第五章土的抗剪强度(背景为黑色)
第五章 土的抗剪强度解析
152第五章土的抗剪强度第一节概述土是固相、液相和气相组成的散体材料。
一般而言,在外部荷载作用下,土体中的应力将发生变化。
当土体中的剪应力超过土体本身的抗剪强度时,土体将产生沿着其中某一滑裂面的滑动,而使土体丧失整体稳定性。
所以,土体的破坏通常都是剪切破坏。
在工程建设实践中,道路的边坡、路基、土石坝、建筑物的地基等丧失稳定性的例子是很多的(图5-1)。
为了保证土木工程建设中建(构)筑物的安全和稳定,就必须详细研究土的抗剪强度和土的极限平衡等问题。
图5-1 土坝、基槽和建筑物地基失稳示意图(a)土坝(b)基槽(c)建筑物地基土的抗剪强度是指土体抵抗剪切破坏的能力,其数值等于土体产生剪切破坏时滑动面上的剪应力。
抗剪强度是土的主要力学性质之一,也是土力学的重要组成部分。
土体是否达到剪切破坏状态,除了取决于其本身的性质之外,还与它所受到的应力组合密切相关。
不同的应力组合会使土体产生不同的力学性质。
土体破坏时的应力组合关系称为土体破坏准则。
土体的破坏准则是一个十分复杂的问题。
到目前为止,还没有一个被人们普遍认为能完全适用于土体的理想的破坏准则。
本章主要介绍目前被认为比较能拟合试验结果,因而为生产实践所广泛采用的土体破坏准则,即摩尔—库伦破坏准则。
土的抗剪强度,首先取决于其自身的性质,即土的物质组成、土的结构和土所处于的状态等。
土的性质又与它所形成的环境和应力历史等因素有关。
其次,土的性质还取决于土当前所受的应力状态。
因此,只有深入进行对土的微观结构的详细研究,才能认识到土的抗剪强度的实质。
目前,人们已能通过采用电子显微镜、X射线的透视和衍射、差热分析等等新技术和新方法来研究土的物质成分、颗粒形状、排列、接触和连结方式等,以便阐明土的抗剪强度的实质。
这是近代土力学研究的新领域之一。
有关这方面的研究,可参152见相关的资料和文献。
土的抗剪强度主要由粘聚力c 和内摩擦角ϕ来表示,土的粘聚力c 和内摩擦角ϕ称为土的抗剪强度指标。
土力学第五章土的抗剪强度理论讲义PPT
(1)整个摩尔圆位于抗剪强度包线的下方——平衡状态 (2)摩尔圆与抗剪强度包线相切(切点为A)——极限平衡状态 (3)摩尔圆与抗剪强度包线相割——破坏状态
2、摩尔—库伦破坏准则
根据Mohr-Coulomb破坏理论,破坏时的 Mohr应力圆必定与破坏包线相切。
答:M-C理论中τf = tanф + c是随正应力的增大而
增大的,不是一个定值,也不等于τmax。
最大剪应力理论假设材料沿τmax所在截面滑移而 发生屈服破坏。
土的破坏点不一定在τmax作用面上,破坏面与σ1 作用面的夹角:αf=45º+ф/2,不是45º。只有当 ф=0时,破坏面才是τmax作用面,这是特例。
❖ 固结不排水试验(CU试验) Consolidated Undrained shear test (CU) 抗剪强度指标:ccu cu
❖ 固结排水试验(CD试验) Consolidated Drained shear test (CD) 抗剪强度指标: cd d (c )
5. 优点和缺点
❖ 优点:
1
σ3>σ3f 弹性平衡状态 σ3=σ3f 极限平衡状态 σ3<σ3f 破坏状态
3 f
1tg
2
45
2
2c
tg
45
2
滑裂面的位置
与大主应力作用面夹角:α=45 + /2 45°+/2
1f 3
c
O
3
破裂面
f c tan
2 90
2
2 1f
总结:Mohr-Coulomb破坏理论的要点
对于:砂土>粘性土;
