二次函数的图像和性质专项练习题(最新整理)

合集下载

二次函数的图像与性质专项练习

二次函数的图像与性质专项练习

二次函数的图像与性质专项练习【知识要点】1.二次函数:形如 的函数叫做二次函数.2.二次函数的图像性质:(1)二次函数的图像是 ;(2)二次函数),,,0(2为常数c b a a c bx ax y ≠++=通过配方可得c b a a ab ac a b x a y ,,,0(44)2(22≠-++=为常数),其顶点坐标为 。

(3)当0>a 时,抛物线开口 ,并向上无限延伸;在对称轴左侧)2(a b x -<即时,y 随x 的增大而减小;在对称轴右侧)2(abx ->即时,y 随x 的增大而增大;当abx 2-=时,函数有 .当0<a 时,抛物线开口 ,并向下无限延伸;在对称轴左侧)2(abx -<即时,y 随着x 的增大而增大;在对称轴右侧)2(abx ->即时,y 随着x 的增大而减小;当,2时a bx -=函数有 。

3.二次函数的图像平移:(1)二次函数k h x a y h x a y ax y +-=-==222)(,)(,的图像都是抛物线,并且形状相同,只是位置不同(a 的取值决定抛物线的形状).将2ax y =的图像向右(h>0)、向左(h<0)平移h 个单位,就得到函数2)(h x a y -=的图像;再将此抛物线向上(k>0)、向下(k<0)平移k 个单位得到函数k h x a y +-=2)(的图像.上述平移的规律是:“h 值正、负、右、左移;k 值正、负、上、下移.” 4.抛物线与坐标轴的交点:(1)抛物线).,0(2c y c bx ax y 轴交于点与++=(2)若方)0,)(0,(,,0212212x x x c bx ax y x x c bx ax 轴点交则抛物线有两根++==++ 核心考点突破考点㈠二次函数的图像性质例1定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m ] 的函数的一些结论:① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23;③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点.其中正确的结论有 A. ①②③④ B. ①②④ C. ①③④ D. ②④ 变式训练1.已知二次函数2y ax bx c =++的图像如图所示,则下列结论正确的是( )A.0a >B. 0c <C.240b ac -<D.0a b c ++>第(1)题第(3)题 2.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:( )①240b ac ->;②0abc >;③80a c +>;④930a b c ++<.3. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个考点㈡二次函数图像平移例2. 抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为( ) A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2 变式训练1.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式 ( )2.若把函数y=x 的图象用E (x ,x )记,函数y=2x+1的图象用E (x ,2x+1)记,……则E (x ,122+-x x )可以由E (x ,2x )怎样平移得到?3.如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为( )第(2)题A .-3B .1C .5D .8OB OA ⊥,且2OB OA =,点A 的坐标是(12)-,.P ,使得ABP ABO S S =△△. 1x 轴的交点如图所示,根据图中信息可得到m 的值第2题图2.已知二次函数()()221y x a a =-+-(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.下图分别是当1a =-,0a =,1a =,2a =时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y = . 3.如图,已知二次函数c bx x y ++-=221的图象经过A (2,0)、B (0,-6)两点。

专题1.1二次函数的图像与性质(一)(六大题型)(原卷版)

专题1.1二次函数的图像与性质(一)(六大题型)(原卷版)

专题1.1 二次函数的图像与性质(一)(六大题型)【题型1 判断二次函数的个数】【题型2 利用二次函数的概念求字母的值】【题型3 二次函数的一般式】【题型4根据实际问题列二次函数销售问题】【题型5 根据实际问题列二次函数面积类】【题型6 根据实际问题列二次函数几何类】【题型1 判断二次函数的个数】【典例1】已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2(x+3)2﹣2x2;⑤y=ax2+bx+c,⑥y=x2++5其中二次函数的个数为()A.1B.2C.3D.4【变式11】已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2(x+3)2﹣2x2;⑤y=ax2+bx+c,其中二次函数的个数为()A.1B.2C.3D.4【变式12】已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2x2﹣x﹣1;⑤y=ax2+bx+c,其中二次函数的个数为()A.1B.2C.3D.4【变式13】已知函数:①y=ax2;②y=3(x﹣1)2+2;③y=(x+3)2﹣2x2;④y=+x.其中,二次函数的个数为()A.1个B.2个C.3个D.4个【变式14】下列函数中,是二次函数的有()①y=9x2﹣(3x﹣1)2;②;③y=x(1﹣x);④y=(1﹣2x)2A.1个B.2个C.3个D.4个【变式15】下列函数中,是二次函数的有()①y=1﹣3x2;②y=;③y=x(1+x);④y=(1﹣2x)(1+2x)A.1个B.2个C.3个D.4个【题型2 利用二次函数的概念求字母的值】【典例2】已知y关于x的二次函数解析式为y=(m﹣2)x|m|,则m=()A.±2B.1C.﹣2D.±1【变式21】有二次函数y=x m﹣2﹣2x+1,则m的值是()A.4B.2C.0D.4或2【变式22】已知y=mx|m﹣2|+2mx+1是y关于x的二次函数,则m的值为()A.0B.1C.4D.0或4【变式23】若函数y=(a+1)x2+x+1是关于x的二次函数,则a的取值范围是()A.a≠0B.a≥1C.a≤﹣1D.a≠﹣1【变式24】如果函数y=(m﹣3)x|m﹣1|+3x﹣1是二次函数,那么m的值为﹣.【变式25】若关于x的函数y=(2﹣a)x2﹣3x+4是二次函数,则a的取值范围是.【题型3 二次函数的一般式】【典例3】二次函数y=x2﹣2x+3的一次项系数是()A.1B.2C.﹣2D.3【变式31】将二次函数y=x(x﹣1)+3x化为一般形式后,正确的是()A.y=x2﹣x+3B.y=x2﹣2x+3C.y=x2﹣2x D.y=x2+2x【变式32】把二次函数y=﹣(x+3)2+11变成一般式是()A.y=﹣x2+20B.y=﹣x2+2C.y=﹣x2+6x+20D.y=﹣x2﹣6x+2【变式33】把二次函数y=﹣(x+3)(x+4)+11变成一般形式后,其二次项系数和一次项系数分别为()A.﹣1,﹣1B.﹣1,1C.﹣1,7D.﹣1,﹣7【变式34】二次函数的一般形式为()A.y=ax2+bx+c B.y=ax2+bx+c(a≠0)C.y=ax2+bx+c(b2﹣4ac≥0)D.y=ax2+bx+c(b2﹣4ac=0)【变式35】把抛物线y=(x﹣1)2+1化成一般式是.【变式36】把y=(3x﹣2)(x+3)化成一般形式后,一次项系数与常数项的和为.【题型4根据实际问题列二次函数销售问题】【典例4】某特许零售店“冰墩墩”的销售日益火爆,每个纪念品进价40元,销售期间发现,当销售单价定为44元时,每天可售出300个;销售单价每上涨1元,每天销量减少10个.现商家决定提价销售,设每天销售量为y个,销售单价为x元(x>44),商家每天销售纪念品获得的利润w元,则下列等式正确的是()A.y=10x+740B.y=10x﹣140C.w=(﹣10x+700)(x﹣40)D.w=(﹣10x+740)(x﹣40)【变式41】某商品现在的售价为每件60元,每星期可销售300件.商场为了清库存,决定让利销售,已知每降价1元,每星期可多销售20件,那么每星期的销售额W(元)与降价x(元)的函数关系为()A.W=(60+x)(300+20x)B.W=(60﹣x)(300+20x)C.W=(60+x)(300﹣20x)D.W=(60﹣x)(300﹣20x)【变式42】“抖音直播带货”已经成为一种热门的销售方式,某抖音主播代销某一品牌的电子产品(这里代销指厂家先免费提供货源,待货物销售后再进行结算,未售出的由厂家负责处理).销售中发现每件售价99元时,日销售量为200件,当每件电子产品每下降5元时,日销售量会增加10件.已知每售出1件电子产品,该主播需支付厂家和其他费用共50元,设每件电子产品售价为x(元),主播每天的利润为w(元),则w与x之间的函数解析式为()A.w=(99﹣x)[200+10(x﹣50)]B.w=(x﹣50)[200+10(99﹣x)]C.w=(x﹣50)(200+×10)D.w=(x﹣50)(200+×10)【变式43】2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套34元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价每提高2元,则每天少卖4套.设冰墩墩和雪容融套件每套售价定为x元时,则该商品每天销售套件所获利润w与x之间的函数关系式为()A.w=(200+×4)(x﹣48)B.w=(200﹣×4)(x﹣48)C.w=(200﹣×4)(x﹣34)D.w=(200+×4)(x﹣48)【变式44】某商品的进价为每件50元,售价为每件60元,每个月可卖出200件.如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为整数),每个月的销售利润为y 元,那么y与x的函数关系式是.【变式45】某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与日销售量y(件)之间的关系如下表.x(元∕件)15182022…y(件)250220200180…按照这样的规律可得,日销售利润w(元)与销售单价x(元/件)之间的函数关系式是.【变式46】某商店销售一种进价为50元/件的商品,当售价为60元/件时,一天可卖出200件;经调查发现,如果商品的单价每上涨1元,一天就会少卖出10件.设商品的售价上涨了x元/件(x是正整数),销售该商品一天的利润为y元,那么y与x的函数关系的表达式为.(不写出x的取值范围)【变式47】新华商场销售某种品牌的童装,每件进价为60元,市场调研表明:在一个阶段内销售这种童装时,当售价为80元,平均每月售出200件;售价每降低1元,平均每月多售出20件.设售价为x元,则这种童装在这段时间内,平均每月的销售量y(件)与x满足的函数关系式是;平均每月的销售利润W(元)与x满足的函数关系式是.【题型5 根据实际问题列二次函数面积类】【典例5】将一根长为50cm的铁丝弯成一个长方形(铁丝全部用完且无损耗)如图所示,设这个长方形的一边长为x(cm),它的面积为y(cm2),则y 与x之间的函数关系式为()A.y=﹣x2+50x B.y=x2﹣50xC.y=﹣x2+25x D.y=﹣2x2+25【变式51】长方形的周长为24cm,其中一边长为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2 B.y=12﹣x2 C.y=(12﹣x)•x D.y=2(12﹣x)【变式52】长方形的长为10cm、宽为6cm,它的各边都减少xcm,得到的新长方形的周长为ycm,则y与x之间的关系式是()A.y=32﹣4x(0<x<6)B.y=32﹣4x(0≤x≤6)C.y=(10﹣x)(6﹣x)(0<x<6)D.y=(10﹣x)(6﹣x)(0≤x≤6)【变式53】如图,某农场要盖一排三间长方形的羊圈,打算一面利用旧墙,其余各面用木材围成栅栏,该农场计划用木材围成总长24m的栅栏,设面积为s(m2),垂直于墙的一边长为x(m).则s关于x的函数关系式:(并写出自变量的取值范围)【变式54】如图所示,用长为21米的篱笆,一面利用墙(墙的最大可用长度a 为10米),围成中间隔有一道篱笆的长方形花圃,为便于进出,开了3道宽为1米的门.设花圃的宽AB为x米,面积为S平方米,则S与x的之间的函数表达式为;自变量x的取值范围为.【变式55】如图,某农场要盖一排三间同样大小的长方形的羊圈,打算一面利用旧墙,其余各面用木材围成栅栏,栅栏的总长为24m,设羊圈的总面积为S(不(m2),垂直于墙的一边长为x(m),则S关于x的函数关系式为.必写出自变量的取值范围)【变式56】有一长方形纸片,长、宽分别为8 cm和6 cm,现在长宽上分别剪去宽为x cm(x<6)的纸条(如图),则剩余部分(图中阴影部分)的面积y =,其中是自变量,是因变量.【题型6 根据实际问题列二次函数几何类】【典例6】如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A 开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.【变式61】如图,已知等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为20cm,AC与MN在同一条直线上,开始时点A与点N重合,让△ABC 以2cm/s的速度向左运动,最终点A与点M重合,求重叠部分的面积ycm2与时间ts之间的函数关系式.【变式62】如图所示,在矩形ABCD中,AB=6厘米,BC=12厘米,点P在线段AB上,P从点A开始沿AB边以1厘米/秒的速度向点B移动.点E为线段BC的中点,点Q从E点开始,沿EC以1厘米/秒的速度向点C移动.如果P、Q同时分别从A、E出发,写出出发时间t与△BPQ的面积S的函数关系式,求出t的取值范围.【变式63】如图,在Rt△ABC中,∠C=90°,AC=12mm,BC=24mm,动点P从点A开始沿边AC向C以2mm/s的速度移动,动点Q从点C开始沿边CB向B以4mm/s的速度移动.如果P、Q两点同时出发,那么△PCQ的面积S随出发时间t如何变化?写出函数关系式及t的取值范围.【变式64】如图,正方形ABCD的边长为4cm,E,F分别是BC、DC边上的动点,点E,F同时从点C均以每秒1cm的速度分别向点B,点D运动,当点E与点B重合时,运动停止.设运动时间为x(s),运动过程中△AEF的面积为y(cm2),请写出用x表示y的函数表达式,并写出自变量x的取值范围.【变式65】如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E 出发,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,求y与x之间的函数关系式.。

