y的值;(2)设AP=xcm,试用含x的代数式表示y(cm2);(3)当y=2cm2时,试确定点P的位置.24.如图,在平面直角坐标系中,抛物线y=﹣x2+3x与x轴交于O、A两点,与直线y=x 交于O、B两点,点A、B的坐标分别为(3,0)、(2,2).点P在抛物线上,且不与点O、B重合,过点P作y轴的平行线交射线OB于点Q,以PQ为边作R△PQN,点N 与点B始终在PQ同侧,且PN=1.设点P的横坐标为m(m>0),PQ长度为d.(1)用含m的代数式表示点P的坐标.(2)求d与m之间的函数关系式.(3)当△PQN是等腰直角三角形时,求m的值.(4)直接写出△PQN的边与抛物线有两个交点时m的取值范围.2018-2019学年吉林省长春市新区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.【分析】分别化简二次根式进而得出能否与合并.【解答】解:A、=2,故不能与合并,不合题意;B、=,不能与合并,不合题意;C、=2,能与合并,符合题意,D、=3,不能与合并,不合题意;故选:C.【点评】此题主要考查了同类二次根式,正确化简二次根式是解题关键.2.【分析】根据实际距离×比例尺=图上距离,代入数据计算即可.【解答】解:20千米=2000000厘米,2000000×=4(cm).故选:D.【点评】本题考查了比例线段,能够根据比例尺灵活计算,注意单位的换算问题.3.【分析】关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.【解答】解:(5,﹣2)关于x轴的对称点为(5,2),故选:B.【点评】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.4.【分析】根据方程的系数结合根的判别式△<0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围.【解答】解:∵一元二次方程x2﹣2x+m=0没有实数根,∴△=(﹣2)2﹣4×1×m<0,∴m>1.故选:A.【点评】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.5.【分析】抛掷一枚质地均匀的硬币,其等可能的情况有2个,求出正面朝上的概率即可.【解答】解:抛掷一枚质地均匀的硬币,等可能的情况有:正面朝上,反面朝上,则P=,(正面朝上)故选:B.【点评】此题考查了概率公式,概率=发生的情况数÷所有等可能情况数.6.【分析】连接CE,则CE⊥AB,根据勾股定理求出CA,在Rt△AEC中,根据锐角三角函数定义求出即可.【解答】解:如图所示:连接CE,则CE⊥AB.∵根据图形可知:BC=2,BE=EC=,∠EBC=∠ECB=45°∴∠BEC=∠AEC=90°∵AC==,∴sin A===,故选:B.【点评】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.7.【分析】设每次降价的百分率为x,根据该药品的原价及经两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【解答】解:设每次降价的百分率为x,根据题意得:156(1﹣x)2=118.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.【分析】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM 是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=6,DE=3.设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,=,代入求出BF和CM,相加即可求出答案【解答】解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM,∵OD=AD=9,DE⊥OA,∴OE=EA=OA=6,由勾股定理得:DE==3.设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴=,=,∵AM=PM=(OA﹣OP)=(12﹣2x)=6﹣x,即=,=,解得:BF=,CM=3﹣x,∴BF+CM=3.故选:B.【点评】本题考查了二次函数的最值,勾股定理,等腰三角形的性质,以及相似三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.二、填空题(每小题3分,共18分)9.【分析】直接进行开平方的运算即可.【解答】解:﹣=﹣4.故答案为:﹣4.【点评】本题考查了算术平方根的知识,属于基础题,关键是掌握算术平方根的定义及开平方的运算.10.【分析】依据=,即可得到﹣1=,进而得出的值.【解答】解:∵=,∴﹣1=,∴=,故答案为:.【点评】本题主要考查了比例的性质,解题时注意:内项之积等于外项之积.11.【分析】根据一元二次方程的定义,把x=1代入方程x2﹣kx+2=0得关于k的方程,然后解关于k的方程即可.【解答】解:根据题意将x=1代入方程,得:1﹣k+2=0,解得:k=3,故答案为:3.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.【分析】由DE∥BC,AD:AB=3:4,根据平行线分线段成比例定理,可得AE:AC =AD:AB=2:3,继而求得答案.【解答】解:∵DE∥BC,=,∴AE:AC=AD:AB=2:3,∴AE:EC=2:1.∵AE=4,∴CE=2,故答案为:2.【点评】此题考查了平行线分线段成比例定理.此题难度不大,注意掌握数形结合思想的应用,注意掌握线段的对应关系.13.【分析】如图,作CE⊥y轴于点E,根据已知条件得到OA=2,OB=4,根据四边形ABCD是正方形,得到∠ABC=90°,BC=BA,根据余角的性质得到∠CBE=∠BAO,根据全等三角形的性质得到BE=OA=2,CE=OB=4,求得OE=OB﹣BE=4﹣2=2,于是得到结论.【解答】解:如图,作CE⊥y轴于点E,∵A(2,0),B(0,4),∴OA=2,OB=4,∵四边形ABCD是正方形,∴∠ABC=90°,BC=BA,∵∠ABO+∠A=90°,∠ABO+∠CBE=90°,∴∠CBE=∠BAO,在△ABO和△BCE中,∴△ABO≌△BCE(AAS),∴BE=OA=2,CE=OB=4,∴OE=OB﹣BE=4﹣2=2,∴C点坐标为(﹣4,2).故答案为:(﹣4,2).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.解决本题的关键是作CE⊥y轴于点E后求出CE 和OE的长.14.【分析】根据题意可以得到该函数的对称轴,开口方向和与x轴的交点坐标,从而可以判断a、b、c、d的正负,本题得以解决.【解答】解:∵二次函数图象的顶点坐标为(2,﹣1),此函数图象与x轴相交于P、Q 两点,且PQ=6,∴该函数图象开口向上,对称轴为直线x=2,与x轴的交点坐标为(﹣1,0),(5,0),∵此函数图象通过(1,a)、(3,b)、(﹣1,c)、(﹣3,d)四点,∴a<0,b<0,c=0,d>0,故答案为:d.。

内蒙古通辽市九年级上学期数学期末考试试卷

内蒙古通辽市九年级上学期数学期末考试试卷

内蒙古通辽市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共11分)1. (2分)下列成语所描述的事件是必然事件的是()A . 瓮中捉鳖B . 拔苗助长C . 守株待兔D . 水中捞月2. (2分) (2018九上·宝应月考) 一元二次方程的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根3. (2分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个实数根,则k的取值范围是()A . k≠0B . k≥﹣1C . k≥﹣1且k≠0D . k>﹣1且k≠04. (2分)如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O交于点P,点B与点O重合,将三角板ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x,则x的取值范围是()A . 30°≤x≤60°B . 30°≤x≤90°C . 30°≤x≤120°D . 60°≤x≤120°5. (2分) (2016九上·河西期中) 下列二次函数的图象中,开口最大的是()A . y=x2B . y=2x2C . y= x2D . y=﹣x26. (1分)如图所示,内接于⊙O,AD是⊙O的直径,,则=________ °.二、填空题 (共9题;共9分)7. (1分)(2016·平房模拟) ⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2﹣4x+m=0的两根,当直线l与⊙O相切时,m的值为________.8. (1分)如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为________cm.9. (1分) (2017九上·亳州期末) 设点C是长度为8cm的线段AB的黄金分割点(AC>BC),则AC的长为________ cm.10. (1分)已知圆锥的母线与高的夹角为30°,母线长为4cm,则它的侧面积为________cm2(结果保留π).11. (1分) (2017九上·满洲里期末) 有一个边长为3的正六边形,若要剪一张圆形纸片完全盖住这个圆形,则这个圆形纸片的半径最小是________.12. (1分) (2016九上·朝阳期末) 如图,矩形ABCD中,点E是边AD的中点,BE交对角线AC于点F ,则△AFE与△BCF面积比等于________.13. (1分) (2016九上·溧水期末) 如图是某拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y=﹣(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴.若OA=10米,则桥面离水面的高度AC为________米.14. (1分)在平面直角坐标系xOy中,将抛物线平移后得到抛物线 .请你写出一种平移方法. 答:________.15. (1分)如图,⊙O的半径为2 ,OA,OB是⊙O的半径,P是上任意一点,PE⊥OA于E,PF⊥OB 于F,则EF的最大值为________.三、解答题 (共11题;共122分)16. (10分) (2016九上·鼓楼期末) 计算题(1)解方程:2x2﹣4x﹣6=0.(2)①直接写出函数y=2x2﹣4x﹣6的图象与x轴交点坐标;②求函数y=2x2﹣4x﹣6的图象的顶点坐标.17. (10分) (2019九上·海陵期末) 甲进行了5次射击训练,平均成绩为9环,且前4次的成绩(单位:环)依次为:8,10,9,10.(1)求甲第5次的射击成绩与这5次射击成绩的方差;(2)乙在相同情况下也进行了5次射击训练,平均成绩为9环,方差为0.9环,请问甲和乙哪个的射击成绩更稳定?18. (15分)(2011·金华) 如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连接OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB 于点E、F,点E为垂足,连接CF.(1)当∠AOB=30°时,求弧AB的长度;(2)当DE=8时,求线段EF的长;(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似?若存在,请求出此时点E的坐标;若不存在,请说明理由.19. (7分)(2017·景德镇模拟) 现有一“过关游戏”,规定:在第n关要掷一颗骰子n次,如果这n次抛掷所出现的点数之和大于,则算过关,否则不算过关.(1)过第1关是________事件(填“必然”、“不可能”或“不确定”,后同),过第4关是________事件;(2)当n=2时,计算过过第二关的概率(可借助表格或树状图).20. (5分)某公司实行年工资制,职工的年工资由基础工资、住房补贴和医疗费三项组成,具体规定如下:项目第一年的工资(万元)一年后的计算方法基础工资1每年的增长率相同住房补贴0.04每年增加0.04医疗费0.1384固定不变(1)设基础工资每年的增长率为x,用含x的代数式表示第三年的基础工资为多少万元.(2)某人在公司工作了3年,他算了一下这3年拿到的住房补贴和医疗费正好是这3年基础工资总额的18%,问基础工资每年的增长率是多少?21. (15分)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:﹣2﹣10123…x…﹣3﹣y…3m﹣10﹣103…其中,m=________.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有________个交点,所以对应的方程x2﹣2|x|=0有________个实数根;②方程x2﹣2|x|=2有________个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是________.22. (5分)如图,在△ABC中,AB=AC,∠BAC=90°,D,E分别在边BC,AC上,∠ADE=45°.求证:△ABD∽△DCE.23. (10分)(2018·无锡) 已知:如图,一次函数y=kx﹣1的图象经过点A(3 ,m)(m>0),与y轴交于点B.点C在线段AB上,且BC=2AC,过点C作x轴的垂线,垂足为点D.若AC=CD.(1)求这个一次函数的表达式;(2)已知一开口向下、以直线CD为对称轴的抛物线经过点A,它的顶点为P,若过点P且垂直于AP的直线与x轴的交点为Q(﹣,0),求这条抛物线的函数表达式.24. (15分)(2018·柳北模拟) 如图,抛物线过点,交x轴于A,B两点点A 在点B的左侧.(1)求抛物线的解析式,并写出顶点M的坐标;(2)连接OC,CM,求的值;(3)若点P在抛物线的对称轴上,连接BP,CP,BM,当时,求点P的坐标.25. (15分) (2019九上·嘉定期末) 在平面直角坐标系xOy(如图)中,抛物线y=ax2+bx+2经过点A(4,0)、B(2,2),与y轴的交点为C .(1)试求这个抛物线的表达式;(2)如果这个抛物线的顶点为M,求△AMC的面积;(3)如果这个抛物线的对称轴与直线BC交于点D,点E在线段AB上,且∠DOE=45°,求点E的坐标.26. (15分) (2017九上·相城期末) 如图,是⊙ 的直径,、为⊙ 上位于异侧的两点,连接并延长至点,使得,连接交⊙ 于点,连接、、 .(1)证明: ;(2)若,求的度数;(3)设交于点,若是的中点,求的值.参考答案一、单选题 (共6题;共11分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共9题;共9分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共11题;共122分)16-1、16-2、17-1、17-2、18-1、19-1、19-2、20-1、21-1、21-2、21-3、21-4、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。