高岭石>伊里石>蒙特石 • 粒径的形状(颗粒的棱角与长宽比)
第五章土的抗剪强度
(2)土坡稳定性
土坝、路堤等填方边坡以及天然土坡等,在超载、渗流乃至暴雨作用下 引起土体强度破坏后将产生整体失稳边坡滑坡等事故。
(3)支挡结构的土压力
挡土墙、基坑等工程中,墙后土体强度破坏将造成过大的侧向土压力, 导致墙体滑动、倾覆或支护结构破坏事故 。
应力圆与强度线相切: τ=τf
应力圆与强度线相割: τ>τf
弹性平衡状态 极限平衡状态 破坏状态
莫尔-库仑破坏准则
A
c 3
f 2 f 1
c.cot (1 +3 )/2
sin
121 3
ccot 121 3
1 3ta 2 4 no5 2 2 cta 4 n o5 2 31ta 2 4 no5 2 2 cta 4 n o5 2
§ 5.3 抗剪强度(shear strength)试验
室内测定抗剪 强度指标常用方法
直接剪切试验 单轴压力试验
三轴压力试验
1.一、直接剪切试验(direct shear test)
1. 试验仪器:
直剪仪、两个重叠在一起的剪切盒、透水石、钢压板、量力环、加压砝码。
2.直剪试验原理
剪切前施加在试样顶面上的竖向压力为剪破
斜面上的应力
1 2131 213co 2s
1213sin2
莫尔应力圆方程
1 21 3 2 2 1 21 3 2
圆心坐标 [(1 +3 ) /2,0]
应力圆半径 r=(1-3 ) /2
1
土中某点的应力 状态可用莫尔应
力圆描述
三、土的极限平衡条件
强度线
第5章、土的抗剪强度
由于这些试件都剪切至破坏,根据莫尔—库伦理论, 作一组极限应力圆的公共切线, 即为土的抗剪强度包线 (图3—9c),通常可近似取为一条直线,该直线与横座标 的夹角即土的内摩擦角 ,直线与纵座标的截距即为土 的粘聚力c
如要量测试验过程中的孔隙水压力,可以打开孔隙 水压力阀,在试件上施加压力以后,由于土中孔隙水压力 增加迫使零位指示器的水银面下降,为量测孔隙水压力, 可用调压筒调整零位指示器的水银面始终保持原来的位置, 这样,孔隙水压力表中的读数就是孔隙水压力值。如要量 测试验过程中的排水量,可打开排水阀门,让试件中的水 排入量水管中,根据置水管中水位的变化可算出在试验过 程中试样的排水量。 对应于直接剪切试验的快剪,固结快剪和慢剪试验, 三轴压缩试验按剪切前的固结程 度和剪切时的排水条件, 分为以下三种试验方法: (1)不固结不排水试验 试样在施加周围压力和随后施加竖向压力直至剪切破 坏的整个过程中部不允许排水, 试验自始至终关闭排水 阀门。
(2)固结不排水试验 试样在施加周围压力时打开排水阀门,允许排水固结, 待固结稳定后关闭排水阀门, 再施加竖向压力,使试样 在不排水的条件下剪切破坏。 (3)固结排水试验 试样在施加周围压力时允许排水固结,待固结稳定后, 再在排水条件下施加竖向压 力至试件剪切破坏。 三、无侧限抗压强度试验 根据试验结果,只能作一个极限 应力圆 ( 1 qu , 3 0 ),因此对于一般粘性土就难以作出破坏 包线。而对于饱和粘性土,根据在三轴不固结不排水试验 的结果,其破坏包线近于一条水平线(见节3—5)即 u 0 这样,如仅为了测定饱和粘性土的不排水抗剪强度,就可 以利用构造比较简单的无侧限压力仪代替三轴仪。此时, 取 u 0 ,则由无侧限抗压强度试验所得的极限应力圆 的水平切线就是破坏包线,由图3—10(b)得
5第五章-土的抗剪强度ppt课件
THE END FOR CHAPTER FIVE
所以,无粘性土〔 c =0〕的抗剪强度仅由粒间 的摩擦分量构成;而对于粘性土,其抗剪强度 由粘聚分量和摩擦分量两部分构成。