二次函数的图象与性质大题(五大题型)—2024年中考数学(全国通用)解析版

二次函数的图象与性质大题(五大题型)—2024年中考数学(全国通用)解析版

二次函数的图象与性质大题(五大题型)通用的解题思路:题型一.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c (a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|﹣|个单位,再向上或向下平移||个单位得到的.题型二.二次函数图象与系数的关系二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧.(简称:左同右异)③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac <0时,抛物线与x轴没有交点.题型三.待定系数法求二次函数解析式(1)二次函数的解析式有三种常见形式:①一般式:y=ax2+bx+c(a,b,c是常数,a≠0);②顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标;③交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0);(2)用待定系数法求二次函数的解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.题型四.抛物线与x轴的交点求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x 的一元二次方程即可求得交点横坐标.(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.(2)二次函数的交点式:y=a(x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).题型五.二次函数综合题(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.题型一.二次函数的性质(共3小题)1.(2024•石景山区校级模拟)在平面直角坐标系xOy 中,1(A x ,1)y ,2(B x ,2)y 是抛物线2(0)y x bx b =−+≠上任意两点,设抛物线的对称轴为直线x h =. (1)若抛物线经过点(2,0),求h 的值;(2)若对于11x h =−,22x h =,都有12y y >,求h 的取值范围;(3)若对于121h x h −+……,221x −−……,存在12y y <,直接写出h 的取值范围. 【分析】(1)根据对称轴2bx a=−进行计算,得2b h =,再把(2,0)代入2(0)y x bx b =−+≠,即可作答.(2)因为1(A x ,1)y ,2(B x ,2)y 是抛物线2(0)y x bx b =−+≠上的点,所以把11x h =−,22x h =分别代入,得出对应的1y ,2y ,再根据12y y >联立式子化简,计算即可作答;(3)根据121h x h −+……,221x −−……,存在12y y <,得出当221h −<−<−或者211h −<+<−,即可作答. 【解答】解:(1)抛物线的对称轴为直线x h =, 22b bh ∴=−=−, 即2b h =,∴抛物线22y x hx =−+,把(2,0)代入22y x hx =−+, 得0422h =−+⨯, 解得1h =;(2)由(1)知抛物线22y x hx =−+,1(A x ,1)y ,2(B x ,2)y 是抛物线22y x hx =−+上任意两点,221(1)2(1)1y h h h h ∴=−−+−=−,22(2)220y h h h =−+⨯=,对于11x h =−,22x h =,都有12y y >, 210h ∴−>,解得1h >或1h <−;(3)1(A x ,1)y ,2(B x ,2)y 是抛物线22y x hx =−+上任意两点,对于121h x h −+……,221x −−……,存在12y y <,且1(2,)h y −关于直线x h =的对称点为1(2,)h y +,1(1,)h y +关于直线x h =的对称点为1(1,)h y −,∴当221h −<−<−时,存在12y y <,解得01h <<,当221h −<+<−时,存在12y y <, 解得43h −<<−,当211h −<+<−时,存在12y y <, 解得32h −<<−,当211h −<−<−时,存在12y y <, 解得10h −<<,综上,满足h 的取值范围为41h −<<且0h ≠.【点评】本题考查了二次函数的图象性质、增减性,熟练掌握二次函数的图象和性质是解决本题的关键. 2.(2024•鹿城区校级一模)已知二次函数223y x tx =−++. (1)若它的图象经过点(1,3),求该函数的对称轴. (2)若04x ……时,y 的最小值为1,求出t 的值.(3)如果(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上,直线2y mx a =+与该二次函数交于1(M x ,1)y ,2(N x ,2)y 两点,则12x x +是否为定值?若是,请求出该定值;若不是,请说明理由.【分析】(1)把(1,3)代入解析式求出12t =,再根据对称轴公式求出对称轴; (2)根据抛物线开口向下,以及0x =时3y =,由函数的性质可知,当4x =时,y 的最小值为1,然后求t 即可;(3)(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上,有对称轴公式得出1m t −=,再令2232x tx mx a −++=+,并转化为一般式,然后由根与系数的关系求出122x x +=−.【解答】解:(1)将(1,3)代入二次函数223y x tx =−++,得3123t =−++, 解得12t =, ∴对称轴直线为21122t x t =−==−⨯; (2)当0x =时,3y =,抛物线开口向下,对称轴为直线x t =, ∴当x t =时,y 有最大值,04x ……时,y 的最小值为1,∴当4x =时,16831y t =−++=,解得74t =; (3)12x x +是定值,理由:(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上, 212m mx t m −+∴===−, 1m t ∴−=,令2232x tx mx a −++=+, 整理得:22()30x m t x a +−+−=,直线2y mx a =+与该二次函数交于1(M x ,1)y ,2(N x ,2)y 两点, 1x ∴,2x 是方程22()30x m t x a +−+−=的两个根,122()2()21m t x x m t −∴+=−=−−=−是定值. 【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识,关键是掌握二次函数的性质. 3.(2024•拱墅区一模)在平面直角坐标系中,抛物线2(2)2y ax a x =−++经过点(2,)A t −,(,)B m p . (1)若0t =,①求此抛物线的对称轴;②当p t <时,直接写出m 的取值范围;(2)若0t <,点(,)C n q 在该抛物线上,m n <且5513m n +<−,请比较p ,q 的大小,并说明理由. 【分析】(1)①当0t =时,点A 的坐标为(2,0)−,将其代入函数解析式中解得1a =−,则函数解析式为抛物线的解析式为22y x x =−−+,再根据求对称轴的公式2bx a=−即可求解; ②令0y =,求出抛物线与x 轴交于(2,0)−和(1,0),由题意可得0p <,则点B 在x 轴的下方,以此即可解答; (2)将点A 坐标代入函数解析式,通过0t <可得a 的取值范围,从而可得抛物线开口方向及对称轴,根据点B ,C 到对称轴的距离大小关系求解.【解答】解:(1)①当0t =时,点A 的坐标为(2,0)−,抛物线2(2)2y ax a x =−++经过点(2,0)A −, 42(2)20a a ∴+++=,1a ∴=−,∴抛物线的解析式为22y x x =−−+, ∴抛物线的对称轴为直线112(1)2x −=−=−⨯−;②令0y =,则220x x −−+=, 解得:11x =,22x =−,∴抛物线与x 轴交于(2,0)−和(1,0),点(2,0)A −,(,)B m p ,且0p <, ∴点(,)B m p 在x 轴的下方,2m ∴<−或1m >.(2)p q <,理由如下:将(2,)t −代入2(2)2y ax a x =−++得42(2)266t a a a =+++=+,0t <, 660a ∴+<, 1a ∴<−,∴抛物线开口向下,抛物线对称轴为直线(2)1122a x a a −+=−=+, 1a <−,110a∴−<<, 1111222a ∴−<+<, m n <且5513m n +<−,∴1312102m n +<−<−, ∴点(,)B m p 到对称轴的距离大于点(,)C n q 到对称轴的距离,p q ∴<.【点评】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.题型二.二次函数图象与系数的关系(共8小题)4.(2023•南京)已知二次函数223(y ax ax a =−+为常数,0)a ≠. (1)若0a <,求证:该函数的图象与x 轴有两个公共点. (2)若1a =−,求证:当10x −<<时,0y >.(3)若该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x −<<<,则a 的取值范围是 .【分析】(1)证明240b ac −>即可解决问题. (2)将1a =−代入函数解析式,进行证明即可. (3)对0a >和0a <进行分类讨论即可.【解答】证明:(1)因为22(2)43412a a a a −−⨯⨯=−, 又因为0a <,所以40a <,30a −<, 所以24124(3)0a a a a −=−>,所以该函数的图象与x 轴有两个公共点. (2)将1a =−代入函数解析式得,2223(1)4y x x x =−++=−−+,所以抛物线的对称轴为直线1x =,开口向下. 则当10x −<<时,y 随x 的增大而增大, 又因为当1x =−时,0y =, 所以0y >.(3)因为抛物线的对称轴为直线212ax a−=−=,且过定点(0,3), 又因为该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x −<<<, 所以当0a >时,230a a −+<, 解得3a >, 故3a >.当0a <时,230a a ++<,解得1a <−, 故1a <−.综上所述,3a >或1a <−. 故答案为:3a >或1a <−.【点评】本题考查二次函数的图象和性质,熟知二次函数的图象和性质是解题的关键.5.(2024•南京模拟)在平面直角坐标系xOy 中,点1(1,)y ,2(3,)y 在抛物线222y x mx m =−+上. (1)求抛物线的顶点(,0)m ; (2)若12y y <,求m 的取值范围;(3)若点0(x ,0)y 在抛物线上,若存在010x −<<,使102y y y <<成立,求m 的取值范围. 【分析】(1)利用配方法将已知抛物线解析式转化为顶点式,可直接得到答案; (2)由12y y <,得到221296m m m m −+<−+,解不等式即可; (3)由题意可知012032m m +⎧<⎪⎪⎨+⎪>⎪⎩或112132m m −+⎧<⎪⎪⎨−+⎪>⎪⎩,解不等式组即可.【解答】解:(1)抛物线222()y x mx m x m =−+=−. ∴抛物线的顶点坐标为(,0)m .故答案为:(,0)m ;(2)点1(1,)y ,2(3,)y 在抛物线222y x mx m =−+上,且12y y <, 221296m m m m ∴−+<−+,2m ∴<;(3)点0(x ,0)y 在抛物线上,存在010x −<<,使102y y y <<成立, ∴012032m m +⎧<⎪⎪⎨+⎪>⎪⎩或112132m m −+⎧<⎪⎪⎨−+⎪>⎪⎩,解得302m <<. 【点评】本题考查了二次函数与系数的关系,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.6.(2024•北京一模)在平面直角坐标系中,已知抛物线23y ax bx =++经过点(2,3)a −. (1)求该抛物线的对称轴(用含有a 的代数式表示);(2)点(2,)M t m −,(2,)N t n +,(,)P t p −为该抛物线上的三个点,若存在实数t ,使得m n p >>,求a 的取值范围.【分析】(1)将点(2,3)a −代入抛物线23y ax bx =++中,然后根据二次函数的对称轴公式代入数值,即可得出答案;(2)分类讨论当0a >和0a <,利用数形结合以及二次函数的性质就可以得出a 的取值范围. 【解答】解(1)抛物线23y ax bx =++经过点(2,3)a −, ∴把(2,3)a −代入23y ax bx =++得2(2)233a a ab ⨯−−+=,22b a ∴=,2223y ax a x ∴=++,∴抛物线的对称轴222a x a a=−=−,答:抛物线的对称轴为:x a =−;(2)①当0a >时,抛物线开口方向向上,对称轴0x a =−<,在x 轴的负半轴上,所以越靠近对称轴函数值越小, ∴当0t <时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+,∴此时p m n >>与题干m n p >>相矛盾,故舍去, ∴当0t >时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+,∴此时m n <与题干m n p >>相矛盾,故舍去;②当0a <时,抛物线开口方向向下,对称轴0x a =−>,在x 轴的正半轴上,所以越靠近对称轴函数值越大, ∴当0t >时,点M 、N 分别在对称轴同侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+, .m n p >>,∴此时02a t <−<−,即20t a −<<,2t ∴>,∴当0t >时,点M 、N 分别在对称轴两侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,p m n ∴>>与题干m n p >>相矛盾,故舍去,∴当0t <时,且点M 、N 分别在对称轴两侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,n m ∴>与题干m n p >>相矛盾,故舍去,当0t <时,且点M 、N 分别在对称轴同侧时, (2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,n m ∴>与题干m n p >>相矛盾,故舍去,答:a 的取值范围为20(2)t a t −<<>.7.(2024•张家口一模)某课外小组利用几何画板来研究二次函数的图象,给出二次函数解析式2y x bx c =++,通过输入不同的b ,c 的值,在几何画板的展示区内得到对应的图象.(1)若输入2b =,3c =−,得到如图①所示的图象,求顶点C 的坐标及抛物线与x 轴的交点A ,B 的坐标; (2)已知点(1,10)P −,(4,0)Q .①若输入b ,c 的值后,得到如图②的图象恰好经过P ,Q 两点,求出b ,c 的值;②淇淇输入b ,嘉嘉输入1c =−,若得到二次函数的图象与线段PQ 有公共点,求淇淇输入b 的取值范围.【分析】(1)将2b =,3c =−,代入函数解析式,进行求解即可; (2)①待定系数法进行求解即可;②将1c =−代入解析式,得到抛物线必过点(0,1)−,求出1x =−和4x =的函数值,根据抛物线与线段PQ 有公共点,列出不等式进行求解即可. 【解答】解:(1)2y x bx c =++,解:当2b =,3c =−时,2223(1)4y x x x =+−=+−, ∴顶点C 的坐标为:(1,4)−−;当0y =时,2230x x +−=,即(3)(1)0x x +−=, 解得:13x =−,21x =, (3,0)A ∴−,(1,0)B ;(2)①抛物线恰好经过P ,Q则:1101640b c b c −+=⎧⎨++=⎩,解得:54b c =−⎧⎨=⎩;②当1c =−时,21y x bx =+−, 当0x =时,1y =−, ∴抛物线过(0,1)−,当1x =−时,11y b b =−−=−,当点(1,)b −−在点P 上方,或与点P 重合时,抛物线与线段PQ 有公共点,即:10b −…, 解得:10b −…;当4x =时,1641415y b b =+−=+,当点(4,154)b +在点Q 上方,或与点Q 重合时,抛物线与线段PQ 有公共点,即:1540b +…,154b ≥−; 综上:10b −…或154b ≥−. 【点评】本题考查二次函数的综合应用.正确的求出函数解析式,熟练掌握二次函数的图象和性质是解题的关键.8.(2024•浙江模拟)设二次函数24(y ax ax c a =−+,c 均为常数,0)a ≠,已知函数值y 和自变量x 的部分对应取值如下表所示:(1)判断m ,n 的大小关系,并说明理由; (2)若328m n −=,求p 的值;(3)若在m ,n ,p 这三个数中,只有一个数是负数,求a 的取值范围.【分析】(1)根据所给函数解析式,可得出抛物线的对称轴为直线2x =,据此可解决问题. (2)根据(1)中发现的关系,可求出m 的值,据此即可解决问题. (3)根据m 和n 相等,所以三个数中的负数只能为p ,据此可解决问题. 【解答】解:(1)m n =.因为二次函数的解析式为24y ax c =+, 所以抛物线的对称轴为直线422ax a−=−=, 又因为1522−+=, 所以点(1,)m −与(5,)n 关于抛物线的对称轴对称, 故m n =.(2)因为m n =,328m n −=, 所以8m =.将(0,3)和(1,8)−代入函数解析式得:348c a a c =⎧⎨++=⎩,解得13a c =⎧⎨=⎩所以二次函数的解析式为243y x x =−+.将2x =代入函数解析式得,224231p =−⨯+=−.(3)由(1)知,m n =, 所以m ,n ,p 中只能p 为负数. 将(0,3)代入函数解析式得,3c =, 所以二次函数解析式为243y ax ax =−+. 将1x =−代入函数解析式得,53m a =+. 将2x =代入函数解析式得,43p a =−+.则430530a a −+<⎧⎨+≥⎩,解得34a >,所以a 的取值范围是34a >. 【点评】本题考查二次函数图象与系数的关系及二次函数图象上点的坐标特征,熟知二次函数的图象和性质是解题的关键.9.(2024•北京模拟)在平面直角坐标系xOy 中,抛物线2(26)1y x m x =+−+经过点1(,)m y −,2(,)m y ,3(2,)m y +.(1)若13y y =,求抛物线的对称轴; (2)若231y y y <<,求m 的取值范围. 【分析】(1)利用对称轴意义即可求解;(2m 的不等式组,解不等式组即可.【解答】解:(1)抛物线2(26)1y x m x =+−+经过点1(,)m y −,2(,)m y ,3(2,)m y +,13y y =, ∴该抛物线的对称轴为:直线22m m x −++=,即直线1x =; (2)当0m >时,可知点1(,)m y −,2(,)m y ,3(2,)m y +从左至右分布, 231y y y <<,∴232232m m m m m m ++⎧−<⎪⎪⎨−++⎪−>⎪⎩,解得12m <<; 当0m <时,3m m m ∴<−<−+,21y y ∴>,不合题意,综上,m 的取值范围是12m <<.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键.10.(2024•浙江模拟)在平面直角坐标系xOy 中,抛物线2(y ax bx c a =++,b ,c 为常数,且0)a ≠经过(2,4)A −−和(3,1)B 两点.(1)求b 和c 的值(用含a 的代数式表示);(2)若该抛物线开口向下,且经过(23,)C m n −,(72,)D m n −两点,当33k x k −<<+时,y 随x 的增大而减小,求k 的取值范围;(3)已知点(6,5)M −,(2,5)N ,若该抛物线与线段MN 恰有一个公共点时,结合函数图象,求a 的取值范围.