初中数学内蒙古通辽市库伦旗九年级数学上学期期末考试考试题新部编版.docx

初中数学内蒙古通辽市库伦旗九年级数学上学期期末考试考试题新部编版.docx
(1)当每吨售价是240元时,计算此时的月销售量;
(2)求出y与x的函数关系式(不要求写出x的取值范围);
(3)该经销店要获得最大月利润,售价应定为每吨多少元?
试题26:
如图,⊙O的直径AB=2,AM、BN是它的两条切线,CD与⊙O相切于点E,与BN、AM交于点C、D,设AD=x,BC=y。
(1)求证:AM∥BN。
试题18:
巫山长江公路大桥是一个中承式钢管砼圆弧形拱桥,主跨度AB=492米,拱桥最高点C距水面100米,求该拱桥的半径是多少米?
试题19:
小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,规则如右图:
(1)请你完成下面表示游戏一个回合所有可能出现的结果的树状图;
(2)求一个回合能确定两人先下棋的概率.
试题23:
如图,已知二次函数 的图像经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标;
(3)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.
试题24:
如图,点D是∠AOB的平分线OC上任意一点,过D作DE⊥OB于E,以DE为半径作⊙D,
①判断⊙D与OA的位置关系, 并证明你的结论。
②通过上述证明,你还能得出哪些等量关系?
试题25:
利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).