〔一〕土的抗剪强度规律
由于土的抗剪强度是滑动面上的法向总应力的 线性函数,即τf=f(σ),所以只需单元土体中剪 切面上的剪应力τ为知时,即可判别土体所处 的形状:当τ <τf时,稳定形状
【例题5-2】
【例题5-2】
由式〔5-6〕求相应面上的抗剪强度τf为
由于τ> τf,阐明该单元体早已破坏。
【例题5-2】
〔2〕利用公式〔5-8〕或式〔5-9〕的极限平衡条件 来判别 ①由式〔5-8〕设到达极限平衡条件所需求的小主应力 值为σ3f,此时把实践存在的大主应力σ3=480kPa及强 度目的c,φ代入公式〔5-8〕中,那么得
【例题5-2】
知某土体单元的大主应力σ1=480kPa,小主应力σ3= 210kPa。经过实验测得土的抗剪强度目的c=20kPa,φ= 18°,问该单元土体处于什么形状? 【解】知σ1=480kPa,σ3=210kPa ,c=20kPa,
φ=18° 〔1〕直接用τ与τf的关系来判别
由式〔5-2〕和〔5-3〕分别求出剪破面上的法向应力σ 和剪应力τ为
式中:Tf_-摩擦力 W-物体的分量 φ0-外摩擦角,与两种资料接触面的性质有关, 而与外力的大小无关。_
一、固体间的摩擦力
没有程度推力时,物 体就没有滑动趋势, 因此,摩擦力实践上 没有发扬作用。
一、固体间的摩擦力
假设对物体施加一程 度推力T,当 T很小 时,为了抵抗这一推 力,物体将动用部分 摩擦力。由于α<φ0, 所以,物体仍没有滑 动。
一、直接剪切实验
第五章土的抗剪强度共35页
3 1tan245o2
土体处于极限平衡状态时,破坏面与大主应力作用面的夹
角为 f
A
max
c f 2 f
3
1
ccotg1/2(1 +3 )
f 1 290452
max 45
五、例题分析
剪切试验
剪前施加在试样顶面上
的竖向压力为剪破面上
的法向应力,剪应力由
剪切力除以试样面积
P A
f T A
在法向应力作用下,剪应力与剪切位移关系曲线, 根据曲线得到该作用下,土的抗剪强度
a
剪应力(kPa)
1 b
2
4mm
剪切位移△l (0.01mm)
•在不同的垂直压力下进行剪切试验,得相应的抗剪强度τf, 绘制τf - 曲线,得该土的抗剪强度包线
1 213si2 n f 10 .1k8Pa
库仑定律
f
tan c11 .3k5Pa
由于τ<τf ,所以,该单元土体处于弹性平衡状态
2.图解法
实际应力圆 τmax
极限应力圆
c
3f
1 1f
最大剪应力与主应力作用面成45o
ma x1 213si9 n011 k5 Pa
dlsin
3
1213sin2
莫尔应力圆方程
1 dlcos
1 21 3 2 2 1 21 3 2
A(, )
圆心坐标[1/2(1 +3 ),0]
O 3
2 1/2(1 +3 )
应力圆半径r=1/2(1-3 )
of internal friction)
第5章土的抗剪强度
第5章土的抗剪强度第五章土的抗剪强度名词解释1、抗剪强度:指土体抵抗剪切破坏的极限能力。
2、库仑定律:将土的抗剪强度ιf 表示为剪切面上法向应力σ的函数,即φστtan +=c f ,式中c 、Ф分别为土粘聚力和内摩擦角,该关系式即为库仑定律。
3、莫尔一库仑强度理论:由库仑公式表示莫尔包线的强度理论。
填空:1.根据莫尔一库仑破坏准则,土的抗剪强度指标包括和。
2.莫尔抗剪强度包线的函数表达式是。
3.土的抗剪强度有两种表达方法:一种是以表示的抗剪强度总应力法,另一种是以表示的抗剪强度有效应力法。