【分析】(1)把(2,4)A −−和(3,1)B 代入2y ax bx c =++,即可求解;(2)先求出对称轴为:直线2x =,结合开口方向和增减性列出不等式即可求解; (3)分0a >时,0a <时,结合图象即可求解.【解答】解:(1)把(2,4)A −−和(3,1)B 代入2y ax bx c =++,得:424931a b c a b c −+=−⎧⎨++=⎩,解得:162b a c a =−⎧⎨=−−⎩;(2)抛物线经过(23,)C m n −,2,)m n −两点, ∴抛物线的对称轴为:直线237222m mx −+−==,抛物线开口向下,当33k x k −<<+时,y 随x 的增大而减小,32k ∴−…,即5k …; (3)①当0a >时,6x =−,5y …,即2(6)(1)(6)625a a a ⨯−+−⨯−−−…, 解得:1336a …,抛物线不经过点N ,如图①,抛物线与线段MN 只有一个交点,结合图象可知:1336a …;②当0a <时,若抛物线的顶点在线段MN 上时,则2244(62)(1)544ac b a a a a a−−−−−==,解得:11a =−,2125a =−, 当11a =−时,111112222(1)a −=−=⨯−, 此时,定点横坐标满足116222a−−……,符合题意; 当11a =−时,如图②,抛物线与线段MN 只有一个交点,如图③,当2125a =−时,11111312222()25a −=−=⨯−,此时顶点横坐标不满足116222a−−……,不符合题意,舍去; 若抛物线与线段MN 有两个交点,且其中一个交点恰好为点N 时,把(2,5)N 代入2(1)62y ax a x a =+−−−,得:252(1)262a a a =⨯+−⨯−−, 解得:54a =−,当54a =−时,如图④,抛物线和线段MN 有两个交点,且其中一个交点恰好为点N ,结合图象可知:54a <−时,抛物线与线段MN 有一个交点,综上所述:a 的取值范围为:1336a …或1a =−或54a <−.【点评】本题考查二次函数的性质和图象,根据题意画出图象,分类讨论是解题的关键.11.(2024•海淀区校级模拟)在平面直角坐标系xOy 中,点(0,3),1(6,)y 在抛物线2(0)y ax bx c a =++≠上. (1)当13y =时,求抛物线的对称轴;(2)若抛物线2(0)y ax bx c a =++≠经过点(1,1)−−,当自变量x 的值满足12x −……时,y 随x 的增大而增大,求a 的取值范围;(3)当0a >时,点2(4,)m y −,2(,)m y 在抛物线2y ax bx c =++上.若21y y c <<,请直接写出m 的取值范围.【分析】(1)当13y =时,(0,3),(6,3)为抛物线上的对称点,根据对称性求出对称轴;(2)把(0,3),(1,1)−−代入抛物线解析式得出a ,b 的关系,然后求出对称轴,再分0a >和0a <,由函数的增减性求出a 的取值范围;(3)先画出函数图象,再根据21y y c <<确定m 的取值范围. 【解答】解:(1)当13y =时,(0,3),(6,3)为抛物线上的对称点, 0632x +∴==, ∴抛物线的对称轴为直线3x =;(2)2(0)y ax bx c a =++≠过(0,3),(1,1)−−,3c ∴=,31a b −+=−, 4b a =+,∴对称轴为直线422b a x a a+=−=−,①当0a >时,12x −……时,y 随x 的增大而增大,∴412a a+−−…, 解得4a …,04a ∴<…;②当0a <时,12x −……时,y 随x 的增大而增大,∴422a a+−…, 解得45a −…, ∴405a −<…,综上:a 的取值范围是405a −<… 或04a <…;(3)点(0,3)在抛物线2y ax bx c =++上,3c ∴=,点2(4,)m y −,2(,)m y 在抛物线2y ax bx c =++上, ∴对称轴为直线422m mx m −+==−, ①如图所示:21y y c <<,6m ∴<且06232m +−>=, 56m ∴<<;②如图所示:21y y c <<,46m ∴−>, 10m ∴>,综上所述,m 的取值范围为56m <<或10m >.【点评】本题考查二次函数图象与系数的关系以及二次函数图象上点的坐标特征,关键是利用数形结合和分类讨论的思想进行解答.题型三.待定系数法求二次函数解析式(共3小题)12.(2024•保山一模)如图,抛物线2y ax bx c =++过(2,0)A −,(3,0)B ,(0,6)C 三点;点P 是第一象限内抛物线上的动点,点P 的横坐标是m ,且132m <<. (1)试求抛物线的表达式;(2)过点P 作PN x ⊥轴并交BC 于点N ,作PM y ⊥轴并交抛物线的对称轴于点M ,若12PM PN =,求m 的值.【分析】(1)将A ,B ,C 三点坐标代入函数解析式即可解决问题. (2)用m 表示出PM 和PN ,建立关于m 的方程即可解决问题. 【解答】解:(1)由题知,将A ,B ,C 三点坐标代入函数解析式得,4209306a b c a b c c −+=⎧⎪++=⎨⎪=⎩,解得116a b c =−⎧⎪=⎨⎪=⎩,所以抛物线的表达式为26y x x =−++.(2)将x m =代入抛物线得表达式得,26y m m =−++, 所以点P 的坐标为2(,6)m m m −++. 令直线BC 的函数解析式为y px q =+,则306p q q +=⎧⎨=⎩,解得26p q =−⎧⎨=⎩,所以直线BC 的函数解析式为26y x =−+. 因为132m <<,且抛物线的对称轴为直线12x =,所以12PM m =−. 又因为点N 坐标为(,26)m m −+,所以226(26)3PN m m m m m =−++−−+=−+. 因为12PM PN =, 所以211(3)22m m m −=−+,解得m =, 又因为132m <<,所以m =. 【点评】本题考查待定系数法求二次函数解析式及二次函数的图象和性质,熟知待定系数法及二次函数的图象和性质是解题的关键.13.(2024•东营区校级一模)如图,在平面直角坐标系xOy 中,直线28y x =−+与抛物线2y x bx c =−++交于A ,B 两点,点B 在x 轴上,点A 在y 轴上. (1)求抛物线的函数表达式;(2)点C 是直线AB 上方抛物线上一点,过点C 分别作x 轴,y 轴的平行线,交直线AB 于点D ,E .当38DE AB =时,求点C 的坐标.【分析】(1)根据一次函数解析式求出A ,B 两点坐标,再将A ,B 两点坐标代入二次函数解析式即可解决问题.(2)根据AOB ECD ∆∆∽得到CD 与OB 的关系,建立方程即可解决问题. 【解答】解:(1)令0x =得,8y =, 所以点A 的坐标为(0,8); 令0y =得,4x =, 所以点B 的坐标为(4,0);将A ,B 两点坐标代入二次函数解析式得,81640c b c =⎧⎨−++=⎩,解得28b c =⎧⎨=⎩,所以抛物线的函数表达式为228y x x =−++. (2)因为//CD x 轴,//CE y 轴, 所以AOB ECD ∆∆∽, 则CD DEOB AB=. 因为38DE AB =,4OB =, 所以32CD =. 令点C 坐标为2(,28)m m m −++, 则点D 坐标为21(2m m −,228)m m −++所以2211()222CD m m m m m =−−=−+,则213222m m −+=,解得1m =或3.当1m =时,2289m m −++=; 当3m =时,2285m m −++=; 所以点C 的坐标为(1,9)或(3,5).【点评】本题考查待定系数法求二次函数解析式及二次函数图象上点的坐标特征,熟知待定系数法及二次函数的图象和性质是解题的关键.14.(2024•南关区校级二模)已知二次函数2y x bx c =++的图象经过点(0,3)A −,(3,0)B .点P 在抛物线2y x bx c =++上,其横坐标为m .(1)求抛物线的解析式;(2)当23x −<<时,求y 的取值范围;(3)当抛物线2y x bx c =++上P 、A 两点之间部分的最大值与最小值的差为34时,求m 的值; (4)点M 在抛物线2y x bx c =++上,其横坐标为1m −.过点P 作PQ y ⊥轴于点Q ,过点M 作MN x ⊥轴于点N ,分别连结PM ,PN ,QM ,当PQM ∆与PNM ∆的面积相等时,直接写出m 的值. 【分析】(1)依据题意,将A 、B 两点代入解析式求出b ,c 即可得解;(2)依据题意,结合(1)所求解析式,再配方可得抛物线的最值,进而由23x −<<可以判断得解; (3)依据题意,分类讨论计算可以得解;(4)分别写出P 、Q 、M 、N 的坐标,PQM ∆与PNM ∆的面积相等,所以Q 到PM 的距离等于N 到PM 的距离,可得m 的值.【解答】解:(1)由题意,将(0,3)A −,(3,0)B 代入解析式2y x bx c =++得,3c =−,930b c ++=,2b ∴=−,3c =−,∴抛物线的解析式为223y x x =−−;(2)由题意,抛物线2223(1)4y x x x =−−=−−,∴抛物线223y x x =−−开口向上,当1x =时,y 有最小值为4−,当2x =−时,5y =;当3x =时,0y =, ∴当23x −<<时,45y −<…;(3)由题意得,2(,23)P m m m −−,(0,3)A −,①当0m <时,P 、A 两点之间部分的最大值为223m m −−,最小值为3−, 2323(3)4m m ∴−−−−=,解得:1m =−②当02m ……时,P 、A 两点之间部分的最大值为3−,最小值为223m m −−或4−, 显然最小值是4−时不合题意, ∴最小值为223m m −−, 233(23)4m m ∴−−−−=, 解得:32m =或12m =, 32m =时,P 、A 两点之间部分的最小值为4−,故舍去, ③当2m <时,P 、A 两点之间部分的最大值为223m m −−,最小值为4−, 2323(4)4m m ∴−−−−=,解得:1m =+,12+<,故舍去,综上,满足题意得m 的值为:1或12; (4)由题意得,2(1,4)M m m −−,(1,0)N m −,2(0,23)Q m m −−, 设PM y kx b =+,代入P 、M 两点, 2223(1)4mk b m m m k b m ⎧+=−−⎨−+=−⎩, 解得:1k =−,23b m m =−−,23PM y x m m =−+−−,PQM ∆与PNM ∆的面积相等,Q ∴到23PM y x m m =−+−−的距离与N 到23PM y x m m =−+−−的距离相等,Q 到23PM y x m m =−+−−的距离=,N 到23PMy x m m =−+−−的距离=, 2|||4|m m ∴−=−+,当2m <−时,24m m −=−,解得:m =,当20m −……时,24m m −=−,解得:m =,当02m <…时,24m m =−,解得:m =当2m <时,24m m =−,解得:m =综上,满足题意得m . 【点评】本题考查了二次函数,关键是注意分类讨论. 题型四.抛物线与x 轴的交点(共14小题)15.(2024•秦淮区校级模拟)已知函数2(2)2(y mx m x m =−−−为常数). (1)求证:不论m 为何值,该函数的图象与x 轴总有公共点.(2)不论m . (3)在22x −……的范围中,y 的最大值是2,直接写出m 的值. 【分析】(1)分两种情况讨论,利用判别式证明即可;(2)当1x =时,0y =,当0x =时,2y =−,即可得到定点坐标;(3)利用抛物线过两个定点,得到函数y 随x 增大而增大,代入解析式求出m 值即可. 【解答】解:(1)①当0m =时,函数解析式为22y x =−,此一次函数与x 轴有交点; ②当0m ≠时,函数解析式为2(2)2y mx m x =−−−,令0y =,则有2(2)20mx m x −−−=,△2222(2)4(2)44844(2)0m m m m m m m m =−−⨯−=−++=++=+…. ∴不论m 为何值,该函数的图象与x 轴总有公共点.(2)222(2)222()22y mx m x mx mx x m x x x =−−−=−+−=−+−, 当1x =时,0y =, 当0x =时,2y =−,∴不论m 为何值,该函数的图象经过的定点坐标是(1,0).(0,2)−故答案为:(1,0),(0,2)−,(3)若0m =,函数22y x =−,y 随x 增大而增大,当2x =时,2y =,与题干条件符; 当0m ≠时,函数2(2)2y mx m x =−−−是二次函数,①当0m >时,抛物线过(1,0),(0,2)−两点,当22x −……的范围中时,y 随x 的增大而增大, ∴当2x =时,2y =,即242(2)2m m =−−−,解得0m =(舍去).②当0m <时,抛物线过(1,0),(0,2)−两点,其增减性依旧是y 随x 的增大而增大和①相同.综上分析,0m =.【点评】本题考查了二次函数的图象与性质,熟练掌握二次函数的性质是解答本题的关键.16.(2024•柳州模拟)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,B 点的坐标为(3,0),与y 轴交于点(0,3)C −,点D 为抛物线的顶点. (1)求这个二次函数的解析式; (2)求ABD ∆的面积【分析】(1)利用待定系数法求解即可; (2)先求出点A 和点D 坐标,再根据||2D ABD AB y S ∆⋅=解析求解即可.【解答】解:(1)将(3,0)B ,(0,3)C −代入2y x bx c =++得0933b c c =++⎧⎨=−⎩,解得23b c =−⎧⎨=−⎩,∴二次函数的解析式为:223y x x =−−;(2)将223y x x =−−配方得顶点式2(1)4y x =−−, ∴顶点(1,4)D −,在223y x x =−−中,当2230y x x =−−=时, 解得1x =−或3x =, (1,0)A ∴−,4AB ∴=, ∴||44822D ABD AB y S ∆⋅⨯===. 【点评】本题主要考查了抛物线与x 轴的交点,二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数解析式,熟练掌握二次函数的性质是解答本题的关键.17.(2024•安阳模拟)如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与抛物线21y x x =−+−的形状相同,且与x 轴交于点(1,0)−和(4,0).直线2y kx =+分别与x 轴、y 轴交于点A ,B ,交抛物线2y ax bx c =++于点C ,D (点C 在点D 的左侧). (1)求抛物线的解析式;(2)点P 是直线2y kx =+上方抛物线上的任意一点,当2k =时,求PCD ∆面积的最大值; (3)若抛物线2y ax bx c =++与线段AB 有公共点,结合函数图象请直接写出k 的取值范围.【分析】(1)根据题意直接求出二次函数解析式即可;(2)求出直线与抛物线的交点C ,D 坐标,过点P 作y 轴的平行线交CD 于点H ,交x 轴于点G ,设点P坐标为(m ,234)(12)m m m −++−<<,则点(,22)H m m +,求出PH ,由三角形的面积公式求出关于m 的函数解析式,再根据函数的性质求最值; (3)分0k >和0k <两种情况讨论即可.【解答】解:(1)抛物线2y ax bx c =++与抛物线21y x x =−+−的形状相同,1a ∴=−,抛物线2y ax bx c =++与x 轴交于点(1,0)−和(4,0), ∴抛物线的解析式为2(1)(4)34y x x x x =−+−=−++;(2)当2k =时,联立方程组22234y x y x x =+⎧⎨=−++⎩,解得10x y =−⎧⎨=⎩或26x y =⎧⎨=⎩, (1,0)C ∴−,(2,6)D ,过点P 作y 轴的平行线交CD 于点H ,交x 轴于点G ,如图,设点P 坐标为(m ,234)(12)m m m −++−<<, ∴点(,22)H m m +,2234(22)2PH m m m m m ∴=−++−+=−++,221331273(2)()22228PCD S PH m m m ∆∴=⨯=−++=−−+, 302−<,12m −<<, ∴当12m =时,S 有最大值,最大值为278. PCD ∴∆面积的最大值为278; (3)令0x =,则2y =, ∴点B 坐标为(0,2),令0y =,则20kx +=, 解得2x k=−,∴点A 坐标为2(k−,0), 若抛物线2y ax bx c =++与线段AB 有公共点, 当0k >时,如图所示,则21k−<−, 解得02k <<; 当0k <时,如图所示:则24k−>, 解得102k −<<;综上所述,k 的取值范围为02k <<或102k −<<.【点评】本题考查抛物线与x 轴的交点,待定系数法求函数解析式,二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,二次函数的最值等知识,关键是对这些知识的掌握和运用.18.(2024•西湖区校级模拟)已知21()y ax a b x b =+++和22()(y bx a b x a a b =+++≠且0)ab ≠是同一直角坐标系中的两条抛物线.(1)当1a =,3b =−时,求抛物线21()y ax a b x b =+++的顶点坐标; (2)判断这两条抛物线与x 轴的交点的总个数,并说明理由;(3)如果对于抛物线21()y ax a b x b =+++上的任意一点(,)P m n 均有22n a b +….当20y …时,求自变量x 的取值范围.【分析】(1)把a ,b 的值代入配方找顶点即可解题;(2)分别令10y =,20y =,解方程求出方程的解,然后根据条件确定交点的个数即可解题;(3)现根据题意得到0a <,且24()224ab a b a b a−+=+,然后得到30b a =−>,借助图象求出不等式的解集即可.【解答】解:(1)当1a =,3b =−时,2221()23(1)4y ax a b x b x x x =+++=−−=−−, ∴顶点坐标为(1,4)−;(2)3个,理由为:令10y =,则2()0ax a b x b +++=, 即()(1)0ax b x ++=, 解得:1bx a=−,21x =−, 令20y =,则2()0bx a b x a +++=, 即()(1)0bx a x ++=, 解得:1ax b=−,21x =−, 又a b ≠且0ab ≠,∴两条抛物线与x 轴的交点总个数为3个;(3)抛物线21()y ax a b x b =+++上的任意一点(,)P m n 均有22n a b +…,0a ∴<,且24()224ab a b a b a−+=+,整理得:30b a =−>,∴22()y bx a b x a =+++的开口向上,且抛物线与x 轴交点的横坐标为113x =,21x =−, 如图所示,借助图象可知当13x …或1x −…时,20y ….【点评】本题考查二次函数的图象和性质,掌握配方法求顶点坐标,二次函数和一元二次方程的关系是解题的关键.19.(2024•三元区一模)抛物线23y ax bx =++与x 轴相交于点(1,0)A ,(3,0)B ,与y 轴正半轴相交于点C . (1)求抛物线的解析式;(2)点1(M x ,1)y ,2(N x ,2)y 是抛物线上不同的两点. ①当1x ,2x 满足什么数量关系时,12y y =; ②若12122()x x x x +=−,求12y y −的最小值. 【分析】(1)用待定系数法即可求解;(2)①若12y y =,则M 、N 关于抛物线对称轴对称,即可求解;②22121122121212(43)(43)()()4()y y x x x x x x x x x x −=−+−−+=+−+−,而12122()x x x x +=−,得到12y y −的函数表达式,进而求解.【解答】解:(1)设抛物线的表达式为:12()()y a x x x x =−−, 即2(1)(3)(43)y a x x a x x =−−=−+, 即33a =, 解得:1a =,故抛物线的表达式为:243y x x =−+;(2)如图,。