【部编人教版】2021-2022年通辽市经济开发区九年级上期末数学试卷

【部编人教版】2021-2022年通辽市经济开发区九年级上期末数学试卷

2021-2022学年内蒙古通辽市经济开发区九年级(上)期末数学试卷一、选择题(本题共42分,每小题3分)1.下列成语中描画的事情必然发生的是()A.水中捞月B.刻舟求剑C.瓮中捉鳖D.拔苗滋长2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.已知⊙O的半径为4cm,假如圆心O到直线l的距离为3.5cm,那么直线l与⊙O的地位关系是()A.相交B.相切C.相离D.不确定4.一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字不小于3的概率是()A.B.C.D.5.若ax2﹣5x+3=0是一元二次方程,则不等式3a+6>0的解集是()A.a>﹣2B.a>﹣2且a≠0C.a D.a<﹣26.已知圆上一段弧长为5πcm,它所对的圆心角为100°,则该圆的半径为()A.6cmB.9cmC.12cmD.18cm7.如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为E,假如CE=2,那么AB的长是()A.4B.8C.6D.108.直角坐标立体上将二次函数y=﹣2(x﹣1)2﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为()A.(0,0)B.(1,﹣2)C.(0,﹣1)D.(﹣2,1)9.关于x的二次函数y=2mx2+(8m+1)x+8m的图象与x轴有交点,则m的范围是()A.m<﹣B.m≥﹣且m≠0C.m=﹣D.m>﹣且m≠0 10.如图,⊙C过原点,与x轴、y轴分别交于A、D两点.已知∠OBA=30°,点D的坐标为(0,2),则⊙C半径是()A.B.C.D.211.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①由于a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.112.如图,AC是⊙O的直径,AB,CD是⊙O的两条弦,且AB∥CD.假如∠BAC=32°,则∠AOD的度数是()A.16°B.32°C.48°D.64°13.给出下列说法:①半径相等的圆是等圆;②长度相等的弧是等弧;③半圆是弧,但弧不一定是半圆;④半径相等的两个半圆是等弧,其中正确的有()A.1个B.2C.3个D.414.把一个正方形的一边添加2cm,另一边添加1cm,所得的长方形的面积比正方形面积添加14cm2,那么原来正方形的边长是()A.3cmB.5cmC.4cmD.6cm二.填空题(本题共39分,每空3分)15.一元二次方程2x2+4x﹣1=0的二次项系数、一次项系数及常数项之和为.16.若关于x的方程x2﹣mx+3=0有两个相等的实数根,则m= .17.已知点A(1,a)与点B(b,﹣3)关于原点对称,则a= ,b= .18.请写出一个开口向上,并且与y轴交于点(0,﹣1)的抛物线的解析式.19.如图,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则△ABB′是三角形.20.假如扇形的圆心角为120°,半径为3cm,那么扇形的面积是cm2,弧长cm.21.如图,⊙O的直径AB=10cm,C是⊙O上一点,点D平分,DE=2cm,则弦AC= .22.一个中心角等于24°的正多边形的边数为.23.已知圆锥侧面展开图的弧长为6πcm,圆心角为216°,则此圆锥的母线长为cm.24.平行四边形中,AC、BD是两条对角线,现从以下四个关系中(1)AB=BC (2)AC=BD(3)AC⊥BD(4)AB⊥BC中任取一个作为条件,即可推出平行四边形ABCD是菱形的概率为.25.在“抛掷正六面体”的实验中,假如正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,假如实验的次数增多,出现数字“1”的频率的变化趋向是.26.如图,⊙O的半径为2,C1是函数的图象,C2是函数的图象,C3是函数的图象,则暗影部分的面积是平方单位(结果保留π).三、解答题(共5小题,满分39分)27.在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C 两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B 2、C2两点的坐标.28.如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.29.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农自觉扩大种植,形成该蔬菜畅销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求均匀每次下调的百分率;(2)小华预备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请阐明理由.30.甲、乙两人在玩转盘游戏时,把转盘A、B分成3等份、4等份,并在每一份内标有数字(如图).游戏规则:同时转动两个转盘,当转盘中止后,指针所在区域的数字之积为奇数时,甲胜;指针所在区域的数字之积为偶数时,乙胜.假如指针恰恰在分割线上,则需重新转动转盘.(1)用树状图或列表的方法,求甲获胜的概率;(2)这个游戏规则对甲、乙单方公平吗?请判别并阐明理由.31.(11分)(2006•盐城)已知:抛物线y=﹣x2+4x﹣3与x轴相交于A、B 两点(A点在B点的左侧),顶点为P.(1)求A、B、P三点坐标;(2)在下面的直角坐标系内画出此抛物线的简图,并根据简图写出当x取何值时,函数值y大于零;(3)确定此抛物线与直线y=﹣2x+6公共点的个数,并阐明理由.2021-2022学年内蒙古通辽市经济开发区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共42分,每小题3分)1.下列成语中描画的事情必然发生的是()A.水中捞月B.刻舟求剑C.瓮中捉鳖D.拔苗滋长考点:随机事情.分析:根据必然事情、不可能事情、随机事情的概念可区别各类事情.解答:解:A、水中捞月是不可能事情,故A错误;B、刻舟求剑是随机事情,故B错误;C、瓮中捉鳖是必然事情,故C正确;D、拔苗滋长是不可能事情,故D错误;故选:C.点评:本题考查了随机事情,处理本题需求正确理解必然事情、不可能事情、随机事情的概念.必然事情指在一定条件下一定发生的事情.不可能事情是指在一定条件下,一定不发生的事情.不确定事情即随机事情是指在一定条件下,可能发生也可能不发生的事情.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻觅对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻觅对称中心,旋转180度后与原图重合.3.已知⊙O的半径为4cm,假如圆心O到直线l的距离为3.5cm,那么直线l与⊙O的地位关系是()A.相交B.相切C.相离D.不确定考点:直线与圆的地位关系.分析:根据直线和圆的地位关系的内容判别即可.解答:解:∴⊙O的半径为4cm,假如圆心O到直线l的距离为3.5cm,∴3.5<4,∴直线l与⊙O的地位关系是相交,故选A.点评:本题考查了直线和圆的地位关系的运用,留意:已知⊙O的半径为r,假如圆心O到直线l的距离是d,当d>r时,直线和圆相离,当d=r时,直线和圆相切,当d<r时,直线和圆相交.4.一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字不小于3的概率是()A.B.C.D.考点:概率公式.分析:由一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,即共有6种等可能的结果,投掷这个骰子一次,则向上一面的数字不小于3的有4种状况,直接利用概率公式求解即可求得答案.解答:解:∵一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,即共有6种等可能的结果,投掷这个骰子一次,则向上一面的数字不小于3的有4种状况,∴向上一面的数字不小于3的概率是:=.故选C.点评:此题考查了概率公式的运用.留意用到的知识点为:概率=所求状况数与总状况数之比.5.若ax2﹣5x+3=0是一元二次方程,则不等式3a+6>0的解集是()A.a>﹣2B.a>﹣2且a≠0C.a D.a<﹣2考点:一元二次方程的定义;解一元一次不等式.专题:计算题.分析:由于ax2﹣5x+3=0是一元二次方程,故a≠0;再解不等式即可求得a 的取值范围;这样即可求得不等式的解集.解答:解:不等式移项,得3a>﹣6,系数化1,得a>﹣2;又∵ax2﹣5x+3=0是一元二次方程,∴且a≠0;所以,a>﹣2且a≠0;故选:B点评:一元二次方程必须满足三个条件:(1)只含有一个未知数,未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程.同时解不等式时,两边同时乘或除一个负数时,不等号的方向要改变.6.已知圆上一段弧长为5πcm,它所对的圆心角为100°,则该圆的半径为()A.6cmB.9cmC.12cmD.18cm考点:弧长的计算.专题:压轴题.分析:利用弧长公式计算.解答:解:弧长公式是l=,得到:5π=,∴r=9cm,该圆的半径为9cm.故选B.点评:处理本题的关键是正确记忆弧长的计算公式.7.如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为E,假如CE=2,那么AB的长是()A.4B.8C.6D.10考点:垂径定理;勾股定理.分析:连接OA,由于半径OC⊥AB,利用垂径定理可知AB=2AE,又CE=2,OC=5,易求OE,在Rt△AOE中利用勾股定理易求AE,进而可求AB.解答:解:连接OA,∵半径OC⊥AB,∴AE=BE=AB,∵OC=5,CE=2,∴OE=3,在Rt△AOE中,AE===4,∴AB=2AE=8,故选B.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8.直角坐标立体上将二次函数y=﹣2(x﹣1)2﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为()A.(0,0)B.(1,﹣2)C.(0,﹣1)D.(﹣2,1)考点:二次函数图象与几何变换.专题:动点型.分析:易得原抛物线顶点,把横坐标减1,纵坐标加1即可得到新的顶点坐标.解答:解:由题意得原抛物线的顶点为(1,﹣2),∵图象向左平移1个单位,再向上平移1个单位,∴新抛物线的顶点为(0,﹣1).故选C.点评:考查二次函数的平移成绩;用到的知识点为:二次函数图象的平移与顶点的平移分歧.9.关于x的二次函数y=2mx2+(8m+1)x+8m的图象与x轴有交点,则m的范围是()A.m<﹣B.m≥﹣且m≠0C.m=﹣D.m>﹣且m≠0考点:抛物线与x轴的交点.专题:计算题.分析:根据抛物线与x轴有交点,得到根的判别式的值大于等于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.解答:解:根据题意得:△=(8m+1)2﹣64m2≥0,且m≠0,解得:m≥﹣且m≠0.故选B点评:此题考查了抛物线与x轴的交点,抛物线与x轴有没有交点,即为抛物线解析式中y=0时方程能否有解.10.如图,⊙C过原点,与x轴、y轴分别交于A、D两点.已知∠OBA=30°,点D的坐标为(0,2),则⊙C半径是()A.B.C.D.2考点:垂径定理;坐标与图形性质;圆周角定理.分析:连接AD.根据90°的圆周角所对的弦是直径,得AD是直径,根据等弧所对的圆周角相等,得∠D=∠B=30°,运用解直角三角形的知识即可求解.解答:解:连接AD.∵∠AOD=90°,∴AD是圆的直径.在直角三角形AOD中,∠D=∠B=30°,OD=2,∴AD==.则圆的半径是.故选B.点评:此题次要是运用了圆周角定理的推论、解直角三角形的知识.11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①由于a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.1考点:二次函数的性质.分析:观察图象即可判别.①开口向上,应有最小值;②根据抛物线与x轴的交点坐标来确定抛物线的对称轴方程;③x=﹣2时,对应的图象上的点在x 轴下方,所以函数值小于0;④图象与x轴交于﹣3和1,所以当x=﹣3或x=1时,函数y的值都等于0.解答:解:由图象知:①函数有最小值;错误.②该函数的图象关于直线x=﹣1对称;正确.③当x=﹣2时,函数y的值小于0;错误.④当x=﹣3或x=1时,函数y的值都等于0.正确.故正确的有两个,选C.点评:此题考查了根据函数图象解答成绩,表现了数形结合的数学思想方法.12.如图,AC是⊙O的直径,AB,CD是⊙O的两条弦,且AB∥CD.假如∠BAC=32°,则∠AOD的度数是()A.16°B.32°C.48°D.64°考点:圆周角定理;平行线的性质.分析:利用平行线的性质得出∠BAC=∠C,进而利用圆周角定理求出即可.解答:解:∵AB∥CD,∴∠BAC=∠C,∵∠BAC=32°,∴∠C=32°,∴∠AOD=64°.故选:D.点评:此题次要考查了平行线的性质以及圆周角定理,得出∠C=32°是解题关键.13.给出下列说法:①半径相等的圆是等圆;②长度相等的弧是等弧;③半圆是弧,但弧不一定是半圆;④半径相等的两个半圆是等弧,其中正确的有()A.1个B.2C.3个D.4考点:圆的看法.分析:根据等圆、等弧和半圆的定义分别进行判别.解答:解::半径相等的圆是等圆,所以①正确;长度相等的弧不一定是等弧,所以②错误;半圆是弧,但弧不一定是半圆,所以③正确;半径相等的两个半圆是等弧,所以④正确.故选C.点评:本题考查了圆的看法:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).14.把一个正方形的一边添加2cm,另一边添加1cm,所得的长方形的面积比正方形面积添加14cm2,那么原来正方形的边长是()A.3cmB.5cmC.4cmD.6cm考点:一元二次方程的运用.专题:几何图形成绩.分析:本题的等量关系是:长方形的面积=正方形面积+14cm2,根据这个等量关系列出方程.解答:解:设原来正方形的边长为xcm.根据题意,可列方程为(x+2)(x+1)=x2+14,经解和检验后得x=4.即:原来正方形的边长为4cm.故选:C.点评:本题考查了一元二次方程的运用.对于面积成绩应熟记各种图形的面积公式.长方形的面积=长×宽,正方形的面积=边长×边长.二.填空题(本题共39分,每空3分)15.一元二次方程2x2+4x﹣1=0的二次项系数、一次项系数及常数项之和为5 .考点:一元二次方程的定义.分析:一元二次方程的普通方式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要留意a≠0的条件.这是在做题过程中容易忽视的知识点.在普通方式中ax2叫二次项,bx叫一次项,其中a,b,c分别叫二次项系数,一次项系数,常数项.确定二次项系数,一次项系数,常数项当前即可求解.解答:解:根据题意,可得一元二次方程2x2+4x﹣1=0的二次项系数为2,一次项系数为4,及常数项为﹣1;则其和为2+4﹣1=5;故答案为5.点评:求一元二次方程2x2+4x﹣1=0的二次项系数、一次项系数及常数项之和,就是求当x=1时,代数式2x2+4x﹣1的值.留意在阐明二次项系数,一次项系数,常数项时,一定要带上后面的符号.16.若关于x的方程x2﹣mx+3=0有两个相等的实数根,则m= ±2.考点:根的判别式.分析:若一元二次方程有两等根,则根的判别式△=b2﹣4ac=0,建立关于m 的方程,求出m的取值.解答:解:∵关于x的方程x2﹣mx+3=0有两个相等的实数根,∴△=(﹣m)2﹣4×3=0,即m2=12,∴m=±2.故题答案为:±2.点评:本题考查了一元二次方程根的状况与判别式△的关系:熟记(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根是解题的关键.17.已知点A(1,a)与点B(b,﹣3)关于原点对称,则a= 3 ,b= ﹣1 .考点:关于原点对称的点的坐标.分析:根据立体直角坐标系中恣意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.解答:解:由点A(1,a)与点B(b,﹣3)关于原点对称,得a=3,b=﹣1.故答案为:3,﹣1.点评:本题考查了关于原点对称的点的坐标,利用了关于原点的对称点,横纵坐标都变成相反数.18.请写出一个开口向上,并且与y轴交于点(0,﹣1)的抛物线的解析式y=x2﹣1(答案不独一).考点:二次函数的性质.专题:开放型.分析:抛物线开口向上,二次项系数大于0,然后写出即可.解答:解:抛物线的解析式为y=x2﹣1.故答案为:y=x2﹣1(答案不独一).点评:本题考查了二次函数的性质,开放型标题,答案不独一,所写函数解析式的二次项系数一定要大于0.19.如图,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则△ABB′是等边三角形.考点:等边三角形的断定;旋转的性质.分析:由旋转的性质可得AB=AB′,∠BAB′=60°,即可断定△ABB'是等边三角形.解答:解:由于,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则AB=AB′,∠BAB′=60°,所以△ABB'是等边三角形.点评:此题次要考查先生对等边三角形的断定及旋转的性质的理解及运用.20.假如扇形的圆心角为120°,半径为3cm,那么扇形的面积是3πcm2,弧长2πcm.考点:扇形面积的计算;弧长的计算.分析:先根据扇形的面积公式计算出扇形的面积,再根据弧长公式计算出其弧长即可.解答:解:∵扇形的圆心角为120°,半径为3cm,∴S==3π(cm2);l==2π(cm).扇形故答案为:3π,2π.点评:本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.21.如图,⊙O的直径AB=10cm,C是⊙O上一点,点D平分,DE=2cm,则弦AC= 6cm .考点:圆周角定理;垂径定理.分析:由题意可知OD平分BC,OE为△ABC的中位线,根据直径求出半径,进而求出OE的长度,再根据中位线原理即可解答.解答:解:∵点D平分,∴OD平分BC,∴OE为△ABC的中位线,又∵⊙O的直径AB=10cm,∴OD=5cm,DE=2cm,∴0E=3cm则弦AC=6cm.故答案为6cm.点评:本题次要考查圆周角定理与垂径定理,垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.22.一个中心角等于24°的正多边形的边数为15 .考点:正多边形和圆.分析:根据正多边形的中心角和为360°进行解答.解答:解:解:∵多边形的中心角和=360°,∴它的边数是360°÷24°=15,故答案为15.点评:本题考查了正多边形和圆,比较简单,关键是明白正多边形的中心角和为360°.23.已知圆锥侧面展开图的弧长为6πcm,圆心角为216°,则此圆锥的母线长为 5 cm.考点:弧长的计算.分析:根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得.解答:解:6π=,R=5cm.点评:次要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.24.平行四边形中,AC、BD是两条对角线,现从以下四个关系中(1)AB=BC (2)AC=BD(3)AC⊥BD(4)AB⊥BC中任取一个作为条件,即可推出平行四边形ABCD是菱形的概率为.考点:概率公式;平行四边形的性质;菱形的断定.专题:探求型.分析:根据题意画出图形,再由菱形的断定定理对四个选项进行逐一判别,找出正确的条件个数,再根据概率公式即可解答.解答:解:四边形ABCD是平行四边形,(1)若AB=BC,则AB=BC=CD=AD,符合“有一组邻边相等的平行四边形是菱形”的断定定理,故此小题正确;(2)若AC=BD,则此平行四边形是矩形,故此小题错误;(3)若AC⊥BD,符合“对角线互相垂直的平行四边形是菱形”的断定定理,此小题正确;(4)若AB⊥BC,则此平行四边形是矩形,故此小题错误.故正确的有(1)、(3)两个,所以可推出平行四边形ABCD是菱形的概率为:=.故答案为:.点评:本题考查的是概率公式及菱形的断定定理,解答此题的关键是熟知概率的求法与运用,普通方法:假如一个事情有n种可能,而且这些事情的可能性相反,其中事情A出现m种结果,那么事情A的概率P(A)=.25.在“抛掷正六面体”的实验中,假如正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,假如实验的次数增多,出现数字“1”的频率的变化趋向是接近.考点:模拟实验.专题:压轴题.分析:随着实验次数的增多,变化趋向接近与理论上的概率.解答:解:假如实验的次数增多,出现数字“1”的频率的变化趋向是接近.点评:实验次数越多,出现某个数的变化趋向越接近于它所占总数的概率.26.如图,⊙O的半径为2,C1是函数的图象,C2是函数的图象,C3是函数的图象,则暗影部分的面积是平方单位(结果保留π).考点:二次函数的图象.分析:根据抛物线和圆的性质可以知道,C1是函数的图象,C2是函数的图象,C3是函数的图象,得出暗影部分面积即可.解答:解:抛物线y=x2与抛物线y=﹣x2的图形关于x轴对称,直线y=x 与x轴的正半轴的夹角为60°,根据图形的对称性,把左边暗影部分的面积对折到左边,可以得到暗影部分就是一个扇形,并且扇形的圆心角为150°,半径为2,所以:S暗影==.故答案为:.点评:本题考查的是二次函数的综合题,标题中的两条抛物线关于x轴对称,圆也是一个对称图形,可以得到图中暗影部分的面积等于圆心角为150°,半径为2的扇形的面积,用扇形面积公式计算可以求出暗影部分的面积.三、解答题(共5小题,满分39分)27.在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C 两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B 2、C2两点的坐标.考点:作图-旋转变换.专题:作图题.分析:(1)根据网格结构找出点B、C的对应点B1、C1的地位,然后与点A依次连接即可;(2)以点B向右3个单位,向下5个单位为坐标原点建立立体直角坐标系,然后写出点A、C的坐标即可;(3)根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的地位,然后依次连接即可.解答:解:(1)△AB1C1如图所示;(2)如图所示,A(0,1),C(﹣3,1);(3)△A2B2C2如图所示,B2(3,﹣5),C2(3,﹣1).点评:本题考查了利用旋转变换作图,纯熟掌握网格结构精确找出对应点的地位是解题的关键.28.如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.考点:切线的性质.分析:根据PA,PB分别是⊙O的切线得到PA⊥OA,PB⊥OB,在四边形AOBP 中根据内角和定理,就可以求出∠P的度数.解答:解:连接OB,∴∠AOB=2∠ACB,∵∠ACB=70°,∴∠AOB=140°;∵PA,PB分别是⊙O的切线,∴PA⊥OA,PB⊥OB,即∠PAO=∠PBO=90°,∵四边形AOBP的内角和为360°,∴∠P=360°﹣(90°+90°+140°)=40°.点评:本题次要考查了切线的性质,切线垂直于过切点的半径.29.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农自觉扩大种植,形成该蔬菜畅销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求均匀每次下调的百分率;(2)小华预备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请阐明理由.考点:一元二次方程的运用.专题:增长率成绩;压轴题.分析:(1)设出均匀每次下调的百分率,根据从5元下调到3.2列出一元二次方程求解即可;(2)根据优惠方案分别求得两种方案的费用后比较即可得到结果.解答:解(1)设均匀每次下调的百分率为x.由题意,得5(1﹣x)2=3.2.解这个方程,得x1=0.2,x2=1.8(不符合题意),符合标题要求的是x1=0.2=20%.答:均匀每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000﹣200×5=15000(元).∵14400<15000,∴小华选择方案一购买更优惠.点评:本题考查了一元二次方程的运用,在处理有关增长率的成绩时,留意其固定的等量关系.30.甲、乙两人在玩转盘游戏时,把转盘A、B分成3等份、4等份,并在每一份内标有数字(如图).游戏规则:同时转动两个转盘,当转盘中止后,指针所在区域的数字之积为奇数时,甲胜;指针所在区域的数字之积为偶数时,乙胜.假如指针恰恰在分割线上,则需重新转动转盘.(1)用树状图或列表的方法,求甲获胜的概率;(2)这个游戏规则对甲、乙单方公平吗?请判别并阐明理由.考点:游戏公平性;列表法与树状图法.分析:(1)先画树状图展现一切12种等可能的结果数,找出指针所在区域的数字之积为偶数的结果数,然后根据概率公式计算;(2)计算出乙获胜的概率,然后经过比较两个概率的大小来判别游戏能否公平.解答:解:(1)画树状图:共有12种等可能的结果数,其中指针所在区域的数字之积为偶数的结果数为8,所以甲获胜的概率==;(2)这个游戏规则对甲、乙单方不公平.利用如下:甲获胜的概率=,乙获胜的概率==,而≠,所以个游戏规则对甲、乙单方不公平.点评:本题考查了游戏的公平性:判别游戏公平性需求先计算每个事情的概率,然后比较概率的大小,概率相等就公平,否则就不公平.31.(11分)(2006•盐城)已知:抛物线y=﹣x2+4x﹣3与x轴相交于A、B 两点(A点在B点的左侧),顶点为P.(1)求A、B、P三点坐标;(2)在下面的直角坐标系内画出此抛物线的简图,并根据简图写出当x取何值时,函数值y大于零;(3)确定此抛物线与直线y=﹣2x+6公共点的个数,并阐明理由.考点:二次函数综合题.专题:综合题.分析:(1)把普通式转化为交点式,可求图象与x轴两交点A、B坐标,把普通式转化为顶点式,可求顶点P;(2)观察图象,得出结论;。