4.应力历史相同的一种土,密度变大时,抗剪强度的变化是;有效应力增大时,抗剪强度的变化是。
5.直接剪切仪分为控制式和控制式两种,前者是等速推动试样产生位移,测定相应的剪应力,后者则是对试件分级施加水平剪应力测定相应的位移。
6.排水条件对土的抗剪强度有很大影响,实验中模拟土体在现场受到的排水条件,通过控制加荷和剪坏的速度,将直接剪切试验分为快剪、和。
7.对于孔隙中充满水的完全饱和土,各向等压条件下的孔隙压力系数等于,表明施加的各向等压等于;对于干土,各向等压条件下的孔隙压力系数等于。
8.对于非饱和土,土的饱和度越大,各向等压条件下的孔隙压力系数越。
参考答案1.粘聚力,内摩擦角;2.φστtan +=c f ;3.总应力,有效应力; 4.增大,增大;5.应变,应力;6.固结快剪,慢剪;7.1,孔隙水压力,o ;8.大选择题1、建立土的极限平衡条件依据的是( 1 )。
(1)极限应力圆与抗剪强度包线相切的几何关系;(2)极限应力圆与抗剪强度包线相割的几何关系;(3)整个莫尔圆位于抗剪强度包线的下方的几何关系(4)静力平衡条件2、根据有效应力原理,只要( 2 )发生变化,土体强度就发生变化(1)总应力;(2)有效应力;(3)附加应力;(4)自重应力。
3.无侧限抗压强度试验可用来测定土的( 4 )。
(1)有效应力抗剪强度指标; (2)固结度; (3)压缩系数; (4)灵敏度。
土力学课件第五章土的抗剪强度
第五章 土的抗剪强度
②也可由式(5-9)计算达到极限平衡条件时所需要得大主应 力值为σ1f,此时把实际存在的大主应力σ3 =480kPa及强度指标c ,φ代入公式(5-8)中,则得
由计算结果表明, σ3<σ3f , σ1 >σ1f ,所以该单元土体早已 破坏。
岩土工程研究所
第五章 土的抗剪强度
注意:给定大主应力时,小主应力越小,越接近破坏; 给定小主应力时,大主应力越大,越接近破坏;
岩土工程研究所
第五章 土的抗剪强度
【例题5-2】已知某土体单元的大主应力σ1=480kPa,小主应力σ3 =210kPa。通过试验测得土的抗剪强度指标c=20kPa,φ=18°, 问该单元土体处于什么状态? 【解】已知σ1=480kPa,σ3=210kPa ,c=20kPa,
岩土工程研究所
第五章 土的抗剪强度
三轴试验步骤:
轴向附加应力q(kPa)
300 250 200 150 100
50 0 0
100kPa 300kPa
200kPa 400kPa
5
10
ห้องสมุดไป่ตู้15
20
轴向应变(%)
岩土工程研究所
第五章 土的抗剪强度
轴向附加应力q(kPa) 孔隙水应力u(kPa)
三轴试验步骤:
上式也可适用于有效应力,相应c,φ应该用c’,φ’。
3f
1f
tg
2
(45
2
)
2c
•
tg
(45
2
)
1f
3f
tg
2
(45
2
)
2c
•
tg(45
2
)
岩土工程研究所
第五章 土的抗剪强度
第三类是土作为建筑物地基的承载力问题,如果基础下的地基土体产生整体滑动或因局部剪切破坏而导致过大的地基变形,将会造成上部结构的破坏或影响其正常使用功能(图5-1c)。 有关土的强度破坏的工程实例如下:
5.1 土的强度概念(9)
(图5-1c)
(图5-1b)
土的极限平衡条件 根据极限应力圆与抗剪强度包线之间的几何关系,可建立以土中主应力表示的土的极限平衡条件如下:
土的极限平衡条件同时表明,土体剪切破坏时的破裂面不是发生在最大剪应力 t max的作用面 a=45°上,而是发生在与大主应力的作用面成 a=45°+j/2的平面上。