二次函数的图像与性质经典练习题(11套)附带详细答案

二次函数的图像与性质经典练习题(11套)附带详细答案

练习一21.二次函数的图像开口向____,对称轴是____,顶点坐标是___yax_,图像有最___点,x___时,y随x的增大而增大,x___时,y随x的增大而减小。

12222.关于,yx,y3x的图像,下列说法中不正确的是()yx3A.顶点相同B.对称轴相同C.图像形状相同D.最低点相同223.两条抛物线yx与在同一坐标系内,下列说法中不正确的是()yxA.顶点相同B.对称轴相同C.开口方向相反D.都有最小值24.在抛物线上,当y<0时,x的取值范围应为()yxA.x>0B.x<0C.x≠0D.x≥0225.对于抛物线yx与yx下列命题中错误的是()xA.两条抛物线关于轴对称B.两条抛物线关于原点对称C.两条抛物线各自关于y轴对称D.两条抛物线没有公共点26.抛物线y=-bx+3的对称轴是___,顶点是___。

127.抛物线y=-(x2)-4的开口向___,顶点坐标___,对称轴___,x_2__时,y随x的增大而增大,x___时,y随x的增大而减小。

28.抛物线y2(x1)3的顶点坐标是()A.(1,3)B.(1,3)C.(1,3)D.(1,3)为()9.已知抛物线的顶点为(1,2),且通过达式(1,10),则这条抛物线的表22A.y=3(x1)-2B.y=3(x1)+222C.y=3-2D.y=-3-2(x1)(x1)210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达yax式为()22A.y=a+3B.y=a-3(x2)(x2)22C.y=a(x2)+3D.y=a(x2)-324411.抛物线的顶点坐标是()yxxA.(2,0)B.(2,-2)C.(2,-8)D.(-2,-8)2212.对抛物线y=2(x2)-3与y=-2(x2)+4的说法不正确的是()A.抛物线的形状相同B.抛物线的顶点相同C.抛物线对称轴相同D.抛物线的开口方向相反213.函数y=a+c与y=ax+c(a≠0)在同一坐标系内的图像是图中的()x243243214.化yxx为y=xx为ya(x h)k的形式是____,图像的开口向____,顶点是____,对称轴是____。

中考数学真题《二次函数图象性质与应用》专项测试卷(附答案)

中考数学真题《二次函数图象性质与应用》专项测试卷(附答案)