内蒙古通辽市库伦旗2022年数学九上期末复习检测试题含解析

内蒙古通辽市库伦旗2022年数学九上期末复习检测试题含解析

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题3分,共30分)1.二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A.先向左平移2个单位,再先向上平移1个单位B.先向左平移2个单位,再先向下平移1个单位C.先向右平移2个单位,再先向上平移1个单位D.先向右平移2个单位,再先向下平移1个单位2.如图,在△ABC中,D、E分别在AB、AC上,且DE∥BC,AD=12DB,若S△ADE=3,则S四边形DBCE=( )A.12 B.15 C.24 D.273.下列各组图形中,一定相似的是()A.任意两个圆B.任意两个等腰三角形C.任意两个菱形D.任意两个矩形4.我们知道:过直线外一点有且只有一条直线和已知直线垂直,如图,已知直线l和l外一点A,用直尺和圆规作图作直线AB,使AB⊥l于点A.下列四个作图中,作法错误的是()A.B.C .D .5.抛物线224y x =-的顶点在( )A .x 轴上B .y 轴上C .第三象限D .第四象限6.如图,二次函数y =ax 2+bx+c 的图象与x 轴相交于A 、B 两点,C(m ,﹣3)是图象上的一点,且AC ⊥BC ,则a 的值为( )A .2B .12C .3D .137.已知反比例函数y =﹣6x,下列结论中不正确的是( ) A .图象必经过点(﹣3,2) B .图象位于第二、四象限C .若x <﹣2,则0<y <3D .在每一个象限内,y 随x 值的增大而减小 8.已知反比例函数(0)k y k x =≠的图象经过点()2,2M -,则k 的值是( ) A .4-B .1-C .1D .4 9.如图,半径为5的A 中,弦BC ,ED 所对的圆心角分别是BAC ∠,EAD ∠,若6DE =,180BAC EAD ∠+∠=︒,则弦BC 的长等于( )A .8B .10C .11D .1210.把函数y =﹣3x 2的图象向右平移2个单位,所得到的新函数的表达式是( )A .y =﹣3x 2﹣2B .y =﹣3(x ﹣2)2C .y =﹣3x 2+2D .y =﹣3(x +2)2二、填空题(每小题3分,共24分)11.二次函数y=x 2−4x+5的图象的顶点坐标为 .12.如图,在平面直角坐标系中,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,位似比为2:3,点B 、E 在第一象限,若点A 的坐标为(4,0),则点E 的坐标是_____.13.已知两个相似三角形的相似比为2︰5,其中较小的三角形面积是4,那么另一个三角形的面积为 .14.观察下列各式:2(1)(1)1x x x -+=-; 23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-; 4325(1)(1)1x x x x x x -++++=-则2019201820172222...221++++++=_______________________.15.如图,从一块矩形铁片中间截去一个小矩形,使剩下部分四周的宽度都等于x ,且小矩形的面积是原来矩形面积的一半,则x 的值为_________.16.某个周末小月和小华在南滨路跑步锻炼身体,两人同时从A 点出发,沿直线跑到B 点后马上掉头原路返回A 点算一个来回,回到A 点后又马上调头去往B 点,以此类推,每人要完成2个来回。