土的极限平衡条件的应用 土的极限平衡条件常用来评判土中某点的平衡状态, 具体方法是根据实际最小主应力 s3 及土的极限平衡条件式(5-7) ,可推求土体处于极限平衡状态时所能承受的最大主应力 s1f,或根据实际最大主应力 s1 及土的极限平衡条件式(5-8) 推求出土体处于极限平衡状态时所能承受的最大主应力 s3f ,再通过比较计算值与实际值即可评判该点的平衡状态:
上述关系也可用 t-s坐标系中直径为 (s1 -s3 ) 、圆心坐标为 [(s1 +s3 )/2,0] 的摩尔应力圆上一点的坐标大小来表示,如图5-3中之 A 点。
(a)单元体应力 (b)摩尔应力圆 图5-3 土中应力状态
当土体中任意一点在某一平面上的剪应力达到土的抗剪强度时,就发生剪切破坏,该点也即处于极限平衡状态。为了简化分析,下面仅考虑平面问题来建立土的极限平衡条件,并且引用材料力学中有关表达一点应力状态的摩尔圆方法。
(2)
近代世界上最严重的建筑物破坏之一是美国的一座水泥仓库。这座水泥仓库位于纽约市汉森河旁。建筑地基土分四层:表层为黄色粘土,厚 5.5m;第二层为青色粘土,标准贯入试验N=8击,承载力为84~105kPa,层厚17.0m;第三层为碎石夹粘土,厚度较小,仅1.8m;第四层为岩石。 水泥仓库上部结构为圆筒形,直径d=13m,基础为整块板式基础,基础理深2.8m,位于表层黄色粘土中部。
第5章土的抗剪强度
A
如果 σ1 <σ1f :不破坏; 如果 σ1 ≥σ1f :破坏。
f c tan
A
3 3f 3
1 1
3 1
1f
1
【例题1】已知某土体单元的大主应力σ1=480kPa,小主应力σ3= 210kPa。通过试验测得土的抗剪强度指标c=20kPa,φ=18°,问该 单元土体处于什么状态?
现场试验:十字板剪切试验、现场大型直剪试验
影响土抗剪强度指标的因素 土的种类 土样的天然结构是否被扰动 应力状态和应力历史 排水条件(室内试验时的一个需要考虑的最重要影响因 素)
室内直剪仪
室内直剪仪
三轴仪
三轴仪
无恻限压缩仪
抗剪强度理论的发展
本科只介绍的部分
(1)经典强度理论(Mohr- Coulomb强度理论)
n 1
3
m
1 (ds cos ) ( cos ) ds ( sin ) ds 0
求得
1 2
(1
3)
1 2
(1
3) cos 2
1 2
(1
3)sin 2
1
2
2
2
2
1
3
2
2
ds
3 ds sin
1 ds cos
2、莫尔应力圆
正应力:压为正,拉为负; 剪应力:逆时针为正,顺时针为负。
1、不能用于反映土体的抗拉强度及破坏特性; 2、不能反映高压下土体的强度及破坏特性; 3、不能反映土体强度及破坏的中间主应力效应。
(a) 红砂岩
(b) 花岗岩
(c)破坏面方向
现代强度理论(考虑了中间主应力效应的强度理论)
Lade-Duncan强度准则 Matsuoka-Nakai(SMP)强度准则 俞茂宏双剪应力强度准则 Drucker-Prager强度准则 其它
土力学完整课件---5.第5章 土的抗剪强度
应力圆与强度线相割:
τ>τf
剪破状态
摩尔-库仑破坏准则
强度线
摩尔应力圆与库仑强度线相切的应力状态作为 土的破坏准则
摩尔-库仑破坏准则
A
c
1 1 3 2 sin 1 c cot 1 3 2
3
f 2 f
1
ccot (1 +3 )/2
根本原因:一部分土体相对于另一部分土体的滑动,滑动面上剪应力 超过了极限抵抗能力。
2 .研究 f 的目的:在保证土体稳定性的前提下,最大限 度地发挥和利用土的抗剪强度。 3.