中考数学真题《二次函数图象性质与应用》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(55题)一 、单选题1.(2023·甘肃兰州·统考中考真题)已知二次函数()2323y x =--- 下列说法正确的是( ) A .对称轴为2x =-B .顶点坐标为()2,3C .函数的最大值是-3D .函数的最小值是-32.(2023·广西·统考中考真题)将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线是( )A .2(3)4y x =-+B .2(3)4y x =++C .2(3)4y x =+-D .2(3)4y x =--3.(2023·湖南·统考中考真题)如图所示 直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴,则下列说法正确的是( )A .b 恒大于0B .a b 同号C .a b 异号D .以上说法都不对4.(2023·辽宁大连·统考中考真题)已知抛物线221y x x =--,则当03x ≤≤时 函数的最大值为( )A .2-B .1-C .0D .25.(2023·四川成都·统考中考真题)如图,二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点 下列说法正确的是( )A .抛物线的对称轴为直线1x =B .抛物线的顶点坐标为1,62⎛⎫-- ⎪⎝⎭C .A B 两点之间的距离为5D .当1x <-时 y 的值随x 值的增大而增大6.(2023·河南·统考中考真题)二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限7.(2023·内蒙古通辽·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点()()1020x ,,, 其中101x << 下列四个结论:①0abc < ①0a b c ++> ①230b c +< ①不等式22cax bx c x c ++<-+的解集为02x <<.其中正确结论的个数是( )A .1B .2C .3D .48.(2023·四川自贡·统考中考真题)经过23,()41,),(A b m B b c m -+-两点的抛物线22122y x bx b c =-+-+(x为自变量)与x 轴有交点,则线段AB 长为( ) A .10B .12C .13D .159.(2023·四川达州·统考中考真题)如图,拋物线2y ax bx c =++(,,a b c 为常数)关于直线1x =对称.下列五个结论:①0abc > ①20a b += ①420a b c ++> ①2am bm a b +>+ ①30a c +>.其中正确的有( )A .4个B .3个C .2个D .1个10.(2023·四川泸州·统考中考真题)已知二次函数223y ax ax =-+(其中x 是自变量) 当03x <<时对应的函数值y 均为正数,则a 的取值范围为( ) A .01a <<B .1a <-或3a >C .30a -<<或0<<3aD .10a -≤<或0<<3a11.(2023·四川凉山·统考中考真题)已知抛物线()20y ax bx c a =++≠的部分图象如图所示,则下列结论中正确的是( )A .<0abcB .420a b c -+<C .30a c +=D .20am bm a ++≤(m 为实数)12.(2023·四川南充·统考中考真题)抛物线254y x kx k =-++-与x 轴的一个交点为(,0)A m 若21m -≤≤,则实数k 的取值范围是( ) A .2114k -≤≤ B .k ≤214-或1k ≥ C .5k -≤≤98D .5k ≤-或k ≥9813.(2023·安徽·统考中考真题)已知反比例函数()0ky k x=≠在第一象限内的图象与一次函数y x b =-+的图象如图所示,则函数21y x bx k =-+-的图象可能为( )A .B .C .D .14.(2023·四川广安·统考中考真题)如图所示 二次函数2(y ax bx c a b c =++、、为常数 0)a ≠的图象与x 轴交于点()()3,0,1,0A B -.有下列结论:①0abc > ①若点()12,y -和()20.5,y -均在抛物线上,则12y y < ①50a b c -+= ①40a c +>.其中正确的有( )A .1个B .2个C .3个D .4个15.(2023·四川遂宁·统考中考真题)抛物线()20y ax bx c a =++≠的图象如图所示 对称轴为直线2x =-.下列说法:①0abc < ①30c a -> ①()242a ab at at b -+≥(t 为全体实数) ①若图象上存在点()11,A x y 和点()22,B x y 当123m x x m <<<+时 满足12y y =,则m 的取值范围为52m -<<-.其中正确的个数有( )A .1个B .2个C .3个D .4个16.(2023·四川眉山·统考中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴的一个交点坐标为()1,0 对称轴为直线=1x - 下列四个结论:①<0abc ①420a b c -+< ①30a c += ①当31x -<<时20ax bx c ++< 其中正确结论的个数为( )A .1个B .2个C .3个D .4个17.(2023·浙江宁波·统考中考真题)已知二次函数2(31)3(0)y ax a x a =-++≠ 下列说法正确的是( ) A .点(1,2)在该函数的图象上 B .当1a =且13x -≤≤时 08y ≤≤ C .该函数的图象与x 轴一定有交点D .当0a >时 该函数图象的对称轴一定在直线32x =的左侧 18.(2023·新疆·统考中考真题)如图,在平面直角坐标系中 直线1y mx n =+与抛物线223y ax bx =+-相交于点A B .结合图象 判断下列结论:①当23x -<<时 12y y > ①3x =是方程230ax bx +-=的一个解①若()11,t - ()24,t 是抛物线上的两点,则12t t < ①对于抛物线 223y ax bx =+- 当23x -<<时 2y 的取值范围是205y <<.其中正确结论的个数是( )A .4个B .3个C .2个D .1个19.(2023·山东东营·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点A B 与y 轴交于点C 对称轴为直线=1x - 若点A 的坐标为()4,0-,则下列结论正确的是( )A .20a b +=B .420a b c -+>C .2x =是关于x 的一元二次方程()200ax bx c a ++=≠的一个根D .点()11,x y ()22,x y 在抛物线上 当121x x >>-时120y y <<20.(2023·四川乐山·统考中考真题)如图,抛物线2y ax bx c =++经过点(1,0)(,0)A B m -、 且12m << 有下列结论:①0b < ①0a b +> ①0a c <<- ①若点1225,,,33C y D y ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭在抛物线上,则12y y >.其中 正确的结论有( )A .4个B .3个C .2个D .1个21.(2023·湖南岳阳·统考中考真题)若一个点的坐标满足(),2k k 我们将这样的点定义为“倍值点”.若关于x 的二次函数()()212y t x t x s =++++(,s t 为常数 1t ≠-)总有两个不同的倍值点,则s 的取值范围是( ) A .1s <- B .0s < C .01s << D .10s -<<22.(2023·山东烟台·统考中考真题)如图,抛物线2y ax bx c =++的顶点A 的坐标为1,2m ⎛⎫- ⎪⎝⎭与x 轴的一个交点位于0合和1之间,则以下结论:①0abc > ①20b c +> ①若图象经过点()()123,,3,y y -,则12y y > ①若关于x 的一元二次方程230ax bx c ++-=无实数根,则3m <.其中正确结论的个数是( )A .1B .2C .3D .423.(2023·湖南·统考中考真题)已知0m n >> 若关于x 的方程2230x x m +--=的解为()1212,x x x x <.关于x 的方程2230x x n +--=的解为3434,()x x x x <.则下列结论正确的是( ) A .3124x x x x <<<B .1342x x x x <<<C .1234x x x x <<<D .3412x x x x <<<24.(2023·湖北随州·统考中考真题)如图,已知开口向下的抛物线2y ax bx c =++与x 轴交于点(60),对称轴为直线2x =.则下列结论正确的有( ) ①0abc < ①0a b c -+>①方程20cx bx a ++=的两个根为1211,26x x ==-①抛物线上有两点()11,P x y 和()22,Q x y 若122x x <<且124x x +>,则12y y <.A .1个B .2个C .3个D .4个25.(2023·浙江杭州·统考中考真题)设二次函数()()(0,,y a x m x m k a m k =--->是实数),则( ) A .当2k =时 函数y 的最小值为a - B .当2k =时 函数y 的最小值为2a - C .当4k =时 函数y 的最小值为a - D .当4k =时 函数y 的最小值为2a -26.(2023·湖南·统考中考真题)已知()()111222,,,P x y P x y 是抛物线243y ax ax =++(a 是常数 )0a ≠上的点 现有以下四个结论:①该抛物线的对称轴是直线2x =- ①点()0,3在抛物线上 ①若122x x >>-,则12y y > ①若12y y =,则122x x +=-其中 正确结论的个数为( )A .1个B .2个C .3个D .4个27.(2023·山东聊城·统考中考真题)已知二次函数()20y ax bx c a =++≠的部分图象如图所示 图象经过点()0,2 其对称轴为直线=1x -.下列结论:①30a c +> ①若点()14,y - ()23,y 均在二次函数图象上,则12y y > ①关于x 的一元二次方程21ax bx c ++=-有两个相等的实数根 ①满足22ax bx c ++>的x 的取值范围为20x -<<.其中正确结论的个数为( ).A .1个B .2个C .3个D .4个28.(2023·山东·统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点” 如:(1,3),(2,6),(0,0)A B C --等都是三倍点” 在31x -<<的范围内 若二次函数2y x x c =--+的图象上至少存在一个“三倍点”,则c 的取值范围是( ) A .114c -≤< B .43c -≤<-C .154c -<<D .45c -≤<29.(2023·广东·统考中考真题)如图,抛物线2y ax c =+经过正方形OABC 的三个顶点A B C 点B 在y 轴上,则ac 的值为( )A .1-B .2-C .3-D .4-30.(2023·湖北·统考中考真题)拋物线2(0)y ax bx c a =++<与x 轴相交于点()()3010A B -,,,.下列结论: ①0abc < ①240b ac -> ①320b c += ①若点()()122P m y Q m y -,,,在抛物线上 且12y y <,则1m ≤-.其中正确的结论有( ) A .1个B .2个C .3个D .4个31.(2023·黑龙江齐齐哈尔·统考中考真题)如图,二次函数()20y ax bx c a =++≠图像的一部分与x 轴的一个交点坐标为()3,0 对称轴为直线1x = 结合图像给出下列结论: ①0abc > ①2b a = ①30a c +=①关于x 的一元二次方程220(0)ax bx c k a +++=≠有两个不相等的实数根①若点()1,m y ()22,y m -+均在该二次函数图像上,则12y y =.其中正确结论的个数是( )A .4B .3C .2D .132.(2023·湖北鄂州·统考中考真题)如图,已知抛物线()20y ax bx c a =++≠的对称轴是直线1x = 且过点()1,0- 顶点在第一象限 其部分图象如图所示 给出以下结论:①0ab < ①420a b c ++> ①30a c +>①若()11,A x y ()22,B x y (其中12x x <)是抛物线上的两点 且122x x +>,则12y y > 其中正确的选项是( )A .①①①B .①①①C .①①①D .①①①33.(2023·山东枣庄·统考中考真题)二次函数2(0)y ax bx c a =++≠的图象如图所示 对称轴是直线1x = 下列结论:①0abc < ①方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3 ①若()1230,,,2y y ⎛⎫⎪⎝⎭是抛物线上的两点 那么12y y < ①1120a c +> ①对于任意实数m 都有()m am b a b +≥+ 其中正确结论的个数是( )A .5B .4C .3D .234.(2023·湖北十堰·统考中考真题)已知点()11,A x y 在直线319y x =+上 点()()2233,,,B x y C x y 在抛物线241y x x =+-上 若123y y y ==且123x x x <<,则123x x x ++的取值范围是( )A .123129x x x -<++<-B .12386x x x -<++<-C .12390x x x -<++<D .12361x x x -<++<35.(2023·湖北黄冈·统考中考真题)已知二次函数2(0)y ax bx c a =++<的图象与x 轴的一个交点坐标为(1,0)-对称轴为直线1x = 下列论中:①0a b c -+= ①若点()()()1233,,2,,4,y y y -均在该二次函数图象上,则123y y y << ①若m 为任意实数,则24am bm c a ++≤- ①方程210ax bx c +++=的两实数根为12,x x 且12x x <,则121,3x x <->.正确结论的序号为( )A .①①①B .①①①C .①①①D .①①36.(2023·四川·统考中考真题)已知抛物线2y ax bx c =++(a b c 是常数且a<0)过()1,0-和()0m ,两点 且34m << 下列四个结论:0abc >① 30a c +>② ③若抛物线过点()1,4,则213a -<<- ④关于x 的方程()()13a x x m +-=有实数根,则其中正确的结论有( )A .1个B .2个C .3个D .4个二 多选题37.(2023·湖南·统考中考真题)如图,抛物线2y ax bx c =++与x 轴交于点()3,0,则下列结论中正确的是( )A .0a >B .0c >C .240b ac -<D .930a b c ++=三 填空题38.(2023·内蒙古·统考中考真题)已知二次函数223(0)y ax ax a =-++> 若点(,3)P m 在该函数的图象上 且0m ≠,则m 的值为________.39.(2023·山东滨州·统考中考真题)要修一个圆形喷水池 在池中心竖直安装一根水管 水管的顶端安一个喷水头 使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高 高度为3m 水柱落地处离池中心3m 水管长度应为____________.40.(2023·湖南郴州·统考中考真题)抛物线26y x x c =-+与x 轴只有一个交点,则c =________.41.(2023·上海·统考中考真题)一个二次函数2y ax bx c =++的顶点在y 轴正半轴上 且其对称轴左侧的部分是上升的 那么这个二次函数的解析式可以是________.42.(2023·吉林长春·统考中考真题)2023年5月8日 C919商业首航完成——中国民商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场 穿过隆重的“水门礼”(寓意“接风洗尘” 是国际民航中高级别的礼仪).如图① 在一次“水门礼”的预演中 两辆消防车面向飞机喷射水柱 喷射的两条水柱近似看作形状相同的地物线的一部分.如图① 当两辆消防车喷水口A B 的水平距离为80米时 两条水柱在物线的顶点H 处相遇 此时相遇点H 距地面20米 喷水口A B 距地面均为4米.若两辆消防车同时后退10米 两条水柱的形状及喷水口A ' B '到地面的距离均保持不变,则此时两条水柱相遇点H '距地面__________米.43.(2023·福建·统考中考真题)已知抛物线22(0)y ax ax b a =-+>经过()()1223,,1,A n y B n y +-两点 若,A B 分别位于抛物线对称轴的两侧 且12y y <,则n 的取值范围是___________.44.(2023·内蒙古赤峰·统考中考真题)如图,抛物线265y x x =-+与x 轴交于点A B 与y 轴交于点C 点()2,D m 在抛物线上 点E 在直线BC 上 若2DEB DCB ∠=∠,则点E 的坐标是____________.45.(2023·湖北武汉·统考中考真题)抛物线2y ax bx c =++(,,a b c 是常数 0c <)经过(1,1),(,0),(,0)m n 三点 且3n ≥.下列四个结论:①0b <①244ac b a -<①当3n =时 若点(2,)t 在该抛物线上,则1t >①若关于x 的一元二次方程2ax bx c x ++=有两个相等的实数根,则103m <≤. 其中正确的是________(填写序号).46.(2023·四川宜宾·统考中考真题)如图,抛物线2y ax bx c =++经过点()30A -,顶点为()1,M m - 且抛物线与y 轴的交点B 在()02-,和()03-,之间(不含端点),则下列结论:①当31x -≤≤时 0y ≤①当ABM 33 3a = ①当ABM 为直角三角形时 在AOB 内存在唯一点P 使得PA PO PB ++的值最小 最小值的平方为1893+其中正确的结论是___________.(填写所有正确结论的序号)四 解答题47.(2023·浙江宁波·统考中考真题)如图,已知二次函数2y x bx c =++图象经过点(1,2)A -和(0,5)B -.(1)求该二次函数的表达式及图象的顶点坐标.y≤-时请根据图象直接写出x的取值范围.(2)当248.(2023·浙江温州·统考中考真题)一次足球训练中小明从球门正前方8m的A处射门球射向球门的路线呈抛物线.当球飞行的水平距离为6m时球达到最高点此时球离地面3m.已知球门高OB为2.44m 现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析若射门路线的形状最大高度均保持不变,则当时他应该带球向正后方移动多少米射门才能让足球经过点O正上方2.25m处?49.(2023·湖北武汉·统考中考真题)某课外科技活动小组研制了一种航模飞机.通过实验 收集了飞机相对于出发点的飞行水平距离x (单位:m )以 飞行高度y (单位:m )随飞行时间t (单位:s )变化的数据如下表. 飞行时间/s t 0 2 4 6 8 …飞行水平距离/m x 0 10 20 30 40 …飞行高度/m y 0 22 40 54 64 …探究发现:x 与t y 与t 之间的数量关系可以用我们已学过的函数来描述.直接写出x 关于t 的函数解析式和y 关于t 的函数解析式(不要求写出自变量的取值范围).问题解决:如图,活动小组在水平安全线上A 处设置一个高度可以变化的发射平台试飞该航模飞机.根据上面的探究发现解决下列问题.(1)若发射平台相对于安全线的高度为0m 求飞机落到安全线时飞行的水平距离(2)在安全线上设置回收区域,125m,5m ==MN AM MN .若飞机落到MN 内(不包括端点,M N ) 求发射平台相对于安全线的高度的变化范围.50.(2023·河北·统考中考真题)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题 请解答这道题.如图,在平面直角坐标系中 一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出 并运动路线为抛物线21:(3)2C y a x =-+的一部分 淇淇恰在点(0)B c ,处接住 然后跳起将沙包回传 其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标 并求a c 的值(2)若嘉嘉在x 轴上方1m 的高度上 且到点A 水平距离不超过1m 的范围内可以接到沙包 求符合条件的n 的整数值.51.(2023·河南·统考中考真题)小林同学不仅是一名羽毛球运动爱好者 还喜欢运用数学知识对羽毛球比赛进行技术分析 下面是他对击球线路的分析.如图,在平面直角坐标系中 点A C 在x 轴上 球网AB 与y 轴的水平距离3m OA = 2m CA = 击球点P 在y 轴上.若选择扣球 羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+ 若选择吊球 羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现 上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近 请通过计算判断应选择哪种击球方式.52.(2023·内蒙古赤峰·统考中考真题)乒乓球被誉为中国国球.2023年的世界乒乓球标赛中中国队包揽了五个项目的冠军成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图一位运动员从球台边缘正上方以击球高度OA为28.75cm的高度将乒乓球向正前方击打到对面球台乒乓球的运行路线近似是抛物线的一部分.乒乓球到球台的竖直高度记为y(单位:cm)乒乓球运行的水平距离记为x(单位:cm).测得如下数据:(1)在平面直角坐标系xOy中描出表格中各组数值所对应的点(),x y并画出表示乒乓球运行轨迹形状的大致图象(2)①当乒乓球到达最高点时与球台之间的距离是__________cm当乒乓球落在对面球台上时到起始点的水平距离是__________cm①求满足条件的抛物线解析式(3)技术分析:如果只上下调整击球高度OA乒乓球的运行轨迹形状不变那么为了确保乒乓球既能过网又能落在对面球台上需要计算出OA的取值范围以利于有针对性的训练.如图①.乒乓球台长OB为274cm 球网高CD 为15.25cm .现在已经计算出乒乓球恰好过网的击球离度OA 的值约为1.27cm .请你计算出乒乓球恰好落在对面球台边缘点B 处时 击球高度OA 的值(乒乓球大小忽略不计).53.(2023·浙江台州·统考中考真题)【问题背景】“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲 乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.【实验操作】综合实践小组设计了如下的实验:先在甲容器里加满水 此时水面高度为30cm 开始放水后每隔10min 观察一次甲容器中的水面高度 获得的数据如下表: 流水时间t /min 0 10 20 30 40水面高度h /cm (观察值) 30 29 28.1 27 25.8任务1 分别计算表中每隔10min 水面高度观察值的变化量.【建立模型】小组讨论发现:“0=t 30h =”是初始状态下的准确数据 水面高度值的变化不均匀 但可以用一次函数近似地刻画水面高度h 与流水时间t 的关系.任务2 利用0=t 时 30h = 10t =时 29h =这两组数据求水面高度h 与流水时间t 的函数解析式.【反思优化】经检验 发现有两组表中观察值不满足任务2中求出的函数解析式 存在偏差.小组决定优化函数解析式 减少偏差.通过查阅资料后知道:t 为表中数据时 根据解析式求出所对应的函数值 计算这些函数值与对应h 的观察值之差的平方和......记为w w 越小 偏差越小. 任务3 (1)计算任务2得到的函数解析式的w 值.(2)请确定经过()0,30的一次函数解析式 使得w 的值最小.【设计刻度】得到优化的函数解析式后 综合实践小组决定在甲容器外壁设计刻度 通过刻度直接读取时间. 任务4 请你简要写出时间刻度的设计方案.54.(2023·黑龙江·统考中考真题)如图,抛物线23y ax bx =++与x 轴交于()()3,0,1,0A B -两点 交y 轴于点C .(1)求抛物线的解析式.(2)拋物线上是否存在一点P 使得12PBC ABC S S = 若存在 请直接写出点P 的坐标若不存在 请说明理由.55.(2023·广东深圳·统考中考真题)蔬菜大棚是一种具有出色的保温性能的框架覆膜结构 它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架 上面覆上一层或多层保温塑料膜 这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形ABCD 和抛物线AED 构成 其中3m AB = 4m BC = 取BC 中点O 过点O 作线段BC 的垂直平分线OE 交抛物线AED 于点E 若以O 点为原点 BC 所在直线为x 轴 OE 为y 轴建立如图所示平面直角坐标系.请回答下列问题:(1)如图,抛物线AED 的顶点()0,4E 求抛物线的解析式(2)如图,为了保证蔬菜大棚的通风性 该大棚要安装两个正方形孔的排气装置LFGT SMNR 若0.75m FL NR == 求两个正方形装置的间距GM 的长(3)如图,在某一时刻 太阳光线透过A 点恰好照射到C 点 此时大棚截面的阴影为BK 求BK 的长.参考答案一 单选题1.(2023·甘肃兰州·统考中考真题)已知二次函数()2323y x =--- 下列说法正确的是( ) A .对称轴为2x =-B .顶点坐标为()2,3C .函数的最大值是-3D .函数的最小值是-3 【答案】C【分析】根据二次函数的图象及性质进行判断即可.【详解】二次函数()2323y x =---的对称轴为2x = 顶点坐标为()2,3-①30-<①二次函数图象开口向下 函数有最大值 为=3y -①A B D 选项错误 C 选项正确故选:C.【点睛】本题考查二次函数的图象及性质 熟练掌握二次函数图象和性质是解题的关键.2.(2023·广西·统考中考真题)将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线是( )A .2(3)4y x =-+B .2(3)4y x =++C .2(3)4y x =+-D .2(3)4y x =--【答案】A【分析】根据“左加右减 上加下减”的法则进行解答即可.【详解】解:将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线的函数表达式为:2(3)4y x =-+. 故选:A .【点睛】本题考查了二次函数图象的平移 熟知二次函数图象平移的法则是解答此题的关键.3.(2023·湖南·统考中考真题)如图所示 直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴,则下列说法正确的是( )A .b 恒大于0B .a b 同号C .a b 异号D .以上说法都不对【答案】C 【分析】先写出抛物线的对称轴方程 再列不等式 再分a<0 >0a 两种情况讨论即可.【详解】解:①直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴①对称轴为直线>02b x a=-当a<0时,则>0b当>0a 时,则0b <①a b 异号故选:C .【点睛】本题考查的是二次函数的性质 熟练的利用对称轴在y 轴的右侧列不等式是解本题的关键.4.(2023·辽宁大连·统考中考真题)已知抛物线221y x x =--,则当03x ≤≤时 函数的最大值为( ) A .2-B .1-C .0D .2【答案】D 【分析】把抛物线221y x x =--化为顶点式 得到对称轴为1x = 当1x =时 函数的最小值为2- 再分别求出0x =和3x =时的函数值 即可得到答案.【详解】解:①()222112y x x x =--=--①对称轴为1x = 当1x =时 函数的最小值为2-当0x =时 2211y x x =--=- 当3x =时 232312y =-⨯-=①当03x ≤≤时 函数的最大值为2故选:D.【点睛】此题考查了二次函数的最值 熟练掌握二次函数的性质是解题的关键.5.(2023·四川成都·统考中考真题)如图,二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点 下列说法正确的是( )A .抛物线的对称轴为直线1x =B .抛物线的顶点坐标为1,62⎛⎫-- ⎪⎝⎭C .A B 两点之间的距离为5D .当1x <-时 y 的值随x 值的增大而增大【答案】C 【分析】待定系数法求得二次函数解析式 进而逐项分析判断即可求解.【详解】解:①二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点①0936a =--①1a =①二次函数解析式为26y x x =+-212524x ⎛⎫=+- ⎪⎝⎭ 对称轴为直线12x =- 顶点坐标为125,24⎛⎫-- ⎪⎝⎭ 故A B 选项不正确 不符合题意①10a => 抛物线开口向上 当1x <-时 y 的值随x 值的增大而减小 故D 选项不正确 不符合题意 当0y =时 260x x +-=即123,2x x =-=①()2,0B①5AB = 故C 选项正确 符合题意故选:C .【点睛】本题考查了二次函数的性质 待定系数法求二次函数解析式 抛物线与坐标轴的交点 熟练掌握二次函数的性质是解题的关键.6.(2023·河南·统考中考真题)二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【分析】根据二次函数图象的开口方向 对称轴判断出a b 的正负情况 再由一次函数的性质解答.【详解】解:由图象开口向下可知a<0 由对称轴b x 02a=-> 得0b >. ①一次函数y x b =+的图象经过第一 二 三象限 不经过第四象限.故选:D .【点睛】本题考查二次函数图象和一次函数图象的性质 解答本题的关键是求出a b 的正负情况 要掌握它们的性质才能灵活解题 此题难度不大.7.(2023·内蒙古通辽·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点()()1020x ,,, 其中101x << 下列四个结论:①0abc < ①0a b c ++> ①230b c +< ①不等式22c ax bx c x c ++<-+的解集为02x <<.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【分析】根据函数图象可得出a b c 的符号即可判断① 当1x =时 0y <即可判断① 根据对称轴为12b x a=-> 0a >可判断① 21y ax bx c =++ 22c y x c =-+数形结合即可判断①. 【详解】解:①抛物线开口向上 对称轴在y 轴右边 与y 轴交于正半轴①000a b c ><>,,①0abc < 故①正确.①当1x =时 0y <①0a b c ++< 故①错误.①抛物线2y ax bx c =++与x 轴交于两点()()1020x ,,,其中101x << ①2021222b a ++<-< ①3122b a <-< 当322b a -<时 3b a >- 当2x =时 420y a bc =++=122b ac ∴=-- 1232a c a ∴-->- ①20a c ->①()234342220b c a c c a c a c +=--+=-+=--< 故①正确设21y ax bx c =++ 22c y x c =-+ 如图:由图得 12y y <时 02x << 故①正确.综上 正确的有①①① 共3个故选:C .【点睛】本题考查了二次函数的图象及性质 根据二次函数的图象及性质巧妙借助数学结合思想解决问题是解题的关键.8.(2023·四川自贡·统考中考真题)经过23,()41,),(A b m B b c m -+-两点的抛物线22122y x bx b c =-+-+(x 为自变量)与x 轴有交点,则线段AB 长为( )A .10B .12C .13D .15【答案】B【分析】根据题意 求得对称轴 进而得出1c b =- 求得抛物线解析式 根据抛物线与x 轴有交点得出240b ac ∆=-≥ 进而得出2b =,则1c = 求得,A B 的横坐标 即可求解. 【详解】解:①抛物线22122y x bx b c =-+-+的对称轴为直线1222b b x b a =-=-=⎛⎫⨯- ⎪⎝⎭①抛物线经过23,()41,),(A b m B b c m -+-两点 ①23412b bc b -++-= 即1c b =- ①22221122222y x bx b c x bx b b =-+-+=-+-+- ①抛物线与x 轴有交点①240b ac ∆=-≥ 即()22142202b b b ⎛⎫-⨯-⨯-+-≥ ⎪⎝⎭即2440b b -+≤ 即()220b -≤①2b = 1211c b =-=-=①23264,418118b b c -=-=-+-=+-=①()()41238412AB b c b =+---=--=故选:B .【点睛】本题考查了二次函数的对称性 与x 轴交点问题 熟练掌握二次函数的性质是解题的关键. 9.(2023·四川达州·统考中考真题)如图,拋物线2y ax bx c =++(,,a b c 为常数)关于直线1x =对称.下列五个结论:①0abc > ①20a b += ①420a b c ++> ①2am bm a b +>+ ①30a c +>.其中正确的有( )A .4个B .3个C .2个D .1个【答案】B 【分析】由抛物线的开口方向 与y 轴交点以及对称轴的位置可判断a b c 的符号 由此可判断①正确 由抛物线的对称轴为1x = 得到12b a-= 即可判断① 可知2x =时和0x =时的y 值相等可判断①正确 由图知1x =时二次函数有最小值 可判断①错误 由抛物线的对称轴为1x =可得2b a =- 因此22y ax ax c =-+ 根据图像可判断①正确.【详解】①①抛物线的开口向上0.a ∴>①抛物线与y 轴交点在y 轴的负半轴上0.c ∴< 由02b a->得 0b < 0abc ∴>故①正确 ①抛物线的对称轴为1x = ∴12b a-= ∴2b a =-∴20a b += 故①正确①由抛物线的对称轴为1x = 可知2x =时和0x =时的y 值相等.由图知0x =时 0y <①2x =时 0y <.即420a b c ++<.故①错误①由图知1x =时二次函数有最小值2a b c am bm c ∴++≤++2a b am bm ∴+≤+(a b m ax b +≤+)故①错误①由抛物线的对称轴为1x =可得12b a-= 2b a ∴=-①22y ax ax c =-+当=1x -时 23y a a c a c =++=+.由图知=1x -时0,y >30.a c ∴+>故①正确.综上所述:正确的是①①① 有3个故选:B .【点睛】本题主要考查了二次函数的图像与系数的关系 二次函数的对称轴及顶点位置.熟练掌握二次函数图像的性质及数形结合是解题的关键.10.(2023·四川泸州·统考中考真题)已知二次函数223y ax ax =-+(其中x 是自变量) 当03x <<时对应的函数值y 均为正数,则a 的取值范围为( )A .01a <<B .1a <-或3a >C .30a -<<或0<<3aD .10a -≤<或0<<3a 【答案】D【分析】首先根据题意求出对称轴212a x a -=-= 然后分两种情况:0a >和a<0 分别根据二次函数的性质求解即可.【详解】①二次函数223y ax ax =-+①对称轴212a x a-=-= 当0a >时①当03x <<时对应的函数值y 均为正数①此时抛物线与x 轴没有交点①()22430a a ∆=--⨯<①解得0<<3a当a<0时①当03x <<时对应的函数值y 均为正数①当3x =时 9630y a a =-+≥①解得1a ≥-①10a -≤<①综上所述当03x <<时对应的函数值y 均为正数,则a 的取值范围为10a -≤<或0<<3a .故选:D .【点睛】此题考查了二次函数的图象和性质 解题的关键是分两种情况讨论.11.(2023·四川凉山·统考中考真题)已知抛物线()20y ax bx c a =++≠的部分图象如图所示,则下列结论中正确的是( )A .<0abcB .420a b c -+<C .30a c +=D .20am bm a ++≤(m 为实数)【答案】C 【分析】根据开口方向 与y 轴交于负半轴和对称轴为直线1x =可得00a c ><, 20b a =-< 由此即可判断A 根据对称性可得当2x =-时 0y > 当=1x -时 0y = 由此即可判断B C 根据抛物线开口向上 对称轴为直线1x = 可得抛物线的最小值为a c -+ 由此即可判断D .【详解】解:①抛物线开口向上 与y 轴交于负半轴①00a c ><,①抛物线对称轴为直线1x = ①12b a-= ①20b a =-<。