2023届内蒙古通辽市库伦旗数学九上期末教学质量检测试题含解析

2023届内蒙古通辽市库伦旗数学九上期末教学质量检测试题含解析

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每题4分,共48分)1.如图,在Rt ABC ∆中,90C ∠=︒,4BC =,3AC =,则sin (B = )A .35B .45 C .37 D .34 2.在二次函数2y x 2x 1=-++的图像中,若y 随x 的增大而增大,则x 的取值范围是A .x 1<B .x 1>C .x 1<-D .x 1>-3.下列是一元二次方程有( )①240x =;②20ax bx c ++=;③22332x x x =+;④210x -=.A .1B .2C .3D .44.如图所示的几何体的左视图是( )A .B .C .D .5.以下四个图形标志中,其中是中心对称图形的是( )A .B .C .D .6.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x .应列方程是( )A .300(1+x )=507B .300(1+x )2=507C .300(1+x )+300(1+x )2=507D .300+300(1+x )+300(1+x )2=5077.如图,在平面直角坐标系中,若反比例函数(0)k y k x =≠过点(2)2,,则k 的值为( )A .2B .2﹣C .4D .4﹣ 8.已知二次函数26y x x m =-+(m 是实数),当自变量任取1x ,2x 时,分别与之对应的函数值1y ,2y 满足12y y >,则1x ,2x 应满足的关系式是( )A .1233x x -<-B .1233x x ->-C .1233x x -<-D .1233x x ->-9.由于受猪瘟的影响,今年9 月份猪肉的价格两次大幅上涨,瘦肉价格由原来每千克23 元,连续两次上涨%a 后,售价上升到每千克40 元,则下列方程中正确的是( )A .()2231%40a +=B .()2231%40a -= C .()22312%40a += D .()22312%40a -= 10.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为AB 上一点且AE ∶EB =4∶1,EF ⊥AC 于点F ,连接FB ,则tan ∠CFB 的值等于( )A 3B 23C 53D .311.如图,矩形OABC 的OA 边在x 轴的正半轴上,点B 的坐标为()4,2,反比例函数k y x=的图象经过矩形对角线的交点P ,则k 的值是( )A .8B .4C .2D .112.如图,在ABC ∆中,D 在AC 边上,12AD DC :=:,O 是BD 的中点,连接AO 并延长交BC 于E ,则BE EC :=( )A .1:2B .1:3C .1:4D .2:3二、填空题(每题4分,共24分)13.在△ABC 中,tanB =34,BC 边上的高AD =6,AC =35,则BC 长为_____. 14.如图,ABCD 是平行四边形,AB 是⊙O 的直径,点D 在⊙O 上,AD =OA =2,则图中阴影部分的面积为______.15.等腰三角形底边所对的外接圆的圆心角为140°,则其顶角的度数为______.16.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为 米.17.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m .18.如图,在平面直角坐标系中,函数y kx =与2y x =-的图象交 于,A B 两点,过A 作y 轴的垂线,交函数4y x=的图象于点C ,连接BC ,则ABC ∆的面积为_______.三、解答题(共78分)19.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?20.(8分)先化简,再求值:()2111x x ⎛⎫-÷- ⎪+⎝⎭,其中x 为方程2320x x ++=的根. 21.(8分)已知关于x 的方程x 2+ax +a ﹣2=1.(1)求证:不论a 取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a 的值及该方程的另一根.22.(10分)对于平面直角坐标系xOy 中的点(),P x y 和半径为1的O ,定义如下: ①点(),P x y 的“派生点”为()',P x y x y +-;②若O 上存在两个点A B 、,使得60APB ∠=︒,则称点P 为O 的“伴侣点”.应用:已知点()()11,,0,2,23,022D E F ⎛⎫-- ⎪⎝⎭ (1)点D 的派生点'D 坐标为________;在点'D D E F 、、、中,O 的“伴侣点”是________;(2)过点F 作直线l 交y 轴正半轴于点G ,使30GFO ∠=︒,若直线l 上的点()P m n ,是O 的“伴侣点”,求m 的取值范围;(3)点P 的派生点P'在直线26y x =-+,求点P 与O 上任意一点距离的最小值.23.(10分)如图,以△ABC 的BC 边上一点O 为圆心的圆,经过A 、B 两点,且与BC 边交于点E ,D 为BE 的下半圆弧的中点,连接AD 交BC 于F ,若AC=FC .(1)求证:AC 是⊙O 的切线:(2)若BF=8,DF=40,求⊙O 的半径;(3)若∠ADB=60°,BD=1,求阴影部分的面积.(结果保留根号)24.(10分)如图,已知AB 是⊙O 的直径,点C 在⊙O 上,点P 是AB 延长线上一点,∠BCP =∠A .(1)求证:直线PC 是⊙O 的切线;(2)若CA =CP ,⊙O 的半径为2,求CP 的长.25.(12分)如图,四边形ABCD 内接于⊙O ,∠1至∠6是六个不同位置的圆周角.(1)分别写出与∠1、∠2相等的圆周角,并求∠1+∠2+∠3+∠4的值;(2)若∠1-∠2=∠3-∠4,求证: AC ⊥BD .26.如图,已知抛物线与x 轴交于(1,0)A 、(3,0)B 两点,与y 轴交于点(0,3)C .(1)求抛物线的解析式;(2)点D 是第一象限内抛物线上的一个动点(与点C 、B 不重合),过点D 作DF x ⊥轴于点F ,交直线BC 于点E ,连接BD 、CD .设点D 的横坐标为m ,BCD 的面积为S .求S 关于m 的函数解析式及自变量m 的取值范围,并求出S 的最大值;(3)已知M 为抛物线对称轴上一动点,若MBC △是以BC 为直角边的直角三角形,请直接写出点M 的坐标.参考答案一、选择题(每题4分,共48分)1、A【解析】先利用勾股定理求出斜边AB ,再求出sinB 即可.【详解】∵在Rt ΔABC 中,C 90∠=︒,BC 4=,AC 3=, ∴2222345AB BC AC =++=, ∴3sin 5AC B AB ==. 故答案为A.【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.2、A【解析】∵二次函数2y x 2x 1=-++的开口向下,∴所以在对称轴的左侧y 随x 的增大而增大.∵二次函数2y x 2x 1=-++的对称轴是b 2x 12a 2(1)=-=-=⨯-, ∴x 1<.故选A .3、A【解析】根据一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式是一元二次方程.然后对每个方程作出准确的判断.【详解】解:①240x =符合一元二次方程的定义,故正确;②20ax bx c ++=方程二次项系数可能为0,故错误;③22332x x x =+整理后不含二次项,故错误;10=不是整式,故错误,故选:A.【点睛】本题考查的是一元二次方程的定义,根据定义对每个方程进行分析,然后作出准确的判断.4、A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】从左边看共一列,第一层是一个小正方形,第二层是一个小正方形,故选:A .【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5、C【分析】根据中心对称图形的概念对各选项逐一分析判断即可得答案.【详解】A 、不是中心对称图形,故本选项不合题意,B 、不是中心对称图形,故本选项不合题意,C 、是中心对称图形,故本选项符合题意,D 、不是中心对称图形,故本选项不合题意.故选C .【点睛】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、B【分析】根据年利润平均增长率,列出变化增长前后的关系方程式进行求解.【详解】设这两年的年利润平均增长率为x ,列方程为:300(1+x )2=507.故选B.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是怎么利用年利润平均增长率列式计算.7、C【解析】把(2)2,代入k y x =求解即可. 【详解】反比例函数()0k y k x≠=过点()22,, =22=4k ∴⨯,故选:C .【点睛】本题考查反比例函数图象上的点的特征,解题的关键是熟练掌握基本知识,属于中考常考题型.8、D【解析】先利用二次函数的性质确定抛物线的对称轴为直线x=3,然后根据离对称轴越远的点对应的函数值越大可得到|x 1-3|>|x 2-3|.【详解】抛物线的对称轴为直线x=-621-⨯=3, ∵y 1>y 2,∴点(x 1,y 1)比点(x 2,y 2)到直线x=3的距离要大,∴|x 1-3|>|x 2-3|.故选:D .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质. 9、A【分析】根据增长率a%求出第一次提价后的售价,然后再求第二次提价后的售价,即可得出答案.【详解】根据题意可得:23(1+a%)2=40,故答案选择A.【点睛】本题考查的是一元二次方程在实际生活中的应用,比较简单,记住公式“增长后的量=增长前的量×(1+增长率)”. 10、C【解析】根据题意:在Rt △ABC 中,∠C=90°,∠A=30°,∵EF ⊥AC ,∴EF ∥BC ,∴CF AC =BE AB∵AE :EB=4:1,∴AB EB =5,∴AF AC =45,设AB=2x ,则BC=x ,∴在Rt △CFB 中有,BC=x .则tan ∠CFB=BC CF 故选C .11、C 【分析】根据矩形的性质求出点P 的坐标,将点P 的坐标代入k y x=中,求出k 的值即可. 【详解】∵点P 是矩形OABC 的对角线的交点,点B 的坐标为4,2∴点P ()2,1将点P ()2,1代入k y x=中 12k = 解得2k =故答案为:C .【点睛】本题考查了矩形的性质以及反比例函数的性质,掌握代入求值法求出k 的值是解题的关键.12、B【分析】过O 作BC 的平行线交AC 与G ,由中位线的知识可得出12AD DC :=:,根据已知和平行线分线段成比例得出2121AD DG GC AG GC AO OF ==,:=:,:=:,再由同高不同底的三角形中底与三角形面积的关系可求出BF FC :的比.【详解】解:如图,过O 作//OG BC ,交AC 于G ,∵O 是BD 的中点,∴G 是DC 的中点.又12AD DC :=:,AD DG GC ∴==,2121AG GC AO OE ∴:=:,:=:,2AOB BOE S S ∆∆∴:=设2BOE AOB S S S S ∆∆=,=,又BO OD =,24AOD ABD S S S S ∆∆∴=,=,12AD DC :=:,287BDC ABD CDOE S S S S S ∆∆∴四边形==,=,93AEC ABE S S S S ∆∆∴=,=, 3193ABE AEC S BE S EC S S ∆∆∴=== 故选B .【点睛】考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.二、填空题(每题4分,共24分)13、5或1【分析】分两种情况:AC 与AB 在AD 同侧,AC 与AB 在AD 的两侧,在Rt △ABD 中,通过解直角三角形求得BD ,用勾股定理求得CD ,再由线段和差求BC 便可.【详解】解:情况一:当AC 与AB 在AD 同侧时,如图1,∵AD 是BC 边上的高,AD =6,tanB =34,AC =5∴在Rt △ABD 中,683tan 4AD BD B ===,在Rt △ACD 中,利用勾股定理得()22223563CD AC AD =-=-=∴BC=BD-CD=8-3=5; 情况二:当AC 与AB 在AD 的两侧,如图2,∵AD 是BC 边上的高,AD =6,tanB =34,AC =5∴在Rt △ABD 中,683tan 4AD BD B ===, 在Rt △ACD 中,利用勾股定理得()22223563CD AC AD =-=-= ∴BC=BD+CD=8+3=1;综上,BC=5或1.故答案为:5或1.【点睛】 本题主要考查了解直角三角形的应用题,关键是分情况讨论,比较基础,容易出错的地方是漏解.143【分析】根据题意,作出合适的辅助线,由图可知,阴影部分的面积=△CBF 的面积,根据题目的条件和图形,可以求得△BCF 的面积,从而可以解答本题.