1.土的抗剪强度 f --土对剪应力的极限抵抗能力。
f
的影响因素:
(1)土的特性:土粒大小、形状、表面粗糙度、级配、排列 方式,粒间联结强度,土的密实度等。
低灵敏度土
中灵敏度土 高灵敏度土
1<St≤2
2< St≤4 St>4
四、十字板剪切试验
适用于现场测定饱和黏性 土的不排水强度,尤 其适用于均匀的饱和 软黏土。
设土体剪破时所施加的扭矩为M,则有
M M1 M 2
柱体上下平面的 抗剪强度产生的 抗扭力矩
柱体侧面剪应力 产生的抗扭力矩
设顶面和底面上的剪应力是均匀分布的,大小为
1-2班
2008年11月15日下午3点15分左右,杭州市萧山区萧山风情大道地铁 一号线出口施工现场附近发生大面积地面塌陷事故,塌陷面积20米宽 100米长,深10米,十几辆车陷在其中。
原因:基坑塌方
大阪的港口码头档土墙由于液化前倾
日本新泻1964年地震引起大面积液化
黏土地基上的某谷仓地基破坏
第五章土的抗剪强度及其参数确定
第五章土的抗剪强度及其参数确定土的抗剪强度是土体在受到剪切力作用下抵抗破坏的能力。
土的抗剪强度是土力学中的重要参数,用于设计土体的承载力及稳定性。
土的抗剪强度与土体的力学性质有关,主要包括土粒间的摩擦力和粘聚力。
土粒间的摩擦力是由于土粒之间的接触而产生的阻力,而粘聚力是吸附在土粒表面的水膜力量。
土的抗剪强度可通过劈裂强度和摩擦强度来表示,即抗剪强度=粘聚力+摩擦力。
土体的抗剪强度可通过室内试验测定。
常见的试验方法有直剪试验、三轴剪切试验和扭转试验等。
其中,直剪试验是最简单的一种试验方法,适用于研究土体的剪切特性及其参数的确定。
直剪试验是将土样切割成一定形状的试件,然后施加垂直于剪切面的正压力和平行于剪切面的剪切力,观察土样的破坏模式及其抗剪强度。
试验可以得到剪切应力-剪切应变曲线,从而确定土体的抗剪强度及其参数。
直剪试验中,土样的形状和尺寸对试验结果有一定影响。
常见的土样形状有圆形、方形、矩形等。
土样尺寸的选择要符合土体的工程实际,并考虑统计性。
在试验过程中,还需控制剪切速率、正压力等试验条件。
直剪试验得到的剪切应力-剪切应变曲线常表现为线性段和非线性段。
线性段表征土体的弹性特性,非线性段表征土体的塑性特性。
通过拟合这两个段的曲线,可以确定土体的抗剪强度及其参数。
土体的抗剪强度参数主要包括内摩擦角和粘聚力。
内摩擦角是土体摩擦力大小的一种表征,可通过试验结果计算得到。
粘聚力是土体粘聚力大小的一种表征,需要通过试验得到。
根据试验结果,可以进一步确定土体的抗剪强度参数。
土的抗剪强度及其参数对土体的工程设计和稳定性分析具有重要的意义。
确定准确的抗剪强度参数可以保证土体工程的安全可靠性,也有助于优化土体的设计和施工方案。
因此,在土力学和岩土工程中,研究土的抗剪强度及其参数的确定是一个重要的课题。
第五章 土的抗剪强度
样在3min~5min内剪破。该试验所得的强度称为快
剪强度,相应的指标称为快剪强度指标,以 c Q , φ Q 表示。
(2)固结快剪(CQ)
试验时对试样施加垂直压力后,每小时测读 垂直变形一次,直至变形稳定。变形稳定标准为 变形量每小时不大于0.005mm,再拔去固定销, 剪切速率同快剪试验。所得强度称为固结快剪强
地基失稳:地基中形成连续的剪切滑动破坏面,
基础产生沉降或倾斜,地基土被挤出,地基破坏。
滑动 破坏面
压密区
结 论
地基破坏即是剪切破坏。 土的强度问题实质上就是抗剪强度问题。
土的抗剪强度:是指在外力作用下,土体内部 产生剪应力时,土对剪切破坏的极限抵抗能力。
第二节
土的抗剪强度
一、抗剪强度表达式 土的抗剪强度可以通过试验的方法测定;
2
2
2
砂性土的极限平衡条件 :
1 3 tan (45 )
2
3 1 tan (45 )
2
2
2
某点处于极限平衡状态时,破裂面与最大主应力 作用面所呈角度(称为破裂角)为 :
cr 45
2
c o′
τ
A
αcr
υ
2αcr C σ
σ1 σ3
n σ3
τ >τ
f
土的极限平衡条件:极限平衡状态时,土中大小
主应力与土的抗剪强度指标之间的关系。(?)