部编数学九年级上册二次函数y=ax2+bx+c(a≠0)的图象与性质(基础篇)(专项练习) 含答案

部编数学九年级上册二次函数y=ax2+bx+c(a≠0)的图象与性质(基础篇)(专项练习) 含答案

专题22.14 二次函数的图象与性质(基础篇)(专项练习)一、单选题【类型一】把二次函数化为顶点式1.用配方法将二次函数21242y x x =--化为2()y a x h k =-+的形式为( )A .21(2)42y x =--B .21(1)32y x =--C .21(2)52y x =--D .21(2)62y x =--2.在平面直角坐标系中,已知抛物线245y x x =-+,将该抛物线沿y 轴翻折所得的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =---3.如图,在平面直角坐标系中,点A 在抛物线2322y x x =-+上运动.过点A 作AC x ^轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为( ).A .2B .4C .53D .73【类型二】画二次函数的图象4.二次函数()221210y a x ax a =+++-=的图象经过原点,则a 的值为( )A .±1B .1-C .1D .05.已知二次函数2y ax bx c =++,且0,0,0a b c <=<,则图象一定经过( )象限.A .三、四B .一、三、四C .一、二、三、四D .二、三、四2(0)y ax bx c a =++¹2(0)y ax bx c a =++¹2(0)y ax bx c a =++¹6.已知二次函数y =x 2﹣(m ﹣2)x +4图象的顶点在坐标轴上,则m 的值一定不是( )A .2B .6C .﹣2D .0【类型三】二次函数的性质7.已知:二次函数2y ax bx c =++图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是( )x (1)-012…y…0343…A .()0,3B .()1,4C .()2,3D .()3,08.已知二次函数221y ax ax a =++-的图象只经过三个象限,下列说法正确的是( )A .开口向下B .顶点在第一象限C .1a ³D .当1x >时,y 的最小值为-19.画二次函数2y ax bx c =++的图象时,列表如下:x (1234)5…y…2321-6-…关于此函数有以下说法:①函数图象开口向上;②当2x >时,y 随x 的增大而减小;③当0x =时,1y =-.其中正确的有( )A .①②B .①③C .②③D .①②③【类型四】二次函数各项系数的符号10.二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =-+的图象大致是( ).2(0)y ax bx c a =++¹2(0)y ax bx c a =++¹A .B .C .D .11.在同一坐标系中,直线y ax a =+和抛物线232y ax x =-++(a 是常数,且a ≠0)的图象可能是( )A .B .C .D .12.对称轴为直线1x =的抛物线2y ax bx c =++(a ,b ,c 为常数,且0a ¹)如图,小明同学得出了以下结论:①0abc >;②24b ac >;③420a b c ++>;④30a c +>;⑤()a b m am b +£+(m 为任意实数);⑥当1x <-时,y 随x 的增大而增大.其中结论错误的个数为( )A .1B .2C .3D .4【类型五】一次函数与二次函数图象判断13.在同一平面直角坐标系中,函数()20y ax bx a =+¹与y ax b =+的图象可能是( )A .B .C .D .14.已知二次函数2(0)y ax bx c a =++¹的图象如图所示,对称轴为12x =-,下列结论中,正确的是( )A .abc >0B .a +b =0C .b +c >aD .a +c <b15.当ab <0时,y =ax 2与y =ax +b 的图象大致是( )A .B .C .D .【类型六】二次函数图象的平移16.将抛物线23y x =向右平移1个单位,再向上平移2个单位后所得到的抛物线的解析式为( )A .()2312y x =+-B .()2312y x =++C .()2312x y =--D .()2312y x =-+17.关于二次函数y =(x ﹣2)2+1,下列说法中错误的是( )A .图象的开口向上B .图象的对称轴为x =2C .图象与y 轴交于点(0,1)D .图象可以由y =x 2的图象向右平移2个单位长度,再向上平移1个单位长度得到18.如图,抛物线y =x 2经过平移得到抛物线y =ax 2+bx ,其对称轴与两段抛物线所围成的阴影部分的面积是8,则抛物线y =ax 2+bx 的顶点坐标是( )A .(1,-4)B .(2,-4)C .(4,-2)D .(4,-1)二、填空题【类型一】把二次函数化为顶点式19.把二次函数y =-x 2-4x -3化成y =a (x -h )2+k 的形式是______ .20.已知(0,3)A 、()2,3B 是抛物线2y x bx c =-++上两点,则该抛物线的顶点坐标是_____.21.二次函数245y x x =-+化为2()y x h k =-+的形式,则h k -=___________.【类型二】画二次函数的图象22.如图,已知二次函数22y x x =-+,当x <a 时,y 随x 的增大而增大,则实数a 的取值范围是_____________.23.已知1(4,)A y -,B 2(3,)y -,3(3,)C y 两点都在二次函数22(2)y x b =-++的图象上,则1y ,2y ,3y 的大小关系为_________.24.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式_____(写一个即可).【类型三】二次函数的性质25.已知二次函数21y x mx =-+,(1)该二次函数图像的开口方向为______;(2)若该函数的图象的顶点在x 轴上,则m 的值为______;26.将二次函数241y x x =--+的图象先向右平移a 个单位再向下平移2a 个单位.(1)若平移后的二次函数图象经过点()1,1-,则a =______.(2)平移后的二次函数图象与y 轴交点的纵坐标最大值为______.27.如图,二次函数y =ax 2+bx +c 的图象经过点A (﹣3,0),B (1,0),与y 轴交于点C .下列结论:①abc >0;②3a ﹣c =0;③当x <0时,y 随x 的增大而增大;④对于任意实数m ,总有a ﹣b ≥am 2﹣bm .其中正确的是 _____(填写序号).2(0)y ax bx c a =++¹2(0)y ax bx c a =++¹2(0)y ax bx c a =++¹【类型四】二次函数各项系数的符号28.如图,抛物线()20y ax bx c a =++¹与x 轴交于点(-3,0),其对称轴是12x =-,则下列结论:①0abc >;②0a b c ++<;③若两点(-2,1y ),(3,2y )在二次函数图象上,则12y y >.其中正确结论的个数为___.29.如图,抛物线y =ax 2+bx +c 的对称轴为直线x =1,下列结论①ac <0;②b 2﹣4ac >0;③2a ﹣b =0;④3a +c =0,其中,正确的个数是_____30.已知二次函数2y ax bx c =++的图象如图所示,下列结论:①0ac <;②20b a -<;③240b ac -<;④0a b c -+<,正确的是______.【类型五】一次函数与二次函数图象判断31.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.2(0)y ax bx c a =++¹32.已知二次函数22y ax =+的图象开口向下,则直线2y ax =-不经过的象限是第______象限.33.已知二次函数2y ax bx c =++的图象如图所示,则一次函数y ax bc =+ 的图象不经过第____________象限【类型六】二次函数图象的平移34.抛物线2y x bx c =++图像向右平移2个单位再向下平移3个单位,所得图像的解析式为223y x x =--,那么原抛物线的解析式为____________35.平移二次函数的图象,如果有一个点既在平移前的函数图象上,又在平移后的函数图象上,我们把这个点叫做“关联点”.现将二次函数22y x x c =++(c 为常数)的图象向右平移得到新的抛物线,若“关联点”为(1,2),则新抛物线的函数表达式为_______.36.已知平面直角坐标系中,点P 的坐标为()2,1--,若二次函数242y x x m =-++的图像与线段OP 有且只有一个公共点,则m 满足的条件是______.三、解答题37.如图,已知经过原点的抛物线y =2x 2+mx 与x 轴交于另一点A (2,0).(1)求m 的值和抛物线顶点M 的坐标;(2)求直线AM 的解析式.38.已知抛物线y =ax 2+bx +c 经过点A (0,3)、B (4,3)、C (1,0).(1)填空:抛物线的对称轴为直线x = ,抛物线与x 轴的另一个交点D 的坐标为;(2)画出二次函数y =ax 2+bx +c 的图象.(3)当 1 < x £4时, y 的取值范围是39.二次函数2y ax bx c =++的自变量x 与函数值y 的对应值如下表,根据下表回答问题.x …-3-2-10…y…-2-24…(1)该二次函数与y 轴交点是 ,对称轴是.(2)求出该二次函数的表达式;(3)向下平移该二次函数,使其经过原点,求出平移后图像所对应的二次函数表达式.40.如图,抛物线y =﹣x 2+(m ﹣1)x +m 与y 轴交于点(0,3).(1)m 的值为________;(2)当x 满足________时,y 的值随x 值的增大而减小;(3)当x 满足________时,抛物线在x 轴上方;(4)当x 满足0≤x ≤4时,y 的取值范围是________.41.已知抛物线21y ax bx c =++的顶点A 是直线22y x =与324y x =-+的交点,且抛物线经过直线324y x =-+与y 轴的交点B .(1)求点A 的坐标;(2)求抛物线的函数表达式;(3)写出当13y y >时x 的取值范围.42.已知二次函数2243y x x =-+的图像为抛物线C .(1)抛物线C 顶点坐标为______;(2)将抛物线C 先向左平移1个单位长度,再向上平移2个单位长度,得到抛物线1C ,请判断抛物线1C 是否经过点()2,3P ,并说明理由;(3)当23x -££时,求该二次函数的函数值y 的取值范围.参考答案1.D【分析】先把二次项的系数化为1,再配方,从而可得答案.解:21242y x x =--()2144442x x =-+-- ()21262x =--,故选:D.【点拨】本题考查的是利用配方法化抛物线为顶点式,熟练掌握“配方法”是解本题的关键.2.C【分析】把抛物线沿y 轴翻折后,抛物线的开口方向与原抛物线开口方向相反,顶点(2,1)关于y 轴对称的顶点为(2,-1),则可得翻折后的抛物线的解析式.解:∵2245(2)1y x x x =-+=-+,∴顶点坐标为(2,1),开口向上,∴抛物线245y x x =-+沿y 轴翻折后顶点坐标为(2,-1),此时抛物线的开口向下,∴抛物线沿y 轴翻折所得的抛物线的表达式为2(2)1=---y x ,化简后为:245y x x =-+-.故选:C .【点拨】本题考查了求抛物线关于y 轴对称后的解析式,点关于y 轴对称,把二次函数的一般式化为顶点式等知识,关键是抓住抛物线的开口方向与顶点坐标翻折后的变化.3.C【分析】先利用配方法得到抛物线的顶点坐标,再根据矩形的性质得BD =AC ,由于AC 的长等于点A 的纵坐标,所以当点A 在抛物线的顶点时,点A 到x 轴的距离最小,从而得到BD 的最小值.解:∵2215322333y x x x æö=-+=-+ç÷èø,∴抛物线的顶点坐标为(13,53),∵四边形ABCD 为矩形,∴BD =AC ,而AC ⊥x 轴,∴AC 的长等于点A 的纵坐标,当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为53,∴对角线BD 的最小值为53.故选:C .【点拨】本题考查了二次函数图象上点的坐标特征以及矩形的性质,解题时注意:二次函数图象上点的坐标满足其解析式.4.C【分析】先根据二次函数图象上点的坐标特征,把原点坐标代入解析式求出a =1或a =-1,然后根据二次函数的定义确定a 的值.解:把(0,0)代入y =(a +1)x 2+3x +a 2-1得a 2-1=0,解得a =1或a =-1,而a +1≠0,所以a 的值为1.故选:C .【点拨】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.注意不要掉了a +1≠0.5.A【分析】根据0a <,0b =,0c <,可以判断二次函数的开口向下,二次函数与y 轴的交点在y 轴的负半轴,且二次函数的顶点坐标为原点,由此即可判断二次函数图像经过的象限.解:∵二次函数2y ax bx c =++中0a <,0b =,0c <,∴二次函数的解析式为2y ax c =+,二次函数的开口向下,二次函数与y 轴的交点在y 轴的负半轴,∴二次函数的顶点坐标为(0,c ),在y 轴负半轴,∴二次函数2y ax bx c =++的图象 经过三、四象限;故选A .【点拨】本题主要考查了二次函数图象的性质,解题的关键在于能够熟练掌握二次函数图象与系数之间的关系.6.D【分析】先把二次函数的解析式化为顶点式,再利用该函数图象的顶点在坐标轴上,可以得到关于m 的方程,解方程从而可得答案.解:∵二次函数()()22222244,24m m y x m x x --æö=--+=--+ç÷èø∴该函数的顶点坐标为()222,4,22m m éù---+êúêúëû∵二次函数()224y x m x =--+图象的顶点在坐标轴上,∴202-=m 或()22404m --+=,当202-=m 时,2,m = 当()22404m --+=时,()2216,m -= 24m \-=或24,m -=-6m \=或2,m =-综上:2m =或6m =或 2.m =-故选:D .【点拨】本题考查的是二次函数的性质,掌握二次函数的顶点坐标在坐标轴上的坐标特点是解题的关键.7.D【分析】由表格可知,二次函数的图象关于直线1x =对称,它的图象与x 轴的一个交点坐标为()1,0-,根据二次函数的对称性可求它的图象与x 轴的另一个交点坐标.解:由表格可知,二次函数的图象关于直线1x =对称,它的图象与x 轴的一个交点坐标为()1,0-,∴它的图象与x 轴的另一个交点坐标为()3,0,故选D .【点拨】本题考查了二次函数的图象与性质.解题的关键在于确定二次函数的对称轴.8.C【分析】二次函数221y ax ax a =++-的图象只经过三个象限,要满足条件,常数项大于等于0,解不等式即得.解:∵二次函数221y ax ax a =++-的图象只经过三个象限,∴a -1≥0,∴a ≥1.故选C .【点拨】本题考查了二次函数221y ax ax a =++-的图象只经过三个象限,运用函数图象与x 轴的两个交点横坐标的积大于等于0,即常数项大于等于0,是解决此类问题的关键.9.C【分析】先由表中数据可知,y 随x 的增大先增大后减小,得到函数图象开口向下;利用y =2时,x =1或x =3,得到函数的对称轴,再结合开口方向得到函数的增减性;利用对称轴为直线x =2,则求出1y =-时的自变量的值.解:由表中数据可知,y 随x 的增大先增大后减小,∴函数图象开口向下,故①错误,不符合题意;∵y =2时,x =1或x =3,∴函数的对称轴为直线x =2,∵开口向下,∴当x >2时,y 随x 的增大而减小,故②正确,符合题意;∵对称轴为直线x =2,当x =4时,1y =-,∴x =0时,1y =-,故③正确,符合题意;∴正确的选项有②③;故选:C .【点拨】本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.10.C【分析】观察二次函数2y ax bx c =++的图象得:0,02b a a<-<,可得0b <,0a ->,从而得到一次函数y ax b =-+的图象经过第一、三、四象限,即可求解.解:观察二次函数2y ax bx c =++的图象得:0,02b a a<-<,∴0b <,0a ->,∴一次函数y ax b =-+的图象经过第一、三、四象限.故选:C【点拨】本题主要考查了一次函数和二次函数的图象和性质,熟练掌握一次函数和二次函数的图象和性质是解题的关键.11.D【分析】根据函数图像和解析式中的参数分析函数图像性质,分析函数图像是否可能存在.解:A 、由直线y =ax+a 的图像性质和抛物线y =﹣ax 2+3x +2的图像性质可得0a <和0a >,图象不符合题意B 、由直线y =ax +a 的图像性质可得0a <,抛物线y =﹣ax 2+3x +2的图像性质可得0a <及对称轴在y 轴的左侧,图象不符合题意C 、由直线y =ax +a 的图像性质可得0a >,抛物线y =﹣ax 2+3x +2的图像性质可得0a <,图象不符合题意D 、由直线y =ax +a 的图像性质可得0a <,抛物线y =﹣ax 2+3x +2的图像性质可得0a <和对称轴在y 轴的左侧,符合题意故选D【点拨】此题考查的知识点:一次函数增减性质、二次函数开口方向和对称轴在y 轴的左侧还是右侧、函数中参数的作用;根据图像变化确定函数中的参数正负性是解答此题的关键.12.B【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解:观察图象得:抛物线开口向上,与y 轴交于负半轴,对称轴为直线x =1,∴0,0,12b a c a><-=,∴20b a =-<,∴0abc >,故①正确;根据题意得:抛物线与x 轴有两个交点,∴240b ac D =->,即24b ac >,故②正确;∵对称轴为直线x =1,且抛物线与x 轴的另一个交点位于x 轴负半轴,当x =2时,y <0,即420a b c ++<,故③错误;根据题意得:当x =-1时,y >0,即0a b c -+>∵2b a =-,∴()230a a c a c --+=+>,故④正确;∵抛物线开口向上,对称轴为直线x =1,∴当x =1时,函数值最小,最小值为a +b +c ,∴当x =m 时,2a b c am bm c ++£++,∴()a b m am b +£+,故⑤正确;∵抛物线开口向上,对称轴为直线x =1,∴⑥当1x <-时,y 随x 的增大而减小,故⑥错误;∴错误的有2个.故选:B【点拨】本题考查了二次函数图象与系数的关系,理解二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点确定是解题的关键.13.A【分析】根据二次函数和一次函数图象的性质依次进行判断即可.解:函数()20y ax bx a =+¹经过原点(0,0),则B 错误;当a <0时,y ax b =+经过二、四象限,则D 错误;当02b a->时,b >0, y ax b =+经过一、二、四象限,则C 错误;当a >0,02b a ->时,b <0, y ax b =+经过一、三、四象限,则A 符合题意.故选:A .【点拨】本题考查二次函数与一次函数的综合,熟练掌握函数图象的性质是解决问题的关键.14.D【分析】由抛物线开口方向得到a >0,由对称轴得到b =a >0,由抛物线与y 轴的交点得到c <0,则abc <0;a +b >0,据此来进行一一判断即可.解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =122b a -=-,∴b =a >0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0;a +b >0;故选项A 、B 错误;∵b =a >0,c <0,∴b +c <a ,a +c <b ,故选项C 错误,选项D 正确,故选:D .【点拨】此题考查了二次函数图象与系数的关系.此题难度适中,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系,掌握二次函数的对称性.15.A【分析】根据题意,ab<0,分a>0与a<0两种情况讨论,分析选项可得答案.解:根据题意,ab<0,当a>0时,b<0,y=ax2开口向上,过原点,y=ax+b过一、三、四象限;此时,A选项符合,当a<0时,b>0,y=ax2开口向下,过原点,y=ax+b过一、二、四象限;此时,没有选项符合.故选:A.【点拨】本题考查了二次函数与一次函数的图象的性质,要求学生理解系数与图象的关系.16.D【分析】先根据抛物线的顶点式得到抛物线y=3x2的顶点坐标为(0,0),则抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的顶点坐标为(1,2),然后再根据顶点式即可得到平移后抛物线的解析式.解:∵抛物线y=3x2的顶点坐标为(0,0),∴抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的顶点坐标为(1,2),∴平移后抛物线的解析式为y=3(x-1)2+2.故选:D.【点拨】本题考查了二次函数图象与几何变换:先把抛物线的解析式化为顶点式y=a (x-k)2+h,其中对称轴为直线x=k,顶点坐标为(k,h),若把抛物线先右平移m个单位,向上平移n个单位,则得到的抛物线的解析式为y=a(x-k-m)2+h+n;抛物线的平移也可理解为把抛物线的顶点进行平移.17.C【分析】根据二次函数的性质判断A,B选项;根据当x=0时,y=5判断C选项;根据图象的平移规律判断D选项.解:A选项,a=1>0,开口向上,故该选项不符合题意;B选项,图象的对称轴为x=2,故该选项不符合题意;C选项,当x=0时,y=5,图象与y轴交于点(0,5)故该选项符合题意;D 选项,图象可以由y =x 2的图象向右平移2个单位长度,再向上平移1个单位长度得到,故该选项不符合题意;故选:C .【点拨】本题考查了二次函数的性质,二次函数的图象和几何变换,掌握二次函数的图象与坐标轴交点的求法是解题的关键.18.B【分析】确定出抛物线y =ax 2+bx 的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.解:如图,设平移后所得新抛物线的对称轴和两抛物线相交于点A 和点B ,连接OA ,OB ,则由抛物线平移的性质可知,a =1,S 阴影=S △OAB ,∴y =ax 2+bx =x 2+bx = (x +2b ) 2−24b ,∴点A 的坐标为 (−2b ,−24b ),点B 的坐标为 (−2b ,24b ),∴AB =24b +24b =22b ,点O 到AB 的距离:−2b ,∴S △AOB =12×22b ×(−2b )=8,解得:b =−4.∴−2b =2,−24b =−4,∴抛物线y =ax 2+bx 的顶点A 的坐标为 (2,−4).故选:B .【点拨】本题考查了二次函数图象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.19.y =-(x +2)2+11【分析】根据配方法即可求解.解:∵y =-x 2-4x -3=-(x 2+4x +4)+11=-(x +2)2+11,故答案为:y =-(x +2)2+11.【点拨】此题主要考查二次函数的顶点式,解题的关键是熟知配方法的运用.20.()1,4【分析】将A (0,3),B (2,3)代入抛物线y =-x 2+bx +c 的解析式,求出b 、c ,即可得解析式,从而得到顶点坐标.解:∵A (0,3),B (2,3)是抛物线y =﹣x 2+bx +c 上两点,∴代入得:3423c b c =ìí-++=î,解得:b =2,c =3,∴抛物线解析式为y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴抛物线顶点坐标为(1,4),故答案为(1,4).【点拨】本题主要考查了待定系数法求二次函数解析式,二次函数的顶点坐标,熟练掌握待定系数法是解题的关键.21.1【分析】根据配方法进行整理即可得解.解:245y x x =-+2(44)1x x =-++2(2)1=-+x ,∴h =2,k =1,211h k \-=-=,故答案为:1.【点拨】本题考查了二次函数的三种形式的转化,熟记配方法的操作是解题的关键.22.a≤1【分析】由函数图象可得函数的增减性,即可得答案.解:∵由函数图象可知,当x <1时,y 随x 的增大而增大,∴a≤1,故答案为a≤1.【点拨】本题主要考查二次函数的图象与系数的关系,熟练掌握二次函数的性质是解题的关键.23.312y y y <<.【分析】先根据二次函数的性质得到抛物线的对称轴为直线x=-2,然后比较三个点离直线x=-2的远近得到y 1、y 2、y 3的大小关系.解: ∵二次函数的解析式为22(2)y x b =-++,∴抛物线的对称轴为直线x =−2,∵1(4,)A y -,B 2(3,)y -,3(3,)C y ,∴点C 离直线x =−2最远,其次为A 点,B 距离x =−2最近而抛物线开口向下,∴所以根据图象可知:312y y y << ;故答案为:312y y y <<.【点拨】本题考查二次函数图象上点的坐标特征.解决此题的关键是能根据函数的图象理解二次函数,当a >0时,距离对称轴越远的点,函数值越大;当a <0时,距离对称轴越远的点,函数值越小.24.y =x 2+2x (答案不唯一).【分析】设此二次函数的解析式为y =ax (x+2),令a =1即可.解:∵抛物线过点(0,0),(﹣2,0),∴可设此二次函数的解析式为y =ax (x+2),把a =1代入,得y =x 2+2x .故答案为y =x 2+2x (答案不唯一).【点拨】本题考查的是待定系数法求二次函数解析式,此题属开放性题目,答案不唯一.25. 向上 2±【分析】根据二次函数的性质求解即可.解:∵二次函数解析式为21y x mx =-+,10a =>,∴抛物线的开口向上,抛物线对称轴为直线12x m =,∵该函数的图象的顶点在x 轴上,∴当12x m =时,22111042y m m =-+=,∴2m =±,故答案为:向上;±2.【点拨】本题主要考查了二次函数的性质,熟知二次函数的性质是解题的关键.26. 3或1##1或3 2【分析】(1)先求出平移后的解析式2(2)52y x a a =-+-+-,然后把点(1,-1)代入解析式求解即可;(2)根据平移后的解析式,令x =0,求出与y 轴交点的函数,配方即可.解:(1)∵二次函数2241(2)5y x x x =--+=-++的图象先向右平移a 个单位再向下平移2a 个单位,∴2(2)52y x a a =-+-+-,∵平移后的二次函数图象经过点()1,1-,∴21(12)52a a -=-+-+-,解得1231a a ==,,故答案为3或1;(2)∵平移后的二次函数图象与y 轴交点,∴()22(02)52=-12y a a a =-+-+--+,∴与y 轴交点的纵坐标最大值为2.故答案为2.【点拨】本题考查二次函数的平移,待定系数法求参数,二次函数的性质,掌握二次函数的平移,待定系数法求参数,二次函数的性质是解题关键.27.①④##④①【分析】根据抛物线的对称轴,开口方向,与y 轴的交点位置,即可判断①,根据二次函数y =ax 2+bx +c 的图象经过点A (﹣3,0),B (1,0),即可求得对称轴,以及当1x =时,0y =,进而可以判断②③,根据顶点求得函数的最大值,即可判断④.解:Q 抛物线开口向下,0a \<,Q 对称轴0,02b x a a=-<<,0b \<,Q 抛物线与y 轴交于正半轴,0c \>,0abc \>,故①正确,Q 二次函数y =ax 2+bx +c 的图象经过点A (﹣3,0),B (1,0),\对称轴为12b x a=-=-,则2b a =,当1x =,20y a b c a a c =++=++=,30a c \+=,故②不正确,由函数图象以及对称轴为1x =-,可知,当1x <-时,y 随x 的增大而增大,故③不正确,Q 对称轴为1x =-,则当1x =-时,y a b c =-+取得最大值,\对于任意实数m ,总有2a b c am bm c -+³-+,即2a b am bm -³-,故④正确.故答案为:①④.【点拨】本题考查了二次函数图象的性质,数形结合是解题的关键.28.2【分析】根据观察图象得:抛物线开口向下,与y 轴交于正半轴,对称轴是直线12x =-,可得a <0,c >0,0b a =<,从而得到abc >0,故①正确;再由抛物线()20y ax bx c a =++¹与x 轴交于点(-3,0),其对称轴是直线12x =-,可得抛物线()20y ax bx c a =++¹与x 轴的另一个交点为(2,0),从而得到当x =1时,y >0,进而得到0a b c ++>,故②错误;再由(3,2y )关于对称轴直线12x =-的点为(-4,2y ),在对称轴左侧y 随x 的增大而增大,可得12y y >,故③正确,即可求解.解:观察图象得:抛物线开口向下,与y 轴交于正半轴,∴a <0,c >0,∵对称轴是直线12x =-,∴122b a -=-,即0b a =<,∴abc >0,故①正确;∵抛物线()20y ax bx c a =++¹与x 轴交于点(-3,0),其对称轴是直线12x =-,∴抛物线()20y ax bx c a =++¹与x 轴的另一个交点为(2,0),∵抛物线开口向下,∴当x =1时,y >0,∴0a b c ++>,故②错误;根据题意得:(3,2y )关于对称轴直线12x =-的点为(-4,2y ),∵抛物线开口向下,∴在对称轴左侧y 随x 的增大而增大,∴12y y >,故③正确,∴正确的有①③,共2个.故答案为:2【点拨】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.29.3个##三个【分析】由图象可知a <0,b >0,c >0,然后可判定①,根据二次函数的图象与x 轴的交点问题可判定②,根据对称轴公式可判定③,把x =-1代入函数解析式可判定④,进而问题可求解.解:由图象可得:a <0,对称轴为12b x a=-=,与x 轴的交点有2个,∴2b a =-,即20a b +=,240b ac ->,故②正确,③错误;∴b >0,c >0,∴0ac <,故①正确;当x =-1时,则有0a b c -+=,∴30a c +=,故④正确;∴正确的有①②④,共3个;故答案为3个.【点拨】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.30.①②##②①【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解:①图象开口向下,与y 轴交于正半轴,能得到:0a <,0c >,0ac \<,故①正确;Q ②对称轴1x <-,0a <,12b a\-<-,2b a \<,20b a \-<,故②正确.③图象与x 轴有2个不同的交点,依据根的判别式可知240b ac ->,故③错误.④当1x =-时,0y >,0a b c \-+>,故④错误;故答案为①②.【点拨】本题主要考查了二次函数图象与系数的关系,解题的关键是会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.31.﹣1≤x ≤2【分析】根据图象可以直接回答,使得y 1≥y 2的自变量x 的取值范围就是直线y 1=kx+m 落在二次函数y 2=ax 2+bx+c 的图象上方的部分对应的自变量x 的取值范围.解:根据图象可得出:当y 1≥y 2时,x 的取值范围是:﹣1≤x ≤2.故答案为:﹣1≤x ≤2.【点拨】本题考查了二次函数的性质.本题采用了“数形结合”的数学思想,使问题变得更形象、直观,降低了题的难度.32.四【分析】根据二次函数的图像求出a 的取值,再根据一次函数的图像与性质即可求解.解:∵二次函数22y ax =+的图象开口向下,∴0a <.又∵直线2,0,20y ax a =-->>,直线2y ax =-经过第一、二、三象限,即不经过第四象限.故答案为:四.【点拨】此题主要考查二次函数与一次函数综合,解题的关键是熟知其图像与性质.33.二##2【分析】由抛物线的开口方向、与y 轴的交点以及对称轴,可确定a ,b ,c 的符号,继而可判定一次函数y ax bc =+的图象不经过哪个象限即可.解:Q 开口向上,0a \>,Q 与y 轴交于负半轴,0c \<,Q 对称轴在y 轴左侧,02b a\-<,又∵0a >,0b \>,0bc \<,\一次函数y ax bc =+的图象经过一、三、四象限,不经过第二象限.故答案为:二.【点拨】主要考查二次函数图象与二次函数系数之间的关系.注意二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点确定,也考查了一次函数图象的性质.34.22y x x=+【分析】将抛物线223y x x =--的图像先向上平移3个单位,再向左平移2个单位即可得.解:将抛物线2223(1)4y x x x =--=--先向上平移3个单位,所得抛物线的解析式为2(1)43y x =--+,即为2(1)1y x =--,再向左平移2个单位,所得抛物线的解析式为2(12)1y x =-+-,即为22(1)12y x x x =+-=+,则原抛物线的解析式为22y x x =+,故答案为:22y x x =+.【点拨】本题考查了二次函数图像的平移,熟练掌握二次函数图像的平移规律是解题关键.35.2(3)2y x =--【分析】将(1,2)代入y =x 2+2x +c ,解得c =-1,设将抛物线y =x 2+2x -1=(x +1)2-2,向右平移m 个单位,则平移后的抛物线解析式是y =(x +1-m )2-2,然后将(1,2)代入得到关于m 的方程,通过解方程求得m 的值即可.解:将(1,2)代入y =x 2+2x +c ,得12+2×1+c =2,解得c =-1.设将抛物线y =x 2+2x -1=(x +1)2-2,向右平移m 个单位,则平移后的抛物线解析式是y =(x +1-m )2-2,将(1,2)代入,得(1+1-m )2-2=2.。

专题01 二次函数的图像与性质(30题)(解析版)

专题01 二次函数的图像与性质(30题)(解析版)