【详解】连接OD 、OF 、BF ,作DE ⊥OA 于点E ,∵ABCD 是平行四边形,AB 是⊙O 的直径,点D 在⊙O 上,AD =OA =2,∴OA =OD =AD =OF =OB =2,DC ∥AB ,∴△DOA 是等边三角形,∠AOD =∠FDO , ∴∠AOD =∠FDO =60°,同理可得,∠FOB =60°,△BCD 是等边三角形,∵弓形DF 的面积=弓形FB 的面积,DE =OD•sin60°323⨯3, 3【点睛】本题考查了求阴影部分面积的问题,掌握三角形面积公式是解题的关键.15、70°或110°.【分析】设等腰三角形的底边为AB,由⊙O的弦AB所对的圆心角为140°,根据圆周角定理与圆的内接四边形的性质,即可求得弦AB所对的圆周角的度数,即可求出其顶角的度数.【详解】如图所示:∵⊙O的弦AB所对的圆心角∠AOB为140°,∴∠ADB=12∠AOB=70°,∵四边形ADBD’是⊙O的内接四边形,∴∠AD′B=180°﹣70°=110°,∴弦AB所对的圆周角为70°或110°,即等腰三角形的顶角度数为:70°或110°.故答案为:70°或110°.【点睛】本题主要考查圆周角定理与圆的内接四边形的性质,根据题意画出图形,熟悉圆的性质,是解题的关键.16、1.【解析】根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知AB AMOC OA AM=+,即1.6AM820AM=+,解得AM=1.∴小明的影长为1米.17、0.5【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题. 【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.18、6【分析】根据正比例函数y=kx与反比例函数2yx=-的图象交点关于原点对称,可得出A、B两点坐标的关系,根据垂直于y轴的直线上任意两点纵坐标相同,可得出A、C两点坐标的关系,设A点坐标为(x,-2x),表示出B、C两点的坐标,再根据三角形的面积公式即可解答.【详解】∵正比例函数y=kx与反比例函数2yx=-的图象交点关于原点对称,∴设A点坐标为(x,−2x),则B点坐标为(−x,2x),C(−2x,−2x),∴S ABC=12×(−2x−x)⋅(−2x−2x)=12×(−3x)⋅(−4x)=6.故答案为6.【点睛】此题考查正比例函数的性质与反比例函数的性质,解题关键在于得出A、C两点.三、解答题(共78分)19、(1)20%;(2)能.【分析】(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.【详解】(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该企业从2014年到2016年利润的年平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,所以该企业2017年的利润能超过3.4亿元.【点睛】此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.20、1【分析】先将除式括号里面的通分后,将除法转换成乘法,约分化简.然后解一元二次方程,根据分式有意义的条件选择合适的x 值,代入求值.【详解】解:原式=()()()21111111x x x x x x x --+-÷=-⋅=--+--. 解2320x x ++=得,122,?1x x =-=-,∵1x =-时,21x +无意义, ∴取2x =-.当2x =-时,原式=()211---=.21、(1)见解析;(2)a =12,x 1=﹣32【分析】(1)根据根的判别式即可求解;(2)将x=1代入方程x 2+ax+a ﹣2=1,求出a ,再利用根与系数的关系求出方程的另一根.【详解】解:(1)∵△=a 2﹣4(a ﹣2)=a 2﹣4a+8=a 2﹣4a+4+4=(a ﹣2)2+4≥1,∴不论a 取何实数,该方程都有两个不相等的实数根.(2)将x=1代入方程x 2+ax+a ﹣2=1得1+a+a ﹣2=1,解得a=12; ∴方程为x 2+12x ﹣32=1, 即2x 2+x ﹣3=1,设另一根为x 1,则1×x 1=c a =﹣32, ∴另一根x 1=﹣32. 【点睛】此题主要考查一元二次方程根的求解,解题的关键是熟知根的判别式与根与系数的关系.22、(1)(1,0),E 、D 、'D ;(2)0m ≤≤;(3)15- 【分析】(1)根据定义即可得到点'D 的坐标,过点E 作O 的切线EM ,连接OM ,利用三角函数求出∠MEO=30°,即可得到点E 是O 的“伴侣点”;根据点F 、D 、'D 的坐标得到线段长度与线段OE 比较即可判定是否是O 的“伴侣点”;(2)根据题意求出tan 30232OG OF =⋅==,∠OGF=60°,由点()P m n ,是O 的“伴侣点”,过点P 作O 的切线PA 、PB ,连接OP ,OB ,证明△OPG 是等边三角形,得到点P 应在线段PG 上,过点P 作PH ⊥x 轴于H ,求出点P 的横坐标是P 的横坐标m 的取值范围;(3)设点P '(x ,-2x+6),P (m ,n ),根据派生点的定义得到3m+n=6,由此得到点P 在直线y=-3x+6上,设直线y=-3x+6与x 轴交于点A ,与y 轴交于点B ,过点O 作OH ⊥AB 于H ,交O 于点C ,求出AB 的长,再根据面积公式求出OH 即可得到答案.【详解】(1)∵11,22D ⎛⎫ ⎪⎝⎭, ∴点D 的派生点'D 坐标为(1,0),∵E(0,-2),∴OE=2,过点E 作O 的切线EM ,连接OM ,∵OM=1,OE=2,∠OME=90°,∴sin ∠MEO=12OM OE =, ∴∠MEO=30°, 而在O 的左侧也有一个切点,使得组成的角等于30°,∴点E 是O 的“伴侣点”;∵()F -,∴OF=,∴点F 不可能是O 的“伴侣点”; ∵11,22D ⎛⎫ ⎪⎝⎭,'D (1,0),OD OE <,OD OE '<, ∴点D 、'D 是O 的“伴侣点”, ∴O 的“伴侣点”有:E 、D 、'D ,故答案为:(1,0),E 、D 、'D ;(2)如图,直线l 交y 轴于点G ,∵30GFO ∠=︒, ∴3tan 302323OG OF =⋅==,∠OGF=60° ∵直线l 上的点()P m n ,是O 的“伴侣点”, ∴过点P 作O 的切线PA 、PB ,且∠APB=60°,连接OP ,OB ,∴∠BOP=30°,∵∠OBP=90°,OB=1,∴OP=2=OG ,∴△OPG 是等边三角形,∴若点P 是O 的“伴侣点”,则点P 应在线段PG 上,过点P 作PH ⊥x 轴于H ,∵∠POH=90°-60°=30°,OP=2,∴PH=1,∴3P 的横坐标是3 ∴当直线l 上的点()P m n ,是O 的“伴侣点”时m 的取值范围是30m ≤≤;(3)设点P'(x,-2x+6),P(m,n),根据题意得:m+n=x,m-n=-2x+6,∴3m+n=6,即n=-3m+6,∴点P坐标为(m,-3m+6),∴点P在直线y=-3x+6上,设直线y=-3x+6与x轴交于点A,与y轴交于点B,过点O作OH⊥AB于H,交O于点C,如图,则A(2,0),B (0,6),∴2226210AB=+=∴1122OH AB OA OB ⋅⋅=⋅⋅,∴310210OH==,∴3101 CH=-,即点P与O 3101.【点睛】此题考查圆的性质,切线长定理,切线的性质,等腰三角形的性质,锐角三角函数,特殊角的三角函数值,勾股定理,正确掌握各知识点是解题的关键.23、(1)证明见解析;(2)6;(333π-.【解析】(1)连接OA、OD,如图,利用垂径定理的推论得到OD⊥BE,再利用CA=CF得到∠CAF= ∠CFA,然后利用角度的代换可证明∠OAD+∠CAF=o90,则OA⊥AC,从而根据切线的判定定理得到结论;(2)设⊙0的半径为r,则OF=8-r,在Rt△ODF中利用勾股定理得到2228-r+r=(40)(),然后解方程即可;(3)先证明△BOD为等腰直角三角形得到2则2,再利用圆周角定理得到∠AOB=2∠ADB=120o,则∠AOE=60o,接着在Rt△OAC中计算出AC,然后用一个直角三角形的面积减去一个扇形的面积去计算阴影部分的面积.【详解】(1)证明:连接OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠ODF+∠OFD=90°,∵CA=CF,∴∠CAF=∠CFA,而∠CFA=∠OFD,∴∠ODF+∠CAF=90°,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:设⊙O的半径为r,则OF=8﹣r,在Rt△ODF中,(8﹣r)2+r2=()2,解得r1=6,r2=2(舍去),即⊙O的半径为6;(3)解:∵∠BOD=90°,OB=OD,∴△BOD为等腰直角三角形,∴OB=BD=,∴OA=,∵∠AOB=2∠ADB=120°,∴∠AOE=60°,在Rt△OAC中,AC=OA=,∴阴影部分的面积=••﹣=.【点睛】本题主要考查圆、圆的切线及与圆相关的不规则阴影的面积,需综合运用各知识求解.24、(1)见解析;(2)3【分析】(1)欲证明PC是⊙O的切线,只要证明OC⊥PC即可;(2)想办法证明∠P=30°即可解决问题.【详解】(1)∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线;(2)∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴PC【点睛】本题考查了切线的判定,解直角三角形,圆周角定理,正确的识别图形是解题的关键.25、(1)∠6=∠1,∠5=∠2,1°;(2)详见解析【分析】(1)根据圆的性质可得出与∠1、∠2相等的圆周角,然后计算∠1+∠2+∠3+∠4可得;(2)先得出∠1+∠4=90°,从而得出∠6+∠4=90°,从而证垂直.【详解】(1)∵∠1和∠6所对应的圆弧相同,∴∠1=∠6同理,∠2=∠∠5∵∠1=∠6,∠2=∠5∴∠1+∠2+∠3+∠4=∠6+∠5+∠3+∠4=1°;(2)∵∠1-∠2=∠3-∠4∴∠1+∠4=∠2+∠3∵∠1+∠2+∠3+∠4=1°∴∠1+∠4=∠2+∠3=90°∵∠1=∠6∴∠6+∠4=90°∴AC⊥BD.【点睛】本题考查圆周角的特点,同弧或等弧所对应的圆周角相等,解题关键是得出∠1+∠2+∠3+∠4=1.26、(1)223y x x =-++;(2)23327()(03)228=--+<<S m m ,当32m =时,S 有最大值,最大值278S =;(2)(1,2)-,(1,4)【解析】(1)由抛物线与x 轴的两个交点坐标可设抛物线的解析式为y=a (x+1)(x-2),将点C (0,2)代入抛物线解析式中即可得出关于a 一元一次方程,解方程即可求出a 的值,从而得出抛物线的解析式;(2)设直线BC 的函数解析式为y=kx+b .结合点B 、点C 的坐标利用待定系数法求出直线BC 的函数解析式,再由点D 横坐标为m 找出点D 、点E 的坐标,结合两点间的距离公式以及三角形的面积公式求出函数解析式,利用配方法将S 关于m 的函数关系式进行变形,从而得出结论;(2)先求出对称轴,设M(1,y),然后分分BM 为斜边和CM 为斜边两种情况求解即可;【详解】解:(1)∵抛物线与x 轴交于A (-1,0)、B (2,0)两点,∴设抛物线的解析式为y=a (x+1)(x-2),又∵点C (0,2)在抛物线图象上,∴2=a×(0+1)×(0-2),解得:a=-1.∴抛物线解析式为y=-(x+1)(x-2)=-x 2+2x+2.∴抛物线解析式为223y x x =-++;(2)设直线BC 的函数解析式为y kx b =+,∵直线BC 过点(3,0)B ,(0,3)C ,∴033k b b =+⎧⎨=⎩,解得13k b =-⎧⎨=⎩, ∴3y x =-+,设2(,23)D m m m -++,(,3)E m m -+,∴()22(23)33DE m m m m m =-++--+=-+, ∴22213393327(3)()(03)2222228S OB DE m m m m m m =⋅=-+=-+=--+<<, ∵302-<, ∴当32m =时,S 有最大值,最大值278S =; (2)∵223y x x =-++,∴对称轴为直线x=1,设M(1,y),则CM 2=1+(y-2)2=y 2-6y+10,BM2=y2+(1-2)2=y2+4,BC2=9+9=18.当BM为斜边时,则y2-6y+10+18= y2+4,解得y=4,此时M(1,4);当CM为斜边时,y2+4+18= y2-6y+10,解得y=-2,此时M(1,-2);,(1,4).综上可得点M的坐标为(1,2)【点睛】本题考查了二次函数的性质、待定系数法求函数解析式、两点间的距离公式、三角形的面积公式以及勾股定理,解题的关键:(1)待定系数法求函数解析式;(2)求出S与m的关系式;(2)分类讨论.。