当主应力已知时,任意斜截面上的正应 力σ 与剪应力τ 的大小可用摩尔圆来表示: σ1 σ3
m α σ1 单元体上的应力
n σ3 m τ
n
σ α
σ1
σ3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
密实 中密
u
100 50
松
0
松
-50
密实 中密
-100
0
轴向应变 1 (%)
0
轴向应变 1 (%)
图5-11 不排水剪切的应力-应变-孔压关系曲线
(二)破坏包线和抗剪强度指标
1.从应力-应变关系曲线寻找破坏时
的偏差应力 (1 3) f 的方法有三种 (1)取曲线的最大偏差应力值
当需要用土的残余强度时取
c', '土的有效抗剪强度指标,对于同一种土,其值理论上与试验
方法无关,应接近于常数。
4.莫尔抗剪强度公式
f f ( )
当应力变化范围不很大时可用 库伦直线代替莫尔破坏包线
.C
.B
(二)莫尔——库伦破坏准则——极限平衡条件 1.土体中剪切破坏面位置的确定
f f ( )
.A
(1)在地面荷载p作用下,土中 某点M的应力状态应力圆在强度
2
整理后:
1(1 sin) 3(1 sin) 2c cos
(5-7)
又因 故得
cos
1 sin 2
1 sin
1 sin 1 sin 1 sin
1
3
1 1
sin sin
2c
1 sin 1 sin
(5-7)′
又因
3
1
1 sin 1 sin
2c
1 sin 1 sin
1 sin 2 cos2
3.土单元体中,任何一个面上的剪应力大于该面上土的抗剪 强度,土单元体即发生破坏,用破坏准则表示即为式(5-7)至 式(5-10)的极限平衡条件
(三)极限平衡条件的应用 达到极限平衡所要求的内磨擦角 m
m
sin 1 1m 1m
3m 3m
m 单元体已破坏
m 单元体处于弹性平衡状态
p
包线下面,该点应力条件处于弹
性状态应力圆正好与强度相切,
该点处于极限平衡状态
·M
(2)破裂面位置与最大主平面成
45 2
,即
45 2
1f
450+/2
450+/2
c O 3
1f
图5-7 土的破裂面确定
2.极限平衡条件推导
1 3
由
sin
1
3
2 c ctg
1
1 3 3 2c ctg
试验曲线的终值 (1 3 )r 作 (1 3 ) f
(2)以最大有效主应力比
(
/ 1
/
/ 3
2
2
tg(a b) tga tgb 1 tga tgb
sin
2 s in
cos
22
1 tg 4
得:
1 sin tg2
1 sin
4 2
故公式(5-7)′可写为:
1
3
tg
2
4
2
2c
tg
4
2
3
1tg
2
4
2
2c
tg
4
2
若 c 0,即对洁净的砂土,则有
m 单元体处于塑性平衡状态
达极限平衡所要求的大主应力
1
3m tg 2
(45
)
2
2c
tg(45
)
2
2c
1 处m 于弹性平衡状态,反之已破坏.