专题第01讲二次函数的图像与性质(30题)1.(2023•怀集县一模)已知抛物线y=ax2﹣4ax+c,点A(﹣2,y1),B(4,y2)是抛物线上两点,若a<0,则y1,y2的大小关系是( )A.y1>y2B.y1<y2C.y1=y2D.无法比较【分析】先求出抛物线的对称轴为直线x=2,得出a<0,得出抛物线开口向下,则抛物线上的点距离对称轴越近,对应的函数值越大,最后求出结果即可.【解答】解:∵y=ax2﹣4ax+c=a(x﹣2)2﹣4a+c,∴抛物线的对称轴为直线x=2,∵a<0,∴抛物线开口向下,抛物线上的点距离对称轴越近,对应的函数值越大,∵点A(﹣2,y1)到对称轴的距离为2﹣(﹣2)=4,点B(4,y2)到对称轴的距离为4﹣2=2,又∵2<4,∴点B(4,y2)到对称轴的距离近.∴y1<y2,故选:B.2.(2023•南湖区校级开学)若点A(﹣3,y1),B(,y2),C(2,y3)在二次函数y=x2+2x+1的图象上,则y1,y2,y3的大小关系是( )A.y2<y1<y3B.y1<y3<y2C.y1<y2<y3D.y3<y2<y1【分析】根据抛物线的对称轴和开口方向,再由A,B,C三个点离对称轴的远近,即可解决问题.【解答】解:由题知,抛物线y=x2+2x+1的开口向上,且对称轴是直线x=﹣1,所以函数图象上的点,离对称轴越近,函数值越小.又,所以y2<y1<y3.故选:A.3.(2022秋•华容区期末)若点A(2,y1)、B(3,y2)、C(﹣1,y3)三点在二次函数y=x2﹣4x﹣m的图象上,则y1、y2、y3的大小关系是( )A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y2>y1【分析】利用二次函数图象上点的坐标特征可求出y1,y2,y3的值,比较后即可得出结论(利用二次函数的性质解决问题亦可(离对称轴越远,y值越大)).【解答】解:∵点A(2,y1)、B(3,y2)、C(﹣1,y3)三点在二次函数y=x2﹣4x﹣m的图象上,∴y1=﹣4﹣m,y2=﹣3﹣m,y3=5﹣m.∵5﹣m>﹣3﹣m>﹣4﹣m,∴y3>y2>y1.故选:D.4.(2023•宝鸡一模)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是( )A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y2<y3<y1【分析】首先求出抛物线开口方向和对称轴,然后根据二次函数的增减性即可解决问题.【解答】解:∵抛物线y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线开口向上,对称轴x=1,顶点坐标为(1,﹣4),当y=0时,(x﹣1)2﹣4=0,解得x=﹣1或x=3,∴抛物线与x轴的两个交点坐标为:(﹣1,0),(3,0),∴当﹣1<x1<0,1<x2<2,x3>3时,y2<y1<y3,故选:B.5.(2022秋•法库县期末)已知抛物线y=ax2(a>0)过A(2,y1)、B(﹣1,y2)两点,则下列关系式一定正确的是( )A.y1>0>y2B.y2>0>y1C.y1>y2>0D.y2>y1>0【分析】依据抛物线的对称性可知:(﹣2,y1)在抛物线上,然后依据二次函数的性质解答即可.【解答】解:∵抛物线y=ax2(a>0),∴A(2,y1)关于y轴对称点的坐标为(﹣2,y1),∵a>0,∴x<0时,y随x的增大而减小,∵﹣2<﹣1<0,∴y1>y2>0;故选:C.6.(2023•温州模拟)若点A(﹣3,y1),B(1,y2),C(2,y1)是抛物线y=﹣x2+2x上的三点,则y1,y2,y3的大小关系为( )A.y1>y2>y3B.y2>y3>y1C.y3>y2>y1D.y2>y1>y3【分析】根据二次函数的性质得到抛物线y=﹣x2+2x的开口向下,对称轴为直线x=1,然后根据三个点离对称轴的远近判断函数值的大小.【解答】解:∵抛物线y=﹣x2+2x,∴抛物线开口向下,对称轴为直线x=﹣=1,而A(﹣3,y1)离直线x=1的距离最远,B(1,y2)在直线x=1上,∴y1<y3<y2.故选:B.7.(2023•西安二模)已知二次函数y=ax2﹣4ax+3(a为常数,且a>0)的图象上有三点A(﹣2,y1),B (2,y2),C(3,y3),则y1,y2,y3的大小关系为( )A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y2<y3<y1【分析】先求得抛物线的开口方向和对称轴,然后利用二次函数的对称性和增减性解答即可.【解答】解:∵二次函数y=ax2﹣4ax+3(a为常数,且a>0),∴开口向上,对称轴为直线x=﹣=2,当x>2时,y随x的增大而增大,∴当x=﹣2与x=6的函数值相同,即抛物线经过(6,y1),∵2<3<6,∴y2<y3<y1.故选:D.8.(2023•上城区模拟)已知抛物线y=(x﹣2)2﹣1上的两点P(x1,y1),Q(x2,y2)满足x2﹣x1=3,则下列结论正确的是( )A.若x1<,则y1>y2>0B.若<x1<2,则y2>y1>0C.若x1<,则y1>0>y2D.若<x1<2,则y2>0>y1【分析】由二次函数解析式可得抛物线的开口方向及对称轴,将x=代入解析式可得y的值,通过抛物线的对称性及x2﹣x1=3求解.【解答】解:∵y=(x﹣2)2﹣1,∴抛物线开口向上,对称轴为直线x=2,当x1=时,x2=3+=,∴=2,即点P,Q关于对称轴对称,此时y1=y2,将x=代入y=(x﹣2)2﹣1得y=0,当x1<时,当x2>时,y1>0>y2,当x2<时,y1>y2>0,故选项A,C不符合题意,∵x2﹣x1=3,∴x2=x1+3,∵y=(x﹣2)2﹣1,∴y1=(x1﹣2)2﹣1,y2=(x1+1)2﹣1,当<x1<2时,﹣<x1﹣2<0,<x1+1<3,∴﹣1<(x1﹣2)2﹣1<0,0<(x1+1)2﹣1<3,∴y2>0>y1.故选:D.9.(2023春•灌云县期中)已知y=x2+(m﹣1)x+1,当0≤x≤5且x为整数时,y随x的增大而减小,则m 的取值范围是( )A.m<﹣8B.m≤﹣8C.m<﹣9D.m≤﹣9【分析】可先求得抛物线的对称轴,再由条件可求得关于m的不等式,可求得答案.【解答】解:∵y=x2+(m﹣1)x+1,∴对称轴为x=﹣,∵a=1>0,∴抛物线开口向上,∴在对称轴左侧y随x的增大而减小,∵当0≤x≤5且x为整数时,y随x的增大而减小,∴﹣≥5,解得m≤﹣9,故选:D.10.(2023•西湖区校级二模)已知二次函数y=ax2+bx+c,当y>n时,x的取值范围是m﹣3<x<1﹣m,且该二次函数的图象经过点P(3,t2+5),Q(d,4t)两点,则d的值可能是( )A.0B.﹣1C.﹣4D.﹣6【分析】由题意可知该抛物线的对称轴和开口方向,并通过比较两点的纵坐标可知两点离对称轴的远近关系,由此可列不等式,求出d范围,进而选出符合条件的选项.【解答】解:如图,根据题意可知,该二次函数开口向下.对称轴为x==﹣1,∵t2+5﹣4t=(t﹣2)2+1>0,∴与点Q相比,点P更靠近对称轴,即3﹣(﹣1)<|d﹣(﹣1)|,整理得|d+1|>4.∴当d+1≥0时,有d+1>4,解得d>3;当d+1<0时,有﹣(d+1)>4,解得d<﹣5.综上,d>3或d<﹣5.故选:D.11.(2023春•鼓楼区校级期末)已知抛物线y=ax2+bx+c(a≠0)经过点A(2,t),B(3,t),C(4,2),D(6,4),那么a﹣b+c的值是( )A.2B.3C.4D.t【分析】根据抛物线的对称性求得抛物线的对称轴,即可得到D(6,4)关于对称轴对称的点为(﹣1,4),故当x=﹣1时可求得y值为4,即可求得答案.【解答】解:∵抛物线y=ax2+bx+c(a≠0)经过点A(2,t),B(3,t),∴抛物线的对称轴为直线x==,∴抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,∴D(6,4)对称点坐标为(﹣1,4),∴当x=﹣1时,y=4,即a﹣b+c=4,故选:C.12.(2023•全椒县一模)如图,在同一平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)与一次函数y=acx+b的图象可能是( )A.B.C.D.【分析】先由二次函数y=ax2+bx+c的图象得到字母系数的正负,再与一次函数y=acx+b的图象相比较看是否一致.【解答】解:A、由抛物线可知,a>0,b<0,c<0,则ac<0,由直线可知,ac>0,b>0,故本选项不合题意;B、由抛物线可知,a>0,b>0,c>0,则ac>0,由直线可知,ac>0,b>0,故本选项符合题意;C、由抛物线可知,a<0,b>0,c>0,则ac<0,由直线可知,ac<0,b<0,故本选项不合题意;D、由抛物线可知,a<0,b<0,c>0,则ac<0,由直线可知,ac>0,b>0,故本选项不合题意.故选:B.13.(2023春•青秀区校级期末)在同一坐标系中,一次函数y=﹣mx+1与二次函数y=x2+m的图象可能是( )A.B.C.D.【分析】根据一次函数的b=1和二次函数的a=1即可判断出二次函数的开口方向和一次函数经过y轴正半轴,从而排除A和C,分情况探讨m的情况,即可求出答案.【解答】解:∵二次函数为y=x2+m,∴a=1>0,∴二次函数的开口方向向上,∴排除C选项.∵一次函数y=﹣mx+1,∴b=1>0,∵一次函数经过y轴正半轴,∴排除A选项.当m>0时,则﹣m<0,一次函数经过一、二、四象限,二次函数y=x2+m经过y轴正半轴,∴排除B选项.当m<0时,则﹣m>0一次函数经过一、二、三象限,二次函数y=x2+m经过y轴负半轴,∴D选项符合题意.故选:D.14.(2022秋•滨城区校级期末)在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.【分析】可先由一次函数y=ax﹣b图象得到字母系数的正负,再与二次函数y=ax2+bx的图象相比较看是否一致.【解答】解:A、由抛物线可知,a<0,由直线可知,a>0,矛盾,不合题意;B、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a<0,b>0,一致,符合题意;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,矛盾,不合题意;D、由y=ax2+bx可知,抛物线经过原点,不合题意;故选:B.15.(2023•濉溪县模拟)已知二次函数y=ax2+(b+1)x+c的图象如图所示,则二次函数y=ax2+bx+c与正比例函数y=﹣x的图象大致为( )A.B.C.D.【分析】根据二次函数y=ax2+(b+1)x+c图象得出a>0,c<0,二次函数y=ax2+(b+1)x+c与x轴的交点坐标为(﹣1,0)和(3,0),从而判断出二次函数y=ax2+bx+c的开口向上,与y轴交于负半轴,且二次函数y=ax2+bx+c与正比例函数y=﹣x的交点的横坐标为﹣1,3,即可得出答案.【解答】解:由二次函数y=ax2+(b+1)x+c的图象可知,a>0,c<0,二次函数y=ax2+(b+1)x+c 与x轴的交点坐标为(﹣1,0)和(3,0),∴二次函数y=ax2+bx+c的开口向上,与y轴交于负半轴,且二次函数y=ax2+bx+c与正比例函数y=﹣x的交点的横坐标为﹣1,3,故B正确.故选:B.16.(2023春•鼓楼区校级期末)一次函数y=ax﹣1(a≠0)与二次函数y=ax2﹣x(a≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .【分析】可先由一次函数y =ax +c 图象得到字母系数的正负,再与二次函数y =ax 2+bx +c 的图象相比较看是否一致.【解答】解:由,解得或,∴一次函数y =ax ﹣1(a ≠0)与二次函数y =ax 2﹣x (a ≠0)的交点为(1,a ﹣1),(,0),A 、由抛物线可知,a >0,由直线可知,a <0,故本选项错误,不符合题意;B 、由抛物线可知,a >0,由直线可知,a >0,由一次函数y =ax ﹣1(a ≠0)与二次函数y =ax 2﹣x (a ≠0)可知,两图象交于点(1,a ﹣1),则交点在y 轴的右侧,故本选项错误,不符合题意;C 、由抛物线可知,a <0,由直线可知,a <0,两图象的一个交点在x 轴上,另一个交点在第四选项,故本选项正确,符合题意;D 、由抛物线可知,a <0,由直线可知,a >0,a 的取值矛盾,故本选项错误,不合题意;故选:C .17.(2023春•惠民县期末)如图所示,二次函数y =ax 2+bx +c 和一次函数y =ax +b 在同一坐标系中图象大致为( )A .B .C .D .【分析】分别根据两个函数的图象得出系数的取值范围,一致的就是符合题意,否则就是不符合题意的.【解答】解:A:根据一次函数的图象得:a>0,b<0,根据二次函数的图象得:a>0,b<0,故A符合题意;B:根据一次函数的图象得:a<0,b>0,根据二次函数的图象得:a>0,b>0,故B不符合题意;C:根据一次函数的图象得:a<0,b<0,根据二次函数的图象得:a<0,b>0,故C不符合题意;D:根据一次函数的图象得:a>0,b>0,根据二次函数的图象得:a<0,b<0,故D不符合题意;故选:A.18.(2023•盘龙区校级开学)已知二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①abc<0;②4a﹣2b+c>0;③a﹣b>m(am+b)(m为任意实数);④4ac﹣b2<0;其中正确的结论有( )A.1个B.2个C.3个D.4个【分析】根据所给函数图象,可得出a,b,c的正负,再结合抛物线的对称轴为直线x=﹣1和开口向下,即可解决问题.【解答】解:由图象可知,a<0,b<0,c>0,所以abc>0.故①错误.因为抛物线的对称轴是直线x=﹣1,所以x=﹣2时与x=0时的函数值相等.又由图象可知,x=0时,函数值大于0.所以x=﹣2时,函数值也大于0.即4a﹣2b+c>0.故②正确.因为抛物线开口向下,且对称轴为直线x=﹣1,所以当x=﹣1时,函数有最大值a﹣b+c.则当x=m(m为任意实数)时,总有a﹣b+c≥am2+bm+c,即a﹣b≥m(am+b).故③错误.因为抛物线与x轴有两个交点,所以b2﹣4ac>0,即4ac﹣b2<0.故④正确.故选:B.19.(2022秋•玉泉区校级期末)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)abc<0;(2)4a+c>2b;(3)3b﹣2c>0;(4)若点A(﹣2,y1)、点、点在该函数图象上,则y1<y2<y3;(5)4a+2b≥m(am+b)(m为常数).其中正确的结论有( )A.5个B.4个C.3个D.2个【分析】根据抛物线的对称轴方程和开口方向以及与y轴的交点,可得a<0,b>0,c>0,由对称轴为直线x=2,可得b=﹣4a,当x=2时,函数有最大值4a+2b+c;由经过点(﹣1,0),可得a﹣b+c=0,c=﹣5a;再由a<0,可知图象上的点离对称轴越近对应的函数值越大;再结合所给选项进行判断即可.【解答】解:∵抛物线的开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=2,∴b>0,∵抛物线交y轴的正半轴,∴c>0,∴abc<0,所以(1)正确;∵对称轴为直线x=2,∴﹣=2,∴b=﹣4a,∴b+4a=0,∴b=﹣4a,∵经过点(﹣1,0),∴a﹣b+c=0,∴c=b﹣a=﹣4a﹣a=﹣5a,∴4a+c﹣2b=4a﹣5a+8a=7a,∵a<0,∴4a+c﹣2b<0,∴4a+c<2b,故(2)不正确;∵3b﹣2c=﹣12a+10a=﹣2a>0,故(3)正确;∵|﹣2﹣2|=4,|﹣﹣2|=,|﹣2|=,∴y1<y2<y3,故(4)正确;当x=2时,函数有最大值4a+2b+c,∴4a+2b+c≥am2+bm+c,4a+2b≥m(am+b)(m为常数),故(5)正确;综上所述:正确的结论有(1)(3)(4)(5),共4个,故选:B.20.(2023春•青秀区校级期末)二次函数y=ax2+bx+c(a≠0)的图象如图所示.下列结论:①abc<0;②a﹣b+c<0;③m为任意实数,则a+b>am2+bm;④3a+c<0;⑤若且x1≠x2,则x1+x2=4.其中正确结论的个数有( )A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①图象开口向下,与y轴交于正半轴,对称轴在y轴右侧,∴a<0,c>0,,∴b>0,∴abc<0,故①正确;②∵对称轴是直线x=1,与x轴交点在(3,0)左边,∴二次函数与x轴的另一个交点在(﹣1,0)与(0,0)之间,∴a﹣b+c<0,故②正确;③∵对称轴是直线x=1,图象开口向下,∴x=1时,函数最大值是a+b+c;∴m为任意实数,则a+b+c≥am2+bm+c,∴a+b≥am2+bm,故③错误;④∵,∴b=﹣2a由②得a﹣b+c<0,∴3a+c<0,故④正确;⑤∵,∴,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,∵x1≠x2,∴a(x1+x2)+b=0,∵,b=﹣2a,∴x1+x2=2,故⑤错误;故正确的有3个,故选:C.21.(2022秋•丰都县期末)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc<0;②2a+b=0;③m为任意实数时,a+b≤m(am+b);④a﹣b+c>0;⑤若ax+bx1=+bx2,且x1≠x2,则x1+x2=2.其中正确的有( )A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①抛物线开口方向向上,则a>0.抛物线对称轴位于y轴右侧,则a、b异号,即ab<0.抛物线与y轴交于y轴负半轴,则c<0,所以abc<0.故①错误;②∵抛物线对称轴为直线x=﹣=1,∴b=﹣2a,即2a+b=0,故②正确;③∵抛物线对称轴为直线x=1,∴函数的最小值为:a+b+c,∴m为任意实数时,a+b≤m(am+b);即a+b+c<am2+bm+c,故③正确;④∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧,∴当x=﹣1时,y>0,∴a﹣b+c>0,故④正确;⑤∵+bx1=+bx2,∴+bx1﹣﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,即x1+x2=﹣,∵b=﹣2a,∴x1+x2=2,故⑤正确.综上所述,正确的有②③④⑤.故选:D.22.(2022秋•建昌县期末)已知二次函数y=ax2+bx+c(a≠0)的图象大致如图所示.下列说法正确的是( )A.2a﹣b=0B.当﹣1<x<3时,y<0C.a+b+c>0D.若(x1,y1),(x2,y2)在函数图象上,当x1<x2时,y1<y2【分析】根据二次函数的系数与图象的关系解答即可.【解答】解:根据对称轴为直线x=1可得:,故2a+b=0,故A错误;根据函数图象可得当﹣1<x<3时,y<0,故B正确;当x=1时,y=a+b+c<0,故C错误;若(x1,y1),(x2,y2)在函数图象上,只有当1<x1<x2时,y1<y2,故D错误;故选:B.23.(2022秋•新抚区期末)如图,抛物线y=ax2+bx+c的对称轴是直线x=﹣1.下列结论:①abc<0;③4a﹣2b+c>0;④3a+c>0;⑤b2﹣4a2>2ac.其中正确结论的个数是( )A.2B.3C.4D.5【分析】观察图象得:抛物线开口向上,与y轴交于负半轴,可得a>0,c<0,再由对称轴是直线x=﹣1,可得abc<0,故①正确;再根据抛物线与x轴有2个交点,可得b2>4ac,故②正确;观察图象得:当x=﹣2时,y<0,可得4a﹣2b+c<0,故③错误;观察图象得:当x=1时,y>0,再由b=2a,可得a+b+c>0,故④正确;再由b2﹣4a2=(b+2a)(b﹣2a)=0,可得⑤正确,即可求解.【解答】解:观察图象得:抛物线开口向上,与y轴交于负半轴,∴a>0,c<0,∵对称轴是直线x=﹣1,∴,即b=2a>0,∴abc<0,故①正确;∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,∴b2>4ac,故②正确;观察图象得:当x=﹣2时,y<0,即4a﹣2b+c<0,故③错误;观察图象得:当x=1时,y>0,∵b=2a,∴a+b+c=3a+c>0,故④正确;∵b=2a,∴b﹣2a=0,∴b2﹣4a2=(b+2a)(b﹣2a)=0,∴2ac<0,∴b2﹣4a2>2ac,故⑤正确;故选:C.24.(2022秋•莲池区校级期末)已知二次函数y=ax2+bx+c,其函数y与自变量x之间的部分对应值如表所示.下列结论:①abc>0;②当﹣3<x<1时,y>0;③4a+2b+c>0;④关于x的一元二次方程的解是x1=﹣4,x2=2.其中正确的有( )x…﹣41…y…0…A.1个B.2个C.3个D.4个【分析】观察图表可知,开口向下,a<0,二次函数y=ax2+bx+c在与时,y值相等,得出对称轴为直线x=﹣1,即可得出b<0,在根据图象经过点(1,0),得出c>0由此判断①;根据二次函数的对称性求得抛物线与x轴的交点,即可判断②;根据x=2,y<0即可判断③;根据抛物线的对称性求得点关于直线x=﹣1的对称点是,即可判断④.【解答】解:①由于二次函数y=ax2+bx+c有最大值,∴a<0,开口向下,∵对称轴为直线,∴b<0,∵图象经过点(1,0),∴c>0,∴abc>0,故①说法正确;②∵对称轴为直线x=﹣1,∴点(1,0)关于直线x=﹣1的对称点为(﹣3,0),∵a<0,开口向下,∴当﹣3<x<1时,y>0,故②说法正确;③当x=2时,y<0,∴4a+2b+c<0,故③说法错误;④∵点关于直线x=﹣1的对称点是,∴关于x的一元二次方程的解是x1=﹣4,x2=2,故④说法正确.故选:C.25.(2023•扎兰屯市一模)如图,函数y=ax2+bx+2(a≠0)的图象的顶点为,下列判断正确个数为( )①ab<0;②b﹣3a=0;③ax2+bx≥m﹣2;④点(﹣4.5,y1)和点(1.5,y2)都在此函数图象上,则y1=y2;⑤9a=8﹣4m.A.5个B.4个C.3个D.2个【分析】根据抛物线的开口方向得a<0,由顶点坐标可得b=3a<0,b﹣3a=0,以此可判断①②;再根据二次函数的性质可得当x=时,y取得最大值为m,以此可判断③;根据离抛物线对称轴距离相等点的函数值相等可判断④;将顶点坐标代入函数解析式中,化简即可判断⑤.【解答】解:∵抛物线开口向下,∴a<0,∵函数y=ax2+bx+2(a≠0)的图象的顶点为,∴抛物线的对称轴为直线x=,∴b=3a<0,∴ab>0,故①错误;由上述可知,b=3a,∴b﹣3a=0,故②正确;∵抛物线开口向下,∴当x=时,y取得最大值为m,∴无论x取何值都有ax2+bx+2≤m,∴ax2+bx≤m﹣2,故③错误;∵抛物线的对称轴为直线x==﹣1.5,﹣1.5﹣(﹣4.5)=1.5﹣(﹣1.5),∴y1=y2,故④正确;∵函数y=ax2+bx+2(a≠0)的图象的顶点为,∴,整理得:9a﹣6b+8=4m,∵b=3a,∴9a﹣18a+8=4m,∴9a=8﹣4m,故⑤正确.综上,正确的结论有②④⑤,共3个.故选:C.26.(2023•深圳模拟)二次函数y=ax2+bx+c的图象如图所示,以下结论正确的个数为( )①abc<0;②c+2a<0;③9a﹣3b+c=0;④am2﹣a+bm+b>0(m为任意实数)A.1个B.2个C.3个D.4个【分析】根据二次函数图象的开口方向,对称轴,顶点坐标以及最大(小)值,对称性进行判断即可.【解答】解:∵抛物线开口向上,∴a>0,∵对称轴x=﹣=﹣1<0,∴a、b同号,而a>0,∴b>0,∵抛物线与y轴的交点在y轴的负半轴,∴c<0,∴abc<0,因此①正确;由于抛物线过点(1,0)点,∴a+b+c=0,又∵对称轴为x=﹣1,即﹣=﹣1,∴b=2a,∴a+2a+c=0,即3a+c=0,而a>0,∴2a+c<0,因此②正确;由图象可知,抛物线与x轴的一个交点坐标为(1,0),而对称轴为x=﹣1,由对称性可知,抛物线与x轴的另一个交点坐标为(﹣3,0),∴9a﹣3b+c=0,因此③正确;由二次函数的最小值可知,当x=﹣1时,y=a﹣b+c,最小值当x=m时,y=am2+bm+c,∴am2+bm+c≥a﹣b+c,即am2+bm﹣a+b≥0,因此④不正确;综上所述,正确的结论有①②③,共3个,故选:C.27.(2023•镜湖区校级二模)如图所示,点A,B,C是抛物线y=ax2+bx+c(a≠0)(x为任意实数)上三点,则下列结论:①﹣=2 ②函数y=ax2+bx+c最大值大于4 ③a+b+c>2,其中正确的有( )A.①B.②③C.①③D.①②【分析】抛物线与x轴交于C'和C,C'介于0~1之间,设C'(t,0)其中0<t<1.①﹣=,0<t<1,.因此①错误;②由图象可知,图象顶点纵坐标在4的上方,所以函数最大值大于4.因此②正确③由图象可知,x=1时,y>2,即a+b+c>2.因此③正确.【解答】解:抛物线y=ax2+bx+c(a≠0)的大致图象如图.抛物线与x轴交于C'和C,C'介于0~1之间,设C'(t,0)其中0<t<1.①﹣=,∵0<t<1,∴.因此①错误;②由图象可知,图象顶点纵坐标在4的上方,所以函数最大值大于4.因此②正确③由图象可知,x=1时,y>3,即a+b+c>3>2.因此③正确.故选:B.28.(2023•丰顺县一模)如图是二次函数y=ax2+bx+c(a≠0)的图象,有如下结论:①abc>0:②a+b+c<0:③4a+b<0;④4a>c.其中正确的结论有( )个.A.1B.2C.3D.4【分析】根据二次函数图象与系数的关系分别判断即可.【解答】解:∵抛物线开口向上,与y轴交于正半轴,∴a>0,c>0,∵抛物线对称轴为x=﹣>0,∴b<0,∴abc<0,∴①错误;∵当x=1时,y<0,∴a+b+c<0,∴②正确;∵抛物线对称轴为x=﹣<2,a>0,∵b>﹣4a,∴4a+b>0,∴③错误;∵抛物线对称轴为x=﹣<2,a>0,∴b>﹣4a,∵a+b+c<0,∴a﹣4a+c<0,∴﹣3a+c<0,∴3a>c,∵a>0,∴4a>c,∴④正确.故选:B.29.(2022秋•合川区期末)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,下列结论:①abc>0;②a+2b=0;③a﹣b+c>0;④;⑤若P(﹣4,y1),Q(8,y2)是该函数图象上两点,则y1=y2.正确结论的个数是( )A.2B.3C.4D.5【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及对称性逐个进行判断即可.【解答】解:抛物线开口向上得a>0,对称轴在y轴的右侧,a、b异号,因此b<0,抛物线与y轴的交点在y轴的负半轴,因此c<0,所以abc>0,因此①符合题意;由﹣=2,可知b=﹣4a,所以a+2b=﹣7a<0,因此②不符合题意;由对称轴和抛物线的对称性,可得当x=﹣1时,y>0,即a﹣b+c>0,故③符合题意;由图象可知x=3时,y<0,故9a+3b+c<0,即3a+b<﹣,因此④不符合题意;由对称轴和抛物线的对称性,可得P(﹣4,y1),Q(8,y2)是该函数图象上两点,则y1=y2.因此⑤符合题意;综上所述,正确的结论有3个,故选:B.30.(2023春•惠民县期末)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有如下6个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数);⑥b2>4ac;其中正确的结论有( )A.2个B.3个C.4个D.5个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①∵该抛物线开口方向向下,∴a<0.∵抛物线对称轴方程x=﹣>0,∴a、b异号,∴b>0;∵抛物线与y轴交于正半轴,∴c>0,∴abc<0;故①错误;②∵当x=﹣1时,y<0,∴a﹣b+c<0,∴b>a+c,故②错误;③根据抛物线的对称性知,当x=2时,y>0,即4a+2b+c>0;故③正确;∵对称轴方程x=﹣=1,∴b=﹣2a,∴=﹣a,根据抛物线的对称性知,当x=3时,y<0,即9a+3b+c<0,∴9a+3b+c=﹣b+c<0,∴2c<3b.故④正确;⑤∵x=1时函数取得最大值,∴当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm=m(am+b),故⑤正确;⑥∵抛物线与x轴有两个不同的交点,∴b2﹣4ac>0,即b2>4ac.故⑥正确.综上所述,正确的有4个.故选:C.。