内蒙古通辽市2022-2022学年九年级数学上学期末质量检测试题 新人教版

内蒙古通辽市2022-2022学年九年级数学上学期末质量检测试题 新人教版

内蒙古通辽市2022-2022学年九年级数学上学期末质量检测试题一、选择题.(请将唯一正确的答案的选项填涂在答题卡上,3分×10)1.-6的相反数是( )A .6B .6-C .16-D .16 2.通辽市元旦白天气温是-3℃,到午夜下降了14℃,那么午夜的气温是( ) A .17℃ B .-17℃ C .-11℃ D .11℃3.下列成语所描述的事件是随机事件的是( )A .水中捞月B .空中楼阁C .守株待兔D .瓮中捉鳖4.下列图标既是中心对称图形,又是轴对称图形的是 ( )5.方程x 2=x的解为( )A .x=-1或x=0 B.x=0 C.x=1 D. x=1或x=0 已知两圆的半径分别为一元二次方程27120x x -+=的二根,圆心距为1、则两圆位置关系为( )A .内切B .外切C .相交D .相离7.如图,过O ⊙上一点C 作O ⊙的切线,交O ⊙直径AB 的延长线于点D. 若∠D=40°,则∠A 的度数为( )A .20°B .25°C .30°D .40°8.下列事件是必然事件的是( )A.有两边及一角对应相等的两三角形全等B.若a 2=b 2 则有a=bC.方程x 2-x+1=0有两个不等实根D. 圆的切线垂直于过切点的半径9.某广场有一喷水池,水从地面喷出,如图,以水平地 面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线24y x x =-+(单位:米)的一部分,则水喷出的最大高度是( )A .4米B .3米C .2米D .米10.已知二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,有下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当-1<x<5时,y<0 其中正确的有( )A .1个B .2个C .3个D .4个二、填空题(请将正确答案填在答题卡相应题号后.每小题3分,共21分)11.6月5日是世界环境日,其主题是“海洋存亡 匹夫有责”,目前全球海洋总面积约为36100 x y (米)万平方公里. 用科学记数法表示为平方公里.12.某产品出现次品的概率为0.05,任意抽取这种产品600件,那么大约有件是次品.13.若n(n≠0)是关于x的方程x2+mx+3n=0的一个根,则m+n的值是 .14.已知点P(﹣2,3)关于原点的对称点为M(a,b),则a+b= .15.已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是 .16.从下面的4张牌中,任意抽取两张.其点数和是奇数的概率是.17.将除去零以外的自然数按以下规律排列(提示:观察第一列的奇数行的数的规律和第一行的偶数列的数的规律)判断2022所在的位置是 .三.解答题(本题共9小题,共69分.请将正确答案写在答题卡相应位置上)18.(4分)解方程:x(x-2)+x-2=019.(6分)求抛物线y=x2-x-2与x轴的交点坐标.20.(6分)如图所示的网格图中,每小格都是边长为1的正方形,△ABC的三个顶点都在格点上,在建立直角坐标系后,点C的坐标(-1,2).(1)画出△ABC绕点D(0,5)逆时针旋转90°后的△A1B1C1;并标出A1,B1,C1的坐标.(2)画出△ABC关于原点O的中心对称图形△A2B2C2,并标出A2,B2,C2的坐标.21.(6分)已知抛物线的顶点坐标是(-1,4),且过点(1,0),求该抛物线的解析式.22.(6分)在一个口袋里装着白、红、黑三种颜色的小球(除颜色外形状大小完全相同),其中白球3个、红球2个、黑球1个.(1)随机从袋中取出一个球,求取出的球是黑球的概率;(2)若取出的第一只球是红球,不将它放回袋里,从袋中余下的球中再随机地取 出1个,这时取出的球是黑球的概率是多少?(3)若取出一个球,将它放回袋中,从袋中再随机地取出一个球,两次取出的球 都是白球的概率是多少?(用列表法或树状图计算)23.(8分)如图四边形ABCD 内接于O,AD//BC,求证:AB=CD.24.(9分)某水果批发商经销一种高档水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场保证每天盈利1500元,同时又要照顾顾客,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,使该商场获利最大?25.(12分)如图,已知点E 在△ABC 的边AB 上,∠C=90°,∠BAC 的平分线交BC 于点D ,且D 在以AE 为直径的⊙O 上.(1)求证:BC 是⊙O 的切线;(2)已知∠B=30°,CD=4,求线段AB 的长.26.(12分)如图,抛物线y =-x 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,点O为坐标原点,点D 为抛物线的顶点,点E 在抛物线上,点F 在x 轴上,四边形 OCEF 为矩形,且OF =2,EF =3.(1)求抛物线的解析式;(2)求△ABD 的面积;(3)将△AOC 绕点C 逆时针旋转90°,点A 对应点为点G ,问点G 是否在该抛物线上?请说明理由. D O B A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内蒙古通辽市库伦旗九年级数学上学期期末考试试题 新人教版注意事项:1.本试卷共6页,26小题,满分120,考试时间120分钟.2.本试卷中的所有试题均按要求在答题卡上做答,答在本试卷上的答案无效. 一、选择题:(本大题共10小题,每小题3分,共30分)1.下列事件是必然事件的是------------------------------( ) A .明天气温会升高 B .随意翻到一本书的某页,这页的页码是奇数. C .早晨太阳会从东方升起 D .某射击运动员射击一次,命中靶心.2. 下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个3.掷一个骰子时,观察上面的点数,点数为奇数的概率是( ).A.21B. 31C. 41D. 514.如图,在⊙O 中,弦AB,CD 相交于点P ,若∠A=55°, ∠APD=80°,则∠B=等于( ).A.40°B.45°C.50°D.55°5. 某城市xx 年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到xx 年底增加到363公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是----( ) A .300(1+x )=363 B .300(1+x )2=363 C.300(1+2x )=363 D .363(1-x )2=3006.若一元二次方程022=++m x x 有实数解,则m 的取值范围是( ) .A . 1-≤mB . 1≤mC . 4≤mD .21≤m7.抛物线2(2)3y x =-+的对称轴是( )A.直线x = -2 B .直线 x =2 C .直线x = -3 D .直线x =38.在平面直角坐标系中,点A (0,-1),点B (4,2),点C 在作标轴上,使∠ACB 为直角的点C 有( )个.A.1个B.2个C.3个D.4个9. 如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( ).A .120° B.90° C.60° D.30°10.已知)0(2≠++=a c bx ax y 的图像如图所示,则)20,0(2<<≠=++n a n c bx ax 的方程的两实根21,x x ,则满足( )A BC P DO● (第9题)C 1A 1ACA.3121<<<x xB. 2131x x <<<C. 3121<<<x xD. 3,1021><<x x 且 二、填空题:(本大题共7小题,每小题3分,共21分)11. 已知x = 1是一元二次方程02=++n mx x 的一个根,则222n mn m ++的值为_______________________.12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数) P (奇数)(填“>”“<”或“=”).13. 有一个亭子的地基如图所示,它是一个半径为4 m 的正六边形,它的面积是_______________(保留根号).14.如图,AB 是⊙0的直径,CD ⊥AB ,∠ABD=60°,CD=23.则阴影部分的面积为 _________________________.15.在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为_____________.16.如图,粮仓的顶部是圆锥形状,这个圆锥底面圆的半径长为3m ,母线长为6m ,为防止雨水,需在粮仓顶部铺上油毡,如果油毡的市场价是每平方米10元钱,那么购买油毡所需要的费用是 ___________ 元(结果保留整数).17.如图,矩形ABCD 中,AB=8,AD=6,将矩形ABCD 在直线l 上按顺时针方向不滑动的每秒转动90°,转动3秒后停止,则顶点A 经过的路线长为 . 三、解答题:(本大题共9小题,共69分)OABC D14题图1 5 432(第12题)13题图32A 1A D C BAl17题16题图15题图18.(本题满分6分)巫山长江公路大桥是一个中承式钢管砼圆弧形拱桥,主跨度AB=492米,拱桥最高点C 距水面100米,求该拱桥的半径是多少米?19.(本小题满分8分)小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,规则如右图:(1)请你完成下面表示游戏一个回合所有可能出现的结果的树状图;(2)求一个回合能确定两人先下棋的概率.20. (本题满分6分) 如图,在⊙O 中,⌒AB =⌒AC ,∠ACB =60°,解: (1)树状图为:开始正面正面正面 反面小明小亮 小强不确定确定结果CB 1AO BA 1求证∠AOB =∠BOC =∠COA .21.(本题满分8分)如图,在Rt OAB ∆中,90OAB ∠=︒,6OA AB ==,将OAB ∆绕点O 沿逆时针方向旋转90︒得到11OA B ∆.(1)线段1OA 的长是 ,1AOB ∠的度数是 ;(2)连结1AA ,求证:四边形11OAA B 是平行四边形; (3)求四边形11OAA B 的面积.22.(本题满分6分)王老汉为了与顾客签订购销合同,对自己鱼塘中鱼的总质量进行了估计,第一次捞出100条,称得质量为184千克.并将每条鱼做上记号后放入水中,当它们完全混合于鱼群后,又捞出200条,称得质量为416千克,且带有记号的鱼有20条,王老汉的鱼塘中估计有鱼多少条鱼?总质量为多少千克?23.(本小题满分8分)如图,已知二次函数24y ax x c =-+的图像经过点A 和点B . (1)求该二次函数的表达式; (2)写出该抛物线的对称轴及顶点坐标; (3)点P (m ,m )与点Q 均在该函数图像上(其中m >0),且这两点关于抛物线的对称轴对称,求m 的值及点Q 到x 轴的距离.xyO 3-1-1A24.(本小题满分8分)如图,点D 是∠AOB 的平分线OC 上任意一点,过D作DE ⊥OB 于E ,以DE 为半径作⊙D ,①判断⊙D 与OA 的位置关系, 并证明你的结论。