§3 土的抗剪强度试验方法
一、三轴剪切试验
(一)常规三轴剪切试验方法
(1)排水剪:图及试验结果见第四章第二节 (2)不排水剪: 详细讨论见第五节
(1 3 )
( 1 3 ) y
②变形是完全弹性的应力-应变关系是
a
唯一的,与应力路径和应力历史无关
a
③ (1 3) y 称屈服应力或破坏应力
应变硬化
2 1 b3
1
应变软化
弹性阶段
2.土的应力-应变关系 (1)正常固结(松砂),图5-3曲线(3)
加工硬化, 屈服点至b点, 无峰值 (2)超固结(密松),图5-3曲线(2)
1
3tg2
423Fra bibliotek1tg
2
4
2
当 0 时, 1 3 2c
3 1 2c
归纳莫尔——库伦破坏理论,可表达为如下三个要点: 1.破坏面上,材料的抗剪强度是法向应力的函数。
可表达为: f f ( )
2.当法向应力不很大时,抗剪强度可简化为法向应力的线性 函数,即表示为库伦公式
f c tg
滑前边坡
滑动面 图5-1 土坡滑动
原地面
滑动面 图5-2 地基失稳
二、工程中常见的强度问题
(1)土作为土工结构物的稳定性问题 如人工筑成的路堤,土坝的边坡以及天然土坡等的稳定性问
题。 (2)土作为工程结构的环境的问题 即土压力问题。这和边坡稳定问题有直接联系,若边坡较陡
不能保持稳定,又由于场地或其他条件限制而不允许采用平缓边坡 时,就可以修筑挡土墙来保持力的平衡。这类工程问题如挡土墙、 桥台、地下隧道等。
(3)土作为建筑物的地基问题,即地基承载力的问题。
三、土的抗剪强度测试方法
室内试验:应力状态被改变,取土过程受到干扰 原位测试:精度不高
§2 土的抗剪强度和破坏理论
材料破坏形式
断裂:岩石,硬粘土 屈服或塑流:软土
一、土的屈服与破坏 1.理想弹、塑性材料的应力-应变关系
1 3
图5-3
b
①应力-应变成直线关系
S f f (1 2 3 )
2.广义密色斯理论
(1
2 )2
( 2
3 )2
(1
3 )2
6E 1 v
wf
式中 E——材料的弹性模量
v ——材料的泊松比
wf ——畸变能的极限值 3.莫尔——库伦理论
,wf
f (I1)
(I1 1 2 3)
图5-5 固定剪切面的剪切试验
(1)库伦公式基本形式(总应力抗剪强度公式)
第五章 土的抗剪强度
§1 概述
一、抗剪强度的基本概念
土的强度是指一部分土体相对于另一部分土体 滑动时的抵抗力,实质上就是土体与土体之间的摩 擦力。
土的抗剪强度,首先决定于它本身的性质,即土的 组成,土的状态和土的结构,这些性质又与它形成 的环境和应力历史等因素有关;其次还决定于它当 前所受的应力状态。
式中
f c tg
f——剪切破坏面上的剪应力,即土的抗剪强度
——破坏面上的法向应力
c——土的粘聚力,对于无粘性土, c 0
——土的内摩擦角
* c, 称为抗剪强度指标,同一种土,它们与试验方法有关
(2)有效应力抗剪强度公式
f c' 'tg c'( u)tg '
式中 —' —剪切破坏面上的有效法向应力 u ——土中的超静孔隙水压力 c' ——土的有效粘聚力 '——土的有效内摩擦角
加工软化,出现峰值
强度取值峰残值余强: 常度用: 土体受反复剪切作用
3.实际计算时土的弹塑性问题 (1)按线弹性体 (2)按理想塑性材料 二、莫尔——库伦破坏理论 (一)土的破坏理论
1- 3
3 =300kpa 3 =200kpa 3 =100kpa
1.广义特莱斯卡理论
1
图5-4 土的应力-应变关系
1 3 2S f