二次函数y=ax2的图象和性质练习题(含答案).docx

二次函数y=ax2的图象和性质练习题(含答案).docx

二次函数y=a d的图象和性质练习题第1题.对于抛物线y = x2+2和的论断:⑴开口方向不同:⑵形状完全相同:(3)对称轴相同.其中正确的有( )A. O个B. 1个C. 2个D. 3个第2题.下列关于•抛物线尸X'+2Λ +1的说法中,正确的是( )Λ.开口向下 B.对称轴是直线厂1C.与X轴有两个交点I).顶点坐标是(T, 0)第3题.二次函数产CSHO)的图缭如图,a,儿C的取值范围( )A. a<0,从0, c<0B. a<0, b>Q, c<0C. a>0, b>(J, &0D. a>0. ZKO. KO第1题.与抛物线y = ∕-2x-4关于J触对称的图象表示的函数关系式是( )A. y = -x2 + 2x+4B. y = x2+2Λ+4C. y = .r+2Λ-4D. >∙=Λ2-2A∙+4第5题.若抛物线y = (,〃-1)/ + 2恤+ 2,”-1的图象的最低点的纵坐标为零,则赤 _____ .第6避.对于抛物线>∙ = θ√+显+ ~ακθ),当顶点纵坐标等于时,顶点在X轴上,此时抛物线与X轴只有一个公共点,而a关0,所以,抛物线与、轴只有一个公共点的条件是________ .第7题.若抛物线y = ∕+2x +,〃与X轴只有一公共点,则版.第8⅛g.函数> =./ + 4工-3的图象开口向,顶点坐标为第9题.二次函数F = X?+2的图象开口.对称轴是,顶点坐标是______________________ .第10座.抛物线y = 2.d+.t-3与X轴交点个数为 .第11题.二次函数y = *-W的图象向右平移3个单位,在向上平移1个单位,得到的图象的关系式是—.第12题.抛物线y = -2∕+6x-l的顶点坐标为_____________,对称轴为_________ .第13题.作出下列函数的图象:y = 2x2-2第14题.作出下列函数的图象:y = -2x2第15踵.用描点法画出下列二次函数的图象:,y = /第16题.已知二次函数y = αt2的图象经过点A(T, 1)①求这个二次函数的关系式:②求当『2时的函数尸的值.第17题.若抛物线.y = ∕-2∕m∙ + ∕√+”, + l的顶点在第二象限,则常数浦勺取值范围是( )Λ. m<-lyiyn>2 B. -1 <WJ<2C. -l<∕z∕<0D. ∕π> 1第18题.如卜.图,抛物线顶点坐标是汽1,3),则函数J使自变量Λ■的增大而减小的>的取值范围是《Λ. x>3 B. x<3 C. x>∖ D. Λ<1第19帆二次函数y = ∕-4κ + 3的图象交'轴于/、/柄点,交询!于点C,则△,做的面积为()A. 6 B. 4 C. 3 D. 1第20题.抛物线F =『-4与谕I交于氏C两点,顶点为人则伙:的面积为()A 16B 8C 4D 2第21题.若抛物线ιy = q∕, y = /∕的形状相同,那么()Λ. α1 =W3 B. u y =C.∖a}∖=∖a2∖D.al ⅛成的关系无法确定第22题.为了备战世界杯,中国足球队在某次集训中,一队员在距离球门12米处的挑射,正好射中了2. 4米高的球门横梁.若足球运行的路线是抛物线y = α√+尿+c (如图6),则下列结论:①8<-②一卷VaV0:③b">0:④OVy-12乩其中正确的是(A.①@B.①®C.②®D.②(S)第23题.与抛物线.V = / -心-2关于Hft对称的图象表示为(Λ. y = X2 + 4x + 2 B. y = x2 +4x-2C.y = x i-4x + 2D.y = αx2-4x-2第24瓦若抛物线>∙ = 0√+6 + c全部在*轴的下方,那么a 0,同时,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次函数的图像和性质》周末练习题
一、选择题
1、下列函数是二次函数的有( )
.;)3(;2;
12
222c bx ax y D x x x y C x
y B x y A ++=--==
-=::::2. y=(x -1)2+2的对称轴是直线( ) A .x=-1B .x=1C .y=-1D .y=1
3. 抛物线的顶点坐标是( )()122
1
2++=
x y A .(2,1) B .(-2,1) C .(2,-1) D .(-2,-1)4. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2,-1)
B.(-2,1)
C.(-2,-1)
D.(2, 1)
5、二次函数 )
c bx ax y ++=2
A a>0 b<0 c>0 b 2-4ac<0
B a<0 b<0 c>0 b 2-4ac>0
C a<0 b>0 c<0 b 2-4ac>0
D a<0 b>0 c>0 b 2-4ac>0 6.已知二次函数 ( ))2(2
-++=m m x mx y A . 0或2 B . 0 C . 2 D .无法确定
7.正比例函数y =kx 的图象经过二、四象限,则抛物线y =kx 2-2x +k 2的大致图象是( )
8、若A (-4,y 1),B (-3,y 2),C (1,y 3)为二次函数y=x 2+4x-5的图象上的三点,则y 1,y 2,y 3的大小关系是( )
A 、y 1<y 2<y 3
B 、y 2<y 1<y 3
C 、y 3<y 1<y 2
D 、y 1<y 3<y 2
9.抛物线2
3y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A 2
3(1)2y x =-- B 2
3(1)2y x =+- C 2
3(1)2y x =++ D
23(1)2
y x =-+10.二次函数的图像如图所示,则,,,这
c bx ax y ++=2
abc ac b 42
-b a +2c b a ++四个式子中,值为正数的有( )
(A )4个 (B )3个 (C )2个 (D )1个
11.在同一坐标系中,函数和(是常数,且)的图y mx m =+2
22y mx x =-++m 0m ≠象可能是( )
12.
若二次函数
,当x 取


≠)时,函数值相等,则当x 取
+
时,函数值为( )
(A )a+c (B )a-c (C )-c (D )c
13.抛物线的部分图象如图所示,若,则的取c bx x y ++-=2
0>y 值范围是( ) A.
B. 14<<-x 13<<-x
C. 或
D.或4-<x 1>x 3-<x 1
>x 14.已知关于x 的方程的一个根为=2,且二次函数
32
=++c bx ax 1x 的对称轴直线是x =2,则抛物线的顶点坐标是( )
c bx ax y ++=2A .(2,-3 ) B .(2,1) C .(2,3) D .(3,2)
15.已知抛物线2
(1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段AB 的长度为( )A.1B.2
C.3
D.4
二、填空题:1、抛物线可以通过将抛物线y =向左平移_ _ 个单位、再向 21(2)43y x =
++23
1
x 平移 个单位得到。

2.若抛物线y =x 2-bx +9的顶点在x 轴上,则b 的值为______3.若是二次函数, m=______。

(
)
m
m x
m m y -+=22
4、已知y=x 2+x -6,当x=0时,y= ;当y=0时,x= 。

5、抛物线(
)
42)2(2
2
-++-=m x x m y 的图象经过原点,则=m .6、若抛物线y =x 2+mx +9的对称轴是直线x=4,则m 的值为 。

7、 若一抛物线形状与y =-5x 2+2相同,顶点坐标是(4,-2),则其解析式是__________________.
8.已知二次函数的图象如图所示,则点在第 象2
y ax bx c =++()P a bc ,限.
A.
B.
C.
D.
9.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是y =-
x 2+x +
12
132
, 则该运动员此次掷铅球,铅球出手时的高度为 3
5
10.已知抛物线,如果y 随x 的增大而减小,那么x 的取值范围是 x x 4y 2
+-=11.若二次函数y =(m+5)x 2+2(m+1)x+m 的图象全部在x 轴的上方,则m 的取值范围是 12.如果二次函数y =x 2+4x +c 图象与x 轴没有交点,其中c 为整数,则c = (写
一个即可)三、解答题:
1. (1)已知二次函数的图象以A (-1,4)为顶点,且过点B (2,-5)①求该函数的关系式;
②求该函数图象与坐标轴的交点坐标;
(2)抛物线过(-1,0),(3,0),(1,-5)三点,求二次函数的解析式;
(3)若抛物线与x 轴交于(2,0)、(3,0),与y 轴交于(0,-4),求二次函数的解析式。

2. 把二次函数y=3x 2-6x+9配成顶点式,并写出开口方向、对称轴、顶点坐标并确定函数的最大(小)值。

3. 已知函数+8x-1是关于x 的二次函数,求:
()4
22-++=m m x
m y (1)求满足条件的m 的值;
(2)m 为何值时,抛物线有最低点?最低点坐标是多少?当x 为何值时,y 随x 的增大而
增大?
(3)m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?
4.抛物线与x 轴交点为A ,B ,(A 在B 左侧)顶点为C.与Y 轴交于点D 562
-+-=x x y (1)求△ABC 的面积。

(2)若在抛物线上有一点M ,使△ABM 的面积是△ABC 的面积的2倍,求M 点坐标。

5.抛物线y= (k 2-2)x 2+m -4kx 的对称轴是直线x=2,且它的最低点在直线y= - x +2上,
1
2
求函数解析式。

6.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?。

相关文档
最新文档