②通过上述证明,你还能得出哪些等量关系?25.(本题满分9分)利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x (元),该经销店的月利润为y (元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y 与x 的函数关系式(不要求写出x 的取值范围); (3)该经销店要获得最大月利润,售价应定为每吨多少元?26.(本题满分10分)如图,⊙O 的直径AB=2,AM 、BN 是它的两条切线,CD 与⊙O 相切于点E ,与BN 、AM 交于点C 、D,设AD=x,BC=y 。

(1)求证:AM ∥BN 。

(2)求y 关于x 的函数关系式。

(3)若x 、y 是关于t 的方程2t 2-5t+m=0的两根, 且xy=2m ,求x 、y 的值。

九年级数学参考答案一、每题3分,共30分.CBA;BBB;BCA;D; 二、每题3分,共21分11,1;12,<,13.243m 214,32;15,1m;16,565元;17.12π18.满分6分解:如图,设弧AB 所在圆心为O,半径为R----1分经过圆心O 作AB 的垂线OC ,D 为垂足,OC 与弧AB 交于点C,连接OA.根据垂径定理,D 是AB 中点,C 是弧AB 中点.-------------------2分 由题意可知AB=492米,CD=100米,所以AD=1/2AB=21╳492=246米,AD=21╳100=50米OD=OC-CD=R-100.------------------------------3分 在直角三角形OAD 中,根据勾股定理 ,得 OA 2=AD 2+OD 2,R 2= 2462+(R-100) 2解得 R=352.58米(6分)---------------5分 因此,该拱桥的半径是352.58米。

--------6分19.满分6分 解:(1)(2)由(1)中的树状图可知:P (确定两人先下棋)=34.…(8分)20. 满分6分证明:∵⌒AB=⌒AC ∴AB =AC ,△ABC 为等腰三角形 (相等的弧所对的弦相等)---2分 ∵∠ACB =60°∴△ABC 为等边三角形,AB =BC =CA ∴∠AOB =∠BOC =∠COA(相等的弦所对的圆心角相等)---6分 21. 满分8分(1)6, 135度 (2分) (2)(4分)…………………………(6分)开始正面反面 正面反面正面反面正面 反面 正面 反面 正面 反面 正面 反面小明 小亮 小强 不确定确 定确定确定确定确定确定不确定结果证明:由旋转图形性质可知:OB=OB 1,OA=OA 1,AB=A 1B 1 -----1分 由等腰直角三角形性质可得:,OA=OA 1= A 1B 1,OB=OB 1=A A 1---2分根据两组对边分别相等的四边形是平行四边形,可知四边形OA A 1B 1是平行四边形-------------4分(其它答案参照赋分) (3)2分 36 22. 满分6分解:由题意可知:第一次捞出的鱼的条数占鱼塘中鱼的总条数的.所以估计鱼塘中的鱼的总条数为(条),---2分鱼塘中每条鱼的平均质量为:(千克),4分∴ 鱼塘中估计有1000条鱼,总质量为2.011×1000=xx(千克).—6分23.解:(1)将x =-1,y =-1;x =3,y =-9分别代入c x ax y +-=42得 ⎩⎨⎧+⨯-⨯=-+-⨯--⨯=-.3439,)1(4)1(122c a c a 解得 ⎩⎨⎧-==.6,1c a…………………………(3分) ∴二次函数的表达式为642--=x x y . ………………………………(4分)(2)对称轴为2=x ;顶点坐标为(2,-10).………………………(6分)(3)将(m ,m )代入642--=x x y ,得 642--=m m m , 解得121,6m m =-=.∵m >0,∴11-=m 不合题意,舍去. ∴ m =6.…………………………………………………(7分)∵点P 与点Q 关于对称轴2=x 对称, ∴点Q 到x 轴的距离为6. ……………………………(8分)24.(1)4分 ⊙D 与OA 的位置关系是相切---1分证明:过D 作DF ⊥OA 于F-------2分又点D 是∠AOB 的平分线OC 上任意一点,DE ⊥OB ,所以DE=DF----3分 直线OA 过半径外端,又与半径垂直,所以OA 是⊙D 的切线.—4分(2) ∠DOA=∠DOE, OE=OF 4分 25.解:(1)5.71024026045⨯-+=60(吨).………………(3分)(2)260(100)(457.5)10xy x -=-+⨯,……………………(6分) 化简得: 23315240004y x x =-+-.………………(7分)(3)24000315432-+-=x x y 23(210)90754x =--+.利达经销店要获得最大月利润,材料的售价应定为每吨210元. ……(9分)26. 解:(1)因为AB 是直径,AM 、BN 是切线,所以AM ⊥B,BN ⊥AB, 所以AM ∥BN ;-------------------------------------2′(2)在直角三角形CDF 中,DF=AB=2,DC=DE+CE=x+y ,CF=BC-BF=y-x-----4′ 所以,(x+y )2=22+(y-x )2,化简的y=x 1(x >0)-----------------6′ (3)由xy=2m 及(2)问的结论,得xy=2m =1,m=2-----------------------------------8′ 所以原方程可以转化为2t 2-5t+2=0,即(t-2)(2t-1)=0,解得t=2或t=21-------9′ 因为x <y ,所以x=21,y=2。

相关文档
最新文档